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Introduction

1 Fourier representations of DT signals and LTI systems are
based on superpositions of complex sinusoids
» The DTFT does not exist for signals that are not absolutely summable;
» The DTFT cannot be easily used to analyze unstable or even marginally

stable systems.

z-transform provides a broader characterization of discrete

time signals and LTI systems than Fourier methods

» Based on superpositions of continuous time complex exponentials of the
form e(@Qk rather than complex sinusoids e¥X,

» The z-transform exists for signals that do not have a DTFT by selecting a

proper value for o.
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The z-transform

O Consider the Fourier transform of f(t)e~°t (o real)
> F{flkle ") = oo flkle ™ e = TR _ o f[k] e”@HVE = F(e7H)

> The inverse DTFT of F(e®*/®) is f[k]e %% = ifan(e‘”m)ejﬂde. Multiplying
both sides with e7* yields f[k] = — " F(e*/%)e(@+/Dkqq.

27
> Changing variable Q to z = e/ = re/® with r = e yields bilateral z-transform

pair, notice that Inz = ¢ + jQ and idz = jd().
1 Bilateral z-transform pair
F(z) = Xie—o fIKlz7F (1)
flk] =5-$F@)z"dz ()
» As () varies from —m to , z completes exactly one rotation in counterclockwise

direction on a circle of radius r — the integral in Eq. (2) is a contour integral
around a circle of radius r in counterclockwise direction.

» In practice, we usually do not evaluate (2) directly but use a z-transform table.

> Ifweleto =0, F(z) = F(_efﬂ)—> the DTFT is a special case of the z-transform
obtained by letting z = e/ (i.e. z circumnavigates along the unit circle on the
z-plane).




The z-plane illustration

Im{z}

z-plane

I+ = yel X(e/?) = X(2)|,_,ia




The z-transform and the DTFT

EXAMPLE 7.1 THE Z-TRANSFORM AND THE DTFT Determine the z-transform of the signal

1, n=-1
2, n=0
x(n]=4¢ -1, n=1
1, n=2

0, otherwise

Use the z-transform to determine the DTFT of x[#].

SOLUTION
> X2 =Yy _ox[klzF =z+2—z"1+ 272
> Substituting z = e/? to X(2) yields X(e/?) = e/ + 2 — 7/ 4 720



Region of convergence (ROC)

1 The ROC for F(z) is a set of values of z (a region in the z-plane)

for which the infinite sum in Eq. (1) converges.

» A necessary condition for convergence is absolute summability of x[n]z™". Since
|x[n]z™"| = |x[n]r~"|, we must have Y. ;__|x[n]r | < co.

» For bilateral z-transform, it is possible that two different signals have the same
F(z) but with different ROC. In other words, there is no 1-to-1 correspondence
between F(z) and f[k] unless the ROC is specified.

> Example: Find the z-transform and ROC for x[k] = a*u[k]

> Solution: Im(z}

a k :
X(2) = YR akulklz™* =¥, (;)

= For |z| > |a|, the sum converges to ; N

1 z 4 \
X(z) =—7F=—. y \
( ) 1-Z Z—«x | \
z —ty O ' Re{z)

* For |z| < |a|, the sum does not converge. ) 0 *
Hence, the ROC of X(z) is the shaded region §
outside the circle of radius |«|, centred at the N | _d

origin in the z-plane.
z-plane



Poles and zeros

b I (1-cxz™Y)
it (1-dgz=1)
» The roots of the numerator polynomial, c,, are termed the zeros of X(2).
» The roots of the numerator polynomial, d,, are termed the poles of X(z).

J  Example:

Find the z-transform of the signal x[k] = —a*u[—k — 1]. Depict the ROC and locations
of poles, zeros of X(z) in the z-plane.

- Like in the CT case, it is useful to express X(z) =

SOLUTION:
00 -1 K
X(z) = Z —aku[—k —1]z7% = — z (5) e
k=—00 k=—o0 z Y T S
0o AN oo T /, >

=-2. () =1-2 () / A

n=1 n=0 'I 5 4 \|
For |z| > ||, the sum does not converge. For |z| < |a], \ ol T Relz)
the sum converges to X(z) = 1 — ﬁ = ﬁ The ROC of \\\ /,.'
X(z) is the shaded region inside the circle of radius |«|, . -
centered at the origin in the z-plane. D ok adiing

The signal has one zero at z = 0 and one pole at z = «a.



Properties of the ROC

The ROC cannot contain any pole.

» Suppose d is a pole of X(z) — X(d) = £ — X(z) does not converge atd — d
cannot lie in the ROC.

The ROC for a finite-duration signal includes the entire z-plane,
except possibly z = 0 or |z| = « (or both).

Suppose that x[n] satisfies |x[n]| < A_(-)",n < 0;[x(t)]| <
AL(r.)™,n = 0 (i.e. x[n] grows no faster than(r,.)™ and (r_)" for
positive and negative n, respectively)

» Ifr, < |z| < r_ then X(z) converges. If r, > r_, X(z) does not converge.

For x[n] satisfies exponentially bounded conditions above

» If x[n] is a right-sided signal (i.e. x[n] = 0 for n < 0), then the ROC of x[n] is of
the form |z| > r,.

» If x[n] is a left-sided signal (i.e. Xx[n] = 0 for n = 0), then the ROC of x|n] is of
the form |z| < r_.

» If x[n] is a exponential two-sided signal (i.e. x[n] infinitely extends in both
directions), then the ROC of x[n] is of the form r, < |z| < r_.




Example

Determine the z-transform and ROC for:
n
x[n] = —u[-n—-1] + (%) uln].

Solution:

X(z) = i(

n=0_ oo ~ Refz)
1
— _ _ k
B Z <ZZ) +1 Z ‘
n=0 k=0

» Both sums must converge in order for X(z) to

z-plane
converge — |z| > 1/2 & |z| < 1.

3
27—2>
> For1/2<lzl <1X(2) = —5+1--== 2(22-2)

2 T T e e




ROC for exponentially bounded signals
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Properties of the z-transform

Linearity:

ax[n] + by[n] «——> aX(z) + b¥(z), withROCatleastR, NR,.

Time reversal:

x[—n] ——> x(%) with ROCRi:.

Time shifting:

x[n—n,] — z™X(z), withROC R,, except possibly z = Oor|z| = 0.

Multiplication by an exponential sequence:

o"x[n] ——> x(i) with ROC |alR, .

» The notation |a|R, means that the ROC boundaries are multiplied by |«|: if R,
IS a < |z| < b, then the new ROC is |a|a < |z| < |a|b.



Properties of the z-transform (cont.)

d Convolution:

x[n] = y[n) — X(z)Y(z), withROCatleastR,NR,.

d Differentiation in the z-domain:

nx(n] «—s —z%l’f{z], with ROCR,.

1 Example: Find the z-transform of x[n] = a™ cos Qynu[n] with a € R*
SOLUTION

>

>

We have x[n] = %ejﬂony[n] + %e‘jQO”y[n], where y[n] = a™u[n] & —
with ROC |z| > a.

Applying the property of multiplication by an exponential sequence
X(z) = %Y(e‘jﬂoz) + %Y(ejﬂoz) = 1= cos Qoz”” ROC |z]| > a.

1-2a cos Qgz~1+a2z=2’




Some common z-transform pairs

Signal Transform ROC
1. d[n] All z
2. uln] z| > 1
3. —u[—n —1] 2| <1

4. §[n — m]

au [.r:r_ ]

on

6. —a"ul—n — 1]

All z except
0 (if m > 0) or

oo (if m < 0)
2| > |af

2| < |af




Some common z-transform pairs (cont.)

Signal Transform ROC

7. na"™uln] ““—n”lrj-r z| > |a
8. —naul-n — 1] “”:—ll] 2| < |a
9 [ . 1—[cos wp]z~?! N

9. [cos won|u[n] eosaole 1122 2| > 1
10. [sin wyn|u[n] 1 Er‘:ﬂ?:;] IIH 3 2| > 1
11. [r" coswon|u[n] 5 ;miji“”. :g: s |z| >
12. [r"sinwon]uln| 5 H}r[;?":i”], _lr2: s |z| >




Inversion of the z-transform

J Partial fraction expansion:

>

. byz Mibpy_1z~M-Dy..ppz714p, _oN A .
Bring X(z) of the form 2o T 1=d T to X(s) = Yr=1 T if all

the poles d, are distinct.
If a pole d, is repeated r times, then there are r terms in the partial fraction

- - : . A Aiz Air
expansion associated with that pole: Ca T Ga ) T

Depending on the ROC, the inverse z-transform associated with each term is
then determined by using the appropriate transform pair:

A (d)"uln] & —=%— with ROC |z| > di; or

1-— kZ_1

—Ai(di)"u[—n — 1] &2 with ROC |z| < d; or

1-dpz~1

(n+1)---(n+m-1) n z k . .
A — (dy)™uln] (_)—(1—dkz—1)m with ROC |z| > d; or
4 (n+1)--(n+m-1) Nl z k .
A — (di)"u[—n — 1] © a " with ROC |z| < d.

The linearity property indicates that the ROC of X(z) is the intersection of the
ROCs associated with the individual terms in the partial fraction expansion —
we must infer the ROC of each term from the ROC of X(z) to obtain the correct
inverse transform.



Example

EXAMPLE 7.9 INVERSION BY PARTIAL-FRACTION ExPaNsION  Find the inverse z-transform of
1-z'+27
(1-327)(1 -2 -2

Solution: We use a partial-fraction expansion to write
1 2 2
X(z) = + - .
(2) 1-3z7' 1-277 1-21

Now we find the inverse z-transform of each term, using the relationship between the
locations of the poles and the ROC of X(z), each of which is depicted in Fig. 7.12.
The figure shows that the ROC has a radius greater than the pole at z = 3}, so this term
has the right-sided inverse transform

X(z) = , withROC1 < |7] < 2.

(3) stm —— — S
— | u[n _— ; >
1 - - \
2 1 - iz l ’/, //—v \\ \\
= / 4 N A
The ROC also has a radius less than the pole at z = 2, B X .}
so this term has the left-sided inverse transform SO ,}——7 5 Relz)
\ \ - |
Z 2 \ N = // y
- e — — * = \ \\ = )
2(2)"'u[—n — 1] 1= 2 o ,[ Y
N y
e ’/z-plmc

FiGURE 7.12 Locations of poles and ROC for Example 7.9.



Example (cont.)
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FIGURE 7.12 Locations of poles and ROC for Example 7.9.

Finally, the ROC has a radius greater than the pole at z = 1, so this term has the right-sided

inverse z-transform

—2u[n) « -

Combining the individual terms gives

&5 = (%)nu[n] — 2Q2)u[—n — 1] - 2u[n]. -



Inversion of the z-transform (cont.)

J  Power series expansion:

» Bring X(z) to the form of a power series in z1 or z, then the values of x[n] are
the coefficients associated with z™".

» This inversion method is limited to one-sided signals only, i.e. signals with
ROCs of the form |z]| > a or |z| < a. If the ROC is |z| > a — express X(z) as a
power series in z*1t — right-sided x[n], and vice versa.

. . 2 .
 Example: Find the inverse z-transform of X(z) = e#", with ROC

all z except |z| = oo.

d Solution:

k
» Using the power series representation for e?, viz. e® = Y,/ 07 We have

X“—E(z)k iﬂ
k=0

» On the other hand, as X(z) = Zn=_oox[n]z‘” by definition, we conclude that
0, n < 0 orn odd
1

@)

x[n] = otherwise




The transfer function

1 Derived in a similar manner to that of CT LTI systems.

>

> h[n] =2 YH@)] =2~ [

H(z) = and is called the transfer function of the DT LTI system.

Y(2)

28, yinl = 2 HDX ()]

» In order to uniquely determine h[n], we must know the ROC. If the ROC is not

known, other system characteristics such as stability or causality must be
known.

The transfer function can be obtained directly from the difference

equation that describes the system.

>

Assume that the system is described by Y¥_,axy[n — k] = X¥_o bx[n — k].
Taking z-transform of both sides yields Y¥_, axz %Y (2) = ¥¥_, bz %X (2).
Y(2) Zk Obkz_k

X(2) Zk 0 AkZ —k

The poles and zeros of a rational transfer function are found by factoring the
b [Teea(1-crz™)

M, (1-dpz™1)

Rational transfer function: H(z) =

numerator and denominator H(z) =




Causality and stabillity

Causality: a DT LTI system is causal if h[n] = 0 vn < 0 — the
Impulse response of a causal DT LTI system is determined from
its transfer function by using right-sided inverse transform.

Stability: a DT LTI system is causal if its impulse response is
summable — the DTFT of the impulse response exists — the
ROC must includes the unit circle in the z-plane.

If a system is causal:
Ag
1-dpz~1
unit circle in the z-plane. If there’s at least one pole outside the unit circle —

unstable.

If the system is anti-causal:
» h[n] is the left-sided inverse z-transform of H(z).

> S Ay (di)™u[n] — the system is stable if all the poles are inside the

> ;"2_1 & —A; (di)"u[—n — 1] — the system is stable if all the poles are
—Ck

outside the unit circle in the z-plane. If there’s at least one pole inside the unit
circle — unstable.




Pole locations and impulse response for
causal systems

Im{z) bin)

(@)
bin)
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FIGURE 7.14 The relationship between the location of a pole and the impulse response charac-
teristics for a causal system. (a) A pole inside the unit circle contributes an exponentially decaying
term to the impulse response. (b) A pole outside the unit circle contributes an exponentially in-
creasing term to the impulse response.




Pole locations and impulse response for
stable systems

Im{z} bin)

!le-l B J’i

(a)

a L=
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FIGURE 7.15 The relationship between the location of a pole and the impulse response charac-
teristics for a stable system. (a) A pole inside the unit circle contributes a right-sided term to the im-
pulse response. (b) A pole outside the unit circle contributes a left-sided term to the impulse response.




Block diagram representations of DT-
LTI systems

A block diagram describes how the system’s internal elementary
operations are ordered.
» The block diagram description of a system is NOT unique.
» Example: y[n] + a;y[n — 1] + a,y[n — 2] = box[n] + byx[n — 1] + b,x[n — 2]

> Solution: (1 +a;z7 + a,z72)Y(2) = (bg + b1zt + b,z7?)X(2)
by

Wi
X(2) > ¥ - ) 3 » Y(2)

! \ ]

z! z!
=1 1 —a) =4
7' X(2) — ) Yy +——= Z'Y(2)

A A
2! 2
b: —d~ I

72X(z) - -~ z2Y(z)

v z71 represents the shift operator.



X(2)

The direct form I

1 Derived by writing the difference equation as two coupled
difference equations involving an intermediate signal f[n].

> Let Hy(2) = by + bz~ + byz72, Hy(2) = 1+a12_1+a22_2, and F(z) = H,(2)X(2),
it's obvious that Y(z) = H,(2)F(2).

Ve B S e e |
: ' F2) b Ko | by !
>3 : ° I * : > > ¥ — Y(z)

R R | |
. : L I N :

| . -1 s
: - s oo 0
I Vo I I : ] ' Do
| -d, : | | 1 : b | ?I I_,
| B e—<——47"F2) ! | 2'Fz) $#———> % | v
| : S : : Fz) b
: i Y | : Y T | X(z) —{2 »>— L — Y(2)
I | I I F ' A I A
| - : I 1 :
: - u 2 : : 2 o3 ' £
| < O |
e e e s e —— — . ———— — — ——— R —

Hyx(2) H,(2)

> The z~1 blocks in H,(z) and H,(z) generate

identical quantities — combined to get &~ ~a J b,




Determining the frequency response
from poles and zeros

be /P2 [, P (1-cke ™)
O [V (1—dpe J9) °

_ bz P (1-cz ™) jQY) —
d LetH(z) = T md H(e ) =
> The magnitude of H(e/?) at some fixed value of Q, say, Q, is defined by:
, b M_—p JQo _
|H(e/%)| = | |11_V[1_<l_1 |; Cr|

k=1|e] 0 — dkl

> In the z-plane, each of the complex number e/®°, ¢, d, is represented by a
vector from the origin to the to the corresponding point — e/ — g is a vector
from the point g to the point e/ (g can be either a pole or zero).

> The frequency response is evaluated by the contribution of all vectors e/ — g.

Im{z} Im{z)
o/ le® g |
g i, _ i
e'*o e 2 ejnl ~
&S
Re{z} Re(z} o N
~ T ! T '
0 £, 0 Q Q Q
lz| =1 lz] =1
z-plane z-plane




Example

-1

O Sketch the magnitude response for H(z) = Fi 1;(2 i
1-0.9¢’4z=1/\1-0.9e 74z~ 1

d Solution:

T

» One zero at z = —1 and two poles at z = 0.9¢’+ and z = 0.9¢ /%,
» The contribution of the zero to the magnitude response can be evaluated as

follows
Im{z} e +1]|
f‘;ﬁ‘ emj 2
. )
e Y
e.fn.'l
Re{z
5 {z} Q
lz] =1
z-plane




Example solution

Contribution of the pole at z = 0.9¢’%

Im{z) e/ - 0.9¢7|™
10 +
giﬂl
e ®__ Refz} e +—Q
0 Tl (b 0 (0w |2 " | H(e®)]
¢ o 0 Q
Izl =1
el z-plane
. _iT
Contribution of the pole at z = 0.9¢ /%
Im{z} | e - 0.9¢77m4| ! o -ma | w4
110 The overall magnitude response




Unilateral z-transform

J  There are many applications where the signals involved are
causal

» Itis advantageous to define the unilateral z-transform that works only on the
non-negative time portion of the signal — no need to consider the ROC.

J  Definition
F(z) = Yp=oflklz™%  (3)
» The inverse transform remains the same as in the bilateral case.

1 Properties: similar to those of the bilateral transform — self-study.

» One important exception is the time shift property. The unilateral version for a
delayed signal is

x[n — k]<Z—u> x[—k]+x[-k + 1]z + -+ x[-1]z7**T + z7%X(2) for k > 0
» and for an advanced signal is

x[n + k]<Z—u> — x[0]z% — x[1]z% "t — . — x[k — 1]z + z*X(2) for k > 0

» Application: solving difference equations with initial conditions.



Solving difference equations with initial
conditions via unilateral z-transform

J  Taking unilateral z-transform of both sides of a difference equation

» Use algebra to obtain the z-transform of the solution, and then find the inverse
z-transform.

O Consider Y¥_oary[n — k] = X i_o bpx[n — k]

» Taking unllateral Z- transform

Y(Z)Zakz +z z apy[—k + m]z m—X(z)Zbkz_k

m=0k=m+1
A(z) C(2) B(Z)

» Solving for z-transform of the solution: Y (z) = % — Zg

> Find Z71[Y(2)] by partial fraction expansion or power series expansion.
- Example: find the forced and natural responses of the system

yln] + 3y|n — 1] = x[n] + x[n — 1]

if the input is x[n] = G)nu[n] and the initial condition is y[—1] = 2




Example solution

Taking unilateral z-transform of both sides of a difference equation
Y(z2)(1+3z7H)+3y[-1]=X(=) (1 +z71)

A(2) C(2) B(2)
Solving for z-transform of the solution:
1+z~1 1 6
Y(z) = 1+3z71 1_(%)2—1 143271
Taking partial fraction expansion for Y(z):
4/7 3/7 6
V() = (b S\ O

Taking inverse z-transform of Y(z) yields

) __ 4 n 3 1\
» Forced response yY)[n] = ;(—3) uln] + ;(5) uln]
> Natural response y™[n] = —6(—3)"u[n]

> Total response y[n] = —3—78(—3)"u[n] + % (l)n uln]




