ELT2035 Signals & Systems

Lesson 9: Signals and systems analysis practice

Hoang Gia Hung Faculty of Electronics and Telecommunications University of Engineering and Technology, VNU Hanoi

Sketch the magnitude and phase spectra of the following signals

- a. $x(t) = 2e^{5t}u(t)$
- **b.** $x(t) = -2e^{-5t}u(t)$

SOLUTION

- a. x(t) is unbounded \rightarrow its FT is not defined (remember Dirichlet conditions in Lesson 6?)
 - Dirichlet conditions for pointwise convergence:

1. x(t) is absolutely integrable, i.e. $\int_{-\infty}^{\infty} |x(t)| dt < \infty$

- 2. x(t) has a finite number of extrema and discontinuities in any finite interval
- 3. The size of each discontinuity is finite

b. We have:
$$X(\omega) = \int_{-\infty}^{\infty} -2e^{-5t}u(t)e^{-j\omega t}dt = \int_{0}^{\infty} -2e^{(-5-j\omega)t}dt = \frac{-2}{-5-j\omega}e^{(-5-j\omega)t}\Big|_{0}^{\infty} = \frac{-2}{j\omega+5} = -\frac{10}{\omega^{2}+25} + j\frac{2\omega}{\omega^{2}+25}$$
. Hence $|X(j\omega)| = \frac{2}{\sqrt{\omega^{2}+25}}$, $\angle X(j\omega) = -\tan^{-1}\frac{\omega}{5}$. Sketches of $|X(j\omega)|$ and $\angle X(j\omega)$ are:

Exercise 1 solution

Find the frequency domain representation of the following signals

- a. $x[n] = a^n u[n], |a| < 1.$
- b. $x[n] = \left(\frac{3}{4}\right)^n u[n-4].$

SOLUTION

a. By definition, the DTFT of x[n] is: X(e^{jΩ}) = Σ_{n=-∞}[∞] x[n]e^{-jΩn} = Σ_{n=0}[∞] aⁿe^{-jΩn} = Σ_{n=0}[∞] (ae^{-jΩ})ⁿ. Since |ae^{-jΩ}| = a < 1, the (complex) power series converges to lim_{N→∞} 1-(ae^{-jΩ})^{N+1}/(1-ae^{-jΩ}) = 1/(1-ae^{-jΩ}).
b. Since x[n] = (³/₄)⁴ (³/₄)ⁿ⁻⁴ u[n - 4], applying linearity and time shift properties of the DTFT to the signal x'[n] = (³/₄)ⁿ u[n] we arrive at X(e^{jΩ}) = (³/₄)⁴ e^{-j4Ω}X'(e^{jΩ}).

Substituting the result from part a for $X'(e^{j\Omega})$ yields $X(e^{j\Omega}) = \frac{\left(\frac{3e^{-j\Omega}}{4}\right)^{*}}{1-\frac{3e^{-j\Omega}}{4}}$.

Find the frequency domain representation of the following signals, given that $y(t) = e^{-at}u(t) \xleftarrow{FT} Y(j\omega) = \frac{1}{i\omega+a}$.

a. $x(t) = e^{-a|t|}$, b. $x(t) = \sin(2\pi t) e^{-t} u(t)$

SOLUTION

- a. We have x(t) = y(-t) + y(t). Applying linearity and time scaling properties of the FT to x(t) yields $X(j\omega) = Y(-j\omega) + Y(j\omega) = \frac{1}{a-j\omega} + \frac{1}{a+j\omega} = \frac{2a}{a^2+\omega^2}$.
- b. We have:

$$x(t) = \frac{1}{2j} \left(e^{j2\pi t} - e^{-j2\pi t} \right) e^{-t} u(t) = \frac{1}{2j} e^{j2\pi t} e^{-t} u(t) - \frac{1}{2j} e^{j2\pi t} e^{-t} u(t)$$

Applying linearity and frequency shift properties of the FT to x(t) yields

$$X(j\omega) = \frac{1}{2j}Y(j(\omega - 2\pi)) + \frac{1}{2j}Y(j(\omega + 2\pi)) = \frac{1}{2j}\left[\frac{1}{1+j(\omega - 2\pi)} - \frac{1}{1+j(\omega + 2\pi)}\right].$$

- a. Find the inverse FT of $X(j\omega) = \frac{j\omega}{(1+j\omega)^2}$,
- b. Find the FT of $x(t) = \frac{1}{(2+jt)^2}$

SOLUTION

a. Since $e^{-t}u(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j\omega+1}$, applying the differentiation in frequency domain results in $te^{-t}u(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{(j\omega+1)^2}$. Applying differentiation in time domain yields $x(t) = \frac{d}{dt}[te^{-at}u(t)] = (1-t)e^{-t}u(t)$. b. Since $te^{-2t}u(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{(j\omega+2)^2}$, applying duality property of the FT yields $\Box \quad \text{If } f(t) \stackrel{FT}{\longleftrightarrow} F(j\omega) \text{ then } F(jt) \stackrel{FT}{\longleftrightarrow} 2\pi f(-\omega)$. > Proof: HW $X(j\omega) = 2\pi(-\omega)e^{-2(-\omega)}u(-\omega) = -2\pi\omega e^{2\omega}u(-\omega)$.

Find the inverse FT of the signal $X(j\omega) = \frac{\pi\delta(\omega)}{j\omega+2}$.

SOLUTION

Since $1 \stackrel{FT}{\longleftrightarrow} 2\pi\delta(\omega)$, $e^{-2t}u(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j\omega+2}$, applying linearity and convolution properties of the FT yields

$$x(t) = \frac{1}{2} * e^{-2t}u(t) = \int_{-\infty}^{\infty} \frac{1}{2} e^{-2\tau}u(\tau)d\tau = \frac{1}{2} \int_{0}^{\infty} e^{-2\tau}u(\tau)d\tau = \frac{1}{4} \int_{0}^{\infty} e^{-2\tau}u(\tau)d\tau = \frac{1}{4$$

System interpretation:

A system is described by input-output relationship y(t) = x(t + 1) + 2x(t) + x(t - 2). Find:

- a. The impulse response of the system
- b. The frequency response of the system

SOLUTION

a. Let $x(t) = \delta(t)$, the impulse response is

 $h(t) = \delta(t+1) + 2\delta(t) + \delta(t-1).$

b. Let $x(t) = e^{j\omega t}$, the output is $y(t) = e^{j\omega(t+1)} + 2e^{j\omega t} + e^{j\omega(t-2)} = (e^{j\omega} + 2 + e^{-j2\omega})e^{j\omega t} \rightarrow$ the frequency response is $y(t) = H(j\omega)e^{j\omega t} = e^{j\omega} + 2 + e^{-j2\omega}$.

 $\begin{array}{l} \underline{\text{Alternatively}} \colon H(j\omega) = \mathcal{F}[h(t)] = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} [\delta(t+1) + 2\delta(t) + \delta(t-1)]e^{-j\omega t}dt = \int_{-\infty}^{\infty} e^{-j\omega(-1)}\delta(t+1)dt + \int_{-\infty}^{\infty} e^{-j\omega 0}\delta(t)dt + \int_{-\infty}^{\infty} e^{-j\omega 2}\delta(t-2)dt = e^{j\omega} + 2 + e^{-j2\omega}. \end{array}$

A signal's spectrum is presented in the below figure. Evaluate the following quantities without computing x(t)

SOLUTION

a. We have
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \Longrightarrow x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega = \frac{4}{\pi}$$
.

- b. We have $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \Longrightarrow \int_{-\infty}^{\infty} x(t)dt = X(j0) = 1.$
- C. According to Parseval's theorem $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = \frac{1}{2\pi} \Big[\int_{-5}^{-3} (\omega + 5)^2 d\omega + \int_{-3}^{-1} (-\omega + 1)^2 d\omega + \int_{-1}^{1} (\omega + 1)^2 d\omega + \int_{1}^{3} (-\omega + 3)^2 d\omega \Big]$

d. We have
$$\int_{-\infty}^{\infty} x(t)e^{j3t}dt = X(j(-3)) = 2.$$