Electromagnetic Engineering-2022

Final Exam (75 minutes)-Open Book

Q1 (3.5 point).

The object consists of the semi-cylinder with charge density $\sigma_i = \sin \phi$ in cylindrical coordinate and the rectangular ground with surface charge density $\sigma_1 = k = \cos t$ as in Fig. 1. Find the electric field at the point P far from the object.

Fig.1 Semi-cylinder and its ground Fig.2 Two solenoids Fig.3 Fleetric dipole Q2 (4 points).

There are two solenoids with their radii R and 2R and with their number of loops per unit of length are 2n and 3n respectively as in Fig.2. This two solenoids are coincide. Given a particle with mass m and flying with a constant velocity v in the magnetic field of the two solenoids in circular orbit. Find the radius of the orbit of the particle.

Q3 (2.5 points)

A electric dipole (Fig. 3) with its moment vector p rotates with the angular velocity ω , around an axis which is perpendicular to the vector p. The rotating axis is coincide to the vector \mathbf{B} , the uniform magnetic field. Find the drift velocity of the electric dipole in the magnetic field if the mass of the dipole is m and constant angular velocity.