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PREFACE

The first edition of this book was published in 1976, less than a decade after Neil Armstrong became the
first man to walk on the moon in 1969. The programs that lead to the first moon landing gave birth to
many advances in science and technology. A number of these advances, especially those in microelectronics
and digital signal processing (DSP), became enabling technologies for advances in communications. For
example, prior to 1969, essentially all commercial communication systems, including radio, telephones, and
television, were analog. Enabling technologies gave rise to the internet and theWorldWideWeb, digital radio
and television, satellite communications, Global Positioning Systems, cellular communications for voice and
data, and a host of other applications that impact our daily lives. A number of books have been written that
provide an in-depth study of these applications. In this book we have chosen not to cover application areas in
detail but, rather, to focus on basic theory and fundamental techniques. A firm understanding of basic theory
prepares the student to pursue study of higher-level theoretical concepts and applications.

True to this philosophy, we continue to resist the temptation to include a variety of new applications
and technologies in this edition and believe that application examples and specific technologies, which often
have short lifetimes, are best treated in subsequent courses after students have mastered the basic theory and
analysis techniques. Reactions to previous editions have shown that emphasizing fundamentals, as opposed
to specific technologies, serve the user well while keeping the length of the book reasonable. This strategy
appears to have worked well for advanced undergraduates, for new graduate students who may have forgotten
some of the fundamentals, and for the working engineer who may use the book as a reference or who may
be taking a course after-hours. New developments that appear to be fundamental, such as multiple-input
multiple-output (MIMO) systems and capacity-approaching codes, are covered in appropriate detail.

The two most obvious changes to the seventh edition of this book are the addition of drill problems to
the Problems section at the end of each chapter and the division of chapter three into two chapters. The drill
problems provide the student problem-solving practice with relatively simple problems. While the solutions
to these problems are straightforward, the complete set of drill problems covers the important concepts of
each chapter. Chapter 3, as it appeared in previous editions, is now divided into two chapters mainly due to
length. Chapter 3 now focuses on linear analog modulation and simple discrete-time modulation techniques
that are direct applications of the sampling theorem. Chapter 4 now focuses on nonlinear modulation
techniques. A number of new or revised end-of-chapter problems are included in all chapters.

In addition to these obvious changes, a number of other changes have been made in edition seven. An
example on signal space was deleted from Chapter 2 since it is really not necessary at this point in the book.
(Chapter 11 deals more fully with the concepts of signal space.) Chapter 3, as described in the previous
paragraph, now deals with linear analog modulation techniques. A section onmeasuring the modulation index
of AM signals and measuring transmitter linearity has been added. The section on analog television has been
deleted from Chapter 3 since it is no longer relevant. Finally, the section on adaptive delta modulation has
been deleted. Chapter 4 now deals with non-linear analog modulation techniques. Except for the problems,
no significant additions or deletions have been made to Chapter 5. The same is true of Chapters 6 and 7,
which treat probability and random processes, respectively. A section on signal-to-noise ratio measurement
has been added to Chapter 8, which treats noise effects in modulation systems. More detail on basic channel
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iv Preface

models for fading channels has been added in Chapter 9 along with simulation results for bit error rate (BER)
performance of a minimum mean-square error (MMSE) equalizer with optimum weights and an additional
example of the MMSE equalizer with adaptive weights. Several changes have been made to Chapter 10.
Satellite communications was reluctantly deleted because it would have required adding several additional
pages to do it justice. A section was added on MIMO systems using the Alamouti approach, which concludes
with a BER curve comparing performances of 2-transmit 1-receive Alamouti signaling in a Rayleigh fading
channel with a 2-transmit 2-receive diversity system. A short discussion was also added to Chapter 10
illustrating the features of 4G cellular communications as compared with 2G and 3G systems. With the
exception of the Problems, no changes have been made to Chapter 11. A ‘‘Quick Overview’’ section has
been added to Chapter 12 discussing capacity-approaching codes, run-length codes, and digital television.

A feature of the later editions of Principles of Communications was the inclusion of several computer
examples within each chapter. (MATLAB was chosen for these examples because of its widespread use
in both academic and industrial settings, as well as for MATLAB’s rich graphics library.) These computer
examples, which range from programs for computing performance curves to simulation programs for certain
types of communication systems and algorithms, allow the student to observe the behavior of more complex
systems without the need for extensive computations. These examples also expose the student to modern
computational tools for analysis and simulation in the context of communication systems. Even though we
have limited the amount of this material in order to ensure that the character of the book is not changed,
the number of computer examples has been increased for the seventh edition. In addition to the in-chapter
computer examples, a number of ‘‘computer exercises’’ are included at the end of each chapter. The number
of these has also been increased in the seventh edition. These exercises follow the end-of-chapter problems
and are designed to make use of the computer in order to illustrate basic principles and to provide the student
with additional insight. A number of new problems have been included at the end of each chapter in addition
to a number of problems that were revised from the previous edition.

The publisher maintains a web site from which the source code for all in-chapter computer examples
can be downloaded. Also included on the web site are Appendix G (answers to the drill problems) and the
bibliography. The URL is

www.wiley.com/college/ziemer

We recommend that, althoughMATLAB code is included in the text, students downloadMATLAB code
of interest from the publisher website. The code in the text is subject to printing and other types of errors and
is included to give the student insight into the computational techniques used for the illustrative examples.
In addition, the MATLAB code on the publisher website is periodically updated as need justifies. This web
site also contains complete solutions for the end-of-chapter problems and computer exercises. (The solutions
manual is password protected and is intended only for course instructors.)

We wish to thank the many persons who have contributed to the development of this textbook and
who have suggested improvements for this and previous editions of this book. We also express our thanks
to the many colleagues who have offered suggestions to us by correspondence or verbally as well as the
industries and agencies that have supported our research. We especially thank our colleagues and students
at the University of Colorado at Colorado Springs, the Missouri University of Science and Technology, and
Virginia Tech for their comments and suggestions. It is to our students that we dedicate this book. We have
worked with many people over the past forty years and many of them have helped shape our teaching and
research philosophy. We thank them all.

Finally, our families deserve much more than a simple thanks for the patience and support that they have
given us throughout forty years of seemingly endless writing projects.

Rodger E. Ziemer
William H. Tranter
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CHAPTER1

INTRODUCTION

We are said to live in an era called the intangible economy, driven not by the physical flow of

material goods but rather by the flow of information. If we are thinking about making a major

purchase, for example, chances are we will gather information about the product by an Internet

search. Such information gathering is made feasible by virtually instantaneous access to a myriad

of facts about the product, thereby making our selection of a particular brand more informed.

When one considers the technological developments that make such instantaneous information

access possible, two main ingredients surface---a reliable, fast means of communication and a

means of storing the information for ready access, sometimes referred to as the convergence of

communications and computing.

This book is concerned with the theory of systems for the conveyance of information. A system

is a combination of circuits and/or devices that is assembled to accomplish a desired task, such

as the transmission of intelligence from one point to another. Many means for the transmission

of information have been used down through the ages ranging from the use of sunlight reflected

from mirrors by the Romans to our modern era of electrical communications that began with the

invention of the telegraph in the 1800s. It almost goes without saying that we are concerned about

the theory of systems for electrical communications in this book.

Acharacteristic of electrical communication systems is the presence of uncertainty. This uncer-
tainty is due in part to the inevitable presence in any system of unwanted signal perturbations,
broadly referred to as noise, and in part to the unpredictable nature of information itself. Sys-
tems analysis in the presence of such uncertainty requires the use of probabilistic techniques.

Noise has been an ever-present problem since the early days of electrical communication,
but it was not until the 1940s that probabilistic systems analysis procedures were used to
analyze and optimize communication systems operating in its presence [Wiener 1949; Rice
1944, 1945].1 It is also somewhat surprising that the unpredictable nature of information
was not widely recognized until the publication of Claude Shannon’s mathematical theory of
communications [Shannon 1948] in the late 1940s. This work was the beginning of the science
of information theory, a topic that will be considered in some detail later.

Major historical facts related to the development of electrical communications are given
in Table 1.1. It provides an appreciation for the accelerating development of communications-
related inventions and events down through the years.

1References in brackets [ ] refer to Historical References in the Bibliography.

1
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2 Chapter 1 ∙ Introduction

Table 1.1 Major Events and Inventions in the Development of Electrical
Communications

Year Event

1791 Alessandro Volta invents the galvanic cell, or battery
1826 Georg Simon Ohm establishes a law on the voltage-current relationship in resistors
1838 Samuel F. B. Morse demonstrates the telegraph
1864 James C. Maxwell predicts electromagnetic radiation
1876 Alexander Graham Bell patents the telephone
1887 Heinrich Hertz verifies Maxwell’s theory
1897 Guglielmo Marconi patents a complete wireless telegraph system
1904 John Fleming patents the thermionic diode
1905 Reginald Fessenden transmits speech signals via radio
1906 Lee De Forest invents the triode amplifier
1915 The Bell System completes a U.S. transcontinental telephone line
1918 B. H. Armstrong perfects the superheterodyne radio receiver
1920 J. R. Carson applies sampling to communications
1925--27 First television broadcasts in England and the United States
1931 Teletypewriter service is initialized
1933 Edwin Armstrong invents frequency modulation
1936 Regular television broadcasting begun by the BBC
1937 Alec Reeves conceives pulse-code modulation (PCM)
WWII Radar and microwave systems are developed; Statistical methods are applied to signal

extraction problems
1944 Computers put into public service (government owned)
1948 The transistor is invented by W. Brattain, J. Bardeen, & W. Shockley
1948 Claude Shannon’s ‘‘A Mathematical Theory of Communications’’ is published
1950 Time-division multiplexing is applied to telephony
1956 First successful transoceanic telephone cable
1959 Jack Kilby patents the ‘‘Solid Circuit’’---precurser to the integrated circuit
1960 First working laser demonstrated by T. H. Maiman of Hughes Research Labs (patent

awarded to G. Gould after 20-year dispute with Bell Labs)
1962 First communications satellite, Telstar I, launched
1966 First successful FAX (facsimile) machine
1967 U.S. Supreme Court Carterfone decision opens door for modem development
1968 Live television coverage of the moon exploration
1969 First Internet started---ARPANET
1970 Low-loss optic fiber developed
1971 Microprocessor invented
1975 Ethernet patent filed
1976 Apple I home computer invented
1977 Live telephone traffic carried by fiber-optic cable system
1977 Interplanetary grand tour launched; Jupiter, Saturn, Uranus, and Neptune
1979 First cellular telephone network started in Japan
1981 IBM personal computer developed and sold to public
1981 Hayes Smartmodem marketed (automatic dial-up allowing computer control)
1982 Compact disk (CD) audio based on 16-bit PCM developed
1983 First 16-bit programmable digital signal processors sold
1984 Divestiture of AT&T’s local operations into seven Regional Bell Operating Companies
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Table 1.1 (Continued)

Year Event

1985 Desktop publishing programs first sold; Ethernet developed
1988 First commercially available flash memory (later applied in cellular phones, etc.)
1988 ADSL (asymmetric digital subscriber lines) developed
1990s Very small aperture satellites (VSATs) become popular
1991 Application of echo cancellation results in low-cost 14,400 bits/s modems
1993 Invention of turbo coding allows approach to Shannon limit
mid-1990s Second-generation (2G) cellular systems fielded
1995 Global Positioning System reaches full operational capability
1996 All-digital phone systems result in modems with 56 kbps download speeds
late-1990s Widespread personal and commercial applications of the Internet

High-definition TV becomes mainstream
Apple iPoD first sold (October); 100 million sold by April 2007

2001 Fielding of 3G cellular telephone systems begins; WiFi and WiMAX allow wireless
access to the Internet and electronic devices wherever mobility is desired

2000s Wireless sensor networks, originally conceived for military applications, find civilian
applications such as environment monitoring, healthcare applications, home
automation, and traffic control as well

2010s Introduction of fourth-generation cellular radio. Technological convergence of
communications-related devices---e.g., cell phones, television, personal digital
assistants, etc.

It is an interesting fact that the first electrical communication system, the telegraph,
was digital---that is, it conveyed information from point to point by means of a digital code
consisting of words composed of dots and dashes.2 The subsequent invention of the telephone
38 years after the telegraph, wherein voice waves are conveyed by an analog current, swung
the pendulum in favor of this more convenient means of word communication for about
75 years.3

One may rightly ask, in view of this history, why the almost complete domination by
digital formatting in today’s world? There are several reasons, among which are: (1) Media
integrity---a digital format suffers much less deterioration in reproduction than does an analog
record; (2) Media integration---whether a sound, picture, or naturally digital data such as a
word file, all are treated the same when in digital format; (3) Flexible interaction---the digital
domain is much more convenient for supporting anything from one-on-one to many-to-many
interactions; (4) Editing---whether text, sound, images, or video, all are conveniently and easily
edited when in digital format.

With this brief introduction and history, we now look in more detail at the various
components that make up a typical communication system.

2In the actual physical telegraph system, a dot was conveyed by a short double-click by closing and opening of the
circuit with the telegrapher’s key (a switch), while a dash was conveyed by a longer double click by an extended
closing of the circuit by means of the telegrapher’s key.
3See B. Oliver, J. Pierce, and C. Shannon, ‘‘The Philosophy of PCM,’’ Proc. IRE, Vol. 16, pp. 1324--1331, November
1948.
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Figure 1.1
The Block Diagram of a Communication System.

■ 1.1 THE BLOCK DIAGRAM OF A COMMUNICATION SYSTEM

Figure 1.1 shows a commonly used model for a single-link communication system.4 Al-
though it suggests a system for communication between two remotely located points, this
block diagram is also applicable to remote sensing systems, such as radar or sonar, in which
the system input and output may be located at the same site. Regardless of the particular
application and configuration, all information transmission systems invariably involve three
major subsystems---a transmitter, the channel, and a receiver. In this book we will usually be
thinking in terms of systems for transfer of information between remotely located points. It
is emphasized, however, that the techniques of systems analysis developed are not limited to
such systems.

We will now discuss in more detail each functional element shown in Figure 1.1.

Input Transducer The wide variety of possible sources of information results in many
different forms for messages. Regardless of their exact form, however, messages may be
categorized as analog or digital. The former may bemodeled as functions of a continuous-time
variable (for example, pressure, temperature, speech, music), whereas the latter consist of dis-
crete symbols (for example, written text or a sampled/quantized analog signal such as speech).
Almost invariably, the message produced by a source must be converted by a transducer to
a form suitable for the particular type of communication system employed. For example, in
electrical communications, speech waves are converted by a microphone to voltage variations.
Such a converted message is referred to as the message signal. In this book, therefore, a
signal can be interpreted as the variation of a quantity, often a voltage or current, with time.

4More complex communications systems are the rule rather than the exception: a broadcast system, such as television
or commercial rado, is a one-to-many type of situation composed of several sinks receiving the same information
from a single source; a multiple-access communication system is where many users share the same channel and is
typified by satellite communications systems; a many-to-many type of communications scenario is the most complex
and is illustrated by examples such as the telephone system and the Internet, both of which allow communication
between any pair out of a multitude of users. For the most part, we consider only the simplest situation in this book
of a single sender to a single receiver, although means for sharing a communication resource will be dealt with under
the topics of multiplexing and multiple access.
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Transmitter The purpose of the transmitter is to couple themessage to the channel. Although
it is not uncommon to find the input transducer directly coupled to the transmission medium,
as for example in some intercom systems, it is often necessary tomodulate a carrier wave with
the signal from the input transducer. Modulation is the systematic variation of some attribute
of the carrier, such as amplitude, phase, or frequency, in accordance with a function of the
message signal. There are several reasons for using a carrier and modulating it. Important ones
are (1) for ease of radiation, (2) to reduce noise and interference, (3) for channel assignment,
(4) for multiplexing or transmission of several messages over a single channel, and (5) to
overcome equipment limitations. Several of these reasons are self-explanatory; others, such
as the second, will become more meaningful later.

In addition to modulation, other primary functions performed by the transmitter are
filtering, amplification, and coupling themodulated signal to the channel (for example, through
an antenna or other appropriate device).

Channel The channel can havemany different forms; themost familiar, perhaps, is the chan-
nel that exists between the transmitting antenna of a commercial radio station and the receiving
antenna of a radio. In this channel, the transmitted signal propagates through the atmosphere,
or free space, to the receiving antenna. However, it is not uncommon to find the transmitter
hard-wired to the receiver, as in most local telephone systems. This channel is vastly dif-
ferent from the radio example. However, all channels have one thing in common: the signal
undergoes degradation from transmitter to receiver. Although this degradation may occur
at any point of the communication system block diagram, it is customarily associated with
the channel alone. This degradation often results from noise and other undesired signals or
interference but also may include other distortion effects as well, such as fading signal levels,
multiple transmission paths, and filtering. More about these unwanted perturbations will be
presented shortly.

Receiver The receiver’s function is to extract the desired message from the received signal
at the channel output and to convert it to a form suitable for the output transducer. Although
amplification may be one of the first operations performed by the receiver, especially in radio
communications, where the received signal may be extremely weak, the main function of the
receiver is to demodulate the received signal. Often it is desired that the receiver output be
a scaled, possibly delayed, version of the message signal at the modulator input, although in
some cases a more general function of the input message is desired. However, as a result of
the presence of noise and distortion, this operation is less than ideal. Ways of approaching the
ideal case of perfect recovery will be discussed as we proceed.

Output Transducer The output transducer completes the communication system. This
device converts the electric signal at its input into the form desired by the system user.
Perhaps the most common output transducer is a loudspeaker or ear phone.

■ 1.2 CHANNEL CHARACTERISTICS

1.2.1 Noise Sources

Noise in a communication system can be classified into two broad categories, depending on its
source. Noise generated by components within a communication system, such as resistors and
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solid-state active devices is referred to as internal noise. The second category, external noise,
results from sources outside a communication system, including atmospheric, man-made, and
extraterrestrial sources.

Atmospheric noise results primarily from spurious radio waves generated by the natural
electrical discharges within the atmosphere associated with thunderstorms. It is commonly
referred to as static or spherics. Below about 100 MHz, the field strength of such radio waves
is inversely proportional to frequency. Atmospheric noise is characterized in the time domain
by large-amplitude, short-duration bursts and is one of the prime examples of noise referred to
as impulsive. Because of its inverse dependence on frequency, atmospheric noise affects com-
mercial AM broadcast radio, which occupies the frequency range from 540 kHz to 1.6 MHz,
more than it affects television and FM radio, which operate in frequency bands above 50MHz.

Man-made noise sources include high-voltage powerline corona discharge, commutator-
generated noise in electrical motors, automobile and aircraft ignition noise, and switching-gear
noise. Ignition noise and switching noise, like atmospheric noise, are impulsive in character.
Impulse noise is the predominant type of noise in switched wireline channels, such as
telephone channels. For applications such as voice transmission, impulse noise is only
an irritation factor; however, it can be a serious source of error in applications involving
transmission of digital data.

Yet another important source of man-made noise is radio-frequency transmitters other
than the one of interest. Noise due to interfering transmitters is commonly referred to as radio-
frequency interference (RFI). RFI is particularly troublesome in situations in which a receiving
antenna is subject to a high-density transmitter environment, as in mobile communications in
a large city.

Extraterrestrial noise sources include our sun and other hot heavenly bodies, such as stars.
Owing to its high temperature (6000◦C) and relatively close proximity to the earth, the sun is an
intense, but fortunately localized source of radio energy that extends over a broad frequency
spectrum. Similarly, the stars are sources of wideband radio energy. Although much more
distant and hence less intense than the sun, nevertheless they are collectively an important
source of noise because of their vast numbers. Radio stars such as quasars and pulsars are
also intense sources of radio energy. Considered a signal source by radio astronomers, such
stars are viewed as another noise source by communications engineers. The frequency range
of solar and cosmic noise extends from a few megahertz to a few gigahertz.

Another source of interference in communication systems is multiple transmission paths.
These can result from reflection off buildings, the earth, airplanes, and ships or from refraction
by stratifications in the transmission medium. If the scattering mechanism results in numerous
reflected components, the received multipath signal is noiselike and is termed diffuse. If the
multipath signal component is composed of only one or two strong reflected rays, it is termed
specular. Finally, signal degradation in a communication system can occur because of random
changes in attenuation within the transmission medium. Such signal perturbations are referred
to as fading, although it should be noted that specular multipath also results in fading due to
the constructive and destructive interference of the received multiple signals.

Internal noise results from the randommotion of charge carriers in electronic components.
It can be of three general types: the first is referred to as thermal noise, which is caused by the
randommotion of free electrons in a conductor or semiconductor excited by thermal agitation;
the second is called shot noise and is caused by the random arrival of discrete charge carriers
in such devices as thermionic tubes or semiconductor junction devices; the third, known as
flicker noise, is produced in semiconductors by a mechanism not well understood and is more
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1.2 Channel Characteristics 7

severe the lower the frequency. The first type of noise source, thermal noise, is modeled
analytically in Appendix A, and examples of system characterization using this model are
given there.

1.2.2 Types of Transmission Channels

There are many types of transmission channels. We will discuss the characteristics, advan-
tages, and disadvantages of three common types: electromagnetic-wave propagation channels,
guided electromagnetic-wave channels, and optical channels. The characteristics of all three
may be explained on the basis of electromagnetic-wave propagation phenomena. However,
the characteristics and applications of each are different enough to warrant our considering
them separately.

Electromagnetic-Wave Propagation Channels

The possibility of the propagation of electromagnetic waves was predicted in 1864 by James
Clerk Maxwell (1831--1879), a Scottish mathematician who based his theory on the experi-
mental work of Michael Faraday. Heinrich Hertz (1857--1894), a German physicist, carried
out experiments between 1886 and 1888 using a rapidly oscillating spark to produce elec-
tromagnetic waves, thereby experimentally proving Maxwell’s predictions. Therefore, by
the latter part of the nineteenth century, the physical basis for many modern inventions uti-
lizing electromagnetic-wave propagation---such as radio, television, and radar---was already
established.

The basic physical principle involved is the coupling of electromagnetic energy into a
propagation medium, which can be free space or the atmosphere, by means of a radiation
element referred to as an antenna. Many different propagation modes are possible, depending
on the physical configuration of the antenna and the characteristics of the propagationmedium.
The simplest case---which never occurs in practice---is propagation from a point source in a
medium that is infinite in extent. The propagating wave fronts (surfaces of constant phase)
in this case would be concentric spheres. Such a model might be used for the propagation
of electromagnetic energy from a distant spacecraft to earth. Another idealized model, which
approximates the propagation of radio waves from a commercial broadcast antenna, is that of a
conducting line perpendicular to an infinite conducting plane. These and other idealized cases
have been analyzed in books on electromagnetic theory. Our purpose is not to summarize all
the idealized models, but to point out basic aspects of propagation phenomena in practical
channels.

Except for the case of propagation between two spacecraft in outer space, the interme-
diate medium between transmitter and receiver is never well approximated by free space.
Depending on the distance involved and the frequency of the radiated waveform, a terrestrial
communication link may depend on line-of-sight, ground-wave, or ionospheric skip-wave
propagation (see Figure 1.2). Table 1.2 lists frequency bands from 3 kHz to 107 GHz, along
with letter designations for microwave bands used in radar among other applications. Note
that the frequency bands are given in decades; the VHF band has 10 times as much frequency
space as the HF band. Table 1.3 shows some bands of particular interest.

General application allocations are arrived at by international agreement. The present sys-
tem of frequency allocations is administered by the International Telecommunications Union
(ITU), which is responsible for the periodic convening of Administrative Radio Conferences
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Figure 1.2
The various propagation modes for electromagnetic waves (LOS stands for line of sight).

Table 1.2 Frequency Bands with Designations

Frequency band Name Microwave band (GHz) Letter designation

3--30 kHz Very low frequency (VLF)
30--300 kHz Low frequency (LF)
300--3000 kHz Medium frequency (MF)
3--30 MHz High frequency (HF)
30--300 MHz Very high frequency (VHF)
0.3--3 GHz Ultrahigh frequency (UHF) 1.0--2.0 L

2.0--3.0 S
3--30 GHz Superhigh frequency (SHF) 3.0--4.0 S

4.0--6.0 C
6.0--8.0 C
8.0--10.0 X
10.0--12.4 X
12.4--18.0 Ku
18.0--20.0 K
20.0--26.5 K

30--300 GHz Extremely high frequency (EHF) 26.5--40.0 Ka
43--430 THz Infrared (0.7--7 µm)
430--750 THz Visible light (0.4--0.7 µm)
750--3000 THz Ultraviolet (0.1--0.4 µm)

Note: kHz = kilohertz = ×103; MHz = megahertz = ×106; GHz = gigahertz = ×109; THz = terahertz = ×1012;
µm = micrometers = ×10−6 meters.
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Table 1.3 Selected Frequency Bands for Public Use and Military Communications5

Use Frequency

Radio navigation 6--14 kHz; 90--110 kHz
Loran C navigation 100 kHz
Standard (AM) broadcast 540--1600 kHz
ISM band Industrial heaters; welders 40.66--40.7 MHz
Television: Channels 2--4 54--72 MHz

Channels 5--6 76--88 MHz
FM broadcast 88--108 MHz
Television Channels 7--13 174--216 MHz

Channels 14--83 420--890 MHz
(In the United States, channels 2--36

and 38--51 are used for
digital TV broadcast;
others were reallocated.)

Cellular mobile radio AMPS, D-AMPS (1G, 2G) 800 MHz bands
IS-95 (2G) 824--844 MHz/1.8--2 GHz
GSM (2G) 850/900/1800/1900 MHz
3G (UMTS, cdma-2000) 1.8/2.5 GHz bands

Wi-Fi (IEEE 802.11) 2.4/5 GHz
Wi-MAX (IEEE 802.16) 2--11 GHz
ISM band Microwave ovens; medical 902--928 MHz
Global Positioning System 1227.6, 1575.4 MHz
Point-to-point microwave 2.11--2.13 GHz
Point-to-point microwave Interconnecting base stations 2.16--2.18 GHz
ISM band Microwave ovens; unlicensed 2.4--2.4835 GHz

spread spectrum; medical 23.6--24 GHz
122--123 GHz
244--246 GHz

on a regional or a worldwide basis (WARC before 1995; WRC 1995 and after, standing for
World Radiocommunication Conference).6 The responsibility of the WRCs is the drafting,
revision, and adoption of the Radio Regulations, which is an instrument for the international
management of the radio spectrum.7

In the United States, the Federal Communications Commission (FCC) awards specific
applications within a band as well as licenses for their use. The FCC is directed by five
commissioners appointed to five-year terms by the President and confirmed by the Senate.
One commissioner is appointed as chairperson by the President.8

At lower frequencies, or long wavelengths, propagating radio waves tend to follow the
earth’s surface. At higher frequencies, or short wavelengths, radio waves propagate in straight

5Bennet Z. Kobb, Spectrum Guide, 3rd ed., Falls Church, VA: New Signals Press, 1996. Bennet Z. Kobb, Wireless
Spectrum Finder, New York: McGraw Hill, 2001.
6WARC-79, WARC-84, and WARC-92, all held in Geneva, Switzerland, were the last three held under the WARC
designation; WRC-95, WRC-97, WRC-00, WRC-03, WRC-07, and WRC-12 are those held under the WRC desig-
nation. The next one to be held is WRC-15 and includes four informal working groups: Maritime, Aeronautical and
Radar Services; Terrestrial Services; Space Services; and Regulatory Issues.
7Available on the Radio Regulations website: http://www.itu.int/pub/R-REG-RR-2004/en
8http://www.fcc.gov/

www.it-ebooks.info

http://www.itu.int/pub/R-REG-RR-2004/en
http://www.fcc.gov/
http://www.it-ebooks.info/
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lines. Another phenomenon that occurs at lower frequencies is reflection (or refraction) of
radio waves by the ionosphere (a series of layers of charged particles at altitudes between 30
and 250 miles above the earth’s surface). Thus, for frequencies below about 100 MHz, it is
possible to have skip-wave propagation. At night, when lower ionospheric layers disappear
due to less ionization from the sun (the 𝐸, 𝐹1, and 𝐹2 layers coalesce into one layer---the 𝐹
layer), longer skip-wave propagation occurs as a result of reflection from the higher, single
reflecting layer of the ionosphere.

Above about 300 MHz, propagation of radio waves is by line of sight, because the
ionosphere will not bend radio waves in this frequency region sufficiently to reflect them back
to the earth. At still higher frequencies, say above 1 or 2 GHz, atmospheric gases (mainly
oxygen), water vapor, and precipitation absorb and scatter radio waves. This phenomenon
manifests itself as attenuation of the received signal, with the attenuation generally being
more severe the higher the frequency (there are resonance regions for absorption by gases
that peak at certain frequencies). Figure 1.3 shows specific attenuation curves as a function
of frequency9 for oxygen, water vapor, and rain [recall that 1 decibel (dB) is ten times the
logarithm to the base 10 of a power ratio]. One must account for the possible attenuation by
such atmospheric constituents in the design of microwave links, which are used, for example,
in transcontinental telephone links and ground-to-satellite communications links.

At about 23 GHz, the first absorption resonance due to water vapor occurs, and at about
62 GHz a second one occurs due to oxygen absorption. These frequencies should be avoided
in transmission of desired signals through the atmosphere, or undue power will be expended
(one might, for example, use 62 GHz as a signal for cross-linking between two satellites,
where atmospheric absorption is no problem, and thereby prevent an enemy on the ground
from listening in). Another absorption frequency for oxygen occurs at 120 GHz, and two other
absorption frequencies for water vapor occur at 180 and 350 GHz.

Communication at millimeter-wave frequencies (that is, at 30 GHz and higher) is becom-
ing more important now that there is so much congestion at lower frequencies (the Advanced
Technology Satellite, launched in the mid-1990s, employs an uplink frequency band around
20 GHz and a downlink frequency band at about 30 GHz). Communication at millimeter-wave
frequencies is becoming more feasible because of technological advances in components and
systems. Two bands at 30 and 60 GHz, the LMDS (Local Multipoint Distribution System)
and MMDS (Multichannel Multipoint Distribution System) bands, have been identified for
terrestrial transmission of wideband signals. Great care must be taken to design systems using
these bands because of the high atmospheric and rain absorption as well as blockage by ob-
jects such as trees and buildings. To a great extent, use of these bands has been obseleted by
more recent standards such as WiMAX (Worldwide Interoperability for Microwave Access),
sometimes referred to as Wi-Fi on steroids.10

Somewhere above 1 THz (1000 GHz), the propagation of radio waves becomes optical
in character. At a wavelength of 10 μm (0.00001 m), the carbon dioxide laser provides a
source of coherent radiation, and visible-light lasers (for example, helium-neon) radiate in the
wavelength region of 1 μm and shorter. Terrestrial communications systems employing such
frequencies experience considerable attenuation on cloudy days, and laser communications
over terrestrial links are restricted to optical fibers for the most part. Analyses have been
carried out for the employment of laser communications cross-links between satellites.

9Data from Louis J. Ippolito, Jr., Radiowave Propagation in Satellite Communications, New York: Van Nostrand
Reinhold, 1986, Chapters 3 and 4.
10See Wikipedia under LMDS, MMDS, WiMAX, or Wi-Fi for more information on these terms.
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Figure 1.3
Specific attenuation for atmospheric gases and rain. (a) Specific attenuation due to oxygen and water
vapor (concentration of 7.5 g/m3). (b) Specific attenuation due to rainfall at rates of 10, 50, and
100 mm/h.

Guided Electromagnetic-Wave Channels

Up until the last part of the twentieth century, the most extensive example of guided
electromagnetic-wave channels is the part of the long-distance telephone network that uses
wire lines, but this has almost exclusively been replaced by optical fiber.11 Communication
between persons a continent apart was first achieved bymeans of voice frequency transmission
(below 10,000 Hz) over open wire. Quality of transmission was rather poor. By 1952, use
of the types of modulation known as double-sideband and single-sideband on high-frequency
carriers was established. Communication over predominantlymultipair and coaxial-cable lines

11For a summary of guided transmission systems as applied to telephone systems, see F. T. Andrews, Jr., ‘‘Commu-
nications Technology: 25 Years in Retrospect. Part III, Guided Transmission Systems: 1952--1973.’’ IEEE Commu-
nications Society Magazine, Vol. 16, pp. 4--10, January 1978.
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12 Chapter 1 ∙ Introduction

produced transmission of much better quality. With the completion of the first trans-Atlantic
cable in 1956, intercontinental telephone communication was no longer dependent on high-
frequency radio, and the quality of intercontinental telephone service improved significantly.

Bandwidths on coaxial-cable links are a few megahertz. The need for greater bandwidth
initiated the development of millimeter-wave waveguide transmission systems. However,
with the development of low-loss optical fibers, efforts to improve millimeter-wave systems
to achieve greater bandwidth ceased. The development of optical fibers, in fact, has made
the concept of a wired city---wherein digital data and video can be piped to any residence or
business within a city---nearly a reality.12 Modern coaxial-cable systems can carry only 13,000
voice channels per cable, but optical links are capable of carrying several times this number
(the limiting factor being the current driver for the light source).13

Optical Links The use of optical links was, until recently, limited to short and intermediate
distances. With the installation of trans-Pacific and trans-Atlantic optical cables in 1988
and early 1989, this is no longer true.14 The technological breakthroughs that preceeded the
widespread use of light waves for communication were the development of small coherent
light sources (semiconductor lasers), low-loss optical fibers or waveguides, and low-noise
detectors.15

A typical fiber-optic communication system has a light source, which may be either a
light-emitting diode or a semiconductor laser, in which the intensity of the light is varied
by the message source. The output of this modulator is the input to a light-conducting fiber.
The receiver, or light sensor, typically consists of a photodiode. In a photodiode, an average
current flows that is proportional to the optical power of the incident light. However, the exact
number of charge carriers (that is, electrons) is random. The output of the detector is the sum
of the average current that is proportional to the modulation and a noise component. This
noise component differs from the thermal noise generated by the receiver electronics in that
it is ‘‘bursty’’ in character. It is referred to as shot noise, in analogy to the noise made by
shot hitting a metal plate. Another source of degradation is the dispersion of the optical fiber

12The limiting factor here is expense---stringing anything under city streets is a very expensive proposition although
there are many potential customers to bear the expense. Providing access to the home in the country is relatively
easy from the standpoint of stringing cables or optical fiber, but the number of potential users is small so that the
cost per customer goes up. As for cable versus fiber, the ‘‘last mile’’ is in favor of cable again because of expense.
Many solutions have been proposed for this ‘‘last-mile problem’’ as it is sometimes referred to, including special
modulation schemes to give higher data rates over telephone lines (see ADSL in Table 1.1), making cable TV access
two-way (plenty of bandwidth but attenuation a problem), satellite (in remote locations), optical fiber (for those
who want wideband and are willing/able to pay for it), and wireless or radio access (see the earlier reference to
Wi-MAX). A universal solution for all situations is most likely not possible. For more on this intriguing topic, see
Wikipedia.
13Wavelength division multiplexing (WDM) is the lastest development in the relatively short existence of optical
fiber delivery of information. The idea here is that different wavelength bands (‘‘colors’’), provided by different
laser light sources, are sent in parallel through an optical fiber to vastly increase the bandwidth---several gigahertz
of bandwidth is possible. See, for example, The IEEE Communcations Magazine, February 1999 (issue on ‘‘Optical
Networks, Communication Systems, and Devices’’), October 1999 (issue on ‘‘Broadband Technologies and Trials’’),
February 2000 (issue on ‘‘Optical Networks Come of Age’’), and June 2000 (‘‘Intelligent Networks for the New
Millennium’’).
14See Wikipedia, ‘‘Fiber-optic communications.’’
15For an overview on the use of signal-processing methods to improve optical communications, see J. H. Winters,
R. D. Gitlin, and S. Kasturia, ‘‘Reducing the Effects of Transmission Impairments in Digital Fiber Optic Systems,’’
IEEE Communications Magazine, Vol. 31, pp. 68--76, June 1993.
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1.3 Summary of Systems-Analysis Techniques 13

itself. For example, pulse-type signals sent into the fiber are observed as ‘‘smeared out’’ at the
receiver. Losses also occur as a result of the connections between cable pieces and between
cable and system components.

Finally, it should be mentioned that optical communications can take place through free
space.16

■ 1.3 SUMMARY OF SYSTEMS-ANALYSIS TECHNIQUES

Having identified and discussed the main subsystems in a communication system and certain
characteristics of transmission media, let us now look at the techniques at our disposal for
systems analysis and design.

1.3.1 Time and Frequency-Domain Analyses

From circuits courses or prior courses in linear systems analysis, you are well aware that the
electrical engineer lives in the two worlds, so to speak, of time and frequency. Also, you
should recall that dual time-frequency analysis techniques are especially valuable for linear
systems for which the principle of superposition holds. Although many of the subsystems and
operations encountered in communication systems are for the most part linear, many are not.
Nevertheless, frequency-domain analysis is an extremely valuable tool to the communications
engineer, more so perhaps than to other systems analysts. Since the communications engineer
is concerned primarily with signal bandwidths and signal locations in the frequency domain,
rather than with transient analysis, the essentially steady-state approach of the Fourier series
and transforms is used. Accordingly, we provide an overview of the Fourier series, the Fourier
integral, and their role in systems analysis in Chapter 2.

1.3.2 Modulation and Communication Theories

Modulation theory employs time and frequency-domain analyses to analyze and design sys-
tems for modulation and demodulation of information-bearing signals. To be specific consider
the message signal 𝑚(𝑡), which is to be transmitted through a channel using the method of
double-sideband modulation. The modulated carrier for double-sideband modulation is of the
form 𝑥

𝑐
(𝑡) = 𝐴

𝑐
𝑚(𝑡) cos𝜔

𝑐
𝑡, where 𝜔

𝑐
is the carrier frequency in radians per second and 𝐴

𝑐

is the carrier amplitude. Not only must a modulator be built that can multiply two signals, but
amplifiers are required to provide the proper power level of the transmitted signal. The exact
design of such amplifiers is not of concern in a systems approach. However, the frequency
content of the modulated carrier, for example, is important to their design and therefore must
be specified. The dual time-frequency analysis approach is especially helpful in providing
such information.

At the other end of the channel, theremust be a receiver configuration capable of extracting
a replica of𝑚(𝑡) from themodulated signal, and one can again apply time and frequency-domain
techniques to good effect.

The analysis of the effect of interfering signals on system performance and the subsequent
modifications in design to improve performance in the face of such interfering signals are part
of communication theory, which, in turn, makes use of modulation theory.

16See IEEE Communications Magazine, Vol. 38, pp. 124--139, August 2000 (section on free space laser
communications).
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This discussion, although mentioning interfering signals, has not explicitly emphasized
the uncertainty aspect of the information-transfer problem. Indeed, much can be done without
applying probabilistic methods. However, as pointed out previously, the application of prob-
abilistic methods, coupled with optimization procedures, has been one of the key ingredients
of the modern communications era and led to the development during the latter half of the
twentieth century of new techniques and systems totally different in concept from those that
existed before World War II.

We will now survey several approaches to statistical optimization of communication
systems.

■ 1.4 PROBABILISTIC APPROACHES TO SYSTEM OPTIMIZATION

The works of Wiener and Shannon, previously cited, were the beginning of modern statistical
communication theory. Both these investigators applied probabilistic methods to the problem
of extracting information-bearing signals from noisy backgrounds, but they worked from
different standpoints. In this section we briefly examine these two approaches to optimum
system design.

1.4.1 Statistical Signal Detection and Estimation Theory

Wiener considered the problem of optimally filtering signals from noise, where ‘‘optimum’’
is used in the sense of minimizing the average squared error between the desired and the actual
output. The resulting filter structure is referred to as theWiener filter. This type of approach is
most appropriate for analog communication systems in which the demodulated output of the
receiver is to be a faithful replica of the message input to the transmitter.

Wiener’s approach is reasonable for analog communications. However, in the early 1940s,
[North 1943] provided a more fruitful approach to the digital communications problem, in
which the receiver must distinguish between a number of discrete signals in background
noise. Actually, North was concerned with radar, which requires only the detection of the
presence or absence of a pulse. Since fidelity of the detected signal at the receiver is of no
consequence in such signal-detection problems, North sought the filter that would maximize
the peak-signal-to-root-mean-square (rms)-noise ratio at its output. The resulting optimum
filter is called thematched filter, for reasons that will become apparent in Chapter 9, where we
consider digital data transmission. Later adaptations of the Wiener and matched-filter ideas
to time-varying backgrounds resulted in adaptive filters. We will consider a subclass of such
filters in Chapter 9 when equalization of digital data signals is discussed.

The signal-extraction approaches of Wiener and North, formalized in the language of
statistics in the early 1950s by several researchers (see [Middleton 1960], p. 832, for several
references), were the beginnings of what is today called statistical signal detection and esti-
mation theory. In considering the design of receivers utilizing all the information available
at the channel output, [Woodward and Davies 1952 and Woodward, 1953] determined that
this so-called ideal receiver computes the probabilities of the received waveform given the
possible transmitted messages. These computed probabilities are known as a posteriori prob-
abilities. The ideal receiver then makes the decision that the transmitted message was the one
corresponding to the largest a posteriori probability. Although perhaps somewhat vague at
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1.4 Probabilistic Approaches to System Optimization 15

this point, thismaximum a posteriori (MAP) principle, as it is called, is one of the cornerstones
of detection and estimation theory. Another development that had far-reaching consequences
in the development of detection theory was the application of generalized vector space ideas
([Kotelnikov 1959] and [Wozencraft and Jacobs 1965]). We will examine these ideas in more
detail in Chapters 9 through 11.

1.4.2 Information Theory and Coding

The basic problem that Shannon considered is, ‘‘Given a message source, how shall the
messages produced be represented so as to maximize the information conveyed through
a given channel?’’ Although Shannon formulated his theory for both discrete and analog
sources, we will think here in terms of discrete systems. Clearly, a basic consideration in this
theory is a measure of information. Once a suitable measure has been defined (and we will
do so in Chapter 12), the next step is to define the information carrying capacity, or simply
capacity, of a channel as the maximum rate at which information can be conveyed through it.
The obvious question that now arises is, ‘‘Given a channel, how closely can we approach the
capacity of the channel, and what is the quality of the received message?’’ A most surprising,
and the singularly most important, result of Shannon’s theory is that by suitably restructuring
the transmitted signal, we can transmit information through a channel at any rate less than
the channel capacity with arbitrarily small error, despite the presence of noise, provided we
have an arbitrarily long time available for transmission. This is the gist of Shannon’s second
theorem. Limiting our discussion at this point to binary discrete sources, a proof of Shannon’s
second theorem proceeds by selecting codewords at random from the set of 2𝑛 possible binary
sequences 𝑛 digits long at the channel input. The probability of error in receiving a given
𝑛-digit sequence, when averaged over all possible code selections, becomes arbitrarily small
as 𝑛 becomes arbitrarily large. Thus, many suitable codes exist, but we are not told how to
find these codes. Indeed, this has been the dilemma of information theory since its inception
and is an area of active research. In recent years, great strides have been made in finding good
coding and decoding techniques that are implementable with a reasonable amount of hardware
and require only a reasonable amount of time to decode.

Several basic coding techniques will be discussed in Chapter 12.17 Perhaps the most
astounding development in the recent history of coding was the invention of turbo coding
and subsequent publication by French researchers in 1993.18 Their results, which were subse-
quently verified by several researchers, showed performance to within a fraction of a decibel
of the Shannon limit.19

17For a good survey on ‘‘Shannon Theory’’ as it is known, see S. Verdu, ‘‘Fifty Years of Shannon Theory,’’ IEEE
Trans. on Infor. Theory, Vol. 44, pp. 2057--2078, October 1998.
18C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon Limit Error-Correcting Coding and Decoding:
Turbo Codes,’’ Proc. 1993 Int. Conf. Commun., pp. 1064--1070, Geneva, Switzerland, May 1993.
See also D. J. Costello and G. D. Forney, ‘‘Channel Coding: The Road to Channel Capacity,’’ Proc. IEEE, Vol. 95,
pp. 1150--1177, June 2007, for an excellent tutorial article on the history of coding theory.
19Actually low-density parity-check codes, invented and published by Robert Gallager in 1963, were the first codes
to allow data transmission rates close to the theoretical limit ([Gallager, 1963]). However, they were impractical to
implement in 1963, so were forgotten about until the past 10--20 years whence practical advances in their theory and
substantially advanced processors have spurred a resurgence of interest in them.
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1.4.3 Recent Advances

There have been great strides made in communications theory and its practical implementation
in the past few decades. Some of these will be pointed out later in the book. To capture the gist
of these advances at this point would delay the coverage of basic concepts of communications
theory, which is the underlying intent of this book. For those wanting additional reading at
this point, two recent issues of the IEEE Proceedings will provide information in two areas,
turbo-information processing (used in decoding turbo codes among other applications)20, and
multiple-input multiple-output (MIMO) communications theory, which is expected to have
far-reaching impact on wireless local- and wide-area network development.21 An appreci-
ation for the broad sweep of developments from the beginnings of modern communications
theory to recent times can be gained from a collection of papers put together in a single
volume, spanning roughly 50 years, that were judged to be worthy of note by experts in
the field.22

■ 1.5 PREVIEW OF THIS BOOK

From the previous discussion, the importance of probability and noise characterization in
analysis of communication systems should be apparent. Accordingly, after presenting basic
signal, system, noiseless modulation theory, and basic elements of digital data transmission in
Chapters 2, 3, 4, and 5, we briefly discuss probability and noise theory in Chapters 6 and 7.
Following this, we apply these tools to the noise analysis of analog communications schemes
in Chapter 8. In Chapters 9 and 10, we use probabilistic techniques to find optimum receivers
when we consider digital data transmission. Various types of digital modulation schemes are
analyzed in terms of error probability. In Chapter 11, we approach optimum signal detection
and estimation techniques on a generalized basis and use signal-space techniques to provide
insight as to why systems that have been analyzed previously perform as they do. As already
mentioned, information theory and coding are the subjects of Chapter 12. This provides us
with a means of comparing actual communication systems with the ideal. Such comparisons
are then considered in Chapter 12 to provide a basis for selection of systems.

In closing, we must note that large areas of communications technology such as optical,
computer, and satellite communications are not touched on in this book. However, one can
apply the principles developed in this text in those areas as well.

Further Reading

The references for this chapter were chosen to indicate the historical development of modern communi-
cations theory and by and large are not easy reading. They are found in the Historical References section
of the Bibliography. You also may consult the introductory chapters of the books listed in the Further
Reading sections of Chapters 2, 3, and 4. These books appear in the main portion of the Bibliography.

20Proceedings of the IEEE, Vol. 95, no. 6, June 2007. Special issue on turbo-information processing.
21Proceedings of the IEEE, Vol. 95, no. 7, July 2007. Special issue on multi-user MIMO-OFDM for next-generation
wireless.
22W. H. Tranter, D. P. Taylor, R. E. Ziemer, N. F. Maxemchuk, and J. W. Mark (eds.). The Best of the Best: Fifty
Years of Communications and Networking Research, John Wiley and IEEE Press, January 2007.
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CHAPTER2

SIGNAL AND LINEAR SYSTEM ANALYSIS

The study of information transmission systems is inherently concerned with the transmission

of signals through systems. Recall that in Chapter 1 a signal was defined as the time history

of some quantity, usually a voltage or current. A system is a combination of devices and net-

works (subsystems) chosen to perform a desired function. Because of the sophistication of modern

communication systems, a great deal of analysis and experimentation with trial subsystems oc-

curs before actual building of the desired system. Thus, the communications engineer’s tools are

mathematical models for signals and systems.

In this chapter, we review techniques useful for modeling and analysis of signals and sys-

tems used in communications engineering.1 Of primary concern will be the dual time-frequency

viewpoint for signal representation, and models for linear, time-invariant, two-port systems. It is

important to always keep in mind that a model is not the signal or the system, but a mathematical

idealization of certain characteristics of it that are most relevant to the problem at hand.

With this brief introduction, we now consider signal classifications and various methods for

modeling signals and systems. These include frequency-domain representations for signals via the

complex exponential Fourier series and the Fourier transform, followed by linear system models

and techniques for analyzing the effects of such systems on signals.

■ 2.1 SIGNAL MODELS

2.1.1 Deterministic and Random Signals

In this book we are concerned with two broad classes of signals, referred to as deterministic
and random. Deterministic signals can be modeled as completely specified functions of time.
For example, the signal

𝑥(𝑡) = 𝐴 cos
(
𝜔0𝑡

)
, −∞ < 𝑡 <∞ (2.1)

where 𝐴 and 𝜔0 are constants, is a familiar example of a deterministic signal. An-
other example of a deterministic signal is the unit rectangular pulse, denoted as Π(𝑡) and

1More complete treatments of these subjects can be found in texts on linear system theory. See the references for this
chapter for suggestions.
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Figure 2.1
Examples of various types of signals. (a) Deterministic (sinusoidal) signal. (b) Unit rectangular pulse
signal. (c) Random signal.

defined as

Π(𝑡) =

{
1, |𝑡| ≤ 1

2
0, otherwise

(2.2)

Random signals are signals that take on random values at any given time instant and must
be modeled probabilistically. They will be considered in Chapters 6 and 7. Figure 2.1 illu-
strates the various types of signals just discussed.

2.1.2 Periodic and Aperiodic Signals

The signal defined by (2.1) is an example of a periodic signal. A signal 𝑥(𝑡) is periodic if and
only if

𝑥(𝑡 + 𝑇0) = 𝑥(𝑡), −∞ < 𝑡 < ∞ (2.3)

where the constant 𝑇0 is the period. The smallest such number satisfying (2.3) is referred to
as the fundamental period (the modifier ‘‘fundamental’’ is often excluded). Any signal not
satisfying (2.3) is called aperiodic.

2.1.3 Phasor Signals and Spectra

A useful periodic signal in system analysis is the signal

�̃�(𝑡) = 𝐴𝑒𝑗(𝜔0𝑡+𝜃), −∞ < 𝑡 <∞ (2.4)
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Figure 2.2
Two ways of relating a phasor signal to a sinusoidal signal. (a) Projection of a rotating phasor onto the
real axis. (b) Addition of complex conjugate rotating phasors.

which is characterized by three parameters: amplitude 𝐴, phase 𝜃 in radians, and frequency
𝜔0 in radians per second or 𝑓0 = 𝜔0∕2𝜋 hertz. We will refer to �̃�(𝑡) as a rotating phasor to
distinguish it from the phasor 𝐴𝑒𝑗𝜃 , for which 𝑒𝑗𝜔0𝑡 is implicit. Using Euler’s theorem,2 we
may readily show that �̃�(𝑡) = �̃�(𝑡 + 𝑇0), where 𝑇0 = 2𝜋∕𝜔0. Thus, �̃�(𝑡) is a periodic signal
with period 2𝜋∕𝜔0.

The rotating phasor 𝐴𝑒𝑗(𝜔0𝑡+𝜃) can be related to a real, sinusoidal signal 𝐴 cos(𝜔0𝑡 + 𝜃)
in two ways. The first is by taking its real part,

𝑥(𝑡) = 𝐴 cos(𝜔0𝑡 + 𝜃) = Re �̃�(𝑡)

= Re 𝐴𝑒𝑗(𝜔0𝑡+𝜃) (2.5)

and the second is by taking one-half of the sum of �̃�(𝑡) and its complex conjugate,

𝐴 cos(𝜔0𝑡 + 𝜃) =
1
2
�̃�(𝑡) + 1

2
�̃�
∗(𝑡)

= 1
2
𝐴𝑒

𝑗(𝜔0𝑡+𝜃) + 1
2
𝐴𝑒

−𝑗(𝜔0𝑡+𝜃) (2.6)

Figure 2.2 illustrates these two procedures graphically.
Equations (2.5) and (2.6), which give alternative representations of the sinusoidal sig-

nal 𝑥(𝑡) = 𝐴 cos(𝜔0𝑡 + 𝜃) in terms of the rotating phasor �̃�(𝑡) = 𝐴 exp[𝑗(𝜔0𝑡 + 𝜃)], are time-
domain representations for 𝑥(𝑡). Two equivalent representations of 𝑥(𝑡) in the frequency
domain may be obtained by noting that the rotating phasor signal is completely specified if
the parameters 𝐴 and 𝜃 are given for a particular 𝑓0. Thus, plots of the magnitude and angle
of 𝐴𝑒𝑗𝜃 versus frequency give sufficient information to characterize 𝑥(𝑡) completely. Because
�̃�(𝑡) exists only at the single frequency, 𝑓0, for this case of a single sinusoidal signal, the
resulting plots consist of discrete lines and are known as line spectra. The resulting plots are
referred to as the amplitude line spectrum and the phase line spectrum for 𝑥(𝑡), and are shown
in Figure 2.3(a). These are frequency-domain representations not only of �̃�(𝑡) but of 𝑥(𝑡) as
well, by virtue of (2.5). In addition, the plots of Figure 2.3(a) are referred to as the single-sided
amplitude and phase spectra of 𝑥 (𝑡) because they exist only for positive frequencies. For a

2Recall that Euler’s theorem is 𝑒±𝑗𝑢 = cos 𝑢 ± 𝑗 sin 𝑢. Also recall that 𝑒𝑗2𝜋 = 1.
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Figure 2.3
Amplitude and phase spectra for the signal 𝐴 cos(𝜔0𝑡 + 𝜃) (a) Single-sided. (b) Double-sided.

signal consisting of a sum of sinusoids of differing frequencies, the single-sided spectrum
consists of a multiplicity of lines, with one line for each sinusoidal component of the sum.

By plotting the amplitude and phase of the complex conjugate phasors of (2.6) versus
frequency, one obtains another frequency-domain representation for 𝑥(𝑡), referred to as the
double-sided amplitude and phase spectra. This representation is shown in Figure 2.3(b).
Two important observations may be made from Figure 2.3(b). First, the lines at the negative
frequency 𝑓 = −𝑓0 exist precisely because it is necessary to add complex conjugate (or
oppositely rotating) phasor signals to obtain the real signal 𝐴 cos(𝜔0𝑡 + 𝜃). Second, we note
that the amplitude spectrum has even symmetry and that the phase spectrum has odd symmetry
about 𝑓 = 0. This symmetry is again a consequence of 𝑥(𝑡) being a real signal. As in the single-
sided case, the two-sided spectrum for a sum of sinusoids consists of a multiplicity of lines,
with one pair of lines for each sinusoidal component.

Figures 2.3(a) and 2.3(b) are therefore equivalent spectral representations for the signal
𝐴 cos(𝜔0𝑡 + 𝜃), consisting of lines at the frequency 𝑓 = 𝑓0 (and its negative). For this simple
case, the use of spectral plots seems to be an unnecessary complication, but we will find
shortly how the Fourier series and Fourier transform lead to spectral representations for more
complex signals.

EXAMPLE 2.1

(a) To sketch the single-sided and double-sided spectra of

𝑥(𝑡) = 2 sin
(
10𝜋𝑡 − 1

6
𝜋

)
(2.7)

we note that 𝑥(𝑡) can be written as

𝑥(𝑡) = 2 cos
(
10𝜋𝑡 − 1

6
𝜋 − 1

2
𝜋

)
= 2 cos

(
10𝜋𝑡 − 2

3
𝜋

)

= Re 2𝑒𝑗(10𝜋𝑡−2𝜋∕3) = 𝑒𝑗(10𝜋𝑡−2𝜋∕3) + 𝑒−𝑗(10𝜋𝑡−2𝜋∕3) (2.8)

Thus, the single-sided and double-sided spectra are as shown in Figure 2.3, with 𝐴 = 2, 𝜃 = −2
3
𝜋 rad,

and 𝑓0 = 5 Hz.

www.it-ebooks.info

http://www.it-ebooks.info/


2.1 Signal Models 21

(b) If more than one sinusoidal component is present in a signal, its spectra consist of multiple lines. For
example, the signal

𝑦(𝑡) = 2 sin
(
10𝜋𝑡 − 1

6
𝜋

)
+ cos(20𝜋𝑡) (2.9)

can be rewritten as

𝑦(𝑡) = 2 cos
(
10𝜋𝑡 − 2

3
𝜋

)
+ cos(20𝜋𝑡)

= Re [2𝑒𝑗(10𝜋𝑡−2𝜋∕3) + 𝑒𝑗20𝜋𝑡]

= 𝑒
𝑗(10𝜋𝑡−2𝜋∕3) + 𝑒−𝑗(10𝜋𝑡−2𝜋∕3) + 1

2
𝑒
𝑗20𝜋𝑡 + 1

2
𝑒
−𝑗20𝜋𝑡 (2.10)

Its single-sided amplitude spectrum consists of a line of amplitude 2 at 𝑓 = 5 Hz and a line of amplitude
1 at 𝑓 = 10 Hz. Its single-sided phase spectrum consists of a single line of amplitude −2𝜋∕3 radians at
𝑓 = 5 Hz (the phase at 10 Hz is zero). To get the double-sided amplitude spectrum, one simply halves
the amplitude of the lines in the single-sided amplitude spectrum and takes the mirror image of this result
about 𝑓 = 0 (amplitude lines at 𝑓 = 0, if present, remain the same). The double-sided phase spectrum
is obtained by taking the mirror image of the single-sided phase spectrum about 𝑓 = 0 and inverting the
left-hand (negative frequency) portion.

■

2.1.4 Singularity Functions

An important subclass of aperiodic signals is the singularity functions. In this book we will be
concerned with only two: the unit impulse function 𝛿(𝑡) (or delta function) and the unit step
function 𝑢(𝑡). The unit impulse function is defined in terms of the integral

∫

∞

−∞
𝑥(𝑡) 𝛿(𝑡) 𝑑𝑡 = 𝑥(0) (2.11)

where 𝑥(𝑡) is any test function that is continuous at 𝑡 = 0. A change of variables and redefinition
of 𝑥(𝑡) results in the sifting property

∫

∞

−∞
𝑥(𝑡) 𝛿(𝑡 − 𝑡0) 𝑑𝑡 = 𝑥(𝑡0) (2.12)

where 𝑥(𝑡) is continuous at 𝑡 = 𝑡0. We will make considerable use of the sifting property in
systems analysis. By considering the special case 𝑥(𝑡) = 1 for 𝑡1 ≤ 𝑡 ≤ 𝑡2 and 𝑥(𝑡) = 0 for
𝑡 < 𝑡1 and 𝑡 > 𝑡2 the two properties

∫

𝑡2

𝑡1

𝛿(𝑡 − 𝑡0) 𝑑𝑡 = 1, 𝑡1 < 𝑡0 < 𝑡2 (2.13)

and

𝛿(𝑡 − 𝑡0) = 0, 𝑡 ≠ 𝑡0 (2.14)

are obtained that provide an alternative definition of the unit impulse. Equation (2.14) allows
the integrand in Equation (2.12) to be replaced by 𝑥(𝑡0)𝛿(𝑡 − 𝑡0), and the sifting property then
follows from (2.13).
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22 Chapter 2 ∙ Signal and Linear System Analysis

Other properties of the unit impulse function that can be proved from the definition (2.11)
are the following:

1. 𝛿(𝑎𝑡) = 1
|𝑎|
𝛿(𝑡), 𝑎 is a constant

2. 𝛿(−𝑡) = 𝛿(𝑡)

3. ∫ 𝑡2
𝑡1
𝑥(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 =

⎧
⎪
⎨
⎪
⎩

𝑥(𝑡0), 𝑡1 < 𝑡0 < 𝑡2
0, otherwise

undefined for 𝑡0 = 𝑡1 or 𝑡2

(a generalization of the sifting property)

4. 𝑥(𝑡)𝛿(𝑡 − 𝑡0) = 𝑥(𝑡0)𝛿(𝑡 − 𝑡0) where 𝑥 (𝑡) is continuous at 𝑡 = 𝑡0
5. ∫ 𝑡2

𝑡1
𝑥(𝑡)𝛿(𝑛)(𝑡 − 𝑡0)𝑑𝑡 = (−1)𝑛𝑥(𝑛)(𝑡0), 𝑡1 < 𝑡0 < 𝑡2. [In this equation, the superscript (𝑛) de-

notes the 𝑛th derivative; 𝑥(𝑡) and its first 𝑛 derivatives are assumed continuous at 𝑡 = 𝑡0.]
6. If 𝑓 (𝑡) = 𝑔(𝑡), where 𝑓 (𝑡) = 𝑎0𝛿(𝑡) + 𝑎1𝛿(1)(𝑡) +⋯ + 𝑎

𝑛
𝛿
(𝑛)(𝑡) and 𝑔(𝑡) = 𝑏0𝛿(𝑡) +

𝑏1𝛿
(1)(𝑡) +⋯ + 𝑏

𝑛
𝛿
(𝑛)(𝑡), this implies that 𝑎0 = 𝑏0, 𝑎1 = 𝑏1,… , 𝑎

𝑛
= 𝑏

𝑛

It is reassuring to note that (2.13) and (2.14) correspond to the intuitive notion of a unit
impulse function as the limit of a suitably chosen conventional function having unity area in
an infinitesimally small width. An example is the signal

𝛿
𝜖 (𝑡) =

1
2𝜖

Π
(
𝑡

2𝜖

)
=

{ 1
2𝜖 , |𝑡| < 𝜖

0, otherwise
(2.15)

which is shown in Figure 2.4(a) for 𝜖 = 1∕4 and 𝜖 = 1∕2. It seems apparent that any signal
having unity area and zero width in the limit as some parameter approaches zero is a suitable
representation for 𝛿(𝑡), for example, the signal

𝛿1𝜖 (𝑡) = 𝜖
( 1
𝜋𝑡

sin 𝜋𝑡
𝜖

)2
(2.16)

which is sketched in Figure 2.4(b).
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Figure 2.4

Two representations for the unit impulse function in the limit as 𝜖 → 0. (a)
(

1
2𝜖

)
Π(𝑡∕2𝜖).

(b) 𝜖([(1∕𝜋𝑡) sin(𝜋𝑡∕𝜖)]2.
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Other singularity functions may be defined as integrals or derivatives of unit impulses.
We will need only the unit step 𝑢(𝑡), defined to be the integral of the unit impulse. Thus,

𝑢(𝑡) ≜
∫

𝑡

−∞
𝛿(𝜆)𝑑𝜆 =

⎧
⎪
⎨
⎪
⎩

0, 𝑡 < 0
1, 𝑡 > 0
undefined, 𝑡 = 0

(2.17)

or

𝛿(𝑡) = 𝑑𝑢 (𝑡)
𝑑𝑡

(2.18)

(For consistency with the unit pulse function definition, we will define 𝑢 (0) = 1). You are no
doubt familiar with the usefulness of the unit step for ‘‘turning on’’ signals of doubly infinite
duration and for representing signals of the staircase type. For example, the unit rectangular
pulse function defined by (2.2) can be written in terms of unit steps as

Π(𝑡) = 𝑢
(
𝑡 + 1

2

)
− 𝑢

(
𝑡 − 1

2

)
(2.19)

EXAMPLE 2.2

To illustrate calculationswith the unit impulse function, consider evaluation of the following expressions:

1. ∫ 5
2 cos (3𝜋𝑡) 𝛿 (𝑡 − 1) 𝑑𝑡;

2. ∫ 5
0 cos (3𝜋𝑡) 𝛿 (𝑡 − 1) 𝑑𝑡;

3. ∫ 5
0 cos (3𝜋𝑡) 𝑑𝛿 (𝑡 − 1)

𝑑𝑡
𝑑𝑡;

4. ∫ 10
−10 cos (3𝜋𝑡) 𝛿 (2𝑡) 𝑑𝑡;

5. 2𝛿 (𝑡) + 3𝑑𝛿 (𝑡)
𝑑𝑡

= 𝑎𝛿 (𝑡) + 𝑏
𝑑𝛿 (𝑡)
𝑑𝑡

+ 𝑐 𝑑𝛿
2 (𝑡)
𝑑𝑡2

, find 𝑎, 𝑏, and 𝑐;

6.
𝑑

𝑑𝑡

[
𝑒
−4𝑡
𝑢 (𝑡)

]
;

S o l u t i o n

1. This integral evaluates to 0 because the unit impulse function is outside the limits of integration;

2. This integral evaluates to cos (3𝜋𝑡)|
𝑡=1 = cos (3𝜋) = −1;

3. ∫ 5
0 cos (3𝜋𝑡)

𝑑𝛿 (𝑡 − 1)
𝑑𝑡

𝑑𝑡 = (−1) 𝑑
𝑑𝑡

[cos (3𝜋𝑡)]
𝑡=1 = 3𝜋 sin (3𝜋) = 0;

4. ∫ 10
−10 cos (3𝜋𝑡) 𝛿 (2𝑡) 𝑑𝑡 = ∫

20
−20 cos (3𝜋𝑡)

1
2
𝛿 (𝑡) 𝑑𝑡 = 1

2
cos (0) = 1

2
by using property 1 above;

5. 2𝛿 (𝑡) + 3𝑑𝛿 (𝑡)
𝑑𝑡

= 𝑎𝛿 (𝑡) + 𝑏𝑑𝛿 (𝑡)
𝑑𝑡

+ 𝑐 𝑑𝛿
2 (𝑡)
𝑑𝑡2

gives 𝑎 = 2, 𝑏 = 3, and 𝑐 = 0 by using property 6

above;

6. Using the chain rule for differentiation and 𝛿 (𝑡) = 𝑑𝑢 (𝑡)
𝑑𝑡

, we get
𝑑

𝑑𝑡

[
𝑒
−4𝑡
𝑢 (𝑡)

]
= −4𝑒−4𝑡𝑢 (𝑡) +

𝑒
−4𝑡 𝑑𝑢 (𝑡)

𝑑𝑡
= −4𝑒−4𝑡𝑢 (𝑡) + 𝑒−4𝑡𝛿 (𝑡) = −4𝑒−4𝑡𝑢 (𝑡) + 𝛿 (𝑡), where property 4 and (2.18) have been used.

■

We are now ready to consider power and energy signal classifications.

www.it-ebooks.info

http://www.it-ebooks.info/


24 Chapter 2 ∙ Signal and Linear System Analysis

■ 2.2 SIGNAL CLASSIFICATIONS

Because the particular representation used for a signal depends on the type of signal involved,
it is useful to pause at this point and introduce signal classifications. In this chapter we will
be considering two signal classes, those with finite energy and those with finite power. As a
specific example, suppose 𝑒(𝑡) is the voltage across a resistance 𝑅 producing a current 𝑖(𝑡).
The instantaneous power per ohm is 𝑝(𝑡) = 𝑒(𝑡)𝑖(𝑡)∕𝑅 = 𝑖2(𝑡). Integrating over the interval
|𝑡| ≤ 𝑇 , the total energy and the average power on a per-ohm basis are obtained as the limits

𝐸 = lim
𝑇→∞∫

𝑇

−𝑇
𝑖
2(𝑡) 𝑑𝑡 (2.20)

and

𝑃 = lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝑖
2(𝑡) 𝑑𝑡 (2.21)

respectively.
For an arbitrary signal 𝑥(𝑡), which may, in general, be complex, we define total (normal-

ized) energy as

𝐸 ≜ lim
𝑇→∞∫

𝑇

−𝑇
|𝑥 (𝑡)|2 𝑑𝑡 =

∫

∞

−∞
|𝑥 (𝑡)|2 𝑑𝑡 (2.22)

and (normalized) power as

𝑃 ≜ lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
|𝑥 (𝑡)|2 𝑑𝑡 (2.23)

Based on the definitions (2.22) and (2.23), we can define two distinct classes of signals:

1. We say 𝑥(𝑡) is an energy signal if and only if 0 < 𝐸 < ∞, so that 𝑃 = 0.
2. We classify 𝑥(𝑡) as a power signal if and only if 0 < 𝑃 < ∞, thus implying that 𝐸 = ∞.3

EXAMPLE 2.3

As an example of determining the classification of a signal, consider

𝑥1(𝑡) = 𝐴𝑒−𝛼𝑡𝑢(𝑡), 𝛼 > 0 (2.24)

where 𝐴 and 𝛼 are positive constants. Using (2.22), we may readily verify that 𝑥1(𝑡) is an energy signal,
since 𝐸 = 𝐴2∕2𝛼 by applying (2.22). Letting 𝛼 → 0, we obtain the signal 𝑥2 (𝑡) = 𝐴𝑢(𝑡), which has
infinite energy. Applying (2.23), we find that 𝑃 = 1

2
𝐴

2 for 𝐴𝑢 (𝑡), thus verifying that 𝑥2 (𝑡) is a power
signal.

■

3Signals that are neither energy nor power signals are easily found. For example, 𝑥(𝑡) = 𝑡−1∕4, 𝑡 ≥ 𝑡0 > 0, and zero
otherwise.
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EXAMPLE 2.4

Consider the rotating phasor signal given by Equation (2.4). We may verify that �̃�(𝑡) is a power signal,
since

𝑃 = lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
|�̃� (𝑡)|2 𝑑𝑡 = lim

𝑇→∞

1
2𝑇 ∫

∞

−∞

|||𝐴𝑒
𝑗(𝜔0𝑡+𝜃)|||

2
𝑑𝑡 = lim

𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝐴

2
𝑑𝑡 = 𝐴2 (2.25)

is finite.
■

We note that there is no need to carry out the limiting operation to find 𝑃 for a periodic
signal, since an average carried out over a single period gives the same result as (2.23); that
is, for a periodic signal 𝑥

𝑝
(𝑡),

𝑃 = 1
𝑇0 ∫

𝑡0+𝑇0

𝑡0

|||𝑥𝑝 (𝑡)
|||
2
𝑑𝑡 (2.26)

where 𝑇0 is the period and 𝑡0 is an arbitrary starting time (chosen for convenience). The proof
of (2.26) is left to the problems.

EXAMPLE 2.5

The sinusoidal signal

𝑥
𝑝
(𝑡) = 𝐴 cos(𝜔0𝑡 + 𝜃) (2.27)

has average power

𝑃 = 1
𝑇0 ∫

𝑡0+𝑇0

𝑡0

𝐴
2 cos2(𝜔0𝑡 + 𝜃) 𝑑𝑡

=
𝜔0

2𝜋 ∫

𝑡0+(2𝜋∕𝜔0)

𝑡0

𝐴
2

2
𝑑𝑡 +

𝜔0

2𝜋 ∫

𝑡0+(2𝜋∕𝜔0)

𝑡0

𝐴
2

2
cos

[
2(𝜔0𝑡 + 𝜃)

]
𝑑𝑡

= 𝐴
2

2
(2.28)

where the identity cos2 (𝑢) = 1
2
+ 1

2
cos (2𝑢) has been used4 and the second integral is zero because the

integration is over two complete periods of the integrand.
■

4See Appendix F.2 for trigonometric identities.
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■ 2.3 FOURIER SERIES

2.3.1 Complex Exponential Fourier Series

Given a signal 𝑥(𝑡) defined over the interval (𝑡0, 𝑡0 + 𝑇0) with the definition 𝜔0 = 2𝜋𝑓0 =
2𝜋
𝑇0

we define the complex exponential Fourier series as

𝑥(𝑡) =
∞∑

𝑛=−∞
𝑋
𝑛
𝑒
𝑗𝑛𝜔0𝑡, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑇0 (2.29)

where

𝑋
𝑛
= 1
𝑇0 ∫

𝑡0+𝑇0

𝑡0

𝑥 (𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 (2.30)

It can be shown to represent the signal 𝑥(𝑡) exactly in the interval (𝑡0, 𝑡0 + 𝑇0), except
at a point of jump discontinuity where it converges to the arithmetic mean of the left-hand
and right-hand limits.5 Outside the interval (𝑡0, 𝑡0 + 𝑇0), of course, nothing is guaranteed.
However, we note that the right-hand side of (2.29) is periodic with period 𝑇0, since it is the
sum of periodic rotating phasors with harmonic frequencies. Thus, if 𝑥(𝑡) is periodic with
period 𝑇0, the Fourier series of (2.29) is an accurate representation for 𝑥(𝑡) for all 𝑡 (except at
points of discontinuity). The integration of (2.30) can then be taken over any period.

A useful observation about a Fourier series expansion of a signal is that the series is
unique. For example, if we somehow find a Fourier expansion for a signal 𝑥(𝑡), we know that
no other Fourier expansion for that 𝑥(𝑡) exists. The usefulness of this observation is illustrated
with the following example.

EXAMPLE 2.6

Consider the signal

𝑥(𝑡) = cos
(
𝜔0𝑡

)
+ sin2

(
2𝜔0𝑡

)
(2.31)

where 𝜔0 = 2𝜋∕𝑇0. Find the complex exponential Fourier series.

S o l u t i o n

We could compute the Fourier coefficients using (2.30), but by using appropriate trigonometric identities
and Euler’s theorem, we obtain

𝑥(𝑡) = cos
(
𝜔0𝑡

)
+ 1

2
− 1

2
cos

(
4𝜔0𝑡

)

= 1
2
𝑒
𝑗𝜔0𝑡 + 1

2
𝑒
−𝑗𝜔0𝑡 + 1

2
− 1

4
𝑒
𝑗4𝜔0𝑡 − 1

4
𝑒
−𝑗4𝜔0𝑡 (2.32)

Invoking uniqueness and equating the second line term by term with
∑∞
𝑛=−∞𝑋𝑛

𝑒
𝑗𝑛𝜔0𝑡 we find that

𝑋0 =
1
2

5Dirichlet’s conditions state that sufficient conditions for convergence are that 𝑥(𝑡) be defined and bounded on the
range (𝑡0, 𝑡0 + 𝑇0) and have only a finite number of maxima and minima and a finite number of discontinuities on this
interval.
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𝑋1 = 1
2
= 𝑋−1 (2.33)

𝑋4 = −1
4
= 𝑋−4

with all other 𝑋
𝑛
s equal to zero. Thus considerable labor is saved by noting that the Fourier series of a

signal is unique.
■

2.3.2 Symmetry Properties of the Fourier Coefficients

Assuming 𝑥(𝑡) is real, it follows from (2.30) that

𝑋
∗
𝑛
= 𝑋−𝑛 (2.34)

by taking the complex conjugate inside the integral and noting that the same result is obtained
by replacing 𝑛 by −𝑛. Writing 𝑋

𝑛
as

𝑋
𝑛
= ||𝑋𝑛|| 𝑒

𝑗⟋𝑋𝑛 (2.35)

we obtain

||𝑋𝑛|| = ||𝑋−𝑛|| and ⟋𝑋
𝑛
= −⟋𝑋−𝑛 (2.36)

Thus, for real signals, the magnitude of the Fourier coefficients is an even function of 𝑛, and
the argument is odd.

Several symmetry properties can be derived for the Fourier coefficients, depending on
the symmetry of 𝑥(𝑡). For example, suppose 𝑥(𝑡) is even; that is, 𝑥(𝑡) = 𝑥(−𝑡). Then, using
Euler’s theorem to write the expression for the Fourier coefficients as (choose 𝑡0 = −𝑇0∕2)

𝑋
𝑛
= 1
𝑇0 ∫

𝑇0∕2

−𝑇0∕2
𝑥 (𝑡) cos

(
𝑛𝜔0𝑡

)
𝑑𝑡 − 𝑗

𝑇0 ∫

𝑇0∕2

−𝑇0∕2
𝑥 (𝑡) sin

(
𝑛𝜔0𝑡

)
𝑑𝑡, (2.37)

we see that the second term is zero, since 𝑥(𝑡) sin
(
𝑛𝜔0𝑡

)
is an odd function. Thus,𝑋

𝑛
is purely

real, and furthermore, 𝑋
𝑛
is an even function of 𝑛 since cos 𝑛𝜔0𝑡 is an even function of 𝑛.

These consequences of 𝑥(𝑡) being even are illustrated by Example 2.6.
On the other hand, if 𝑥(𝑡) = −𝑥(−𝑡) [that is, 𝑥(𝑡) is odd], it readily follows that 𝑋

𝑛
is

purely imaginary, since the first term in (2.37) is zero by virtue of 𝑥(𝑡) cos
(
𝑛𝜔0𝑡

)
being odd.

In addition, 𝑋
𝑛
is an odd function of 𝑛, since sin

(
𝑛𝜔0𝑡

)
is an odd function of 𝑛.

Another type of symmetry is (odd) halfwave symmetry, defined as

𝑥

(
𝑡 ± 1

2
𝑇0

)
= −𝑥(𝑡) (2.38)

where 𝑇0 is the period of 𝑥(𝑡). For signals with odd halfwave symmetry,

𝑋
𝑛
= 0, 𝑛 = 0,±2,±4, ... (2.39)

which states that the Fourier series for such a signal consists only of odd-indexed terms. The
proof of this is left to the problems.
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2.3.3 Trigonometric Form of the Fourier Series

Using (2.36) and assuming 𝑥(𝑡) real, we can regroup the complex exponential Fourier series
by pairs of terms of the form

𝑋
𝑛
𝑒
𝑗𝑛𝜔0𝑡 +𝑋−𝑛𝑒

−𝑗𝑛𝜔0𝑡 = ||𝑋𝑛|| 𝑒
𝑗(𝑛𝜔0𝑡+⟋𝑋𝑛) + ||𝑋𝑛|| 𝑒

−𝑗(𝑛𝜔0𝑡+⟋𝑋𝑛)

= 2 ||𝑋𝑛|| cos
(
𝑛𝜔0𝑡 +⟋𝑋

𝑛

)
(2.40)

where the facts that ||𝑋𝑛|| = ||𝑋−𝑛|| and ⟋𝑋
𝑛
= −⟋𝑋−𝑛 have been used. Hence, (2.29) can be

written in the equivalent trigonometric form:

𝑥(𝑡) = 𝑋0 +
∞∑

𝑛=1
2 ||𝑋𝑛|| cos

(
𝑛𝜔0𝑡 +⟋𝑋

𝑛

)
(2.41)

Expanding the cosine in (2.41), we obtain still another equivalent series of the form

𝑥(𝑡) = 𝑋0 +
∞∑

𝑛=1
𝐴
𝑛
cos

(
𝑛𝜔0𝑡

)
+

∞∑

𝑛=1
𝐵
𝑛
sin

(
𝑛𝜔0𝑡

)
(2.42)

where

𝐴
𝑛
= 2 ||𝑋𝑛|| cos⟋𝑋𝑛

= 2
𝑇0 ∫

𝑡0+𝑇0

𝑡0

𝑥 (𝑡) cos
(
𝑛𝜔0𝑡

)
𝑑𝑡 (2.43)

and

𝐵
𝑛
= −2 ||𝑋𝑛|| sin⟋𝑋𝑛

= 2
𝑇0 ∫

𝑡0+𝑇0

𝑡0

𝑥 (𝑡) sin
(
𝑛𝜔0𝑡

)
𝑑𝑡 (2.44)

In either the trigonometric or the exponential forms of the Fourier series, 𝑋0 represents the
average or DC component of 𝑥(𝑡). The term for 𝑛 = 1 is called the fundamental (along with
the term for 𝑛 = −1 if we are dealing with the complex exponential series), the term for 𝑛 = 2
is called the second harmonic, and so on.

2.3.4 Parseval’s Theorem

Using (2.26) for average power of a periodic signal,6 substituting (2.29) for 𝑥(𝑡), and inter-
changing the order of integration and summation, we obtain

𝑃 = 1
𝑇0 ∫𝑇0

|𝑥(𝑡)|2 𝑑𝑡 = 1
𝑇0 ∫𝑇0

( ∞∑

𝑚=−∞
𝑋
𝑚
𝑒
𝑗𝑚𝜔0𝑡

)( ∞∑

𝑛=−∞
𝑋
𝑛
𝑒
𝑗𝑛𝜔0𝑡

)∗

𝑑𝑡 =
∞∑

𝑛=−∞

||𝑋𝑛||
2

(2.45)

6∫
𝑇0

() 𝑑𝑡 represents integration over any period.
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or

𝑃 = 𝑋2
0 +

∞∑

𝑛=1
2 ||𝑋𝑛||

2 (2.46)

which is called Parseval’s theorem. In words, (2.45) simply states that the average power of a
periodic signal 𝑥(𝑡) is the sum of the powers in the phasor components of its Fourier series, or
(2.46) states that its average power is the sum of the powers in its DC component plus that in
its AC components [from (2.41) the power in each cosine component is its amplitude squared

divided by 2, or
(
2 ||𝑋𝑛||

)2 ∕2 = 2 ||𝑋𝑛||
2]. Note that powers of the Fourier components can be

added because they are orthogonal (i.e., the integral of the product of two harmonics is zero).

2.3.5 Examples of Fourier Series

Table 2.1 gives Fourier series for several commonly occurring periodic waveforms. The
left-hand column specifies the signal over one period. The definition of periodicity,

𝑥(𝑡) = 𝑥(𝑡 + 𝑇0)

specifies it for all 𝑡. The derivation of the Fourier coefficients given in the right-hand column
of Table 2.1 is left to the problems. Note that the full-rectified sinewave actually has the
period 1

2𝑇0.

Table 2.1 Fourier Series for Several Periodic Signals

Signal (one period) Coefficients for exponential Fourier series

1. Asymmetrical pulse train; period = 𝑇0:

𝑥(𝑡) = 𝐴Π
(
𝑡 − 𝑡0
𝜏

)
, 𝜏 < 𝑇0 𝑋

𝑛
= 𝐴𝜏

𝑇0
sinc

(
𝑛𝑓0𝜏

)
𝑒
−𝑗2𝜋𝑛𝑓0𝑡0

𝑥 (𝑡) = 𝑥
(
𝑡 + 𝑇0

)
, all 𝑡 𝑛 = 0,±1,±2,…

2. Half-rectified sinewave; period = 𝑇0 = 2𝜋∕𝜔0:

𝑥 (𝑡) =
{
𝐴 sin

(
𝜔0𝑡

)
, 0 ≤ 𝑡 ≤ 𝑇0∕2

0, −𝑇0∕2 ≤ 𝑡 ≤ 0 𝑋
𝑛
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐴

𝜋
(
1 − 𝑛2

) , 𝑛 = 0, ±2, ±4, ⋯

0, 𝑛 = ±3, ±5, ⋯
−1
4
𝑗𝑛𝐴, 𝑛 = ±1

𝑥 (𝑡) = 𝑥
(
𝑡 + 𝑇0

)
, all 𝑡

3. Full-rectified sinewave; period = 𝑇 ′
0 = 𝜋∕𝜔0:

𝑥 (𝑡) = 𝐴| sin
(
𝜔0𝑡

)
| 𝑋

𝑛
= 2𝐴
𝜋
(
1 − 4𝑛2

) , 𝑛 = 0,±1,±2,…

4. Triangular wave:

𝑥 (𝑡) =
⎧
⎪
⎨
⎪
⎩

−4𝐴
𝑇0
𝑡 + 𝐴, 0 ≤ 𝑡 ≤ 𝑇0∕2

4𝐴
𝑇0
𝑡 + 𝐴, −𝑇0∕2 ≤ 𝑡 ≤ 0

𝑋
𝑛
=

{ 4𝐴
𝜋2𝑛2

, 𝑛 odd

0, 𝑛 even

𝑥 (𝑡) = 𝑥
(
𝑡 + 𝑇0

)
, all 𝑡

www.it-ebooks.info

http://www.it-ebooks.info/


30 Chapter 2 ∙ Signal and Linear System Analysis

For the periodic pulse train, it is convenient to express the coefficients in terms of the sinc
function, defined as

sinc 𝑧 = sin (𝜋𝑧)
𝜋𝑧

(2.47)

The sinc function is an even damped oscillatory function with zero crossings at integer values
of its argument.

EXAMPLE 2.7

Specialize the results for the pulse train (no. 1) of Table 2.1 to the complex exponential and trigonometric
Fourier series of a squarewave with even symmetry and amplitudes zero and 𝐴.

S o l u t i o n

The solution proceeds by letting 𝑡0 = 0 and 𝜏 = 1
2
𝑇0 in item 1 of Table 2.1. Thus,

𝑋
𝑛
= 1

2
𝐴 sinc

(1
2
𝑛

)
(2.48)

But

sinc (𝑛∕2) =
sin (𝑛𝜋∕2)
𝑛𝜋∕2

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, 𝑛 = 0
0, 𝑛 = even

|2∕𝑛𝜋| , 𝑛 = ±1,±5,±9,…
− |2∕𝑛𝜋| , 𝑛 = ±3,±7,…

Thus,

𝑥(𝑡) = ⋯ + 𝐴

5𝜋
𝑒
−𝑗5𝜔0𝑡 − 𝐴

3𝜋
𝑒
−𝑗3𝜔0𝑡 + 𝐴

𝜋
𝑒
−𝑗𝜔0𝑡

+𝐴
2
+ 𝐴

𝜋
𝑒
𝑗𝜔0𝑡 − 𝐴

3𝜋
𝑒
𝑗3𝜔0𝑡 + 𝐴

5𝜋
𝑒
𝑗5𝜔0𝑡 −⋯

= 𝐴

2
+ 2𝐴
𝜋

[
cos

(
𝜔0𝑡

)
− 1

3
cos

(
3𝜔0𝑡

)
+ 1

5
cos

(
5𝜔0𝑡

)
−⋯

]
(2.49)

The first equation is the complex exponential form of the Fourier series and the second equation is the
trigonometric form. The DC component of this squarewave is 𝑋0 =

1
2
𝐴. Setting this term to zero in

the preceding Fourier series, we have the Fourier series of a squarewave of amplitudes ±1
2
𝐴. Such a

squarewave has halfwave symmetry, and this is precisely the reason that no even harmonics are present
in its Fourier series.

■

2.3.6 Line Spectra

The complex exponential Fourier series (2.29) of a signal is simply a summation of phasors.
In Section 2.1 we showed how a phasor could be characterized in the frequency domain by
two plots: one showing its amplitude versus frequency and one showing its phase. Similarly, a
periodic signal can be characterized in the frequency domain bymaking two plots: one showing
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Figure 2.5
Line spectra for half-rectified sinewave. (a) Double-sided. (b) Single-sided.

amplitudes of the separate phasor components versus frequency and the other showing their
phases versus frequency. The resulting plots are called the two-sided amplitude7 and phase
spectra, respectively, of the signal. From (2.36) it follows that, for a real signal, the amplitude
spectrum is even and the phase spectrum is odd, which is simply a result of the addition of
complex conjugate phasors to get a real sinusoidal signal.

Figure 2.5(a) shows the double-sided spectrum for a half-rectified sinewave as
plotted from the results given in Table 2.1. For 𝑛 = 2, 4,… , 𝑋

𝑛
is represented as

7Magnitude spectrum would be a more accurate term, although amplitude spectrum is the customary term.
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follows:

𝑋
𝑛
= −

|||||

𝐴

𝜋
(
1 − 𝑛2

)
|||||
= 𝐴

𝜋
(
𝑛2 − 1

)𝑒−𝑗𝜋 (2.50)

For 𝑛 = −2,−4,… , it is represented as

𝑋
𝑛
= −

|||||

𝐴

𝜋
(
1 − 𝑛2

)
|||||
= 𝐴

𝜋
(
𝑛2 − 1

)𝑒𝑗𝜋 (2.51)

to ensure that the phase is odd, as it must be (note that 𝑒±𝑗𝜋 = −1). Thus, putting this together
with 𝑋±1 = ∓𝑗𝐴∕4, we get

||𝑋𝑛|| =
⎧
⎪
⎨
⎪
⎩

1
4𝐴, 𝑛 = ±1
||||

𝐴

𝜋(1−𝑛2)
||||
, all even 𝑛

(2.52)

⟋𝑋
𝑛
=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

−𝜋, 𝑛 = 2, 4,…
−1

2𝜋 𝑛 = 1
0, 𝑛 = 0
1
2𝜋, 𝑛 = −1
𝜋, 𝑛 = −2,−4,…

(2.53)

The single-sided line spectra are obtained by plotting the amplitudes and phase angles of
the terms in the trigonometric Fourier series (2.41) versus 𝑛𝑓0. Because the series (2.41) has
only nonnegative frequency terms, the single-sided spectra exist only for 𝑛𝑓0 ≥ 0. From (2.41)
it is readily apparent that the single-sided phase spectrum of a periodic signal is identical to
its double-sided phase spectrum for 𝑛𝑓0 ≥ 0 and zero for 𝑛𝑓0 < 0. The single-sided amplitude
spectrum is obtained from the double-sided amplitude spectrum by doubling the amplitudes
of all lines for 𝑛𝑓0 > 0. The line at 𝑛𝑓0 = 0 stays the same. The single-sided spectra for the
half-rectified sinewave are shown in Figure 2.5(b).

As a second example, consider the pulse train

𝑥(𝑡) =
∞∑

𝑛=−∞
𝐴Π

⎛
⎜
⎜
⎝

𝑡 − 𝑛𝑇0 −
1
2𝜏

𝜏

⎞
⎟
⎟
⎠

(2.54)

From Table 2.1, with 𝑡0 =
1
2𝜏 substituted in item 1, the Fourier coefficients are

𝑋
𝑛
= 𝐴𝜏

𝑇0
sinc (𝑛𝑓0𝜏)𝑒−𝑗𝜋𝑛𝑓0𝜏 (2.55)

The Fourier coefficients can be put in the form ||𝑋𝑛|| exp(𝑗⟋𝑋𝑛), where

||𝑋𝑛|| =
𝐴𝜏

𝑇0
||sinc (𝑛𝑓0𝜏)|| (2.56)

and

⟋𝑋
𝑛
=
⎧
⎪
⎨
⎪
⎩

−𝜋𝑛𝑓0𝜏 if sinc
(
𝑛𝑓0𝜏

)
> 0

−𝜋𝑛𝑓0𝜏 + 𝜋 if 𝑛𝑓0 > 0 and sinc
(
𝑛𝑓0𝜏

)
< 0

−𝜋𝑛𝑓0𝜏 − 𝜋 if 𝑛𝑓0 < 0 and sinc
(
𝑛𝑓0𝜏

)
< 0

(2.57)
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Figure 2.6
Spectra for a periodic pulse train signal. (a) 𝜏 = 1

4
𝑇0. (b) 𝜏 =

1
8
𝑇0; 𝑇0 same as in (a). (c) 𝜏 = 1

8
𝑇0;

𝜏 same as in (a).

The ±𝜋 on the right-hand side of (2.57) on the second and third lines accounts for
||sinc (𝑛𝑓0𝜏)|| = −sinc

(
𝑛𝑓0𝜏

)
whenever sinc

(
𝑛𝑓0𝜏

)
< 0. Since the phase spectrum must

have odd symmetry if 𝑥(𝑡) is real, 𝜋 is subtracted if 𝑛𝑓0 < 0 and added if 𝑛𝑓0 > 0. The reverse
could have been done---the choice is arbitrary. With these considerations, the double-sided
amplitude and phase spectra can now be plotted. They are shown in Figure 2.6 for several
choices of 𝜏 and 𝑇0. Note that appropriate multiples of 2𝜋 are added or subtracted from the
lines in the phase spectrum (𝑒±𝑗2𝜋 = 1).

Comparing Figures 2.6(a) and 2.6(b), we note that the zeros of the envelope of the
amplitude spectrum, which occur at multiples of 1∕𝜏 Hz, move out along the frequency axis
as the pulse width decreases. That is, the time duration of a signal and its spectral width
are inversely proportional, a property that will be shown to be true in general later. Second,
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comparing Figures 2.6(a) and 2.6(c), we note that the separation between lines in the spectra
is 1∕𝑇0. Thus, the density of the spectral lines with frequency increases as the period of 𝑥(𝑡)
increases.

COMPUTER EXAMPLE 2.1

The MATLABTM program given below computes the amplitude and phase spectra for a half-rectified
sinewave. The stem plots produced look exactly the same as those in Figure 2.5(a). Programs for plotting
spectra of other waveforms are left to the computer exercises.

% file ch2ce1
% Plot of line spectra for half-rectified sinewave
%
clf
A = 1;
n max = 11; % maximum harmonic plotted
n = -n max:1:n max;
X = zeros(size(n)); % set all lines = 0; fill in nonzero ones
I = find(n == 1);
II = find(n == -1);
III = find(mod(n, 2) == 0);
X(I) = -j*A/4;
X(II) = j*A/4;
X(III) = A./(pi*(1. - n(III).ˆ2));
[arg X, mag X] = cart2pol(real(X),imag(X)); % Convert to magnitude and

phase
IV = find(n >= 2 & mod(n, 2) == 0);
arg X(IV) = arg X(IV) - 2*pi; % force phase to be odd
mag Xss(1:n max) = 2*mag X(n max+1:2*n max);
mag Xss(1) = mag Xss(1)/2;
arg Xss(1:n max) = arg X(n max+1:2*n max);
nn = 1:n max;
subplot(2,2,1), stem(n, mag X), ylabel(‘Amplitude’), xlabel(’{∖itnf} 0,

Hz’),. . .
axis([-10.1 10.1 0 0.5])

subplot(2,2,2), stem(n, arg X), xlabel(‘{∖itnf} 0, Hz’), ylabel(‘Phase,
rad’),. . .

axis([-10.1 10.1 -4 4])
subplot(2,2,3), stem(nn-1, mag Xss), ylabel(‘Amplitude’),

xlabel(‘{∖itnf} 0, Hz’)
subplot(2,2,4), stem(nn-1, arg Xss), xlabel(‘{∖itnf} 0, Hz’),

ylabel(‘Phase, rad’),. . .
xlabel(‘{ ∖itnf} 0’)

% End of script file
■

■ 2.4 THE FOURIER TRANSFORM

To generalize the Fourier series representation (2.29) to a representation valid for aperiodic
signals, we consider the two basic relationships (2.29) and (2.30). Suppose that 𝑥(𝑡) is aperiodic
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but is an energy signal, so that it is integrable square in the interval (−∞,∞).8 In the interval
|𝑡| < 1

2𝑇0, we can represent 𝑥(𝑡) as the Fourier series

𝑥(𝑡) =
∞∑

𝑛=−∞

[
1
𝑇0 ∫

𝑇0∕2

−𝑇0∕2
𝑥 (𝜆) 𝑒−𝑗2𝜋𝑓0𝜆 𝑑𝜆

]

𝑒
𝑗2𝜋𝑛𝑓0𝑡, |𝑡| <

𝑇0
2

(2.58)

where 𝑓0 = 1∕𝑇0. To represent 𝑥(𝑡) for all time, we simply let 𝑇0 → ∞ such that 𝑛𝑓0 = 𝑛∕𝑇0
becomes the continuous variable 𝑓 , 1∕𝑇0 becomes the differential 𝑑𝑓 , and the summation
becomes an integral. Thus,

𝑥(𝑡) =
∫

∞

−∞

[

∫

∞

−∞
𝑥 (𝜆) 𝑒−𝑗2𝜋𝑓𝜆 𝑑𝜆

]
𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑓 (2.59)

Defining the inside integral as

𝑋 (𝑓 ) =
∫

∞

−∞
𝑥 (𝜆) 𝑒−𝑗2𝜋𝑓𝜆 𝑑𝜆 (2.60)

we can write (2.59) as

𝑥(𝑡) =
∫

∞

−∞
𝑋 (𝑓 ) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (2.61)

The existence of these integrals is assured, since 𝑥(𝑡) is an energy signal. We note that

𝑋(𝑓 ) = lim
𝑇0→∞

𝑇0𝑋𝑛 (2.62)

which avoids the problem that ||𝑋𝑛|| → 0 as 𝑇0 → ∞.
The frequency-domain description of 𝑥(𝑡) provided by (2.60) is referred to as the Fourier

transform of 𝑥(𝑡), written symbolically as 𝑋(𝑓 ) = ℑ[𝑥(𝑡)]. Conversion back to the time
domain is achieved via the inverse Fourier transform (2.61), written symbolically as 𝑥(𝑡) =
ℑ−1[𝑋(𝑓 )].

Expressing (2.60) and (2.61) in terms of 𝑓 = 𝜔∕2𝜋 results in easily remembered sym-
metrical expressions. Integrating (2.61) with respect to the variable 𝜔 requires a factor of
(2𝜋)−1.

2.4.1 Amplitude and Phase Spectra

Writing 𝑋(𝑓 ) in terms of amplitude and phase as

𝑋(𝑓 ) = |𝑋(𝑓 )|𝑒𝑗𝜃(𝑓 ), 𝜃(𝑓 ) = ⟋𝑋(𝑓 ) (2.63)

we can show, for real 𝑥(𝑡), that

|𝑋(𝑓 )| = |𝑋(−𝑓 )| and 𝜃(𝑓 ) = −𝜃(−𝑓 ) (2.64)

8Actually if ∫ ∞
−∞ |𝑥 (𝑡)| 𝑑𝑡 < ∞, the Fourier-transform integral converges. It more than suffices if 𝑥(𝑡) is an energy

signal. Dirichlet’s conditions give sufficient conditions for a signal to have a Fourier transform. In addition to being
absolutely integrable, 𝑥(𝑡) should be single-valued with a finite number of maxima and minima and a finite number
of discontinuities in any finite time interval.
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just as for the Fourier series. This is done by using Euler’s theorem to write (2.60) in terms of
its real and imaginary parts:

𝑅 = Re 𝑋(𝑓 ) =
∫

∞

−∞
𝑥(𝑡) cos (2𝜋𝑓𝑡) 𝑑𝑡 (2.65)

and

𝐼 = Im 𝑋(𝑓 ) = −
∫

∞

−∞
𝑥(𝑡) sin (2𝜋𝑓𝑡) 𝑑𝑡 (2.66)

Thus, the real part of 𝑋(𝑓 ) is even and the imaginary part is odd if 𝑥(𝑡) is a real signal. Since
|𝑋(𝑓 )|2 = 𝑅2 + 𝐼2 and tan 𝜃(𝑓 ) = 𝐼∕𝑅, the symmetry properties (2.64) follow. A plot of
|𝑋(𝑓 )| versus 𝑓 is referred to as the amplitude spectrum9 of 𝑥(𝑡), and a plot of⟋𝑋(𝑓 ) = 𝜃(𝑓 )
versus 𝑓 is known as the phase spectrum.

2.4.2 Symmetry Properties

If 𝑥(𝑡) = 𝑥(−𝑡), that is, if 𝑥(𝑡) is even, then 𝑥(𝑡) sin (2𝜋𝑓𝑡) is odd in (2.66) and Im 𝑋(𝑓 ) = 0.
Furthermore, Re 𝑋(𝑓 ) is an even function of 𝑓 because cosine is an even function. Thus, the
Fourier transform of a real, even function is real and even.

On the other hand, if 𝑥(𝑡) is odd, 𝑥(𝑡) cos 2𝜋𝑓𝑡 is odd in (2.65) and Re𝑋(𝑓 ) = 0. Thus, the
Fourier transform of a real, odd function is imaginary. In addition, Im𝑋(𝑓 ) is an odd function
of frequency because sin 2𝜋𝑓𝑡 is an odd function.

EXAMPLE 2.8

Consider the pulse

𝑥 (𝑡) = 𝐴Π
(
𝑡 − 𝑡0
𝜏

)
(2.67)

The Fourier transform is

𝑋 (𝑓 ) =
∫

∞

−∞
𝐴Π

(
𝑡 − 𝑡0
𝜏

)
𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑡

= 𝐴
∫

𝑡0+𝜏∕2

𝑡0−𝜏∕2
𝑒
−𝑗2𝜋𝑓𝑡

𝑑𝑡 = 𝐴𝜏 sinc (𝑓𝜏) 𝑒−𝑗2𝜋𝑓𝑡0 (2.68)

The amplitude spectrum of 𝑥(𝑡) is

|𝑋(𝑓 )| = 𝐴𝜏|sinc (𝑓 𝜏) | (2.69)

and the phase spectrum is

𝜃 (𝑓 ) =

{
−2𝜋𝑡0𝑓 if sinc (𝑓𝜏) > 0
−2𝜋𝑡0𝑓 ± 𝜋 if sinc (𝑓𝜏) < 0

(2.70)

The term±𝜋 is used to account for sinc (𝑓𝜏) being negative, and if+𝜋 is used for 𝑓 > 0,−𝜋 is used
for 𝑓 < 0, or vice versa, to ensure that 𝜃(𝑓 ) is odd. When |𝜃(𝑓 )| exceeds 2𝜋, an appropriate multiple

9Amplitude density spectrum would be more correct, since its dimensions are (amplitude units)(time) = (amplitude
units)/(frequency), but we will use the term amplitude spectrum for simplicity.
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Figure 2.7
Amplitude and phase spectra for a pulse signal. (a) Amplitude spectrum. (b) Phase spectrum (𝑡0 =

1
2
𝜏 is

assumed).

of 2𝜋 may be added or subtracted from 𝜃(𝑓 ). Figure 2.7 shows the amplitude and phase spectra for the
signal (2.67). The similarity to Figure 2.6 is to be noted, especially the inverse relationship between
spectral width and pulse duration.

■

2.4.3 Energy Spectral Density

The energy of a signal, defined by (2.22), can be expressed in the frequency domain as follows:

𝐸 ≜
∫

∞

−∞
|𝑥 (𝑡)|2 𝑑𝑡

=
∫

∞

−∞
𝑥
∗ (𝑡)

[

∫

∞

−∞
𝑋 (𝑓 ) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

]
𝑑𝑡 (2.71)

where 𝑥(𝑡) has beenwritten in terms of its Fourier transform. Reversing the order of integration,
we obtain

𝐸 =
∫

∞

−∞
𝑋 (𝑓 )

[

∫

∞

−∞
𝑥
∗ (𝑡) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑡

]
𝑑𝑓

=
∫

∞

−∞
𝑋 (𝑓 )

[

∫

∞

−∞
𝑥 (𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

]∗
𝑑𝑓

=
∫

∞

−∞
𝑋 (𝑓 )𝑋∗ (𝑓 ) 𝑑𝑓

or

𝐸 =
∫

∞

−∞
|𝑥 (𝑡)|2 𝑑𝑡 =

∫

∞

−∞
|𝑋 (𝑓 )|2 𝑑𝑓 (2.72)

This is referred to as Rayleigh’s energy theorem or Parseval’s theorem for Fourier transforms.
Examining |𝑋(𝑓 )|2 and recalling the definition of 𝑋(𝑓 ) given by (2.60), we note that

the former has the units of (volts-seconds) or, since we are considering power on a per-ohm
basis, (watts-seconds)/hertz = joules/ hertz. Thus, we see that |𝑋(𝑓 )|2 has the units of energy
density, and we define the energy spectral density of a signal as

𝐺(𝑓 ) ≜ |𝑋(𝑓 )|2 (2.73)
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By integrating 𝐺(𝑓 ) over all frequency, we obtain the signal’s total energy.

EXAMPLE 2.9

Rayleigh’s energy theorem (Parseval’s theorem for Fourier transforms) is convenient for finding the
energy in a signal whose square is not easily integrated in the time domain, or vice versa. For example,
the signal

𝑥(𝑡) = 40 sinc (20𝑡) ⟷ 𝑋(𝑓 ) = 2Π
(
𝑓

20

)
(2.74)

has energy density

𝐺(𝑓 ) = |𝑋(𝑓 )|2 =
[
2Π

(
𝑓

20

)]2
= 4Π

(
𝑓

20

)
(2.75)

whereΠ(𝑓∕20) need not be squared because it has amplitude 1 whenever it is nonzero. Using Rayleigh’s
energy theorem, we find that the energy in 𝑥(𝑡) is

𝐸 =
∫

∞

−∞
𝐺(𝑓 ) 𝑑𝑓 =

∫

10

−10
4 𝑑𝑓 = 80 J (2.76)

This checks with the result that is obtained by integrating 𝑥2 (𝑡) over all 𝑡 using the definite integral
∫

∞
−∞ sinc 2 (𝑢) 𝑑𝑢 = 1.

The energy contained in the frequency interval (0,𝑊 ) can be found from the integral

𝐸
𝑊

=
∫

𝑊

−𝑊
𝐺(𝑓 ) 𝑑𝑓 = 2

∫

𝑊

0

[
2Π

(
𝑓

20

)]2
𝑑𝑓 (2.77)

=

{
8𝑊 , 𝑊 ≤ 10
80, 𝑊 > 10

which follows because Π
(
𝑓

20

)
= 0, |𝑓 | > 10.

■

2.4.4 Convolution

Wedigress somewhat fromour consideration of the Fourier transform to define the convolution
operation and illustrate it by example.

The convolution of two signals, 𝑥1(𝑡) and 𝑥2 (𝑡), is a new function of time, 𝑥(𝑡), written
symbolically in terms of 𝑥1 and 𝑥2 as

𝑥(𝑡) = 𝑥1(𝑡) ∗ 𝑥2 (𝑡) =
∫

∞

−∞
𝑥1(𝜆)𝑥2(𝑡 − 𝜆) 𝑑𝜆 (2.78)

Note that 𝑡 is a parameter as far as the integration is concerned. The integrand is formed
from 𝑥1 and 𝑥2 by three operations: (1) time reversal to obtain 𝑥2(−𝜆), (2) time shifting
to obtain 𝑥2(𝑡 − 𝜆), and (3) multiplication of 𝑥1(𝜆) and 𝑥2(𝑡 − 𝜆) to form the integrand. An
example will illustrate the implementation of these operations to form 𝑥1 ∗ 𝑥2. Note that the
dependence on time is often suppressed.
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EXAMPLE 2.10

Find the convolution of the two signals

𝑥1(𝑡) = 𝑒−𝛼𝑡𝑢(𝑡) and 𝑥2 (𝑡) = 𝑒−𝛽𝑡𝑢(𝑡), 𝛼 > 𝛽 > 0 (2.79)

S o l u t i o n

The steps involved in the convolution are illustrated in Figure 2.9 for 𝛼 = 4 and 𝛽 = 2. Mathematically,
we can form the integrand by direct substitution:

𝑥(𝑡) = 𝑥1(𝑡) ∗ 𝑥2(𝑡) =
∫

∞

−∞
𝑒
−𝛼𝜆
𝑢(𝜆)𝑒−𝛽(𝑡−𝜆)𝑢(𝑡 − 𝜆)𝑑𝜆 (2.80)

But

𝑢 (𝜆) 𝑢 (𝑡 − 𝜆) =
⎧
⎪
⎨
⎪
⎩

0, 𝜆 < 0
1, 0 < 𝜆 < 𝑡
0, 𝜆 > 𝑡

(2.81)

Thus,

𝑥 (𝑡) =
⎧
⎪
⎨
⎪
⎩

0, 𝑡 < 0

∫

𝑡

0
𝑒
−𝛽𝑡
𝑒
−(𝛼−𝛽)𝜆

𝑑𝜆 = 1
𝛼 − 𝛽

(
𝑒
−𝛽𝑡 − 𝑒−𝛼𝑡

)
, 𝑡 ≥ 0

(2.82)

This result for 𝑥(𝑡) is also shown in Figure 2.8.

x1(t) x2(t)

x(t)

x2(– λ)

λ

λ

x1(λ) x2(0.4 – λ)

x1(λ) x2(0.4–λ) 

111

0

0

0.5

0.5
0.4

1.0 1.5

–0.5 0.50.4 1.00

0.1

1.0
t

t

0 0.5 1.0 –1.0 –0.5 0
t

Area = x(0.4)

Figure 2.8
The operations involved in the convolution of two exponentially decaying signals.

■
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2.4.5 Transform Theorems: Proofs and Applications

Several useful theorems10 involving Fourier transforms can be proved. These are useful for
deriving Fourier-transform pairs as well as deducing general frequency-domain relationships.
The notation 𝑥(𝑡) ⟷ 𝑋(𝑓 ) will be used to denote a Fourier-transform pair.

Each theorem will be stated along with a proof in most cases. Several examples giving
applications will be given after the statements of all the theorems. In the statements of the
theorems 𝑥(𝑡), 𝑥1(𝑡), and 𝑥2 (𝑡) denote signals with 𝑋(𝑓 ), 𝑋1(𝑓 ), and 𝑋2(𝑓 ) denoting their
respective Fourier transforms. Constants are denoted by a, 𝑎1, 𝑎2, 𝑡0, and 𝑓0.

Superposition Theorem

𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡) ⟷ 𝑎1𝑋1(𝑓 ) + 𝑎2𝑋2(𝑓 ) (2.83)

Proof: By the defining integral for the Fourier transform,

ℑ{𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡)} =
∫

∞

−∞

[
𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡)

]
𝑒
−𝑗2𝜋𝑓𝑡

𝑑𝑡

= 𝑎1
∫

∞

−∞
𝑥1(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 + 𝑎2

∫

∞

−∞
𝑥2 (𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

= 𝑎1𝑋1 (𝑓 ) + 𝑎2𝑋2 (𝑓 ) (2.84)

Time-Delay Theorem

𝑥
(
𝑡 − 𝑡0

)
⟷ 𝑋 (𝑓 ) 𝑒−𝑗2𝜋𝑓𝑡0 (2.85)

Proof: Using the defining integral for the Fourier transform, we have

ℑ{𝑥(𝑡 − 𝑡0)} =
∫

∞

−∞
𝑥(𝑡 − 𝑡0)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

=
∫

∞

−∞
𝑥(𝜆)𝑒−𝑗2𝜋𝑓 (𝜆+𝑡0) 𝑑𝜆

= 𝑒−𝑗2𝜋𝑓𝑡0
∫

∞

−∞
𝑥 (𝜆) 𝑒−𝑗2𝜋𝑓𝜆 𝑑𝜆

= 𝑋 (𝑓 ) 𝑒−𝑗2𝜋𝑓𝑡0 (2.86)

where the substitution 𝜆 = 𝑡 − 𝑡0 was used in the first integral.

Scale-Change Theorem

𝑥 (𝑎𝑡) ⟷ 1
|𝑎|
𝑋

(
𝑓

𝑎

)
(2.87)

10See Tables F.5 and F.6 in Appendix F for a listing of Fourier-transform pairs and theorems.
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Proof: First, assume that 𝑎 > 0. Then

ℑ{𝑥(𝑎𝑡)} =
∫

∞

−∞
𝑥(𝑎𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

=
∫

∞

−∞
𝑥(𝜆)𝑒−𝑗2𝜋𝑓𝜆∕𝑎 𝑑𝜆

𝑎
= 1
𝑎
𝑋

(
𝑓

𝑎

)
(2.88)

where the substitution 𝜆 = 𝑎𝑡 has been used. Next considering 𝑎 < 0, we write

ℑ{𝑥(𝑎𝑡)} =
∫

∞

−∞
𝑥 (− |𝑎| 𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 =

∫

∞

−∞
𝑥(𝜆)𝑒+𝑗2𝜋𝑓𝜆∕|𝑎| 𝑑𝜆

|𝑎|

= 1
|𝑎|
𝑋

(
− 𝑓

|𝑎|

)
= 1

|𝑎|
𝑋

(
𝑓

𝑎

)
(2.89)

where use has been made of the relation − |𝑎| = 𝑎 if 𝑎 < 0.

Duality Theorem

𝑋(𝑡) ⟷ 𝑥(−𝑓 ) (2.90)

That is, if the Fourier transform of 𝑥(𝑡) is 𝑋(𝑓 ), then the Fourier transform of 𝑋(𝑓 ) with
𝑓 replaced by 𝑡 is the original time-domain signal with 𝑡 replaced by −𝑓 .

Proof: The proof of this theorem follows by virtue of the fact that the only difference
between the Fourier-transform integral and the inverse Fourier-transform integral is a minus
sign in the exponent of the integrand.

Frequency-Translation Theorem

𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡 ⟷ 𝑋
(
𝑓 − 𝑓0

)
(2.91)

Proof: To prove the frequency-translation theorem, note that

∫

∞

−∞
𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 =

∫

∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋(𝑓−𝑓0)𝑡 𝑑𝑡 = 𝑋(𝑓 − 𝑓0) (2.92)

Modulation Theorem

𝑥(𝑡) cos(2𝜋𝑓0𝑡) ⟷
1
2
𝑋(𝑓 − 𝑓0) +

1
2
𝑋(𝑓 + 𝑓0) (2.93)

Proof: The proof of this theorem follows by writing cos(2𝜋𝑓0𝑡) in exponential form as
1
2

(
𝑒
𝑗2𝜋𝑓0𝑡 + 𝑒−𝑗2𝜋𝑓0𝑡

)
and applying the superposition and frequency-translation theorems.

Differentiation Theorem

𝑑
𝑛
𝑥 (𝑡)
𝑑𝑡𝑛

⟷ (𝑗2𝜋𝑓 )𝑛 𝑋 (𝑓 ) (2.94)
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Proof: We prove the theorem for 𝑛 = 1 by using integration by parts on the defining
Fourier-transform integral as follows:

ℑ
{
𝑑𝑥

𝑑𝑡

}
=
∫

∞

−∞

𝑑𝑥 (𝑡)
𝑑𝑡

𝑒
−𝑗2𝜋𝑓𝑡

𝑑𝑡

= 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡|||
∞

−∞
+ 𝑗2𝜋𝑓

∫

∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

= 𝑗2𝜋𝑓 𝑋 (𝑓 ) (2.95)

where 𝑢 = 𝑒−𝑗2𝜋𝑓𝑡 and 𝑑𝑣 = (𝑑𝑥∕𝑑𝑡)𝑑𝑡 have been used in the integration-by-parts formula,
and the first term of the middle equation vanishes at each end point by virtue of 𝑥(𝑡) being an
energy signal. The proof for values of 𝑛 > 1 follows by induction.

Integration Theorem

∫

𝑡

−∞
𝑥(𝜆) 𝑑𝜆⟷ (𝑗2𝜋𝑓 )−1𝑋(𝑓 ) + 1

2
𝑋(0)𝛿(𝑓 ) (2.96)

Proof: If 𝑋(0) = 0, the proof of the integration theorem can be carried out by using
integration by parts as in the case of the differentiation theorem. We obtain

ℑ
{

∫

𝑡

−∞
𝑥 (𝜆) 𝑑 (𝜆)

}

=
{

∫

𝑡

−∞
𝑥 (𝜆) 𝑑 (𝜆)

} (
− 1
𝑗2𝜋𝑓

𝑒
−𝑗2𝜋𝑓𝑡

)|||||

∞

−∞
+ 1
𝑗2𝜋𝑓 ∫

∞

−∞
𝑥 (𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 (2.97)

The first term vanishes if 𝑋(0) = ∫
∞
−∞ 𝑥(𝑡)𝑑𝑡 = 0, and the second term is just 𝑋(𝑓 )∕ (𝑗2𝜋𝑓 ).

For 𝑋(0) ≠ 0, a limiting argument must be used to account for the Fourier transform of the
nonzero average value of 𝑥(𝑡).

Convolution Theorem

∫

∞

−∞
𝑥1(𝜆)𝑥2(𝑡 − 𝜆) 𝑑𝜆

≜
∫

∞

−∞
𝑥1(𝑡 − 𝜆)𝑥2(𝜆)𝑑𝜆↔ 𝑋1(𝑓 )𝑋2(𝑓 ) (2.98)

Proof: To prove the convolution theorem of Fourier transforms, we represent 𝑥2(𝑡 − 𝜆)
in terms of the inverse Fourier-transform integral as

𝑥2(𝑡 − 𝜆) =
∫

∞

−∞
𝑋2(𝑓 )𝑒𝑗2𝜋𝑓 (𝑡−𝜆) 𝑑𝑓 (2.99)

Denoting the convolution operation as 𝑥1(𝑡) ∗ 𝑥2 (𝑡), we have

𝑥1(𝑡) ∗ 𝑥2(𝑡) =
∫

∞

−∞
𝑥1(𝜆)

[

∫

∞

−∞
𝑋2(𝑓 )𝑒𝑗2𝜋𝑓 (𝑡−𝜆) 𝑑𝑓

]
𝑑𝜆

=
∫

∞

−∞
𝑋2(𝑓 )

[

∫

∞

−∞
𝑥1(𝜆)𝑒−𝑗2𝜋𝑓𝜆 𝑑𝜆

]
𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑓 (2.100)
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where the last step results from reversing the orders of integration. The bracketed term inside
the integral is 𝑋1(𝑓 ), the Fourier transform of 𝑥1(𝑡). Thus,

𝑥1 ∗ 𝑥2 =
∫

∞

−∞
𝑋1(𝑓 )𝑋2(𝑓 )𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (2.101)

which is the inverse Fourier transform of 𝑋1(𝑓 )𝑋2(𝑓 ). Taking the Fourier transform of this
result yields the desired transform pair.

Multiplication Theorem

𝑥1(𝑡)𝑥2 (𝑡) ⟷ 𝑋1(𝑓 ) ∗ 𝑋2(𝑓 ) =
∫

∞

−∞
𝑋1(𝜆)𝑋2(𝑓 − 𝜆) 𝑑𝜆 (2.102)

Proof: The proof of the multiplication theorem proceeds in a manner analogous to the
proof of the convolution theorem.

EXAMPLE 2.11

Use the duality theorem to show that

2AW sinc (2𝑊 𝑡) ⟷ 𝐴Π
(
𝑓

2𝑊

)
(2.103)

S o l u t i o n

From Example 2.8, we know that

𝑥(𝑡) = 𝐴Π
(
𝑡

𝜏

)
⟷ 𝐴𝜏 sinc 𝑓𝜏 = 𝑋(𝑓 ) (2.104)

Considering 𝑋(𝑡), and using the duality theorem, we obtain

𝑋(𝑡) = 𝐴𝜏 sinc (𝜏𝑡) ⟷ 𝐴Π
(
−𝑓
𝜏

)
= 𝑥 (−𝑓 ) (2.105)

where 𝜏 is a parameter with dimension (s)−1, which may be somewhat confusing at first sight! By letting
𝜏 = 2𝑊 and noting that Π (𝑢) is even, the given relationship follows.

■

EXAMPLE 2.12

Obtain the following Fourier-transform pairs:

1. 𝐴𝛿(𝑡) ⟷ 𝐴

2. 𝐴𝛿(𝑡 − 𝑡0) ⟷ 𝐴𝑒
−𝑗2𝜋𝑓𝑡0

3. 𝐴⟷ 𝐴𝛿(𝑓 )
4. 𝐴𝑒𝑗2𝜋𝑓0𝑡𝑡⟷ 𝐴𝛿(𝑓 − 𝑓0)
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S o l u t i o n

Even though these signals are not energy signals, we can formally derive the Fourier transform of each
by obtaining the Fourier transform of a ‘‘proper’’ energy signal that approaches the given signal in the
limit as some parameter approaches zero or infinity. For example, formally,

ℑ [𝐴𝛿 (𝑡)] = ℑ
[
lim
𝜏→0

(
𝐴

𝜏

)
Π
(
𝑡

𝜏

)]
= lim

𝜏→0
𝐴 sinc (𝑓𝜏) = 𝐴 (2.106)

We can use a formal procedure such as this to define Fourier transforms for the other three signals
as well. It is easier, however, to use the sifting property of the delta function and the appropriate
Fourier-transform theorems. The same results are obtained. For example, we obtain the first transform
pair directly by writing down the Fourier-transform integral with 𝑥(𝑡) = 𝛿(𝑡) and invoking the sifting
property:

ℑ[𝐴𝛿(𝑡)] = 𝐴
∫

∞

−∞
𝛿(𝑡)𝑒−𝑗2𝜋𝑓 𝑡 𝑑𝑡 = 𝐴 (2.107)

Transform pair 2 follows by application of the time-delay theorem to pair 1.
Transform pair 3 can be obtained by using the inverse-transform relationship or the first transform

pair and the duality theorem. Using the latter, we obtain

𝑋(𝑡) = 𝐴⟷ 𝐴𝛿(−𝑓 ) = 𝐴𝛿(𝑓 ) = 𝑥(−𝑓 ) (2.108)

where the eveness property of the impulse function is used.
Transform pair 4 follows by applying the frequency-translation theorem to pair 3. The Fourier-

transform pairs of Example 2.12 will be used often in the discussion of modulation.
■

EXAMPLE 2.13

Use the differentiation theorem to obtain the Fourier transform of the triangular signal, defined as

Λ
(
𝑡

𝜏

)
≜

{
1 − |𝑡| ∕𝜏, |𝑡| < 𝜏
0, otherwise

(2.109)

S o l u t i o n

Differentiating Λ(𝑡∕𝜏) twice, we obtain, as shown in Figure 2.9

𝑑
2Λ (𝑡∕𝜏)
𝑑𝑡2

= 1
𝜏
𝛿(𝑡 + 𝜏) − 2

𝜏
𝛿(𝑡) + 1

𝜏
𝛿(𝑡 − 𝜏) (2.110)

Using the differentiation, superposition, and time-shift theorems and the result of Example 2.12, we
obtain

ℑ
[
𝑑
2Λ (𝑡∕𝜏)
𝑑𝑡2

]
= (𝑗2𝜋𝑓 )2ℑ

[
Λ
(
𝑡

𝜏

)]

= 1
𝜏
(𝑒𝑗2𝜋𝑓𝜏 − 2 + 𝑒−𝑗2𝜋𝑓𝜏 ) (2.111)

or, solving for ℑ
[
Λ
(
𝑡

𝜏

)]
and simplifying, we get

ℑ
[
Λ
(
𝑡

𝜏

)]
= 2 cos 2𝜋𝑓𝜏 − 2

𝜏 (𝑗2𝜋𝑓 )2
= 𝜏 sin

2 (𝜋𝑓𝜏)
(𝜋𝑓𝜏)2

(2.112)
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d2
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Figure 2.9
Triangular signal and its first two derivatives. (a) Triangular signal. (b) First derivative of the triangular
signal. (c) Second derivative of the triangular signal.

where the identity 1
2
[1 − cos (2𝜋𝑓𝑡)] = sin2 (𝜋𝑓𝑡) has been used. Summarizing, we have shown that

Λ
(
𝑡

𝜏

)
⟷ 𝜏 sinc 2 (𝑓𝜏) (2.113)

where [sin (𝜋𝑓𝜏)] ∕(𝜋𝑓𝜏) has been replaced by sinc (𝑓𝜏).

■

EXAMPLE 2.14

As another example of obtaining Fourier transforms of signals involving impulses, let us consider the
signal

𝑦
𝑠
(𝑡) =

∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
) (2.114)

It is a periodic waveform referred to as the ideal sampling waveform and consists of a doubly infinite
sequence of impulses spaced by 𝑇

𝑠
seconds.

S o l u t i o n

To obtain the Fourier transform of 𝑦
𝑠
(𝑡), we note that it is periodic and, in a formal sense, therefore, can

be represented by a Fourier series. Thus,

𝑦
𝑠
(𝑡) =

∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
) =

∞∑

𝑛=−∞
𝑌
𝑛
𝑒
𝑗𝑛2𝜋𝑓𝑠𝑡, 𝑓

𝑠
= 1
𝑇
𝑠

(2.115)

where

𝑌
𝑛
= 1
𝑇
𝑠
∫
𝑇𝑠

𝛿(𝑡)𝑒−𝑗𝑛2𝜋𝑓𝑠𝑡 𝑑𝑡 = 𝑓
𝑠

(2.116)

by the sifting property of the impulse function. Therefore,

𝑦
𝑠
(𝑡) = 𝑓

𝑠

∞∑

𝑛=−∞
𝑒
𝑗𝑛2𝜋𝑓𝑠𝑡 (2.117)
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Fourier-transforming term by term, we obtain

𝑌
𝑠
(𝑓 ) = 𝑓

𝑠

∞∑

𝑛=−∞
ℑ[1 ⋅ 𝑒𝑗2𝜋𝑛𝑓𝑠𝑡] = 𝑓

𝑠

∞∑

𝑛=−∞
𝛿(𝑓 − 𝑛𝑓

𝑠
) (2.118)

where we have used the results of Example 2.12. Summarizing, we have shown that

∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
) ⟷ 𝑓

𝑠

∞∑

𝑛=−∞
𝛿(𝑓 − 𝑛𝑓

𝑠
) (2.119)

The transform pair (2.119) is useful in spectral representations of periodic signals by the Fourier trans-
form, which will be considered shortly.

A useful expression can be derived from (2.119). Taking the Fourier transform of the left-hand side
of (2.119) yields

ℑ

[ ∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)

]

=
∫

∞

−∞

[ ∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)

]

𝑒
−𝑗2𝜋𝑓𝑡

𝑑𝑡

=
∞∑

𝑚=−∞
∫

∞

−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

=
∞∑

𝑚=−∞
𝑒
−𝑗2𝜋𝑚𝑇𝑠𝑓 (2.120)

where we interchanged the orders of integration and summation and used the sifting property of the
impulse function to perform the integration. Replacing𝑚 by −𝑚 and equating the result to the right-hand
side of (2.119) gives

∞∑

𝑚=−∞
𝑒
𝑗2𝜋𝑚𝑇𝑠𝑓 = 𝑓

𝑠

∞∑

𝑛=−∞
𝛿(𝑓 − 𝑛𝑓

𝑠
) (2.121)

This result will be used in Chapter 7.
■

EXAMPLE 2.15

The convolution theorem can be used to obtain the Fourier transform of the triangle Λ(𝑡∕𝜏) defined by
(2.109).

S o l u t i o n

We proceed by first showing that the convolution of two rectangular pulses is a triangle. The steps in
computing

𝑦(𝑡) =
∫

∞

−∞
Π
(
𝑡 − 𝜆
𝜏

)
Π
(
𝜆

𝜏

)
𝑑𝜆 (2.122)

are carried out in Table 2.2. Summarizing the results, we have
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Table 2.2 Computation of Π (𝑡∕𝜏)∗ Π(𝑡∕𝜏)

1

0

0

0

0

1
2

t

t

t

t

t + τ

1
2

t − τ

τ
1
2

− τ

1
2

τ

1
2

− τ 1
2

t + τ

1
2

τ
1
2

t −

1
2

τ

τ

t –

1
2

τ−

τ

1
2

τ

u

u

u

u

1
2

τt +

−∞ < t < −

τ0 < t < 

τ−  < t < 0

τ  < t < ∞

0

0

+ t

τ − t

to

to

aerAstimiLdnargetnIegnaR

𝜏Λ
(
𝑡

𝜏

)
= Π

(
𝑡

𝜏

)
∗ Π

(
𝑡

𝜏

)
=
⎧
⎪
⎨
⎪
⎩

0, 𝑡 < −𝜏
𝜏 − |𝑡| , |𝑡| ≤ 𝜏

0, 𝑡 > 𝜏

(2.123)

or Λ
(
𝑡

𝜏

)
= 1
𝜏
Π
(
𝑡

𝜏

)
∗ Π

(
𝑡

𝜏

)
(2.124)

Using the transform pair

Π
(
𝑡

𝜏

)
⟷ 𝜏 sinc 𝑓𝑡 (2.125)

and the convolution theorem of Fourier transforms (2.114), we obtain the transform pair

Λ
(
𝑡

𝜏

)
⟷ 𝜏 sinc 2

𝑓𝜏 (2.126)

as in Example 2.13 by applying the differentiation theorem.
■

A useful result is the convolution of an impulse 𝛿(𝑡 − 𝑡0) with a signal 𝑥(𝑡), where 𝑥 (𝑡) is
assume continuous at 𝑡 = 𝑡0. Carrying out the operation, we obtain

𝛿(𝑡 − 𝑡0) ∗ 𝑥 (𝑡) =
∫

∞

−∞
𝛿(𝜆 − 𝑡0)𝑥(𝑡 − 𝜆) 𝑑𝜆 = 𝑥

(
𝑡 − 𝑡0

)
(2.127)

by the sifting property of the delta function. That is, convolution of 𝑥(𝑡) with an impulse
occurring at time 𝑡0 simply shifts 𝑥(𝑡) to 𝑡0.
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EXAMPLE 2.16

Consider the Fourier transform of the cosinusoidal pulse

𝑥(𝑡) = 𝐴Π
(
𝑡

𝜏

)
cos

(
𝜔0𝑡

)
, 𝜔0 = 2𝜋𝑓0 (2.128)

Using the transform pair (see Example 2.12, Item 4)

𝑒
±𝑗2𝜋𝑓0𝑡 ⟷ 𝛿(𝑓 ∓ 𝑓0) (2.129)

obtained earlier and Euler’s theorem, we find that

cos
(
2𝜋𝑓0𝑡

)
⟷ 1

2
𝛿(𝑓 − 𝑓0) +

1
2
𝛿(𝑓 + 𝑓0) (2.130)

We have also shown that

𝐴Π
(
𝑡

𝜏

)
⟷ 𝐴𝜏sinc (𝑓𝜏)

Therefore, using the multiplication theorem of Fourier transforms (2.118), we obtain

𝑋(𝑓 ) = ℑ
[
𝐴Π

(
𝑡

𝜏

)
cos

(
𝜔0𝑡

)]
= [𝐴𝜏 sinc (𝑓𝜏)] ∗

{1
2
[
𝛿(𝑓 − 𝑓0) + 𝛿(𝑡 + 𝑓0)

]}

= 1
2
𝐴𝜏

{
sinc

[
(𝑓 − 𝑓0)𝜏

]
+ sinc

[
(𝑓 + 𝑓0)𝜏

]}
(2.131)

where 𝛿(𝑓 − 𝑓0) ∗ 𝑍(𝑓 ) = 𝑍(𝑓 − 𝑓0) for 𝑍 (𝑓 ) continuous at 𝑓 = 𝑓0 has been used. Figure 2.10(c)
shows 𝑋(𝑓 ). The same result can be obtained via the modulation theorem.

■

2.4.6 Fourier Transforms of Periodic Signals

The Fourier transform of a periodic signal, in a strict mathematical sense, does not exist,
since periodic signals are not energy signals. However, using the transform pairs derived in
Example 2.12 for a constant and a phasor signal, we could, in a formal sense, write down the
Fourier transform of a periodic signal by Fourier-transforming its complex Fourier series term
by term.

A somewhat more useful form for the Fourier transform of a periodic signal is obtained
by applying the convolution theorem and the transform pair (2.119) for the ideal sampling
waveform. To obtain it, consider the result of convolving the ideal sampling waveform with a
pulse-type signal 𝑝(𝑡) to obtain a new signal 𝑥(𝑡), where 𝑥(𝑡) is a periodic power signal. This
is apparent when one carries out the convolution with the aid of (2.127):

𝑥(𝑡) =

[ ∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)

]

∗ 𝑝(𝑡) =
∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
) ∗ 𝑝(𝑡) =

∞∑

𝑚=−∞
𝑝(𝑡 − 𝑚𝑇

𝑠
) (2.132)

Applying the convolution theorem and the Fourier-transform pair of (2.119), we find that the
Fourier transform of 𝑥(𝑡) is

𝑋(𝑓 ) = ℑ

{ ∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)

}

𝑃 (𝑓 )
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=

[

𝑓
𝑠

∞∑

𝑛=−∞
𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
]

𝑃 (𝑓 ) = 𝑓𝑠
∞∑

𝑛=−∞
𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
𝑃 (𝑓 )

=
∞∑

𝑛=−∞
𝑓
𝑠
𝑃
(
𝑛𝑓
𝑠

)
𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
(2.133)

where 𝑃 (𝑓 ) = ℑ[𝑝(𝑡)] and the fact that 𝑃 (𝑓 ) 𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
= 𝑃

(
𝑛𝑓
𝑠

)
𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
has been

used. Summarizing, we have obtained the Fourier-transform pair

∞∑

𝑚=−∞
𝑝(𝑡 − 𝑚𝑇

𝑠
) ⟷

∞∑

𝑛=−∞
𝑓
𝑠
𝑃 (𝑛𝑓

𝑠
)𝛿(𝑓 − 𝑛𝑓

𝑠
) (2.134)

The usefulness of (2.134) is illustrated with an example.

EXAMPLE 2.17

The Fourier transform of a single cosinusoidal pulse was found in Example 2.16 and is shown in
Figure 2.10(c). The Fourier transform of a periodic cosinusoidal pulse train, which could represent the
output of a radar transmitter, for example, is obtained by writing it as

𝑦(𝑡) =

[ ∞∑

𝑛=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
)

]

∗ Π
(
𝑡

𝜏

)
cos

(
2𝜋𝑓0𝑡

)
, 𝑓0 ≫ 1∕𝜏

=
∞∑

𝑚=−∞
Π
(
𝑡 − 𝑚𝑇

𝑠

𝜏

)
cos

[
2𝜋𝑓0(𝑡 − 𝑚𝑇𝑠)

]
, 𝑓

𝑠
≤ 𝜏

−1 (2.135)

This signal is illustrated in Figure 2.10(e). Identifying 𝑝 (𝑡) = Π
(
𝑡

𝜏

)
cos(2𝜋𝑓0𝑡) we get, by the mo-

dulation theorem, that 𝑃 (𝑓 ) = 𝐴𝜏

2

[
sinc (𝑓 − 𝑓0)𝜏 + sinc (𝑓 + 𝑓0)𝜏

]
. Applying (2.134), the Fourier

transform of 𝑦(𝑡) is

𝑌 (𝑓 ) =
∞∑

𝑛=−∞

𝐴𝑓
𝑠
𝜏

2
[
sinc (𝑛𝑓

𝑠
− 𝑓0)𝜏 + sinc (𝑛𝑓

𝑠
+ 𝑓0)𝜏

]
𝛿(𝑓 − 𝑛𝑓

𝑠
) (2.136)

The spectrum is illustrated on the right-hand side of Figure 2.10(e).
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Figure 2.10
(a)--(c) Application of the multiplication theorem. (c)--(e) Application of the convolution theorem.
Note: × denotes multiplication; * denotes convolution; ⟷ denotes transform pairs.

■

2.4.7 Poisson Sum Formula

We can develop the Poisson sum formula by taking the inverse Fourier transform of the
right-hand side of (2.134). When we use the transform pair exp(−𝑗2𝜋𝑛𝑓

𝑠
𝑡) ⟷ 𝛿(𝑓 − 𝑛𝑓

𝑠
)

(see Example 2.12), it follows that

ℑ−1

{ ∞∑

𝑛=−∞
𝑓
𝑠
𝑃 (𝑛𝑓

𝑠
) 𝛿(𝑓 − 𝑓

𝑠
)

}

= 𝑓
𝑠

∞∑

𝑛=−∞
𝑃 (𝑛𝑓

𝑠
)𝑒𝑗2𝜋𝑛𝑓𝑠𝑡 (2.137)

Equating this to the left-hand side of (2.134), we obtain the Poisson sum formula:

∞∑

𝑚=−∞
𝑝(𝑡 − 𝑚𝑇

𝑠
) = 𝑓

𝑠

∞∑

𝑛=−∞
𝑃 (𝑛𝑓

𝑠
)𝑒𝑗2𝜋𝑛𝑓𝑠𝑡 (2.138)

The Poisson sum formula is useful when one goes from the Fourier transform to sampled
approximations of it. For example, Equation (2.138) says that the sample values 𝑃 (𝑛𝑓

𝑠
) of

𝑃 (𝑓 ) = ℑ{𝑝(𝑡)} are the Fourier series coefficients of the periodic function 𝑇
𝑠

∑∞
𝑛=−∞ 𝑝(𝑡 −

𝑚𝑇
𝑠
).

■ 2.5 POWER SPECTRAL DENSITY AND CORRELATION

Recalling the definition of energy spectral density, Equation (2.73), we see that it is of use
only for energy signals for which the integral of𝐺(𝑓 ) over all frequencies gives total energy, a
finite quantity. For power signals, it is meaningful to speak in terms of power spectral density.
Analogous to 𝐺(𝑓 ), we define the power spectral density 𝑆(𝑓 ) of a signal 𝑥(𝑡) as a real, even,
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nonnegative function of frequency, which gives total average power per ohm when integrated;
that is,

𝑃 =
∫

∞

−∞
𝑆(𝑓 ) 𝑑𝑓 =

⟨
𝑥
2 (𝑡)

⟩
(2.139)

where
⟨
𝑥
2 (𝑡)

⟩
= lim

𝑇→∞
1
2𝑇 ∫

𝑇

−𝑇 𝑥
2 (𝑡) 𝑑𝑡 denotes the time average of 𝑥2 (𝑡). Since 𝑆(𝑓 ) is a

function that gives the variation of density of power with frequency, we conclude that it must
consist of a series of impulses for the periodic power signals that we have so far considered.
Later, in Chapter 7, we will consider power spectra of random signals.

EXAMPLE 2.18

Considering the cosinusoidal signal

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓0𝑡 + 𝜃) (2.140)

we note that its average power per ohm, 1
2
𝐴

2, is concentrated at the single frequency 𝑓0 hertz. However,
since the power spectral density must be an even function of frequency, we split this power equally
between +𝑓0 and −𝑓0 hertz. Thus, the power spectral density of 𝑥(𝑡) is, from intuition, given by

𝑆(𝑓 ) = 1
4
𝐴

2
𝛿(𝑓 − 𝑓0) +

1
4
𝐴

2
𝛿
(
𝑓 + 𝑓0

)
(2.141)

Checking this by using (2.139), we see that integration over all frequencies results in the average power
per ohm of 1

2
𝐴

2.
■

2.5.1 The Time-Average Autocorrelation Function

To introduce the time-average autocorrelation function, we return to the energy spectral density
of an energy signal, (2.73). Without any apparent reason, suppose we take the inverse Fourier
transform of 𝐺(𝑓 ), letting the independent variable be 𝜏:

𝜙(𝜏) ≜ ℑ−1[𝐺(𝑓 )] = ℑ−1[𝑋(𝑓 )𝑋∗(𝑓 )]

= ℑ−1[𝑋(𝑓 )] ∗ ℑ−1[𝑋∗(𝑓 )] (2.142)

The last step follows by application of the convolution theorem. Applying the time-reversal
theorem (Item 3b in Table F.6 in Appendix F) to write ℑ−1[𝑋∗(𝑓 )] = 𝑥(−𝜏) and then the
convolution theorem, we obtain

𝜙(𝜏) = 𝑥(𝜏) ∗ 𝑥(−𝜏) =
∫

∞

−∞
𝑥(𝜆)𝑥(𝜆 + 𝜏) 𝑑𝜆

= lim
𝑇→∞∫

𝑇

−𝑇
𝑥(𝜆)𝑥(𝜆 + 𝜏) 𝑑𝜆 (energy signal) (2.143)

Equation (2.143) will be referred to as the time-average autocorrelation function for energy
signals. We see that it gives a measure of the similarity, or coherence, between a signal and a
delayed version of the signal. Note that𝜙(0) = 𝐸, the signal energy. Also note the similarity of
the correlation operation to convolution. The major point of (2.142) is that the autocorrelation
function and energy spectral density are Fourier-transform pairs. We forgo further discussion
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of the time-average autocorrelation function for energy signals in favor of analogous results
for power signals.

The time-average autocorrelation function 𝑅(𝜏) of a power signal 𝑥(𝑡) is defined as the
time average

𝑅 (𝜏) = ⟨𝑥(𝑡)𝑥(𝑡 + 𝜏)⟩

≜ lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡 (power signal) (2.144)

If 𝑥(𝑡) is periodic with period 𝑇0, the integrand of (2.144) is periodic, and the time average
can be taken over a single period:

𝑅(𝜏) = 1
𝑇0 ∫𝑇0

𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡 [𝑥(𝑡) periodic]

Just like 𝜙(𝜏), 𝑅(𝜏) gives a measure of the similarity between a power signal at time 𝑡 and
at time 𝑡 + 𝜏; it is a function of the delay variable 𝜏, since time, 𝑡, is the variable of integration.
In addition to being a measure of the similarity between a signal and its time displacement,
we note that the total average power of the signal is

𝑅(0) =
⟨
𝑥
2(𝑡)

⟩
=
∫

∞

−∞
𝑆(𝑓 ) 𝑑𝑓 (2.145)

Thus, we suspect that the time-average autocorrelation function and power spectral density of
a power signal are closely related, just as they are for energy signals. This relationship is stated
formally by theWiener--Khinchine theorem, which says that the time-average autocorrelation
function of a signal and its power spectral density are Fourier-transform pairs:

𝑆(𝑓 ) = ℑ[𝑅(𝜏)] =
∫

∞

−∞
𝑅 (𝜏) 𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏 (2.146)

and

𝑅 (𝜏) = ℑ−1[𝑆(𝑓 )] =
∫

∞

−∞
𝑆(𝑓 )𝑒𝑗2𝜋𝑓𝜏 𝑑𝑓 (2.147)

A formal proof of the Wiener--Khinchine theorem will be given in Chapter 7. We simply
take (2.146) as the definition of power spectral density at this point. We note that (2.145)
follows immediately from (2.147) by setting 𝜏 = 0.

2.5.2 Properties of R (𝜏)
The time-average autocorrelation function has several useful properties, which are listed
below:

1. 𝑅(0) =
⟨
𝑥
2 (𝑡)

⟩
≥ |𝑅 (𝜏) |, for all 𝜏; that is, an absolute maximum of 𝑅 (𝜏) exists at 𝜏 = 0.

2. 𝑅 (−𝜏) = ⟨𝑥(𝑡)𝑥(𝑡 − 𝜏)⟩ = 𝑅 (𝜏); that is, 𝑅(𝜏) is even.
3. lim|𝜏|→∞𝑅 (𝜏) = ⟨𝑥(𝑡)⟩2 if 𝑥(𝑡) does not contain periodic components.

4. If 𝑥(𝑡) is periodic in 𝑡 with period 𝑇0, then 𝑅 (𝜏) is periodic in 𝜏 with period 𝑇0.

5. The time-average autocorrelation function of any power signal has a Fourier transform that
is nonnegative.
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Property 5 results by virtue of the fact that normalized power is a nonnegative quantity.
These properties will be proved in Chapter 7.

The autocorrelation function and power spectral density are important tools for systems
analysis involving random signals.

EXAMPLE 2.19

We desire the autocorrelation function and power spectral density of the signal 𝑥 (𝑡) = Re[2 +
3 exp(𝑗10𝜋𝑡) + 4𝑗 exp(𝑗10𝜋𝑡)] or 𝑥 (𝑡) = 2 + 3 cos (10𝜋𝑡) − 4 sin (10𝜋𝑡). The first step is to write the
signal as a constant plus a single sinusoid. To do so, we note that

𝑥 (𝑡) = Re
[
2 +

√
32 + 42 exp

[
𝑗 tan−1 (4∕3)

]
exp (𝑗10𝜋𝑡)

]
= 2 + 5 cos

[
10𝜋𝑡 + tan−1 (4∕3)

]

We may proceed in one of two ways. The first is to find the autocorrelation function of 𝑥 (𝑡) and
Fourier-transform it to get the power spectral density. The second is to write down the power spectral
density and inverse Fourier-transform it to get the autocorrelation function.

Following the first method, we find the autocorrelation function:

𝑅(𝜏) = 1
𝑇0 ∫𝑇0

𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡

= 1
0.2 ∫

0.2

0

{
2 + 5 cos

[
10𝜋𝑡 + tan−1 (4∕3)

]} {
2 + 5 cos

[
10𝜋 (𝑡 + 𝜏) + tan−1 (4∕3)

]}
𝑑𝑡

= 5
∫

0.2

0

{
4 + 10 cos

[
10𝜋𝑡 + tan−1 (4∕3)

]
+ 10 cos

[
10𝜋 (𝑡 + 𝜏) + tan −1 (4∕3)

]

+25 cos
[
10𝜋𝑡 + tan−1 (4∕3)

]
cos

[
10𝜋 (𝑡 + 𝜏) + tan−1 (4∕3)

]

}

𝑑𝑡

= 5
∫

0.2

0
4𝑑𝑡 + 50

∫

0.2

0
cos

[
10𝜋𝑡 + tan−1 (4∕3)

]
𝑑𝑡

+50
∫

0.2

0
cos

[
10𝜋 (𝑡 + 𝜏) + tan−1 (4∕3)

]
𝑑𝑡

+125
2 ∫

0.2

0
cos (10𝜋𝜏) 𝑑𝑡 + 125

2 ∫

0.2

0
cos

[
20𝜋𝑡 + 10𝜋𝜏 + 2 tan−1 (4∕3)

]
𝑑𝑡

= 5
∫

0.2

0
4𝑑𝑡 + 0 + 0 + 125

2 ∫

0.2

0
cos (10𝜋𝜏) 𝑑𝑡

+125
2 ∫

0.2

0
cos

[
20𝜋𝑡 + 10𝜋𝜏 + 2 tan−1 (4∕3)

]
𝑑𝑡

= 4 + 25
2

cos (10𝜋𝜏) (2.148)

where integrals involving cosines of 𝑡 are zero by virtue of integrating a cosine over an integer number
of periods, and the trigonometric relationship cos 𝑥 cos 𝑦 = 1

2
cos (𝑥 + 𝑦) + 1

2
cos (𝑥 − 𝑦) has been used.

The power spectral density is the Fourier transform of the autocorrelation function, or

𝑆(𝑓 ) = ℑ
[
4 + 25

2
cos (10𝜋𝜏)

]
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= 4ℑ [1] + 25
2
ℑ [cos (10𝜋𝜏)]

= 4𝛿 (𝑓 ) + 25
4
𝛿 (𝑓 − 5) + 25

4
𝛿 (𝑓 + 5) (2.149)

Note that integration of this over all 𝑓 gives 𝑃 = 4 + 25
2
= 16.5 watts/ohm, which is the DC power plus

the AC power (the latter is split between 5 and −5 hertz). We could have proceeded by writing down
the power spectral density first, using power arguments, and inverse Fourier-transforming it to get the
autocorrelation function.

Note that all properties of the autocorrelation function are satisfied except the third, which does not
apply.

■

EXAMPLE 2.20

The sequence 1110010 is an example of a pseudonoise or m-sequence; they are important in the
implementation of digital communication systems and will be discussed further in Chapter 9. For
now, we use this m-sequence as another illustration for computing autocorrelation functions and power
spectra. Consider Figure 2.11(a), which shows the waveform equivalent of this m-sequence obtained

by replacing each 0 by −1, multiplying each sequence member by a square pulse function Π
(
𝑡−𝑡0
Δ

)
,

summing, and assuming the resulting waveform is repeated forever thereby making it periodic. To
compute the autocorrelation function, we apply (2.145), which is

𝑅(𝜏) = 1
𝑇0 ∫𝑇0

𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡

since a periodic repetition of the waveform is assumed. Consider the waveform 𝑥 (𝑡) multiplied by
𝑥 (𝑡 + 𝑛Δ) [shown in Figure 2.11(b) for 𝑛 = 2]. The product is shown in Figure 2.11(c), where it is seen
that the net area under the product 𝑥 (𝑡) 𝑥 (𝑡 + 𝑛Δ) is −Δ, which gives 𝑅 (2Δ) = − Δ

7Δ
= −1

7
for this case.

In fact, this answer results for any 𝜏 equal to a nonzero integer multiple of Δ. For 𝜏 = 0, the net area
under the product 𝑥 (𝑡) 𝑥 (𝑡 + 0) is 7Δ, which gives𝑅 (0) = 7Δ

7Δ
= 1. These correlation results are shown in

Figure 2.11(d) by the open circles where it is noted that they repeat each 𝜏 = 7Δ. For a given noninteger
delay value, the autocorrelation function is obtained as the linear interpolation of the autocorrelation
function values for the integer delays bracketing the desired delay value. One can see that this is the
case by considering the integral ∫

𝑇0
𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡 and noting that the area under the product 𝑥(𝑡)𝑥(𝑡 + 𝜏)

must be a linear function of 𝜏 due to 𝑥(𝑡) being composed of square pulses. Thus, the autocorrelation
function is as shown in Figure 2.11(d) by the solid line. For one period, it can be expressed as

𝑅 (𝜏) = 8
7
Λ
(
𝜏

Δ

)
− 1

7
, |𝜏| ≤

𝑇0

2

The power spectral density is the Fourier transform of the autocorrelation function, which can be obtained
by applying (2.146). The detailed derivation of it is left to the problems. The result is

𝑆 (𝑓 ) = 8
49

∞∑

𝑛=−∞
sinc 2

(
𝑛

7Δ

)
𝛿

(
𝑓 − 𝑛

7Δ

)
− 1

7
𝛿 (𝑓 )
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Figure 2.11
Waveforms pertinent to computing the autocorrelation function and power spectrum of an m-sequence
of length 7.

and is shown in Figure 2.11(e). Note that near 𝑓 = 0, 𝑆 (𝑓 ) =
(

8
49

− 1
7

)
𝛿 (𝑓 ) = 1

49
𝛿 (𝑓 ), which says

that the DC power is 1
49

= 1
72

watts. The student should think about why this is the correct result. (Hint:
What is the DC value of 𝑥(𝑡) and to what power does this correspond?)

■

The autocorrelation function and power spectral density are important tools for systems
analysis involving random signals.

■ 2.6 SIGNALS AND LINEAR SYSTEMS

In this section we are concerned with the characterization of systems and their effects on
signals. In system modeling, the actual elements, such as resistors, capacitors, inductors,
springs, and masses, that compose a particular system are usually not of concern. Rather,
we view a system in terms of the operation it performs on an input to produce an output.
Symbolically, this is accomplished, for a single-input, single-output system, by writing

𝑦(𝑡) =  [𝑥(𝑡)] (2.150)
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y(t)x(t)
Figure 2.12
Operator representation of a linear system.

where  [⋅] is the operator that produces the output 𝑦(𝑡) from the input 𝑥(𝑡), as illustrated in
Figure 2.12. We now consider certain classes of systems, the first of which is linear time-
invariant systems.

2.6.1 Definition of a Linear Time-Invariant System

If a system is linear, superposition holds. That is, if 𝑥1(𝑡) results in the output 𝑦1(𝑡) and 𝑥2 (𝑡)
results in the output 𝑦2(𝑡), then the output due to 𝛼1𝑥1(𝑡) + 𝛼2𝑥2(𝑡), where 𝛼1 and 𝛼2 are
constants, is given by

𝑦(𝑡) = [𝛼1𝑥1(𝑡) + (𝛼2𝑥2(𝑡)] = 𝛼1[𝑥1(𝑡)] + 𝛼2[𝑥2(𝑡)]

= 𝛼1𝑦1 (𝑡) + 𝛼2𝑦2 (𝑡) (2.151)

If the system is time-invariant, or fixed, the delayed input 𝑥(𝑡 − 𝑡0) gives the delayed
output 𝑦(𝑡 − 𝑡0); that is,

𝑦(𝑡 − 𝑡0) = [𝑥(𝑡 − 𝑡0)] (2.152)

With these properties explicitly stated, we are now ready to obtain more concrete descriptions
of linear time-invariant (LTI) systems.

2.6.2 Impulse Response and the Superposition Integral

The impulse response ℎ(𝑡) of an LTI system is defined to be the response of the system to an
impulse applied at 𝑡 = 0, that is

ℎ(𝑡) ≜ [𝛿(𝑡)] (2.153)

By the time-invariant property of the system, the response to an impulse applied at any time
𝑡0 is ℎ(𝑡 − 𝑡0), and the response to the linear combination of impulses 𝛼1𝛿(𝑡 − 𝑡1) + 𝛼2𝛿(𝑡 −
𝑡2) is 𝛼1ℎ(𝑡 − 𝑡1) + 𝛼2ℎ(𝑡 − 𝑡2) by the superposition property and time-invariance. Through
induction, we may therefore show that the response to the input

𝑥(𝑡) =
𝑁∑

𝑛=1
𝛼
𝑛
𝛿(𝑡 − 𝑡

𝑛
) (2.154)

is

𝑦(𝑡) =
𝑁∑

𝑛=1
𝛼
𝑛
ℎ(𝑡 − 𝑡

𝑛
) (2.155)

We will use (2.155) to obtain the superposition integral, which expresses the response of
an LTI system to an arbitrary input (with suitable restrictions) in terms of the impulse response
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Figure 2.13
A signal and an approximate representation. (a) Signal. (b) Approximation with a sequence of impulses.

of the system. Considering the arbitrary input signal 𝑥(𝑡) of Figure 2.13(a), we can represent
it as

𝑥(𝑡) =
∫

∞

−∞
𝑥(𝜆)𝛿(𝑡 − 𝜆) 𝑑𝜆 (2.156)

by the sifting property of the unit impulse. Approximating the integral of (2.156) as a sum, we
obtain

𝑥(𝑡) ≅
𝑁2∑

𝑛=𝑁1

𝑥(𝑛 Δ𝑡) 𝛿(𝑡 − 𝑛Δ𝑡) Δ𝑡, Δ𝑡 ≪ 1 (2.157)

where 𝑡1 = 𝑁1Δ𝑡 is the starting time of the signal and 𝑡2 = 𝑁2Δ𝑡 is the ending time. The
output, using (2.155) with 𝛼𝑛 = 𝑥(𝑛Δ𝑡)Δ𝑡 and 𝑡𝑛 = 𝑛Δ𝑡, is

�̃�(𝑡) =
𝑁2∑

𝑛=𝑁1

𝑥(𝑛 Δ𝑡)ℎ(𝑡 − 𝑛Δ𝑡) Δ𝑡 (2.158)

where the tilde denotes the output resulting from the approximation to the input given by
(2.157). In the limit as Δ𝑡 approaches zero and 𝑛Δ𝑡 approaches the continuous variable 𝜆, the
sum becomes an integral, and we obtain

𝑦(𝑡) =
∫

∞

−∞
𝑥(𝜆)ℎ(𝑡 − 𝜆) 𝑑𝜆 (2.159)

where the limits have been changed to ±∞ to allow arbitrary starting and ending times for
𝑥(𝑡). Making the substitution 𝜎 = 𝑡 − 𝜆, we obtain the equivalent result

𝑦(𝑡) =
∫

∞

−∞
𝑥(𝑡 − 𝜎)ℎ(𝜎) 𝑑𝜎 (2.160)

Because these equations were obtained by superposition of a number of elementary responses
due to each individual impulse, they are referred to as superposition integrals. A simplification
results if the system under consideration is causal, that is, is a system that does not respond
before an input is applied. For a causal system, ℎ(𝑡 − 𝜆) = 0 for 𝑡 < 𝜆, and the upper limit on
(2.159) can be set equal to 𝑡. Furthermore, if 𝑥(𝑡) = 0 for 𝑡 < 0, the lower limit becomes zero.
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2.6.3 Stability

A fixed, linear system is bounded-input, bounded-output (BIBO) stable if every bounded input
results in a bounded output. It can be shown11 that a system is BIBO stable if and only if

∫

∞

−∞
|ℎ(𝑡)| 𝑑𝑡 <∞ (2.161)

2.6.4 Transfer (Frequency Response) Function

Applying the convolution theorem of Fourier transforms, item 8 of Table F.6 in Appendix F,
to either (2.159) or (2.160), we obtain

𝑌 (𝑓 ) = 𝐻(𝑓 )𝑋(𝑓 ) (2.162)

where 𝑋(𝑓 ) = ℑ{𝑥(𝑡)}, 𝑌 (𝑓 ) = ℑ{𝑦(𝑡)}, and

𝐻(𝑓 ) = ℑ{ℎ(𝑡)} =
∫

∞

−∞
ℎ(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 (2.163)

or

ℎ(𝑡) = ℑ−1{𝐻(𝑓 )} =
∫

∞

−∞
𝐻(𝑓 )𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (2.164)

𝐻(𝑓 ) is referred to as the transfer (frequency response) function of the system. We see that
either ℎ(𝑡) or 𝐻(𝑓 ) is an equally good characterization of the system. By an inverse Fourier
transform on (2.162), the output becomes

𝑦(𝑡) =
∫

∞

−∞
𝑋(𝑓 )𝐻(𝑓 )𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (2.165)

2.6.5 Causality

A system is causal if it does not anticipate its input. In terms of the impulse response, it follows
that for a time-invariant causal system,

ℎ(𝑡) = 0, 𝑡 < 0 (2.166)

When causality is viewed from the standpoint of the frequency response function of the system,
a celebrated theorem by Wiener and Paley12 states that if

∫

∞

−∞
|ℎ (𝑡)|2 𝑑𝑡 =

∫

∞

−∞
|𝐻 (𝑓 )|2 𝑑𝑓 < ∞ (2.167)

with ℎ(𝑡) ≡ 0 for 𝑡 < 0, it is then necessary that

∫

∞

−∞

|ln |𝐻 (𝑓 )||
1 + 𝑓 2 𝑑𝑓 < ∞ (2.168)

Conversely, if |𝐻 (𝑓 )| is square-integrable, and if the integral in (2.168) is unbounded, then
we cannot make ℎ(𝑡) ≡ 0, 𝑡 < 0, no matter what we choose for ⟋𝐻(𝑓 ). Consequences of

11See Ziemer, Tranter, and Fannin (1998), Chapter 2.
12See William Siebert, Circuits, Signals, and Systems, New York: McGraw Hill, 1986, p. 476.
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(2.168) are that no causal filter can have |𝐻 (𝑓 )| ≡ 0 over a finite band of frequencies (i.e., a
causal filter cannot perfectly reject any finite band of frequencies). In fact, the Paley--Wiener
criterion restricts the rate at which |𝐻(𝑓 )| for a causal LTI system can vanish. For example,

|𝐻1(𝑓 )| = 𝑒−𝑘1|𝑓 | ⇒ | ln |𝐻1(𝑓 )|| = 𝑘1|𝑓 | (2.169)

and

|𝐻2(𝑓 )| = 𝑒−𝑘2𝑓
2
⇒ | ln |𝐻2(𝑓 )|| = 𝑘2𝑓 2 (2.170)

where 𝑘1 and 𝑘2 are positive constants, are not allowable amplitude responses for causal LTI
filters because (2.168) does not give a finite result in either case.

The sufficiency statement of the Paley--Wiener criterion is stated as follows: Given any
square-integrable function |𝐻(𝑓 )| for which (2.168) is satisfied, there exists an ⟋𝐻(𝑓 ) such

that𝐻(𝑓 ) = |𝐻(𝑓 )| exp
[
𝑗⟋𝐻(𝑓 )

]
is the Fourier transform of ℎ(𝑡) for a causal filter.

EXAMPLE 2.21

(a) Show that the system with impulse response

ℎ (𝑡) = 𝑒−2𝑡 cos (10𝜋𝑡) 𝑢 (𝑡)

is stable.
(b) Is it causal?

S o l u t i o n

(a) We consider the integral

∫

∞

−∞
|ℎ (𝑡)| 𝑑𝑡 =

∫

∞

−∞

|||𝑒
−2𝑡 cos (10𝜋𝑡) 𝑢 (𝑡)||| 𝑑𝑡

=
∫

∞

0
𝑒
−2𝑡 |cos (10𝜋𝑡)| 𝑑𝑡

≤
∫

∞

0
𝑒
−2𝑡
𝑑𝑡 = −1

2
𝑒
−2𝑡||||

∞

0
= 1

2
< ∞

Therefore, it is BIBO stable. Note that the third line follows from the second line by virtue of
|cos (10𝜋𝑡)| ≤ 1.
(b) The system is causal because ℎ (𝑡) = 0 for 𝑡 < 0.

■

2.6.6 Symmetry Properties of H (𝑓 )
The frequency response function,𝐻(𝑓 ), of an LTI system is, in general, a complex quantity.
We therefore write it in terms of magnitude and argument as

𝐻(𝑓 ) = |𝐻(𝑓 )| exp
[
𝑗⟋𝐻(𝑓 )

]
(2.171)

where |𝐻(𝑓 )| is called the amplitude- (magnitude) response function and⟋𝐻(𝑓 ) is called the
phase response function of the LTI system. Also,𝐻(𝑓 ) is the Fourier transform of a real-time
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function ℎ(𝑡). Therefore, it follows that

|𝐻(𝑓 )| = |𝐻(−𝑓 )| (2.172)

and

⟋𝐻(𝑓 ) = −⟋𝐻(−𝑓 ) (2.173)

That is, the amplitude response of a system with real-valued impulse response is an even
function of frequency and its phase response is an odd function of frequency.

EXAMPLE 2.22

Consider the lowpass RC filter shown in Figure 2.14. We may find its frequency response function by a
number of methods. First, we may write down the governing differential equation (integral-differential
equation, in general) as

𝑅𝐶
𝑑𝑦(𝑡)
𝑑𝑡

+ 𝑦(𝑡) = 𝑥(𝑡) (2.174)

and Fourier-transform it, obtaining

(𝑗2𝜋𝑓𝑅𝐶 + 1)𝑌 (𝑓 ) = 𝑋(𝑓 )

or

𝐻(𝑓 ) = 𝑌 (𝑓 )
𝑋(𝑓 )

= 1
1 + 𝑗(𝑓∕𝑓3)

= 1
√

1 +
(
𝑓∕𝑓3

)2
𝑒
−𝑗 tan−1(𝑓∕𝑓3) (2.175)

where 𝑓3 = 1∕ (2𝜋𝑅𝐶) is the 3-dB frequency, or half-power frequency. Second, we can use Laplace
transform theory with s replaced by 𝑗2𝜋𝑓 . Third, we can use AC sinusoidal steady-state analysis. The
amplitude and phase responses of this system are illustrated in Figures 2.15(a) and (b), respectively.

Using the Fourier-transform pair

𝛼𝑒
−𝛼𝑡
𝑢(𝑡) ⟷ 𝛼

𝛼 + 𝑗2𝜋𝑓
(2.176)

+ vR(t)

vC (t)i(t)x(t) y(t)

R

++

+

–

––

C

Figure 2.14
An RC lowpass filter.
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π

1
4

π

1
4

π

1
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Figure 2.15
Amplitude and phase responses of the RC lowpass filter. (a) Amplitude response. (b) Phase response.

we find the impulse response of the filter to be

ℎ(𝑡) = 1
𝑅𝐶

𝑒
−𝑡∕𝑅𝐶

𝑢(𝑡) (2.177)

Finally, we consider the response of the filter to the pulse

𝑥 (𝑡) = 𝐴Π

(
𝑡 − 1

2
𝑇

𝑇

)

(2.178)

Using appropriate Fourier-transform pairs, we can readily find 𝑌 (𝑓 ), but its inverse Fourier transforma-
tion requires some effort. Thus, it appears that the superposition integral is the best approach in this case.
Choosing the form

𝑦(𝑡) =
∫

∞

−∞
ℎ(𝑡 − 𝜎)𝑥(𝜎) 𝑑𝜎 (2.179)

we find, by direct substitution in ℎ(𝑡), that

ℎ(𝑡 − 𝜎) = 1
𝑅𝐶

𝑒
−(𝑡−𝜎)∕𝑅𝐶

𝑢(𝑡 − 𝜎) =

{ 1
𝑅𝐶
𝑒
−(𝑡−𝜎)∕𝑅𝐶

, 𝜎 < 𝑡

0, 𝜎 > 𝑡

(2.180)

Since 𝑥(𝜎) is zero for 𝜎 < 0 and 𝜎 > 𝑇 , we find that

𝑦 (𝑡) =
⎧
⎪
⎨
⎪
⎩

0, 𝑡 < 0
∫
𝑡

0
𝐴

𝑅𝐶
𝑒
−(𝑡−𝜎)∕𝑅𝐶

𝑑𝜎, 0 ≤ 𝑡 ≤ 𝑇

∫
𝑇

0
𝐴

𝑅𝐶
𝑒
−(𝑡−𝜎)∕𝑅𝐶

𝑑𝜎, 𝑡 > 𝑇

(2.181)

Carrying out the integrations, we obtain

𝑦 (𝑡) =
⎧
⎪
⎨
⎪
⎩

0, 𝑡 < 0
𝐴
(
1 − 𝑒−𝑡∕𝑅𝐶

)
, 0 < 𝑡 < 𝑇

𝐴
(
𝑒
−(𝑡−𝑇 )∕𝑅𝐶 − 𝑒−𝑡∕𝑅𝐶

)
, 𝑡 > 𝑇

(2.182)

This result is plotted in Figure 2.16 for several values of 𝑇 ∕𝑅𝐶 . Also shown are |𝑋(𝑓 )| and |𝐻(𝑓 )| .
Note that 𝑇 ∕𝑅𝐶 = 2𝜋𝑓3∕𝑇 −1 is proportional to the ratio of the 3-dB frequency of the filter to the spectral
width (𝑇 −1) of the pulse. When this ratio is large, the spectrum of the input pulse is essentially passed
undistorted by the system, and the output looks like the input. On the other hand, for 2𝜋𝑓3∕𝑇 −1

≪ 1, the
system distorts the input signal spectrum, and 𝑦(𝑡) looks nothing like the input. These ideas will be put
on a firmer basis when signal distortion is discussed.
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Input pulse

T/RC = 10

T/RC = 2

T/RC = 1

T/RC = 0.5

00
tt

2T 2T –1–2T –1 T –1–T –1T

1

11

X( f )

H( f )

X( f ) H( f )

H( f ) X( f )

(b)(a)

0
t

2T –1–2T –1 T –1–T –1 0
t

2T –1–2T –1 T –1–T –1

(d)(c)

Figure 2.16
(a) Waveforms and (b)--(d) spectra for a lowpass RC filter with pulse input. (a) Input and output
signals. (b) 𝑇 ∕𝑅𝐶 = 0.5. (c) 𝑇 ∕𝑅𝐶 = 2. (d) 𝑇 ∕𝑅𝐶 = 10.

Note that the output could have been found by writing the input as 𝑥 (𝑡) = 𝐴 [𝑢 (𝑡) − 𝑢 (𝑡 − 𝑇 )]
and using superposition to write the output in terms of the step response as 𝑦 (𝑡) = 𝑦

𝑠
(𝑡) − 𝑦

𝑠
(𝑡 − 𝑇 ).

The student may show that the step response is 𝑦
𝑠
(𝑡) = 𝐴

(
1 − 𝑒−𝑡∕𝑅𝐶

)
𝑢 (𝑡). Thus, the output is

𝑦 (𝑡) = 𝐴
(
1 − 𝑒−𝑡∕𝑅𝐶

)
𝑢 (𝑡) − 𝐴

(
1 − 𝑒−(𝑡−𝑇 )∕𝑅𝐶

)
𝑢 (𝑡 − 𝑇 ), which can be shown to be equivalent to the

result obtained above in (2.182).
■

2.6.7 Input-Output Relationships for Spectral Densities

Consider a fixed linear two-port system with frequency response function 𝐻(𝑓 ), input 𝑥(𝑡),
and output 𝑦(𝑡). If 𝑥(𝑡) and 𝑦(𝑡) are energy signals, their energy spectral densities are 𝐺

𝑥
(𝑓 ) =

|𝑋(𝑓 )|2 and 𝐺
𝑦
(𝑓 ) = |𝑌 (𝑓 )|2, respectively. Since 𝑌 (𝑓 ) = 𝐻(𝑓 )𝑋(𝑓 ), it follows that

𝐺
𝑦
(𝑓 ) = |𝐻(𝑓 )|2𝐺

𝑥
(𝑓 ) (2.183)

A similar relationship holds for power signals and spectra:

𝑆
𝑦
(𝑓 ) = |𝐻(𝑓 )|2 𝑆

𝑥
(𝑓 ) (2.184)

This will be proved in Chapter 7.

2.6.8 Response to Periodic Inputs

Consider the steady-state response of a fixed linear system to the complex exponential input
signal 𝐴𝑒𝑗2𝜋𝑓0𝑡. Using the superposition integral, we obtain

𝑦
𝑠𝑠
(𝑡) =

∫

∞

−∞
ℎ(𝜆)𝐴𝑒𝑗2𝜋𝑓0(𝑡−𝜆)𝑑𝜆
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= 𝐴𝑒𝑗2𝜋𝑓0𝑡
∫

∞

−∞
ℎ(𝜆)𝑒−𝑗2𝜋𝑓0𝜆𝑑𝜆

= 𝐻
(
𝑓0
)
𝐴𝑒

𝑗2𝜋𝑓0𝑡 (2.185)

That is, the output is a complex exponential signal of the same frequency but with amplitude
scaled by |𝐻(𝑓0)| and phase shifted by ⟋𝐻(𝑓0) relative to the amplitude and phase of the
input. Using superposition, we conclude that the steady-state output due to an arbitrary periodic
input is represented by the complex exponential Fourier series

𝑦(𝑡) =
∞∑

𝑛=−∞
𝑋
𝑛
𝐻(𝑛𝑓0)𝑒𝑗𝑛2𝜋𝑓0𝑡 (2.186)

or

𝑦(𝑡) =
∞∑

𝑛=−∞

||𝑋𝑛|| ||𝐻(𝑛𝑓0)|| exp
{
𝑗

[
2𝜋𝑛𝑓0𝑡 +⟋𝑋

𝑛
+⟋𝐻(𝑛𝑓0)

]}
(2.187)

= 𝑋0𝐻 (0) + 2
∞∑

𝑛=1

||𝑋𝑛|| ||𝐻(𝑛𝑓0)|| cos
[
2𝜋𝑛𝑓0𝑡 +⟋𝑋

𝑛
+⟋𝐻(𝑛𝑓0)

]
(2.188)

where (2.172) and (2.173) have been used to get the second equation. Thus, for a periodic
input, the magnitude of each spectral component of the input is attenuated (or amplified) by
the amplitude-response function at the frequency of the particular spectral component, and
the phase of each spectral component is shifted by the value of the phase-shift function of the
system at the frequency of the particular spectral component.

EXAMPLE 2.23

Consider the response of a filter having the frequency response function

𝐻(𝑓 ) = 2Π
(
𝑓

42

)
𝑒
−𝑗𝜋𝑓∕10 (2.189)

to a unit-amplitude triangular signalwith period 0.1 s. FromTable 2.1 andEquation (2.29), the exponential
Fourier series of the input signal is

𝑥(𝑡) = ⋯
4

25𝜋2 𝑒
−𝑗100𝜋𝑡 + 4

9𝜋2 𝑒
−𝑗60𝜋𝑡 + 4

𝜋2 𝑒
−𝑗20𝜋𝑡

+ 4
𝜋2 𝑒

𝑗20𝜋𝑡 + 4
9𝜋2 𝑒

𝑗60𝜋𝑡 + 4
25𝜋2 𝑒

𝑗100𝜋𝑡 +⋯

= 8
𝜋2

[
cos(20𝜋𝑡) + 1

9
cos(60𝜋𝑡) + 1

25
cos(100𝜋𝑡) +⋯

]
(2.190)

The filter eliminates all harmonics above 21Hz and passes all those below 21Hz, imposing an amplitude
scale factor of 2 and a phase shift of−𝜋𝑓∕10 rad. The only harmonic of the triangularwave to be passed by
the filter is the fundamental, which has a frequency of 10Hz, giving a phase shift of−𝜋(10)∕10 = −𝜋 rad.
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The output is therefore

𝑦(𝑡) = 16
𝜋2 cos 20𝜋

(
𝑡 − 1

20

)
(2.191)

where the phase shift is seen to be equivalent to a delay of 1
20

s.
■

2.6.9 Distortionless Transmission

Equation (2.188) shows that both the amplitudes and phases of the spectral components of a
periodic input signal will, in general, be altered as the signal is sent through a two-port LTI
system. This modification may be desirable in signal processing applications, but it amounts
to distortion in signal transmission applications. While it may appear at first that ideal signal
transmission results only if there is no attenuation and phase shift of the spectral components
of the input, this requirement is too stringent. A system will be classified as distortionless if
it introduces the same attenuation and time delay to all spectral components of the input, for
then the output looks like the input. In particular, if the output of a system is given in terms of
the input as

𝑦(𝑡) = 𝐻0𝑥(𝑡 − 𝑡0) (2.192)

where 𝐻0 and 𝑡0 are constants, the output is a scaled, delayed replica of the input (𝑡0 > 0
for causality). Employing the time-delay theorem to Fourier transform (2.192) and using the
definition𝐻(𝑓 ) = 𝑌 (𝑓 )∕𝑋(𝑓 ), we obtain

𝐻(𝑓 ) = 𝐻0𝑒
−𝑗2𝜋𝑓𝑡0 (2.193)

as the frequency response function of a distortionless system; that is, the amplitude response
of a distortionless system is constant and the phase shift is linear with frequency. Of course,
these restrictions are necessary only within the frequency ranges where the input has signifi-
cant spectral content. Figure 2.17 and Example 2.24, considered shortly, will illustrate these
comments.

In general, we can isolate three major types of distortion. First, if the system is linear
but the amplitude response is not constant with frequency, the system is said to introduce
amplitude distortion. Second, if the system is linear but the phase shift is not a linear function
of frequency, the system introduces phase, or delay, distortion. Third, if the system is not
linear, we have nonlinear distortion. Of course, these three types of distortion may occur in
combination with one another.

2.6.10 Group and Phase Delay

One can often identify phase distortion in a linear system by considering the derivative of
phase with respect to frequency. A distortionless system exhibits a phase response in which
phase is directly proportional to frequency. Thus, the derivative of the phase response function
with respect to frequency of a distortionless system is a constant. The negative of this constant
is called the group delay of the LTI system. In other words, the group delay is defined by the
equation

𝑇
𝑔
(𝑓 ) = − 1

2𝜋
𝑑𝜃 (𝑓 )
𝑑𝑓

(2.194)
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Figure 2.17
Amplitude and phase response and group and phase delays of the filter for Example 2.24.
(a) Amplitude response. (b) Phase response. (c) Group delay. (d) Phase delay.

in which 𝜃(𝑓 ) is the phase response of the system. For a distortionless system, the phase
response function is given by (2.193) as

𝜃(𝑓 ) = −2𝜋𝑓𝑡0 (2.195)

This yields a group delay of

𝑇
𝑔
(𝑓 ) = − 1

2𝜋
𝑑

𝑑𝑓
(−2𝜋𝑓𝑡0)

or

𝑇
𝑔
(𝑓 ) = 𝑡0 (2.196)

This confirms the preceding observation that the group delay of a distortionless LTI system is
a constant.

Group delay is the delay that a group of two or more frequency components undergo in
passing through a linear system. If a linear system has a single-frequency component as the
input, the system is always distortionless, since the output can be written as an amplitude-
scaled and phase-shifted (time-delayed) version of the input. As an example, assume that the
input to a linear system is given by

𝑥(𝑡) = 𝐴 cos
(
2𝜋𝑓1𝑡

)
(2.197)

It follows from (2.188) that the output can be written as

𝑦(𝑡) = 𝐴 ||𝐻(𝑓1)|| cos
[
2𝜋𝑓1𝑡 + 𝜃(𝑓1)

]
(2.198)

where 𝜃(𝑓1) is the phase response of the system evaluated at 𝑓 = 𝑓1. Equation (2.198) can be
written as

𝑦(𝑡) = 𝐴 ||𝐻(𝑓1)|| cos

{

2𝜋𝑓1

[

𝑡 +
𝜃
(
𝑓1
)

2𝜋𝑓1

]}

(2.199)

www.it-ebooks.info

http://www.it-ebooks.info/


66 Chapter 2 ∙ Signal and Linear System Analysis

The delay of the single component is defined as the phase delay:

𝑇
𝑝
(𝑓 ) = −𝜃 (𝑓 )

2𝜋𝑓
(2.200)

Thus, (2.199) can be written as

𝑦(𝑡) = 𝐴|𝐻(𝑓1)| cos
{
2𝜋𝑓1

[
𝑡 − 𝑇

𝑝
(𝑓1)

]}
(2.201)

Use of (2.195) shows that for a distortionless system, the phase delay is given by

𝑇
𝑝
(𝑓 ) = − 1

2𝜋𝑓
(
−2𝜋𝑓𝑡0

)
= 𝑡0 (2.202)

Thus, we see that distortionless systems have equal group and phase delays. The following
example should clarify the preceding definitions.

EXAMPLE 2.24

Consider a system with amplitude response and phase shift as shown in Figure 2.17 and the following
four inputs:

1. 𝑥1(𝑡) = cos (10𝜋𝑡) + cos (12𝜋𝑡)
2. 𝑥2(𝑡) = cos (10𝜋𝑡) + cos (26𝜋𝑡)
3. 𝑥3(𝑡) = cos (26𝜋𝑡) + cos (34𝜋𝑡)
4. 𝑥4(𝑡) = cos (32𝜋𝑡) + cos (34𝜋𝑡)

Although this system is somewhat unrealistic from a practical standpoint, we can use it to illus-
trate various combinations of amplitude and phase distortion. Using (2.188), we obtain the following
corresponding outputs:

1.

𝑦1(𝑡) = 2 cos
(
10𝜋𝑡 − 1

6
𝜋

)
+ 2 cos

(
12𝜋𝑡 − 1

5
𝜋

)

= 2 cos
[
10𝜋

(
𝑡 − 1

60

)]
+ 2 cos

[
12𝜋

(
𝑡 − 1

60

)]

2.

𝑦2(𝑡) = 2 cos
(
10𝜋𝑡 − 1

6
𝜋

)
+ cos

(
26𝜋𝑡 − 13

30
𝜋

)

= 2 cos
[
10𝜋

(
𝑡 − 1

60

)]
+ cos

[
26𝜋

(
𝑡 − 1

60

)]
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3.

𝑦3(𝑡) = cos
(
26𝜋𝑡 − 13

30
𝜋

)
+ cos

(
34𝜋𝑡 − 1

2
𝜋

)

= cos
[
26𝜋

(
𝑡 − 1

60

)]
+ cos

[
34𝜋

(
𝑡 − 1

68

)]

4.

𝑦4(𝑡) = cos
(
32𝜋𝑡 − 1

2
𝜋

)
+ cos

(
34𝜋𝑡 − 1

2
𝜋

)

= cos
[
32𝜋

(
𝑡 − 1

64

)]
+ cos

[
34𝜋

(
𝑡 − 1

68

)]

Checking these results with (2.192), we see that only the input 𝑥1(𝑡) is passed without distortion by
the system. For 𝑥2 (𝑡), amplitude distortion results, and for 𝑥3(𝑡) and 𝑥4(𝑡), phase (delay) distortion is
introduced.

The group delay and phase delay are also illustrated in Figure 2.17. It can be seen that for |𝑓 | ≤
15 Hz, the group and phase delays are both equal to 1

60
s. For |𝑓 | > 15 Hz, the group delay is zero, and

the phase delay is

𝑇
𝑝
(𝑓 ) = 1

4 |𝑓 |
, |𝑓 | > 15 Hz (2.203)

■

2.6.11 Nonlinear Distortion

To illustrate the idea of nonlinear distortion, let us consider a nonlinear system with the
input-output characteristic

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡) (2.204)

where 𝑎1 and 𝑎2 are constants, and with the input

𝑥(𝑡) = 𝐴1 cos
(
𝜔1𝑡

)
+ 𝐴2 cos

(
𝜔2𝑡

)
(2.205)

The output is therefore

𝑦(𝑡) = 𝑎1
[
𝐴1 cos

(
𝜔1𝑡

)
+ 𝐴2 cos

(
𝜔2𝑡

)]
+ 𝑎2

[
𝐴1 cos

(
𝜔1𝑡

)
+ 𝐴2 cos

(
𝜔2𝑡

)]2
(2.206)

Using trigonometric identities, we can write the output as

𝑦(𝑡) = 𝑎1
[
𝐴1 cos

(
𝜔1𝑡

)
+ 𝐴2 cos

(
𝜔2𝑡

)]

+1
2
𝑎2(𝐴1

2 + 𝐴2
2) +

1
2
𝑎2

[
𝐴
2
1 cos

(
2𝜔1𝑡

)
+ 𝐴2

2 cos
(
2𝜔2𝑡

)]

+𝑎2𝐴1𝐴2
{
cos

[(
𝜔1 + 𝜔2

)
𝑡
]
+ cos

[
(𝜔1 − 𝜔2)𝑡

]}
(2.207)

As can be seen from (2.207) and as illustrated in Figure 2.18, the system has produced
frequencies in the output other than the frequencies of the input. In addition to the first term in
(2.207), which may be considered the desired output, there are distortion terms at harmonics
of the input frequencies (in this case, second) as well as distortion terms involving sums
and differences of the harmonics (in this case, first) of the input frequencies. The former
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Figure 2.18
Input and output spectra for a nonlinear system with discrete frequency input. (a) Input spectrum.
(b) Output spectrum.

are referred to as harmonic distortion terms, and the latter are referred to as intermodulation
distortion terms. Note that a second-order nonlinearity could be used as a device to produce
a component at double the frequency of an input sinusoid. Third-order nonlinearities can be
used as triplers, and so forth.

A general input signal can be handled by applying the multiplication theorem given in
Table F.6 in Appendix F. Thus, for the nonlinear system with the transfer characteristic given
by (2.204), the output spectrum is

𝑌 (𝑓 ) = 𝑎1𝑋(𝑓 ) + 𝑎2𝑋(𝑓 ) ∗ 𝑋(𝑓 ) (2.208)

The second term is considered distortion, and is seen to give interference at all frequencies
occupied by the desired output (the first term). It is impossible to isolate harmonic and
intermodulation distortion components as before. For example, if

𝑋(𝑓 ) = 𝐴Π
(
𝑓

2𝑊

)
(2.209)

Then the distortion term is

𝑎2𝑋(𝑓 ) ∗ 𝑋(𝑓 ) = 2𝑎2𝑊𝐴
2Λ

(
𝑓

2𝑊

)
(2.210)

The input and output spectra are shown in Figure 2.19. Note that the spectral width of the
distortion term is double that of the input.

2.6.12 Ideal Filters

It is often convenient to work with filters having idealized frequency response functions
with rectangular amplitude-response functions that are constant within the passband and
zero elsewhere. We will consider three general types of ideal filters: lowpass, highpass, and
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Figure 2.19
Input and output spectra for a nonlinear system with an input whose spectrum is nonzero over a
continuous band of frequencies. (a) Input spectrum. (b) Output spectrum.

bandpass. Within the passband, a linear phase response is assumed. Thus, if 𝐵 is the single-
sided bandwidth (width of the stopband13 for the highpass filter) of the filter in question, the
transfer functions of ideal lowpass, highpass, and bandpass filters are easily expressed.

1. For the ideal lowpass filter

𝐻LP(𝑓 ) = 𝐻0Π(𝑓∕2𝐵)𝑒−𝑗2𝜋𝑓𝑡0 (2.211)

2. For the ideal highpass filter

𝐻HP(𝑓 ) = 𝐻0
[
1 − Π(𝑓∕2𝐵)

]
𝑒
−𝑗2𝜋𝑓𝑡0 (2.212)

3. Finally, for the ideal bandpass filter

𝐻BP(𝑓 ) =
[
𝐻1(𝑓 − 𝑓0) +𝐻1(𝑓 + 𝑓0)

]
𝑒
−𝑗2𝜋𝑓𝑡0 (2.213)

where𝐻1(𝑓 ) = 𝐻0Π(𝑓∕𝐵).

The amplitude-response and phase response functions for these filters are shown in
Figure 2.20.

The corresponding impulse responses are obtained by inverse Fourier transformation of
the respective frequency response function. For example, the impulse response of an ideal
lowpass filter is, from Example 2.12 and the time-delay theorem, given by

ℎLP(𝑡) = 2𝐵𝐻0 sinc
[
2𝐵(𝑡 − 𝑡0)

]
(2.214)

Since ℎLP(𝑡) is not zero for 𝑡 < 0, we see that an ideal lowpass filter is noncausal. Nevertheless,
ideal filters are useful concepts because they simplify calculations and can give satisfactory
results for spectral considerations.

Turning to the ideal bandpass filter, we may use the modulation theorem to write its
impulse response as

ℎBP(𝑡) = 2ℎ1(𝑡 − 𝑡0) cos
[
2𝜋𝑓0(𝑡 − 𝑡0)

]
(2.215)

where

ℎ1(𝑡) = ℑ−1[𝐻1(𝑓 )] = 𝐻0𝐵 sinc (𝐵𝑡) (2.216)

13The stopband of a filter will be defined here as the frequency range(s) for which |𝐻(𝑓 )| is below 3 dB of its
maximum value.
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Figure 2.20
Amplitude-response and phase response functions for ideal filters.

Thus the impulse response of an ideal bandpass filter is the oscillatory signal

ℎBP(𝑡) = 2𝐻0𝐵 sinc
[
𝐵(𝑡 − 𝑡0)

]
cos

[
2𝜋𝑓0(𝑡 − 𝑡0)

]
(2.217)

Figure 2.21 illustrates ℎLP(𝑡) and ℎBP(𝑡). If 𝑓0 ≫ 𝐵, it is convenient to view ℎBP(𝑡) as
the slowly varying envelope 2𝐻0 sinc (𝐵𝑡) modulating the high-frequency oscillatory signal
cos

(
2𝜋𝑓0𝑡

)
and shifted to the right by 𝑡0 seconds.

Derivation of the impulse response of an ideal highpass filter is left to the problems
(Problem 2.63).

2.6.13 Approximation of Ideal Lowpass Filters by Realizable Filters

Although ideal filters are noncausal and therefore unrealizable devices,14 there are several
practical filter types that may be designed to approximate ideal filter characteristics as
closely as desired. In this section we consider three such approximations for the lowpass
case. Bandpass and highpass approximations may be obtained through suitable frequency

14See Williams and Taylor (1988), Chapter 2, for a detailed discussion of classical filter designs.
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Figure 2.21
Impulse responses for ideal lowpass and bandpass filters. (a) ℎLP(𝑡). (b) ℎBP(𝑡).

transformation. The three filter types to be considered are (1) Butterworth, (2) Chebyshev, and
(3) Bessel.

The Butterworth filter is a filter design chosen to maintain a constant amplitude response
in the passband at the cost of less stopband attenuation. An 𝑛th-order Butterworth filter is
characterized by a transfer function, in terms of the complex frequency 𝑠, of the form

𝐻BW (𝑠) =
𝜔
𝑛

3(
𝑠 − 𝑠1

) (
𝑠 − 𝑠2

)
⋯

(
𝑠 − 𝑠

𝑛

) (2.218)

where the poles 𝑠1, 𝑠2,… , 𝑠
𝑛
are symmetrical with respect to the real axis and equally spaced

about a semicircle of radius 𝜔3 in the left half 𝑠-plane and 𝑓3 = 𝜔3∕2𝜋 is the 3-dB cutoff
frequency.15 Typical pole locations are shown in Figure 2.22(a). For example, the system
function of a second-order Butterworth filter is

𝐻2nd-order BW (𝑠) =
𝜔
2
3(

𝑠 + 1+𝑗√
2
𝜔3

)(
𝑠 + 1−𝑗√

2
𝜔3

) =
𝜔
2
3

𝑠2 +
√
2𝜔3𝑠 + 𝜔2

3

(2.219)

where 𝑓3 =
𝜔3
2𝜋 is the 3-dB cutoff frequency in hertz. The amplitude response for an 𝑛th-order

Butterworth filter is of the form

||𝐻BU (𝑓 )|| =
1

√
1 +

(
𝑓∕𝑓3

)2𝑛
(2.220)

Note that as 𝑛 approaches infinity, ||𝐻BU (𝑓 )|| approaches an ideal lowpass filter characteristic.
However, the filter delay also approaches infinity.

The Chebyshev (type 1) lowpass filter has an amplitude response chosen to maintain
a minimum allowable attenuation in the passband while maximizing the attenuation in the
stopband. A typical pole-zero diagram is shown in Figure 2.22(b). The amplitude response of
a Chebyshev filter is of the form

||𝐻𝐶 (𝑓 )|| =
1

√
1 + 𝜖2𝐶2

𝑛
(𝑓 )

(2.221)

15From basic circuit theory courses you will recall that the poles and zeros of a rational function of 𝑠,𝐻(𝑠) =
𝑁(𝑠)∕𝐷(𝑠), are those values of complex frequency 𝑠

Δ
= 𝜎 + 𝑗𝜔 for which 𝐷(𝑠) = 0 and𝑁(𝑠) = 0, respectively.
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Figure 2.22
Pole locations and amplitude responses for fourth-order Butterworth and Chebyshev filters.
(a) Butterworth filter. (b) Chebyshev filter.

The parameter 𝜖 is specified by the minimum allowable attenuation in the passband, and
𝐶
𝑛
(𝑓 ), known as a Chebyshev polynomial, is given by the recursion relation

𝐶
𝑛
(𝑓 ) = 2

(
𝑓

𝑓
𝑐

)
𝐶
𝑛−1(𝑓 ) − 𝐶𝑛−2(𝑓 ), 𝑛 = 2, 3, ... (2.222)

where

𝐶1(𝑓 ) =
𝑓

𝑓
𝑐

and 𝐶0(𝑓 ) = 1 (2.223)

Regardless of the value of 𝑛, it turns out that 𝐶
𝑛

(
𝑓
𝑐

)
= 1, so that 𝐻

𝐶
(𝑓
𝑐
) =

(
1 + 𝜖2

)−1∕2
.

(Note that 𝑓
𝑐
is not necessarily the 3-dB frequency here.)

The Bessel lowpass filter is a design that attempts to maintain a linear phase response in
the passband at the expense of the amplitude response. The cutoff frequency of a Bessel filter
is defined by

𝑓
𝑐
= (2𝜋𝑡0)−1 =

𝜔
𝑐

2𝜋
(2.224)
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where 𝑡0 is the nominal delay of the filter. The frequency response function of an 𝑛th-order
Bessel filter is given by

𝐻BE(𝑓 ) =
𝐾
𝑛

𝐵
𝑛
(𝑓 )

(2.225)

where 𝐾
𝑛
is a constant chosen to yield 𝐻(0) = 1, and 𝐵

𝑛
(𝑓 ) is a Bessel polynomial of order

𝑛 defined by

𝐵
𝑛
(𝑓 ) = (2𝑛 − 1)𝐵

𝑛−1(𝑓 ) −
(
𝑓

𝑓
𝑐

)2
𝐵
𝑛−2(𝑓 ) (2.226)

where

𝐵0(𝑓 ) = 1 and 𝐵1(𝑓 ) = 1 + 𝑗
(
𝑓

𝑓
𝑐

)
(2.227)

Figure 2.23 illustrates the amplitude-response and group-delay characteristics of third-
order Butterworth, Bessel, and Chebyshev filters. All three filters are normalized to have
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Figure 2.23
Comparison of third-order Butterworth, Chebyshev (0.1-dB ripple), and Bessel filters. (a) Amplitude
response. (b) Group delay. All filters are designed to have a 1-Hz, 3-dB bandwidth.
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3-dB amplitude attenuation at a frequency of 𝑓
𝑐
Hz. The amplitude responses show that the

Chebyshev filters havemore attenuation than the Butterworth and Bessel filters do for frequen-
cies exceeding the 3-dB frequency. Increasing the passband (𝑓 < 𝑓

𝑐
) ripple of a Chebyshev

filter increases the stopband (𝑓 > 𝑓
𝑐
) attenuation.

The group delay characteristics shown in Figure 2.23(b) illustrate, as expected, that the
Bessel filter has the most constant group delay. Comparison of the Butterworth and the 0.1-dB
ripple Chebyshev group delays shows that although the group delay of the Chebyshev filter
has a higher peak, it has a more constant group delay for frequencies less than about 0.4𝑓

𝑐
.

COMPUTER EXAMPLE 2.2

The MATLABTM program given below can be used to plot the amplitude and phase responses
of Butterworth and Chebyshev filters of any order and any cutoff frequency (3-dB frequency for
Butterworth). The ripple is also an input for the Chebyshev filter. Several MATLABTM subprograms
are used, such as logspace, butter, cheby1, freqs, and cart2pol. It is suggested that the student use the
help feature of MATLABTM to find out how these are used. For example, a line freqs (num,
den, W) in the command window automatically plots amplitude and phase responses. However, we
have used semilogx here to plot the amplitude response in dB versus frequency in hertz on a logarithmic
scale.

% file: c2ce2
% Frequency response for Butterworth and Chebyshev 1 filters
%
clf
filt type = input(’Enter filter type; 1 = Butterworth; 2 = Chebyshev 1’);
n max = input(’Enter maximum order of filter ’);
fc = input(’Enter cutoff frequency (3-dB for Butterworth) in Hz ’);
if filt type == 2

R = input(’Enter Chebyshev filter ripple in dB ’);
end
W = logspace(0, 3, 1000); % Set up frequency axis; hertz assumed
for n = 1:n max

if filt type == 1 % Generate num. and den. polynomials
[num,den]=butter(n, 2*pi*fc, ’s’);

elseif filt type == 2
[num,den]=cheby1(n, R, 2*pi*fc, ’s’);

end
H = freqs(num, den, W); % Generate complex frequency response
[phase, mag] = cart2pol(real(H),imag(H)); % Convert H to polar

coordinates
subplot(2,1,1),semilogx(W/(2*pi),20*log10(mag)),...
axis([min(W/(2*pi)) max(W/(2*pi)) -20 0]),...
if n == 1 % Put on labels and title; hold for future plots

ylabel(’|H| in dB’)
hold on
if filt type == 1

title([‘Butterworth filter responses: order 1 -
’,num2str(n max),‘; ...

cutoff freq = ’,num2str(fc),‘ Hz’])
elseif filt type == 2

title([‘Chebyshev filter responses: order 1 -
’,num2str(n max),‘; ...

ripple = ’,num2str(R),’ dB; cutoff freq = ’,num2str(fc),‘
Hz’])

end
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end
subplot(2,1,2),semilogx(W/(2*pi),180*phase/pi),...

axis([min(W/(2*pi)) max(W/(2*pi)) -200 200]),...
if n == 1

grid on
hold on
xlabel(‘f, Hz’),ylabel(’phase in degrees’)

end
end

% End of script file
■

2.6.14 Relationship of Pulse Resolution and Risetime to Bandwidth

In our consideration of signal distortion, we assumed bandlimited signal spectra. We found
that the input signal to a filter is merely delayed and attenuated if the filter has constant
amplitude response and linear phase response throughout the passband of the signal. But
suppose the input signal is not bandlimited. What rule of thumb can we use to estimate the
required bandwidth? This is a particularly important problem in pulse transmission, where the
detection and resolution of pulses at a filter output are of interest.

A satisfactory definition for pulse duration and bandwidth, and the relationship between
them, is obtained by consulting Figure 2.24. In Figure 2.24(a), a pulse with a single maximum,
taken at 𝑡 = 0 for convenience, is shown with a rectangular approximation of height 𝑥(0) and
duration 𝑇 . It is required that the approximating pulse and |𝑥(𝑡)| have equal areas. Thus,

𝑇𝑥(0) =
∫

∞

−∞
|𝑥(𝑡)| 𝑑𝑡 ≥

∫

∞

−∞
𝑥(𝑡) 𝑑𝑡 = 𝑋(0) (2.228)

where we have used the relationship

𝑋(0) = ℑ[𝑥(𝑡)]|
𝑓=0 =

∫

∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑡⋅0𝑑𝑡 (2.229)

Turning to Figure 2.24(b), we obtain a similar inequality for the rectangular approximation
to the pulse spectrum. Specifically, we may write

2𝑊𝑋(0) =
∫

∞

−∞
|𝑋 (𝑓 )| 𝑑𝑓 ≥

∫

∞

−∞
𝑋(𝑓 ) 𝑑𝑓 = 𝑥 (0) (2.230)
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Figure 2.24
Arbitrary pulse signal and spectrum. (a) Pulse and rectangular approximation. (b) Amplitude spectrum
and rectangular approximation.
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where we have used the relationship

𝑥(0) = ℑ−1 [𝑋(𝑓 )]|||𝑡=0 = ∫

∞

−∞
𝑋(𝑓 )𝑒𝑗2𝜋𝑓 ⋅0 𝑑𝑓 (2.231)

Thus, we have the pair of inequalities

𝑥(0)
𝑋 (0)

≥
1
𝑇

and 2𝑊 ≥
𝑥(0)
𝑋 (0)

(2.232)

which, when combined, result in the relationship of pulse duration and bandwidth

2𝑊 ≥
1
𝑇

(2.233)

or

𝑊 ≥
1
2𝑇

Hz (2.234)

Other definitions of pulse duration and bandwidth could have been used, but a relationship
similar to (2.233) and (2.234) would have resulted.

This inverse relationship between pulse duration and bandwidth has been illustrated by all
the examples involving pulse spectra that we have considered so far (for example, Examples
2.8, 2.11, 2.13).

If pulses with bandpass spectra are considered, the relationship is

𝑊 ≥
1
𝑇

Hz (2.235)

This is illustrated by Example 2.16.
A result similar to (2.233) and (2.234) also holds between the risetime 𝑇𝑅 and bandwidth

of a pulse. A suitable definition of risetime is the time required for a pulse’s leading edge to
go from 10% to 90% of its final value. For the bandpass case, (2.235) holds with 𝑇 replaced
by 𝑇

𝑅
, where 𝑇

𝑅
is the risetime of the envelope of the pulse.

Risetime can be used as a measure of a system’s distortion. To see how this is accom-
plished, we will express the step response of a filter in terms of its impulse response. From the
superposition integral of (2.160), with 𝑥(𝑡 − 𝜎) = 𝑢(𝑡 − 𝜎), the step response of a filter with
impulse response ℎ(𝑡) is

𝑦
𝑠
(𝑡) =

∫

∞

−∞
ℎ(𝜎)𝑢(𝑡 − 𝜎) 𝑑𝜎

=
∫

𝑡

−∞
ℎ(𝜎) 𝑑𝜎 (2.236)

This follows because 𝑢(𝑡 − 𝜎) = 0 for 𝜎 > 𝑡. Therefore, the step response of an LTI system is
the integral of its impulse response. This is not too surprising, since the unit step function is
the integral of a unit impulse function.16

Examples 2.25 and 2.26 demonstrate how the risetime of a system’s output due to a step
input is a measure of the fidelity of the system.

16This result is a special case of a more general result for an LTI system: if the response of a system to a given input
is known and that input is modified through a linear operation, such as integration, then the output to the modified
input is obtained by performing the same linear operation on the output due to the original input.
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EXAMPLE 2.25

The impulse response of a lowpass RC filter is given by

ℎ(𝑡) = 1
𝑅𝐶

𝑒
−𝑡∕𝑅𝐶

𝑢(𝑡) (2.237)

for which the step response is found to be

𝑦
𝑠
(𝑡) =

(
1 − 𝑒−2𝜋𝑓3𝑡

)
𝑢 (𝑡) (2.238)

where the 3-dB bandwidth of the filter, defined following (2.175), has been used. The step response is
plotted in Figure 2.25(a), where it is seen that the 10% to 90% risetime is approximately

𝑇
𝑅
= 0.35

𝑓3
= 2.2𝑅𝐶 (2.239)

which demonstrates the inverse relationship between bandwidth and risetime.

1.0
90%

10%
0

0.50
f3t

f3TR

1.0

y s
(t

)
y s

(t
)

(a)

(b)

Time

TR

1.0

90%

10%

0

t0 – 1/B t0 + 1/Bt0

Figure 2.25
Step response of (a) a lowpass RC
filter and (b) an ideal lowpass filter,
illustrating 10% to 90% risetime of
each.
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EXAMPLE 2.26

Using (2.214) with𝐻0 = 1, the step response of an ideal lowpass filter is

𝑦
𝑠
(𝑡) =

∫

𝑡

−∞
2𝐵 sinc

[
2𝐵(𝜎 − 𝑡0)

]
𝑑𝜎

=
∫

𝑡

−∞
2𝐵

sin
[
2𝜋𝐵(𝜎 − 𝑡0)

]

2𝜋𝐵(𝜎 − 𝑡0)
𝑑𝜎 (2.240)

By changing variables in the integrand to 𝑢 = 2𝜋𝐵(𝜎 − 𝑡0), the step response becomes

𝑦
𝑠
(𝑡) = 1

2𝜋 ∫

2𝜋𝐵(𝑡−𝑡0)

−∞

sin (𝑢)
𝑢

𝑑𝑢 = 1
2
+ 1
𝜋
Si[2𝜋𝐵(𝑡 − 𝑡0)] (2.241)

where Si(𝑥) = ∫
𝑥

0 (sin 𝑢∕𝑢) 𝑑𝑢 = −Si(−𝑥) is the sine-integral function.17 A plot of 𝑦
𝑠
(𝑡) for an ideal

lowpass filter, such as is shown in Figure 2.25(b), reveals that the 10% to 90% risetime is approximately

𝑇
𝑅
≅ 0.44

𝐵
(2.242)

Again, the inverse relationship between bandwidth and risetime is demonstrated.
■

■ 2.7 SAMPLING THEORY

In many applications it is useful to represent a signal in terms of sample values taken at
appropriately spaced intervals. Such sample-data systems find application in control systems
and pulse-modulation communication systems.

In this section we consider the representation of a signal 𝑥(𝑡) by a so-called ideal instan-
taneous sampled waveform of the form

𝑥
𝛿
(𝑡) =

∞∑

𝑛=−∞
𝑥(𝑛𝑇

𝑠
)𝛿(𝑡 − 𝑛𝑇

𝑠
) (2.243)

where 𝑇
𝑠
is the sampling interval. Two questions to be answered in connection with such

sampling are, ‘‘What are the restrictions on 𝑥(𝑡) and 𝑇
𝑠
to allow perfect recovery of 𝑥(𝑡)

from 𝑥
𝛿
(𝑡)?’’ and ‘‘How is 𝑥(𝑡) recovered from 𝑥

𝛿
(𝑡)?’’ Both questions are answered by the

uniform sampling theorem for lowpass signals, which may be stated as follows:

Theorem

If a signal 𝑥(𝑡) contains no frequency components for frequencies above 𝑓 = 𝑊 hertz, then it
is completely described by instantaneous sample values uniformly spaced in time with period
𝑇
𝑠
<

1
2𝑊

. The signal can be exactly reconstructed from the sampled waveform given by (2.243)
by passing it through an ideal lowpass filter with bandwidth 𝐵, where 𝑊 < 𝐵 < 𝑓

𝑠
−𝑊 with

𝑓
𝑠
= 𝑇 −1

𝑠
. The frequency 2𝑊 is referred to as the Nyquist frequency.

17See M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, New York: Dover Publications, 1972,
pp. 238ff (Copy of the 10th National Bureau of Standards Printing).
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X
0

f
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fsX0

–fs fs

fs – W

f
W–W 0

(b)

δ

Figure 2.26
Signal spectra for lowpass sampling. (a) Assumed spectrum for 𝑥(𝑡). (b) Spectrum of the sampled
signal.

To prove the sampling theorem, we find the spectrum of (2.243). Since 𝛿(𝑡 − 𝑛𝑇𝑠) is zero
everywhere except at 𝑡 = 𝑛𝑇

𝑠
, (2.243) can be written as

𝑥
𝛿
(𝑡) =

∞∑

𝑛=−∞
𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇

𝑠
) = 𝑥(𝑡)

∞∑

𝑛=−∞
𝛿(𝑡 − 𝑛𝑇

𝑠
) (2.244)

Applying the multiplication theorem of Fourier transforms, (2.102), the Fourier transform of
(2.244) is

𝑋
𝛿
(𝑓 ) = 𝑋(𝑓 ) ∗

[

𝑓
𝑠

∞∑

𝑛=−∞
𝛿(𝑓 − 𝑛𝑓

𝑠
)

]

(2.245)

where the transform pair (2.119) has been used. Interchanging the orders of summation and
convolution, and noting that

𝑋(𝑓 ) ∗ 𝛿(𝑓 − 𝑛𝑓
𝑠
) =

∫

∞

−∞
𝑋(𝑢) 𝛿(𝑓 − 𝑢 − 𝑛𝑓

𝑠
) 𝑑𝑢 = 𝑋(𝑓 − 𝑛𝑓

𝑠
) (2.246)

by the sifting property of the delta function, we obtain

𝑋
𝛿
(𝑓 ) = 𝑓

𝑠

∞∑

𝑛=−∞
𝑋(𝑓 − 𝑛𝑓

𝑠
) (2.247)

Thus, assuming that the spectrum of 𝑥(𝑡) is bandlimited to𝑊 Hz and that 𝑓
𝑠
> 2𝑊 as stated

in the sampling theorem, we may readily sketch 𝑋
𝛿
(𝑓 ). Figure 2.26 shows a typical choice

for 𝑋(𝑓 ) and the corresponding 𝑋
𝛿
(𝑓 ). We note that sampling simply results in a periodic

repetition of𝑋(𝑓 ) in the frequency domain with a spacing 𝑓
𝑠
. If 𝑓

𝑠
< 2𝑊 , the separate terms

in (2.247) overlap, and there is no apparent way to recover 𝑥(𝑡) from 𝑥
𝛿
(𝑡) without distortion.

On the other hand, if 𝑓
𝑠
> 2𝑊 , the term in (2.247) for 𝑛 = 0 is easily separated from the

rest by ideal lowpass filtering. Assuming an ideal lowpass filter with the frequency response
function

𝐻(𝑓 ) = 𝐻0Π
(
𝑓

2𝐵

)
𝑒
−𝑗2𝜋𝑓𝑡0 , 𝑊 ≤ 𝐵 ≤ 𝑓

𝑠
−𝑊 (2.248)

the output spectrum, with 𝑥
𝛿
(𝑡) at the input, is

𝑌 (𝑓 ) = 𝑓
𝑠
𝐻0𝑋(𝑓 )𝑒−𝑗2𝜋𝑓𝑡0 (2.249)

and by the time-delay theorem, the output waveform is

𝑦(𝑡) = 𝑓
𝑠
𝐻0𝑥(𝑡 − 𝑡0) (2.250)
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Reconstruction f ilter

amplitude response

Contributes to aliasing error

Spectrum of

sampled signal

Spectrum of

sampled signal

–fs

–fs fs

fs
f

f

0

0

(a)

(b)

Amplitude response of

reconstruction f ilter

Contributes to error

in reconstruction

Figure 2.27
Spectra illustrating two types of errors encountered in reconstruction of sampled signals. (a) Illustration
of aliasing error in the reconstruction of sampled signals. (b) Illustration of error due to nonideal
reconstruction filter.

Thus, if the conditions of the sampling theorem are satisfied, we see that distortionless
recovery of 𝑥(𝑡) from 𝑥

𝛿
(𝑡) is possible. Conversely, if the conditions of the sampling theorem

are not satisfied, either because 𝑥(𝑡) is not bandlimited or because 𝑓
𝑠
< 2𝑊 , we see that

distortion at the output of the reconstruction filter is inevitable. Such distortion, referred
to as aliasing, is illustrated in Figure 2.27(a). It can be combated by filtering the signal
before sampling or by increasing the sampling rate. A second type of error, illustrated in
Figure 2.27(b), occurs in the reconstruction process and is due to the nonideal frequency
response characteristics of practical filters. This type of error can be minimized by choosing
reconstruction filters with sharper rolloff characteristics or by increasing the sampling rate.
Note that the error due to aliasing and the error due to imperfect reconstruction filters are
both proportional to signal level. Thus, increasing the signal amplitude does not improve the
signal-to-error ratio.

An alternative expression for the reconstructed output from the ideal lowpass filter can
be obtained by noting that when (2.243) is passed through a filter with impulse response ℎ(𝑡),
the output is

𝑦(𝑡) =
∞∑

𝑛=−∞
𝑥(𝑛𝑇

𝑠
)ℎ(𝑡 − 𝑛𝑇

𝑠
) (2.251)

But ℎ(𝑡) corresponding to (2.248) is given by (2.214). Thus,

𝑦(𝑡) = 2𝐵𝐻0

∞∑

𝑛=−∞
𝑥(𝑛𝑇

𝑠
)sinc

[
2𝐵(𝑡 − 𝑡0 − 𝑛𝑇𝑠)

]
(2.252)

and we see that just as a periodic signal can be completely represented by its Fourier coeffi-
cients, a bandlimited signal can be completely represented by its sample values.

By setting 𝐵 = 1
2𝑓𝑠,𝐻0 = 𝑇𝑠, and 𝑡0 = 0 for simplicity, (2.252) becomes

𝑦(𝑡) =
∑

𝑛

𝑥(𝑛𝑇
𝑠
)sinc (𝑓

𝑠
𝑡 − 𝑛) (2.253)
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This expansion is equivalent to a generalized Fourier series, for we may show that

∫

∞

−∞
sinc (𝑓

𝑠
𝑡 − 𝑛)sinc (𝑓

𝑠
𝑡 − 𝑚) 𝑑𝑡 = 𝛿

𝑛𝑚
(2.254)

where 𝛿
𝑛𝑚

= 1, 𝑛 = 𝑚, and is 0 otherwise.
Turning next to bandpass spectra, for which the upper limit on frequency 𝑓

𝑢
is much

larger than the single-sided bandwidth 𝑊 , one may naturally inquire as to the feasibility of
sampling at rates less than 𝑓

𝑠
> 2𝑓

𝑢
. The uniform sampling theorem for bandpass spectra

gives the conditions for which this is possible.

Theorem

If a signal has a spectrum of bandwidth 𝑊 Hz and upper frequency limit 𝑓
𝑢
, then a rate 𝑓

𝑠
at

which the signal can be sampled is 2𝑓
𝑢
∕𝑚, where 𝑚 is the largest integer not exceeding 𝑓

𝑢
∕𝑊 .

All higher sampling rates are not necessarily usable unless they exceed 2𝑓
𝑢
.

EXAMPLE 2.27

Consider the bandpass signal 𝑥(𝑡) with the spectrum shown in Figure 2.28. According to the bandpass
sampling theorem, it is possible to reconstruct 𝑥(𝑡) from sample values taken at a rate of

𝑓
𝑠
=

2𝑓
𝑢

𝑚
= 2 (3)

2
= 3 samples per second (2.255)

whereas the lowpass sampling theorem requires 6 samples per second.
To show that this is possible, we sketch the spectrum of the sampled signal. According to (2.247),

which holds in general,

𝑋
𝛿
(𝑓 ) = 3

∞∑

−∞
𝑋(𝑓 − 3𝑛) (2.256)

The resulting spectrum is shown in Figure 2.28(b), and we see that it is theoretically possible to recover
𝑥(𝑡) from 𝑥

𝛿
(𝑡) by bandpass filtering.
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f
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X0

–3

– 96303–6–9

–2 –1 0
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(b)

1 2 3

δ

Desired

spectrum

Desired

spectrum
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around f = –fs

Figure 2.28
Signal spectra for bandpass sampling. (a) Assumed bandpass signal spectrum. (b) Spectrum of the
sampled signal.
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Another way of sampling a bandpass signal of bandwidth 𝑊 is to resolve it into two
lowpass quadrature signals of bandwidth 1

2𝑊 . Both of these may then be sampled at a

minimum rate of 2
(
1
2𝑊

)
= 𝑊 samples per second, thus resulting in an overall minimum

sampling rate of 2𝑊 samples per second.

■ 2.8 THE HILBERT TRANSFORM

(It may be advantageous to postpone this section until consideration of single-sideband systems
in Chapter 3.)

2.8.1 Definition

Consider a filter that simply phase-shifts all frequency components of its input by−1
2𝜋 radians;

that is, its frequency response function is

𝐻(𝑓 ) = −𝑗 sgn 𝑓 (2.257)

where the sgn function (read ‘‘signum 𝑓 ’’) is defined as

sgn (𝑓 ) =
⎧
⎪
⎨
⎪
⎩

1, 𝑓 > 0
0, 𝑓 = 0
−1, 𝑓 < 0

(2.258)

We note that |𝐻(𝑓 )| = 1 and ⟋𝐻(𝑓 ) is odd, as it must be. If 𝑋(𝑓 ) is the input spectrum to
the filter, the output spectrum is −𝑗 sgn(𝑓 )𝑋(𝑓 ), and the corresponding time function is

𝑥(𝑡) = ℑ−1[−𝑗 sgn (𝑓 )𝑋(𝑓 )]

= ℎ(𝑡) ∗ 𝑥(𝑡) (2.259)

whereℎ(𝑡) = −𝑗ℑ−1[sgn 𝑓 ] is the impulse response of the filter. To obtainℑ−1[sgn 𝑓 ]without
resorting to contour integration, we consider the inverse transform of the function

𝐺 (𝑓 ; 𝛼) =
{
𝑒
−𝛼𝑓

, 𝑓 > 0
−𝑒𝛼𝑓 , 𝑓 < 0

(2.260)

We note that lim
𝛼→0𝐺(𝑓 ; 𝛼) = sgn 𝑓 . Thus, our procedure will be to inverse Fourier-

transform 𝐺(𝑓 ; 𝛼) and take the limit of the result as 𝛼 approaches zero. Performing the
inverse transformation, we obtain

𝑔(𝑡; 𝛼) = ℑ−1[𝐺(𝑓 ; 𝛼)]

=
∫

∞

0
𝑒
−𝛼𝑓

𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑓 −
∫

0

−∞
𝑒
𝛼𝑓
𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑓 = 𝑗4𝜋𝑡
𝛼2 + (2𝜋𝑡)2

(2.261)

Taking the limit as 𝛼 approaches zero, we get the transform pair

𝑗

𝜋𝑡
⟷ sgn (𝑓 ) (2.262)
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Using this result in (2.259), we obtain the output of the filter:

𝑥(𝑡) =
∫

∞

−∞

𝑥(𝜆)
𝜋 (𝑡 − 𝜆)

𝑑𝜆 =
∫

∞

−∞

𝑥 (𝑡 − 𝜂)
𝜋𝜂

𝑑𝜂 (2.263)

The signal 𝑥(𝑡) is defined as the Hilbert transform of 𝑥(𝑡). Since the Hilbert transform
corresponds to a phase shift of −1

2𝜋, we note that the Hilbert transform of 𝑥(𝑡) corresponds to
the frequency response function (−𝑗 sgn 𝑓 )2 = −1, or a phase shift of 𝜋 radians. Thus,

̂̂𝑥(𝑡) = −𝑥(𝑡) (2.264)

EXAMPLE 2.28

For an input to a Hilbert transform filter of

𝑥(𝑡) = cos
(
2𝜋𝑓0𝑡

)
(2.265)

which has a spectrum given by

𝑋 (𝑓 ) = 1
2
𝛿(𝑓 − 𝑓0) +

1
2
𝛿(𝑓 + 𝑓0) (2.266)

we obtain an output spectrum from the Hilbert transformer of

𝑋(𝑓 ) = 1
2
𝛿(𝑓 − 𝑓0)𝑒−𝑗𝜋∕2 +

1
2
𝛿(𝑓 + 𝑓0)𝑒𝑗𝜋∕2 (2.267)

Taking the inverse Fourier transform of (2.267), we find the output signal to be

𝑥(𝑡) = 1
2
𝑒
𝑗2𝜋𝑓0𝑡𝑒−𝑗𝜋∕2 + 1

2
𝑒
−𝑗2𝜋𝑓0𝑡𝑒𝑗𝜋∕2

= cos
(
2𝜋𝑓0𝑡 − 𝜋∕2

)

or ̂cos(2𝜋𝑓0𝑡) = sin
(
2𝜋𝑓0𝑡

)
(2.268)

Of course, the Hilbert transform could have been found by inspection in this case by subtracting 1
2
𝜋 from

the argument of the cosine. Doing this for the signal sin𝜔0𝑡, we find that

̂sin(2𝜋𝑓0𝑡) = sin
(
2𝜋𝑓0𝑡 −

1
2
𝜋

)
= −cos

(
2𝜋𝑓0𝑡

)
(2.269)

We may use the two results obtained to show that

𝑒
𝑗2𝜋𝑓0𝑡 = −𝑗 sgn (𝑓0)𝑒𝑗2𝜋𝑓0𝑡 (2.270)

This is done by considering the two cases 𝑓0 > 0 and 𝑓0 < 0, and using Euler’s theorem in conjunction
with the results of (2.268) and (2.269). The result (2.270) also follows directly by considering the
response of a Hilbert transform filter with frequency response 𝐻HT (𝑓 ) = −𝑗 sgn (2𝜋𝑓 ) to the input
𝑥 (𝑡) = 𝑒𝑗2𝜋𝑓0𝑡.

■

2.8.2 Properties

The Hilbert transform has several useful properties that will be illustrated later. Three of these
properties will be proved here.
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1. The energy (or power) in a signal 𝑥(𝑡) and its Hilbert transform 𝑥(𝑡) are equal. To show
this, we consider the energy spectral densities at the input and output of a Hilbert transform
filter. Since𝐻(𝑓 ) = −𝑗 sgn 𝑓 , these densities are related by

|||𝑋 (𝑓 )|||
2
≜
|||ℑ

[
𝑥 (𝑡)

]||| = |−𝑗 sgn (𝑓 )|2 |𝑋 (𝑓 )|2 = |𝑋 (𝑓 )|2 (2.271)

where 𝑋(𝑓 ) = ℑ
[
𝑥 (𝑡)

]
= −𝑗 sgn (𝑓 )𝑋 (𝑓 ). Thus, since the energy spectral densities at

input and output are equal, so are the total energies. A similar proof holds for power signals.

2. A signal and its Hilbert transform are orthogonal; that is,

∫

∞

−∞
𝑥(𝑡)𝑥(𝑡) 𝑑𝑡 = 0 (energy signals) (2.272)

or

lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝑥(𝑡)𝑥(𝑡) 𝑑𝑡 = 0 (power signals) (2.273)

Considering (2.272), we note that the left-hand side can be written as

∫

∞

−∞
𝑥(𝑡)𝑥(𝑡) 𝑑𝑡 =

∫

∞

−∞
𝑋(𝑓 )𝑋∗(𝑓 ) 𝑑𝑓 (2.274)

by Parseval’s theorem generalized, where𝑋(𝑓 ) = ℑ[𝑥(𝑡)] = −𝑗 sgn (𝑓 )𝑋 (𝑓 ). It therefore
follows that

∫

∞

−∞
𝑥(𝑡)𝑥(𝑡) 𝑑𝑡 =

∫

∞

−∞
(+𝑗 sgn 𝑓 ) |𝑋(𝑓 )|2 𝑑𝑓 (2.275)

But the integrand of the right-hand side of (2.275) is odd, being the product of the even
function |𝑋(𝑓 )|2 and the odd function 𝑗 sgn 𝑓 . Therefore, the integral is zero, and (2.272)
is proved. A similar proof holds for (2.273).

3. If 𝑐(𝑡) and 𝑚(𝑡) are signals with nonoverlapping spectra, where 𝑚(𝑡) is lowpass and 𝑐(𝑡) is
highpass, then

𝑚(𝑡)𝑐(𝑡) = 𝑚(𝑡)𝑐(𝑡) (2.276)

To prove this relationship, we use the Fourier integral to represent 𝑚(𝑡) and 𝑐(𝑡) in terms of
their spectra,𝑀(𝑓 ) and 𝐶(𝑓 ), respectively. Thus,

𝑚(𝑡)𝑐(𝑡) =
∫

∞

−∞ ∫

∞

−∞
𝑀(𝑓 )𝐶(𝑓 ′) exp[𝑗2𝜋(𝑓 + 𝑓 ′)𝑡] 𝑑𝑓 𝑑𝑓 ′ (2.277)

where we assume𝑀(𝑓 ) = 0 for |𝑓 | > 𝑊 and 𝐶(𝑓 ′) = 0 for ||𝑓 ′|| < 𝑊 . The Hilbert trans-
form of (2.277) is

𝑚(𝑡)𝑐(𝑡) =
∫

∞

−∞ ∫

∞

−∞
𝑀(𝑓 )𝐶(𝑓 ′) ̂exp[𝑗2𝜋(𝑓 + 𝑓 ′)𝑡] 𝑑𝑓 𝑑𝑓 ′

=
∫

∞

−∞ ∫

∞

−∞
𝑀(𝑓 )𝐶(𝑓 ′)

[
−𝑗 sgn

(
𝑓 + 𝑓 ′)] exp

[
𝑗2𝜋

(
𝑓 + 𝑓 ′)

𝑡
]
𝑑𝑓 𝑑𝑓

′

(2.278)
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where (2.270) has been used. However, the product𝑀(𝑓 )𝐶(𝑓 ′) is nonvanishing only for
|𝑓 | < 𝑊 and ||𝑓

′|| > 𝑊 , and we may replace sgn (𝑓 + 𝑓 ′) by sgn
(
𝑓
′)in this case. Thus,

𝑚(𝑡)𝑐(𝑡) =
∫

∞

−∞
𝑀(𝑓 ) exp (𝑗2𝜋𝑓𝑡) 𝑑𝑓

∫

∞

−∞
𝐶(𝑓 ′)[−𝑗 sgn (𝑓 ′) exp(𝑗2𝜋𝑓 ′

𝑡)] 𝑑𝑓 ′ (2.279)

However, the first integral on the right-hand side is just 𝑚(𝑡), and the second integral is
𝑐(𝑡), since

𝑐(𝑡) =
∫

∞

−∞
𝐶(𝑓 ′) exp(𝑗2𝜋𝑓 ′

𝑡) 𝑑𝑓 ′

and

𝑐(𝑡) =
∫

∞

−∞
𝐶(𝑓 ′) ̂exp(𝑗2𝜋𝑓 ′𝑡) 𝑑𝑓 ′

=
∫

∞

−∞
𝐶(𝑓 ′)[−𝑗 sgn 𝑓 ′ exp(𝑗2𝜋𝑓 ′

𝑡)] 𝑑𝑓 ′ (2.280)

Hence, (2.279) is equivalent to (2.276), which was the relationship to be proved.

EXAMPLE 2.29

Given that 𝑚(𝑡) is a lowpass signal with 𝑀(𝑓 ) = 0 for |𝑓 | > 𝑊 , we may directly apply (2.276) in
conjunction with (2.275) and (2.269) to show that

𝑚(𝑡)̂ cos𝜔0𝑡 = 𝑚(𝑡) sin𝜔0𝑡 (2.281)

and

𝑚(𝑡)̂ sin𝜔0𝑡 = −𝑚(𝑡) cos𝜔0𝑡 (2.282)

if 𝑓0 = 𝜔0∕2𝜋 > 𝑊 .
■

2.8.3 Analytic Signals

An analytic signal 𝑥
𝑝
(𝑡), corresponding to the real signal 𝑥(𝑡), is defined as

𝑥
𝑝
(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡) (2.283)

where 𝑥(𝑡) is the Hilbert transform of 𝑥(𝑡). We now consider several properties of an analytic
signal.

We used the term envelope in connection with the ideal bandpass filter. The enve-
lope of a signal is defined mathematically as the magnitude of the analytic signal 𝑥

𝑝
(𝑡).

The concept of an envelope will acquire more importance when we discuss modulation in
Chapter 3.
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EXAMPLE 2.30

In Section 2.6.12, (2.217) ,we showed that the impulse response of an ideal bandpass filterwith bandwidth
𝐵, delay 𝑡0, and center frequency 𝑓0 is given by

ℎBP(𝑡) = 2𝐻0𝐵 sinc
[
𝐵(𝑡 − 𝑡0)

]
cos

[
𝜔0(𝑡 − 𝑡0)

]
(2.284)

Assuming that 𝐵 < 𝑓0, we can use the result of Example 2.29 to determine the Hilbert transform of
ℎBP(𝑡). The result is

ℎ̂BP(𝑡) = 2𝐻0𝐵 sinc
[
𝐵(𝑡 − 𝑡0)

]
sin

[
𝜔0(𝑡 − 𝑡0)

]
(2.285)

Thus, the envelope is

|ℎBP(𝑡)| = ||𝑥(𝑡) + 𝑗𝑥(𝑡)|| (2.286)

=
√

[𝑥 (𝑡)]2 +
[
𝑥(𝑡)

]2

=
√{

2𝐻0𝐵 sinc
[
𝐵(𝑡 − 𝑡0)

]}2 {cos2
[
𝜔0

(
𝑡 − 𝑡0

)]
+ sin2

[
𝜔0

(
𝑡 − 𝑡0

)]}

or

|ℎBP(𝑡)| = 2𝐻0𝐵
|||sinc

[
𝐵(𝑡 − 𝑡0)

]||| (2.287)

as shown in Figure 2.22(b) by the dashed lines. The envelope is obviously easy to identify if the signal is
composed of a lowpass signal multiplied by a high-frequency sinusoid. Note, however, that the envelope
is mathematically defined for any signal.

■

The spectrum of the analytic signal is also of interest. We will use it to advantage in
Chapter 3 when we investigate single-sideband modulation. Since the analytic signal, from
(2.283), is defined as

𝑥
𝑝
(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡)

it follows that the Fourier transform of 𝑥
𝑝
(𝑡) is

𝑋
𝑝
(𝑓 ) = 𝑋(𝑓 ) + 𝑗 {−𝑗 sgn (𝑓 )𝑋(𝑓 )} (2.288)

where the term in braces is the Fourier transform of 𝑥(𝑡). Thus,

𝑋
𝑝
(𝑓 ) = 𝑋(𝑓 )

[
1 + sgn 𝑓

]
(2.289)

or

𝑋
𝑝
(𝑓 ) =

{2𝑋(𝑓 ), 𝑓 > 0
0, 𝑓 < 0

(2.290)

The subscript 𝑝 is used to denote that the spectrum is nonzero only for positive frequencies.
Similarly, we can show that the signal

𝑥
𝑛
(𝑡) = 𝑥(𝑡) − 𝑗𝑥(𝑡) (2.291)

is nonzero only for negative frequencies. Replacing 𝑥(𝑡) by −𝑥(𝑡) in the preceding discussion
results in

𝑋
𝑛
(𝑓 ) = 𝑋(𝑓 )[1 − sgn 𝑓 ] (2.292)
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Figure 2.29
Spectra of analytic signals. (a) Spectrum of 𝑥(𝑡). (b) Spectrum of 𝑥(𝑡) + 𝑗𝑥(𝑡). (c) Spectrum of
𝑥(𝑡) − 𝑗𝑥(𝑡).

or

𝑋
𝑛
(𝑓 ) =

{0, 𝑓 > 0
2𝑋(𝑓 ), 𝑓 < 0

(2.293)

These spectra are illustrated in Figure 2.30.
Two observationsmay bemade at this point. First, if𝑋(𝑓 ) is nonzero at 𝑓 = 0, then𝑋

𝑝
(𝑓 )

and 𝑋
𝑛
(𝑓 ) will be discontinuous at 𝑓 = 0. Also, we should not be confused that ||𝑋𝑛(𝑓 )|| and

|||𝑋𝑝(𝑓 )
||| are not even, since the corresponding time-domain signals are not real.

2.8.4 Complex Envelope Representation of Bandpass Signals

If 𝑋(𝑓 ) in (2.288) corresponds to a signal with a bandpass spectrum, as shown in
Figure 2.29(a), it then follows by (2.290) that 𝑋𝑝(𝑓 ) is just twice the positive frequency
portion of 𝑋(𝑓 ) = ℑ{𝑥(𝑡)}, as shown in Figure 2.29(b). By the frequency-translation theo-
rem, it follows that 𝑥

𝑝
(𝑡) can be written as

𝑥
𝑝
(𝑡) = 𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡 (2.294)

where 𝑥 (𝑡) is a complex-valued lowpass signal (hereafter referred to as the complex envelope)
and 𝑓0 is a reference frequency chosen for convenience.18 The spectrum (assumed to be real
for ease of plotting) of 𝑥(𝑡) is shown in Figure 2.29(c).

To find 𝑥(𝑡), we may proceed along one of two paths [note that simply taking the
magnitude of (2.294) gives only ||𝑥(𝑡)|| but not its arguement]. First, using (2.283), we can find
the analytic signal 𝑥

𝑝 (𝑡) and then solve (2.294) for 𝑥(𝑡). That is,

𝑥(𝑡) = 𝑥
𝑝 (𝑡) 𝑒−𝑗2𝜋𝑓0𝑡 (2.295)

Second, we can find 𝑥(𝑡) by using a frequency-domain approach to obtain𝑋(𝑓 ), then scale
its positive frequency components by a factor of 2 to give 𝑋

𝑝
(𝑓 ), and translate the resultant

spectrum by 𝑓0 Hz to the left. The inverse Fourier transform of this translated spectrum is
then 𝑥(𝑡). For example, for the spectra shown in Figure 2.30, the complex envelope, using

18If the spectrum of 𝑥
𝑝 (𝑡) has a center of symmetry, a natural choice for 𝑓0 would be this point of symmetry, but it

need not be.
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Figure 2.30
Spectra pertaining to the formation of a complex envelope of a signal 𝑥(𝑡). (a) A bandpass signal
spectrum. (b) Twice the positive-frequency portion of 𝑋(𝑓 ) corresponding to ℑ[𝑥(𝑡) + 𝑗𝑥(𝑡)].
(c) Spectrum of 𝑥 (𝑡).

Fig. 2.30(c), is

𝑥(𝑡) = ℑ−1
[
2𝐴Λ

(
2𝑓
𝐵

)]
= 𝐴𝐵 sinc2 (𝐵𝑡) (2.296)

The complex envelope is real in this case because the spectrum 𝑋 (𝑓 ) is symmetrical around
𝑓 = 𝑓0.

Since 𝑥
𝑝
(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡), where 𝑥(𝑡) and 𝑥 (𝑡) are the real and imaginary parts, respec-

tively, of 𝑥
𝑝
(𝑡), it follows from (2.294) that

𝑥
𝑝
(𝑡) = 𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡 ≜ 𝑥(𝑡) + 𝑗𝑥(𝑡) (2.297)

or

𝑥(𝑡) = Re
[
𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡

]
(2.298)

and

𝑥(𝑡) = Im
[
𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡

]
(2.299)

Thus, from (2.298), the real signal 𝑥(𝑡) can be expressed in terms of its complex envelope as

𝑥(𝑡) = Re
[
𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡

]

= Re
[
𝑥(𝑡)

]
cos

(
2𝜋𝑓0𝑡

)
− Im

[
𝑥(𝑡)

]
sin

(
2𝜋𝑓0𝑡

)

= 𝑥
𝑅
(𝑡) cos(2𝜋𝑓0𝑡) − 𝑥𝐼 (𝑡) sin(2𝜋𝑓0𝑡) (2.300)

where

𝑥(𝑡) ≜ 𝑥
𝑅
(𝑡) + 𝑗𝑥

𝐼
(𝑡) (2.301)

The signals 𝑥
𝑅
(𝑡) and 𝑥

𝐼
(𝑡) are known as the inphase and quadrature components of 𝑥(𝑡).
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EXAMPLE 2.31

Consider the real bandpass signal

𝑥(𝑡) = cos (22𝜋𝑡) (2.302)

Its Hilbert transform is

𝑥(𝑡) = sin (22𝜋𝑡) (2.303)

so the corresponding analytic signal is

𝑥
𝑝
(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡)

= cos (22𝜋𝑡) + 𝑗 sin (22𝜋𝑡)

= 𝑒
𝑗22𝜋𝑡 (2.304)

In order to find the corresponding complex envelope, we need to specify 𝑓0, which, for the purposes
of this example, we take as 𝑓0 = 10 Hz. Thus, from (2.295), we have

𝑥(𝑡) = 𝑥
𝑝
(𝑡) 𝑒−𝑗2𝜋𝑓0𝑡

= 𝑒
𝑗22𝜋𝑡

𝑒
−𝑗20𝜋𝑡

= 𝑒
𝑗2𝜋𝑡

= cos (2𝜋𝑡) + 𝑗 sin (2𝜋𝑡) (2.305)

so that, from (2.301), we obtain

𝑥
𝑅
(𝑡) = cos (2𝜋𝑡) and 𝑥

𝐼
(𝑡) = sin (2𝜋𝑡) (2.306)

Putting these into (2.300), we get

𝑥 (𝑡) = 𝑥
𝑅
(𝑡) cos(2𝜋𝑓0𝑡) − 𝑥𝐼 (𝑡) sin(2𝜋𝑓0𝑡)

= cos (2𝜋𝑡) cos (20𝜋𝑡) − sin (2𝜋𝑡) sin (20𝜋𝑡)

= cos (22𝜋𝑡) (2.307)

which is, not surprisingly, what we began with in (2.302).
■

2.8.5 Complex Envelope Representation of Bandpass Systems

Consider a bandpass system with impulse response ℎ(𝑡), which is represented in terms of a
complex envelope ℎ̃(𝑡) as

ℎ(𝑡) = Re
[
ℎ̃(𝑡)𝑒𝑗2𝜋𝑓0𝑡

]
(2.308)

where ℎ̃(𝑡) = ℎ
𝑅
(𝑡) + 𝑗ℎ

𝐼
(𝑡). Assume that the input is also bandpass with representation

(2.298). The output, by the superposition integral, is

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) =
∫

∞

−∞
ℎ(𝜆)𝑥(𝑡 − 𝜆) 𝑑𝜆 (2.309)
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By Euler’s theorem, we can represent ℎ(𝑡) and 𝑥(𝑡) as

ℎ(𝑡) = 1
2
ℎ̃(𝑡)𝑒𝑗2𝜋𝑓0𝑡 + c.c. (2.310)

and

𝑥(𝑡) = 1
2
𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡 + c.c. (2.311)

respectively, where c.c. stands for the complex conjugate of the immediately preceding term.
Using these in (2.309), the output can be expressed as

𝑦(𝑡) =
∫

∞

−∞

[1
2
ℎ̃(𝜆)𝑒𝑗2𝜋𝑓0𝜆 + c.c.

] [1
2
𝑥(𝑡 − 𝜆)𝑒𝑗2𝜋𝑓0(𝑡−𝜆) + c.c.

]
𝑑𝜆

= 1
4 ∫

∞

−∞
ℎ̃(𝜆)𝑥(𝑡 − 𝜆) 𝑑𝜆 𝑒𝑗2𝜋𝑓0𝑡 + c.c.

+1
4 ∫

∞

−∞
ℎ̃(𝜆)𝑥∗(𝑡 − 𝜆)𝑒𝑗4𝜋𝑓0𝜆 𝑑𝜆 𝑒−𝑗2𝜋𝑓0𝑡 + c.c. (2.312)

The second pair of terms, 1
4 ∫

∞
−∞ ℎ̃(𝜆)𝑥

∗(𝑡 − 𝜆)𝑒𝑗4𝜋𝑓0𝜆 𝑑𝜆 𝑒−𝑗2𝜋𝑓0𝑡+c.c., is approximately zero

by virtue of the factor 𝑒𝑗4𝜋𝑓0𝜆 = cos
(
4𝜋𝑓0𝜆

)
+ 𝑗 sin

(
4𝜋𝑓0𝜆

)
in the integrand (ℎ̃ and 𝑥 are

slowly varying with respect to this complex exponential, and therefore, the integrand cancels
to zero, half-cycle by half-cycle). Thus,

𝑦(𝑡) ≅ 1
4 ∫

∞

−∞
ℎ̃(𝜆)𝑥(𝑡 − 𝜆) 𝑑𝜆 𝑒𝑗2𝜋𝑓0𝑡 + c.c.

= 1
2
Re

{[
ℎ̃(𝑡) ∗ 𝑥(𝑡)

]
𝑒
𝑗2𝜋𝑓0𝑡

}
≜

1
2
Re

{
𝑦(𝑡)𝑒𝑗2𝜋𝑓0𝑡

}
(2.313)

where

𝑦(𝑡) = ℎ̃(𝑡) ∗ 𝑥(𝑡) = ℑ−1
[
�̃�(𝑓 )𝑋(𝑓 )

]
(2.314)

in which �̃�(𝑓 ) and 𝑋(𝑓 ) are the respective Fourier transforms of ℎ̃(𝑡) and 𝑥(𝑡).

EXAMPLE 2.32

As an example of the application of (2.313), consider the input

𝑥(𝑡) = Π (𝑡∕𝜏) cos(2𝜋𝑓0𝑡) (2.315)

to a filter with impulse response

ℎ(𝑡) = 𝛼𝑒−𝛼𝑡𝑢(𝑡) cos(2𝜋𝑓0𝑡) (2.316)

Using the complex envelope analysis just developed with 𝑥(𝑡) = Π(𝑡∕𝜏) and ℎ̃(𝑡) = 𝛼𝑒−𝛼𝑡𝑢(𝑡), we have
as the complex envelope of the filter output

𝑦(𝑡) = Π(𝑡∕𝜏) ∗ 𝛼𝑒−𝛼𝑡𝑢(𝑡)

=
[
1 − 𝑒−𝛼(𝑡+𝜏∕2)

]
𝑢 (𝑡 + 𝜏∕2) −

[
1 − 𝑒−(𝑡−𝜏∕2)

]
𝑢 (𝑡 − 𝜏∕2) (2.317)
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Multiplying this by 1
2
𝑒
𝑗2𝜋𝑓0𝑡 and taking the real part results in the output of the filter in accordance with

(2.313). The result is

𝑦 (𝑡) = 1
2
{[
1 − 𝑒−𝛼(𝑡+𝜏∕2)

]
𝑢 (𝑡 + 𝜏∕2) −

[
1 − 𝑒−(𝑡−𝜏∕2)

]
𝑢 (𝑡 − 𝜏∕2)

}
cos

(
2𝜋𝑓0𝑡

)
(2.318)

To check this result, we convolve (2.315) and (2.316) directly. The superposition integral becomes

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡)

=
∫

∞

−∞
Π(𝜆∕𝜏) cos(2𝜋𝑓0𝜆)𝛼𝑒−𝛼(𝑡−𝜆)𝑢(𝑡 − 𝜆) cos[2𝜋𝑓0(𝑡 − 𝜆)] 𝑑𝜆 (2.319)

But

cos(2𝜋𝑓0𝜆) cos[2𝜋𝑓0(𝑡 − 𝜆)] =
1
2
cos(2𝜋𝑓0𝑡) +

1
2
cos[2𝜋𝑓0(𝑡 − 2𝜆)] (2.320)

so that the superposition integral becomes

𝑦(𝑡) = 1
2 ∫

∞

−∞
Π(𝜆∕𝜏)𝛼𝑒−𝛼(𝑡−𝜆)𝑢(𝑡 − 𝜆) 𝑑𝜆 cos

(
2𝜋𝑓0𝑡

)

+1
2 ∫

∞

−∞
Π(𝜆∕𝜏)𝛼𝑒−𝛼(𝑡−𝜆)𝑢(𝑡 − 𝜆) cos

[
2𝜋𝑓0 (𝑡 − 2𝜆)

]
𝑑𝜆 (2.321)

If 𝑓−1
0 ≪ 𝜏 and 𝑓−1

0 ≪ 𝛼
−1, the second integral is approximately zero, so that we have only the first

integral, which is Π(𝑡∕𝜏) convolved with 𝛼𝑒−𝛼𝑡𝑢(𝑡) and the result multiplied by 1
2
cos(2𝜋𝑓0𝑡), which is

the same as (2.318).
■

■ 2.9 THE DISCRETE FOURIER TRANSFORM
AND FAST FOURIER TRANSFORM

In order to compute the Fourier spectrum of a signal by means of a digital computer, the time-
domain signal must be represented by sample values and the spectrum must be computed at a
discrete number of frequencies. It can be shown that the following sum gives an approximation
to the Fourier spectrum of a signal at frequencies 𝑘∕(𝑁𝑇

𝑠
), 𝑘 = 0, 1,… , 𝑁 − 1:

𝑋
𝑘
=
𝑁−1∑

𝑛=0
𝑥
𝑛
𝑒
−𝑗2𝜋𝑛𝑘∕𝑁

, 𝑘 = 0, 1, ..., 𝑁 − 1 (2.322)

where 𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑁−1 are 𝑁 sample values of the signal taken at 𝑇
𝑠
-second intervals for

which the Fourier spectrum is desired. The sum (2.322) is called the discrete Fourier transform
(DFT) of the sequence {𝑥

𝑛
}. According to the sampling theorem, if the samples are spaced by

𝑇
𝑠
seconds, the spectrum repeats every 𝑓

𝑠
= 𝑇 −1

𝑠
Hz. Since there are𝑁 frequency samples in

this interval, it follows that the frequency resolution of (2.322) is 𝑓𝑠∕𝑁 = 1∕(𝑁𝑇
𝑠
) ≜ 1∕𝑇 .

To obtain the sample sequence {𝑥
𝑛
} from the DFT sequence {𝑋

𝑘
}, the sum

𝑥
𝑛
= 1
𝑁

𝑁−1∑

𝑘=0
𝑋
𝑘
𝑒
𝑗2𝜋𝑛𝑘∕𝑁

, 𝑘 = 0, 1, 2,… , 𝑁 − 1 (2.323)
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is used. That (2.322) and (2.323) form a transform pair can be shown by substituting (2.322)
into (2.323) and using the sum formula for a geometric series:

𝑆
𝑁

≡

𝑁−1∑

𝑘=0
𝑥
𝑘 =

{
1−𝑥𝑁
1−𝑥 , 𝑥 ≠ 1
𝑁, 𝑥 = 1

(2.324)

As indicated above, the DFT and inverse DFT are approximations to the true Fourier
spectrum of a signal 𝑥(𝑡) at the discrete set of frequencies {0, 1∕𝑇 , 2∕𝑇 ,… , (𝑁 − 1)∕𝑇 }. The
error can be small if the DFT and its inverse are applied properly to a signal. To indicate the
approximations involved, we must visualize the spectrum of a sampled signal that is truncated
to a finite number of sample values and whose spectrum is then sampled at a discrete number
𝑁 of points. To see the approximations involved, we use the following Fourier-transform
theorems:

1. The Fourier transform of an ideal sampling waveform (Example 2.14):

𝑦
𝑠
(𝑡) =

∞∑

𝑚=−∞
𝛿(𝑡 − 𝑚𝑇

𝑠
) ⟷ 𝑓

−1
𝑠

∞∑

𝑛=−∞
𝛿(𝑓 − 𝑛𝑓

𝑠
), 𝑓

𝑠
= 𝑇 −1

𝑠

2. The Fourier transform of a rectangular window function:

Π(𝑡∕𝑇 ) ⟷ 𝑇 sinc (𝑓𝑇 )

3. The convolution theorem of Fourier transforms:

𝑥1(𝑡) ∗ 𝑥2 (𝑡) ⟷ 𝑋1(𝑓 )𝑋2(𝑓 )

4. The multiplication theorem of Fourier transforms:

𝑥1(𝑡)𝑥2(𝑡) ⟷ 𝑋1(𝑓 ) ∗ 𝑋2(𝑓 )

The approximations involved are illustrated by the following example.

EXAMPLE 2.33

An exponential signal is to be sampled, the samples truncated to a finite number, and the result represented
by a finite number of samples of the Fourier spectrum of the sampled truncated signal. The continuous-
time signal and its Fourier transform are

𝑥(𝑡) = 𝑒−|𝑡|∕𝜏 ⟷ 𝑋(𝑓 ) = 2𝜏
1 + 2(𝜋𝑓𝜏)2

(2.325)

This signal and its spectrum are shown in Figure 2.31(a). However, we are representing the signal by
sample values spaced by 𝑇

𝑠
seconds, which entails multiplying the original signal by the ideal sampling

waveform 𝑦
𝑠
(𝑡), given by (2.114). The resulting spectrum of this sampled signal is the convolution of

𝑋(𝑓 ) with the Fourier transform of 𝑦
𝑠
(𝑡), given by (2.119), which is 𝑌

𝑠
(𝑓 ) = 𝑓

𝑠

∑∞
𝑛=−∞ 𝛿(𝑓 − 𝑛𝑓

𝑠
). The

result of this convolution in the frequency domain is

𝑋
𝑠
(𝑓 ) = 𝑓

𝑠

∞∑

𝑛=−∞

2𝜏
1 + [2𝜋𝜏(𝑓 − 𝑓

𝑠
)]2

(2.326)

The resulting sampled signal and its spectrum are shown in Figure 2.31(b).
In calculating theDFT, only a𝑇 -second chunk of𝑥(𝑡) can be used (𝑁 samples spaced by𝑇

𝑠
= 𝑇 ∕𝑁).

This means that the sampled time-domain signal is effectively multiplied by a window function Π(𝑡∕𝑇 ).
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In the frequency domain, this corresponds to convolution with the Fourier transform of the rectangular
window function, which is 𝑇 sinc (𝑓𝑇 ). The resulting windowed, sampled signal and its spectrum are
sketched in Figure 2.31(c). Finally, the spectrum is available only at 𝑁 discrete frequencies separated
by the reciprocal of the window duration 1∕𝑇 . This corresponds to convolution in the time domain with

–2 –1 –1 00 11

–1 0 1

2

–2 –1 0 1 2

x(t)

X( f )

Xs( f )

xs( t)

xs( t)∏(   )

ft

f

–1 0 1

–1–1–2– 03 10 321

f

ft

t

–2 –1 0 1 2
t

(a)

(b)

(c)

(d)

t
T

Xsw( f )

Xsp( f )

xsp(t)

Figure 2.31
Signals and spectra illustrating the computation of the DFT. (a) Signal to be sampled and its spectrum
(𝜏 = 1s). (b) Sampled signal and its spectrum (𝑓

𝑠
= 1Hz). (c) Windowed, sampled signal and its

spectrum (𝑇 = 4+s). (d) Sampled signal spectrum and corresponding periodic repetition of the
sampled, windowed signal.
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a sequence of delta functions. The resulting signal and spectrum are shown in Figure 2.31(d). It can be
seen that unless one is careful, there is indeed a considerable likelihood that the DFT spectrum will look
nothing like the spectrum of the original continuous-time signal. Means for minimizing these errors are
discussed in several references on the subject.19

■

A little thought will indicate that to compute the complete DFT spectrum of a signal,
approximately 𝑁2 complex multiplications are required in addition to a number of complex
additions. It is possible to find algorithms that allow the computation of the DFT spectrum of
a signal using only approximately𝑁 log2𝑁 complex multiplications, which gives significant
computational savings for𝑁 large. Such algorithms are referred to as fast Fourier-transform
(FFT) algorithms. Two main types of FFT algorithms are those based on decimation in time
(DIT) and those based on decimation in frequency (DIF).

Fortunately, FFT algorithms are included in most computer mathematics packages such
as MATLABTM, so we do not have to go to the trouble of writing our own FFT programs
although it is an instructive exercise to do so. The following computer example computes the
FFT of a sampled double-sided exponential pulse and compares spectra of the continuous-time
and sampled pulses.

COMPUTER EXAMPLE 2.3

The MATLAB program given below computes the fast Fourier transform (FFT) of a double-sided
exponentially decaying signal truncated to −15.5 ≤ 𝑡 ≤ 15.5 sampled each 𝑇

𝑠
= 1 s. The periodicity

property of the FFT means that the resulting FFT coefficients correspond to a waveform that is the
periodic extension of this exponential waveform. The frequency extent of the FFT is [0, 𝑓

𝑠
(1 − 1∕𝑁)]

with the frequencies above 𝑓
𝑠
∕2 corresponding to negative frequencies. Results are shown in Fig. 2.32.

% file: c2ce3
%
clf
tau = 2;
Ts = 1;
fs = 1/Ts;
ts = -15.5:Ts:15.5;
N = length(ts);
fss = 0:fs/N:fs-fs/N;
xss = exp(-abs(ts)/tau);
Xss = fft(xss);
t = -15.5:.01:15.5;
f = 0:.01:fs-fs/N;
X = 2*fs*tau./(1+(2*pi*f*tau).ˆ2);
subplot(2,1,1), stem(ts, xss)
hold on
subplot(2,1,1), plot(t, exp(-abs(t)/tau), ’--’), xlabel(’t, s’), yla-

bel(’Signal & samples’), ...
legend(’x(nT s)’, ’x(t)’)
subplot(2,1,2), stem(fss, abs(Xss))
hold on
subplot(2,1,2), plot(f, X, ’--’), xlabel(’f, Hz’), ylabel(’FFT and

Fourier transform’)
legend(’|X k|’, ’|X(f)|’)

% End of script file

19Ziemer, Tranter, and Fannin (1998), Chapter 10.
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Figure 2.32
(a) 𝑥 (𝑡) = exp (−|𝑡|∕𝜏) and samples taken each 𝑇

𝑠
= 1 s for 𝜏 = 2 s; (b) Magnitude of the 32-point FFT of the

sampled signal compared with the Fourier transform of 𝑥 (𝑡). The spectral plots deviate from each other
around 𝑓

𝑠
∕2 most due to aliasing.

■

Further Reading

Bracewell (1986) is a text concerned exclusively with Fourier theory and applications. Ziemer, Tranter,
and Fannin (1998) and Kamen and Heck (2007) are devoted to continuous- and discrete-time signal and
system theory and provide background for this chapter. More elementary books are McClellan, Schafer,
and Yoder (2003), Mersereau and Jackson (2006), and Wickert (2013).

Summary

1. Two general classes of signals are deterministic and
random.The former can be expressed as completely known
functions of time, whereas the amplitudes of random sig-
nals must be described probabilistically.

2. A periodic signal of period 𝑇0 is one for which
𝑥(𝑡) = 𝑥(𝑡 + 𝑇0), all 𝑡.
3. A single-sided spectrum for a rotating phasor 𝑥(𝑡) =
𝐴𝑒

𝑗(2𝜋𝑓0𝑡+𝜃) shows 𝐴 (amplitude) and 𝜃 (phase) versus 𝑓
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(frequency). The real, sinusoidal signal corresponding to
this phasor is obtained by taking the real part of 𝑥(𝑡).
A double-sided spectrum results if we think of forming
𝑥(𝑡) = 1

2
𝑥(𝑡) + 1

2
𝑥
∗(𝑡). Graphs of amplitude and phase (two

plots) of this rotating phasor sum versus 𝑓 are known as
two-sided amplitude and phase spectra, respectively. Such
spectral plots are referred to as frequency-domain repre-
sentations of the signal 𝐴 cos(2𝜋𝑓0𝑡 + 𝜃).
4. The unit impulse function, 𝛿(𝑡), can be thought of

as a zero-width, infinite-height pulse with unity area. The
sifting property, ∫

∞
−∞ 𝑥(𝜆)𝛿(𝜆 − 𝑡0) 𝑑𝜆 = 𝑥(𝑡0), where 𝑥(𝑡)

is continuous at 𝑡 = 𝑡0, is a generalization of the defining
relation for a unit impulse. The unit step function, 𝑢(𝑡), is
the integral of a unit impulse.

5. A signal 𝑥(𝑡) for which 𝐸 = ∫
∞
−∞ |𝑥(𝑡)|2 𝑑𝑡 is fi-

nite is called an energy signal. If 𝑥(𝑡) is such that 𝑃 =
lim

𝑇→∞
1
2𝑇

∫
𝑇

−𝑇 |𝑥(𝑡)|
2
𝑑𝑡 is finite, the signal is known as a

power signal. Example signals may be either or neither.

6. The complex exponential Fourier series is 𝑥(𝑡) =∑∞
𝑛=−∞𝑋𝑛

exp(𝑗2𝜋𝑛𝑓0𝑡) where 𝑓0 = 1∕𝑇0 and (𝑡0, 𝑡0 +
𝑇0) is the expansion interval. The expansion coefficients
are given by 𝑋

𝑛
= 1

𝑇0
∫
𝑡0+𝑇0
𝑡0

𝑥(𝑡) exp(−𝑗2𝜋𝑛𝑓0𝑡)𝑑𝑡. If 𝑥(𝑡)
is periodic with period 𝑇0, the exponential Fourier series
represents 𝑥(𝑡) exactly for all 𝑡, except at points of dis-
continuity where the Fourier sum converges to the mean
of the right- and left-handed limits of the signal at the
disconinuity.

7. For exponential Fourier series of real signals, the
Fourier coefficients obey 𝑋

𝑛
= 𝑋∗

−𝑛, which implies that
|𝑋

𝑛
| = |𝑋−𝑛| and ∕𝑋

𝑛
= −∕𝑋−𝑛. Plots of |𝑋𝑛

| and ∕𝑋
𝑛

versus 𝑛𝑓0 are referred to as the discrete, double-sided
amplitude and phase spectra, respectively, of 𝑥(𝑡). If 𝑥(𝑡)
is real, the amplitude spectrum is even and the phase spec-
trum is odd as functions of 𝑛𝑓0.

8. Parseval’s theorem for periodic signals is

1
𝑇0 ∫𝑇0

|𝑥 (𝑡)|2 𝑑𝑡 =
∞∑

𝑛=−∞

||𝑋𝑛
||
2

9. The Fourier transform of a signal 𝑥(𝑡) is

𝑋(𝑓 ) =
∫

∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

and the inverse Fourier transform is

𝑥(𝑡) =
∫

∞

−∞
𝑋(𝑓 )𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

For real signals, |𝑋(𝑓 )| = |𝑋(−𝑓 )| and ∕𝑋(𝑓 ) =
−∕𝑋(−𝑓 ).

10. Plots of |𝑋(𝑓 )| and ∕𝑋(𝑓 ) versus 𝑓 are referred to
as the double-sided amplitude and phase spectra, respec-
tively, of 𝑥(𝑡). As functions of frequency, the amplitude
spectrum of a real signal is even and its phase spectrum
is odd.

11. The energy of a signal is

∫

∞

−∞
|𝑥 (𝑡)|2 𝑑𝑡 =

∫

∞

−∞
|𝑋 (𝑓 )|2 𝑑𝑓

This is known as Rayleigh’s energy theorem. The energy
spectral density of a signal is 𝐺(𝑓 ) = |𝑋(𝑓 )|2. It is the
density of energy with frequency of the signal.

12. The convolution of two signals, 𝑥1(𝑡) and 𝑥2 (𝑡), is

𝑥(𝑡) = 𝑥1 ∗ 𝑥2 =
∫

∞

−∞
𝑥1(𝜆)𝑥2(𝑡 − 𝜆) 𝑑𝜆

=
∫

∞

−∞
𝑥1(𝑡 − 𝜆)𝑥2(𝜆) 𝑑𝜆

The convolution theorem of Fourier transforms states that
𝑋(𝑓 ) = 𝑋1(𝑓 )𝑋2(𝑓 ), where 𝑋(𝑓 ), 𝑋1(𝑓 ), and 𝑋2(𝑓 ) are
the Fourier transforms of 𝑥(𝑡), 𝑥1(𝑡), and 𝑥2 (𝑡), respec-
tively.

13. The Fourier transform of a periodic signal can be
obtained formally by Fourier-transforming its exponential
Fourier series termby termusing𝐴𝑒𝑗2𝜋𝑓0𝑡 ⟷ 𝐴𝛿(𝑓 − 𝑓0),
even though, mathematically speaking, Fourier transforms
of power signals do not exist. Amore convenient approach
is to convolve a pulse-type signal, 𝑝 (𝑡), with the ideal sam-
pling waveform to get a periodic signal of the form 𝑥 (𝑡) =
𝑝 (𝑡) ∗

∑∞
𝑚=−∞ 𝛿

(
𝑡 − 𝑚𝑇

𝑠

)
; it follows that its Fourier trans-

form is 𝑋 (𝑓 ) =
∑∞
𝑛=−∞ 𝑓𝑠𝑃

(
𝑛𝑓

𝑠

)
𝛿
(
𝑓 − 𝑛𝑓

𝑠

)
where

𝑃 (𝑓 ) is the Fourier transform of 𝑝 (𝑡) and 𝑓
𝑠
= 1∕𝑇

𝑠
. It

follows that the Fourier coeffcients are 𝑋
𝑛
= 𝑓

𝑠
𝑃
(
𝑛𝑓

𝑠

)
.

14. The power spectrum 𝑆(𝑓 ) of a power signal 𝑥(𝑡)
is a real, even, nonnegative function that integrates to
give total average power:

⟨
𝑥
2 (𝑡)

⟩
= ∫

∞
−∞ 𝑆(𝑓 ) 𝑑𝑓 where

⟨𝑤 (𝑡)⟩ ≜ lim
𝑇→∞

1
2𝑇

∫
𝑇

−𝑇 𝑤 (𝑡) 𝑑𝑡. The time-average auto-
correlation function of a power signal is defined as𝑅 (𝜏) =
⟨𝑥(𝑡)𝑥(𝑡 + 𝜏)⟩. The Wiener--Khinchine theorem states that
𝑆(𝑓 ) and 𝑅(𝜏) are Fourier-transform pairs.

15. A linear system, denoted operationally as(⋅), is one
for which superposition holds; that is, if 𝑦1 = (𝑥1) and
𝑦2 = (𝑥2), then (𝛼1𝑥1 + 𝛼2𝑥2) = 𝛼1𝑦1 + 𝛼2𝑦2, where
𝑥1 and 𝑥2 are inputs, 𝑦1 and 𝑦2 are outputs (the time vari-
able 𝑡 is suppressed for simplicity), and 𝛼1 and 𝛼2 are
arbitrary constants. A system is fixed, or time-invariant,
if, given 𝑦(𝑡) = [𝑥(𝑡)], the input 𝑥(𝑡 − 𝑡0) results in the
output 𝑦(𝑡 − 𝑡0).
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16. The impulse response ℎ(𝑡) of a linear time-invariant
(LTI) system is its response to an impulse applied at 𝑡 = 0:
ℎ(𝑡) = [𝛿(𝑡)]. The output of an LTI system to an input
𝑥(𝑡) is given by 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) = ∫

∞
−∞ ℎ (𝜏) 𝑥 (𝑡 − 𝜏) 𝑑𝜏.

17. A causal system is one that does not anticipate its
input. For such an LTI system, ℎ(𝑡) = 0 for 𝑡 < 0. A stable
system is one for which every bounded input results in a
bounded output. An LTI system is stable if and only if
∫

∞
−∞ |ℎ(𝑡)| 𝑑𝑡 < ∞.

18. The frequency response function 𝐻(𝑓 ) of an LTI
system is the Fourier transform of ℎ(𝑡). The Fourier trans-
form of the system output 𝑦(𝑡) due to an input 𝑥(𝑡) is
𝑌 (𝑓 ) = 𝐻(𝑓 )𝑋(𝑓 ), where 𝑋(𝑓 ) is the Fourier transform
of the input. |𝐻(𝑓 )| = |𝐻(−𝑓 )| is called the amplitude
response of the system and ∕𝐻(𝑓 ) = −∕𝐻(−𝑓 ) is called
the phase response.

19. For a fixed linear system with a periodic input,
the Fourier coefficients of the output are given by
𝑌
𝑛
= 𝐻(𝑛𝑓0)𝑋𝑛

, where {𝑋
𝑛
} represents the Fourier co-

efficients of the input.

20. Input and output spectral densities for a fixed linear
system are related by

𝐺
𝑦
(𝑓 ) = |𝐻(𝑓 )|2 𝐺

𝑥
(𝑓 ) (energy signals)

𝑆
𝑦
(𝑓 ) = |𝐻(𝑓 )|2 𝑆

𝑥
(𝑓 ) (power signals)

21. A system is distortionless if its output looks like
its input except for a time delay and amplitude scaling:
𝑦(𝑡) = 𝐻0𝑥(𝑡 − 𝑡0). The frequency response function of a
distortionless system is 𝐻(𝑓 ) = 𝐻0𝑒

−𝑗2𝜋𝑓𝑡0 . Such a sys-
tem’s amplitude response is |𝐻(𝑓 )| = 𝐻0 and its phase
response is ∕𝐻(𝑓 ) = −2𝜋𝑡0𝑓 over the band of frequen-
cies occupied by the input. Three types of distortion that
a system may introduce are amplitude, phase (or delay),
and nonlinear, depending on whether |𝐻(𝑓 )| ≠ constant,
∕𝐻(𝑓 ) ≠ −constant×𝑓 , or the system is nonlinear, respec-
tively. Two other important properties of a linear system
are the group and phase delays. These are defined by

𝑇
𝑔
(𝑓 ) = − 1

2𝜋
𝑑𝜃(𝑓 )
𝑑𝑓

and 𝑇
𝑝
(𝑓 ) = −𝜃 (𝑓 )

2𝜋𝑓
respectively, inwhich 𝜃(𝑓 ) is the phase response of the LTI
system. Phase distortionless systems have equal group and
phase delays (constant).

22. Ideal filters are convenient in communication system
analysis, even though they are noncausal. Three types of
ideal filters are lowpass, bandpass, and highpass. Through-
out their passbands, ideal filters have constant amplitude
response and linear phase response. Outside their pass-
bands, ideal filters perfectly reject all spectral components
of the input.

23. Approximations to ideal filters are Butterworth,
Chebyshev, and Bessel filters. The first two are attempts
at approximating the amplitude response of an ideal filter,
and the latter is an attempt to approximate the linear phase
response of an ideal filter.

24. An inequality relating the duration 𝑇 of a pulse
and its single-sided bandwidth 𝑊 is 𝑊 ≥ 1∕ (2𝑇 ). Pulse
risetime 𝑇

𝑅
and signal bandwidth are related approxi-

mately by 𝑊 = 1∕
(
2𝑇

𝑅

)
. These relationships hold for

the lowpass case. For bandpass filters and signals, the re-
quired bandwidth is doubled, and the risetime is that of the
envelope of the signal.

25. The sampling theorem for lowpass signals of band-
width 𝑊 states that a signal can be perfectly recovered
by lowpass filtering from sample values taken at a rate of
𝑓
𝑠
> 2𝑊 samples per second. The spectrumof an impulse-

sampled signal is

𝑋
𝛿
(𝑓 ) = 𝑓

𝑠

∞∑

𝑛=−∞
𝑋(𝑓 − 𝑛𝑓

𝑠
)

where 𝑋(𝑓 ) is the spectrum of the original signal. For
bandpass signals, lower sampling rates than specified by
the lowpass sampling theorem may be possible.

26. The Hilbert transform �̂�(𝑡) of a signal 𝑥(𝑡) corre-
sponds to a −90◦ phase shift of all the signal’s positive-
frequency components. Mathematically,

�̂� (𝑡) =
∫

∞

−∞

𝑥 (𝜆)
𝜋 (𝑡 − 𝜆)

𝑑𝜆

In the frequency domain, �̂�(𝑓 ) = −𝑗 sgn (𝑓 )𝑋(𝑓 ), where
sgn (𝑓 ) is the signum function, 𝑋(𝑓 ) = ℑ[𝑥(𝑡)], and
�̂�(𝑓 ) = ℑ[�̂�(𝑡)]. The Hilbert transform of cos𝜔0𝑡 is
sin𝜔0𝑡, and the Hilbert transform of sin𝜔0𝑡 is −cos𝜔0𝑡.
The power (or energy) in a signal and its Hilbert transform
are equal. A signal and its Hilbert transform are orthogonal
in the range (−∞,∞). If 𝑚(𝑡) is a lowpass signal and 𝑐(𝑡)
is a highpass signal with nonoverlapping spectra,

𝑚(𝑡)𝑐(𝑡) = 𝑚(𝑡)𝑐(𝑡)

The Hilbert transform can be used to define the analytic
signal

𝑧(𝑡) = 𝑥(𝑡) ± 𝑗𝑥(𝑡)

Themagnitude of the analytic signal, |𝑧(𝑡)|, is the envelope
of the real signal 𝑥(𝑡). The Fourier transform of an ana-
lytic signal, 𝑍(𝑓 ), is identically zero for 𝑓 < 0 or 𝑓 > 0,
respectively, depending on whether the + sign or − sign
is chosen for the imaginary part of 𝑧(𝑡).
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27. The complex envelope �̃�(𝑡) of a bandpass signal is
defined by

𝑥(𝑡) + 𝑗𝑥(𝑡) = 𝑥(𝑡)𝑒𝑗2𝜋𝑓0𝑡

where 𝑓0 is the reference frequency for the signal. Simi-
larly, the complex envelope ℎ̃(𝑡) of the impulse response
of a bandpass system is defined by

ℎ(𝑡) + 𝑗ℎ̂(𝑡) = ℎ̃(𝑡)𝑒𝑗2𝜋𝑓0𝑡

The complex envelope of the bandpass system output is
conveniently obtained in terms of the complex envelope
of the output, which can be found from either of the oper-
ations

𝑦(𝑡) = ℎ̃(𝑡) ∗ 𝑥(𝑡)

or

𝑦(𝑡) = ℑ−1
[
�̃�(𝑓 )𝑋(𝑓 )

]

where �̃�(𝑓 ) and 𝑋(𝑓 ) are the Fourier transforms of ℎ̃(𝑡)
and𝑥(𝑡), respectively. The actual (real) output is then given
by

𝑦(𝑡) = 1
2
Re

[
𝑦(𝑡)𝑒𝑗2𝜋𝑓0𝑡

]

28. The discrete Fourier transform (DFT) of a signal se-
quence

{
𝑥
𝑛

}
is defined as

𝑋
𝑘
=

𝑁−1∑

𝑛=0
𝑥
𝑛
𝑒
𝑗2𝜋𝑛𝑘∕𝑁 = DFT

[
{𝑥

𝑛
}
]
, 𝑘 = 0, 1, ..., 𝑁 − 1

and the inverse DFT can be found from

𝑥
𝑛
= 1
𝑁

DFT
[
{𝑋∗

𝑘
}
]∗
, 𝑘 = 0, 1, ..., 𝑁 − 1

The DFT can be used to digitally compute spectra of sam-
pled signals and to approximate operations carried out by
the normal Fourier transform, for example, filtering.

Drill Problems

2.1 Find the fundamental periods of the following sig-
nals:

(a) 𝑥1 (𝑡) = 10 cos (5𝜋𝑡)
(b) 𝑥2 (𝑡) = 10 cos (5𝜋𝑡) + 2 sin (7𝜋𝑡)
(c) 𝑥3 (𝑡) = 10 cos (5𝜋𝑡) + 2 sin (7𝜋𝑡) + 3 cos (6.5𝜋𝑡)
(d) 𝑥4 (𝑡) = exp (𝑗6𝜋𝑡)
(e) 𝑥5 (𝑡) = exp (𝑗6𝜋𝑡) + exp(−𝑗6𝜋𝑡)
(f) 𝑥6 (𝑡) = exp (𝑗6𝜋𝑡) + exp (𝑗7𝜋𝑡)

2.2 Plot the double-sided amplitude and phase spectra
of the periodic signals given in Drill Problem 2.1.

2.3 Plot the single-sided amplitude and phase spectra
of the periodic signals given in Drill Problem 2.1.

2.4 Evaluate the following integrals:

(a) 𝐼1 = ∫
10
−10 𝑢 (𝑡) 𝑑𝑡

(b) 𝐼2 = ∫
10
−10 𝛿 (𝑡 − 1) 𝑢 (𝑡) 𝑑𝑡

(c) 𝐼3 = ∫
10
−10 𝛿 (𝑡 + 1) 𝑢 (𝑡) 𝑑𝑡

(d) 𝐼4 = ∫
10
−10 𝛿 (𝑡 − 1) 𝑡2𝑑𝑡

(e) 𝐼5 = ∫
10
−10 𝛿 (𝑡 + 1) 𝑡2𝑑𝑡

(f) 𝐼6 = ∫
10
−10 𝑡

2
𝑢 (𝑡 − 1) 𝑑𝑡

2.5 Find the powers and energies of the following sig-
nals (0 and ∞ are possible answers):

(a) 𝑥1 (𝑡) = 2𝑢 (𝑡)

(b) 𝑥2 (𝑡) = 3Π
(
𝑡−1
2

)

(c) 𝑥3 (𝑡) = 2Π
(
𝑡−3
4

)

(d) 𝑥4 (𝑡) = cos (2𝜋𝑡)
(e) 𝑥5 (𝑡) = cos (2𝜋𝑡) 𝑢 (𝑡)
(f) 𝑥6 (𝑡) = cos2 (2𝜋𝑡) + sin2 (2𝜋𝑡)

2.6 Tell whether or not the following can be Fourier
coefficients of real signals (give reasons for your
answers):

(a) 𝑋1 = 1 + 𝑗; 𝑋−1 = 1 − 𝑗; all other Fourier coef-
ficients are 0

(b) 𝑋1 = 1 + 𝑗; 𝑋−1 = 2 − 𝑗; all other Fourier coef-
ficients are 0

(c) 𝑋1 = exp (−𝑗𝜋∕2) ; 𝑋−1 = exp (𝑗𝜋∕2) ; all other
Fourier coefficients are 0

(d) 𝑋1 = exp (𝑗3𝜋∕2) ; 𝑋−1 = exp (𝑗𝜋∕2) ; all other
Fourier coefficients are 0

(e) 𝑋1 = exp (𝑗3𝜋∕2) ;𝑋−1 = exp(𝑗5𝜋∕2); all other
Fourier coefficients are 0

2.7 By invoking uniqueness of the Fourier series, give
the complex exponential Fourier series coefficients for the
following signals:
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(a) 𝑥1 (𝑡) = 1 + cos (2𝜋𝑡)
(b) 𝑥2 (𝑡) = 2 sin (2𝜋𝑡)
(c) 𝑥3 (𝑡) = 2 cos (2𝜋𝑡) + 2 sin (2𝜋𝑡)
(d) 𝑥4 (𝑡) = 2 cos (2𝜋𝑡) + 2 sin (4𝜋𝑡)
(e) 𝑥5 (𝑡) = 2 cos (2𝜋𝑡) + 2 sin (4𝜋𝑡) + 3 cos (6𝜋𝑡)

2.8 Tell whether the following statements are true or
false and why:

(a) A triangular wave has only odd harmonics in its
Fourier series.

(b) The spectral content of a pulse train has more
higher-frequency content the longer the pulse
width.

(c) A full rectified sine wave has a fundamental fre-
quency, which is half that of the original sinusoid
that was rectified.

(d) The harmonics of a square wave decrease faster
with the harmonic number 𝑛 than those of a tri-
angular wave.

(e) The delay of a pulse train affects its amplitude
spectrum.

(f) The amplitude spectra of a half-rectified sine
wave and a half-rectified cosine wave are identi-
cal.

2.9 Given the Fourier-transform pairs Π (𝑡) ⟷
sinc(𝑓 ) and Λ (𝑡) ⟷ sinc2 (𝑓 ), use appropriate Fourier-
transform theorems to find Fourier transforms of the fol-
lowing signals. Tell which theorem(s) you used in each
case. Sketch signals and transforms.

(a) 𝑥1 (𝑡) = Π (2𝑡)
(b) 𝑥2 (𝑡) = sinc2 (4𝑡)
(c) 𝑥3 (𝑡) = Π (2𝑡) cos (6𝜋𝑡)

(d) 𝑥4 (𝑡) = Λ
(
𝑡−3
2

)

(e) 𝑥5 (𝑡) = Π (2𝑡) ⋆ Π (2𝑡)
(f) 𝑥6 (𝑡) = Π (2𝑡) exp (𝑗4𝜋𝑡)

(g) 𝑥7 (𝑡) = Π
(
𝑡

2

)
+ Λ (𝑡)

(h) 𝑥8 (𝑡) =
𝑑Λ(𝑡)
𝑑𝑡

(i) 𝑥9 (𝑡) = Π
(
𝑡

2

)
Λ (𝑡)

2.10 Obtain the Fourier transform of the signal 𝑥 (𝑡) =∑∞
𝑚=−∞ Λ (𝑡 − 3𝑚). Sketch the signal and its transform.

2.11 Obtain the power spectral densities corresponding
to the autocorrelation functions given below. Verify in
each case that the power spectral density integrates to the

total average power [i.e., 𝑅 (0)]. Provide a sketch of each
autocorrelation function and corresponding power spectral
density.

(a) 𝑅1 (𝜏) = 3Λ (𝜏∕2)
(b) 𝑅2 (𝜏) = 2 cos (4𝜋𝜏)
(c) 𝑅3 (𝜏) = 2Λ (𝜏∕2) cos (4𝜋𝜏)
(d) 𝑅4 (𝜏) = exp (−2 |𝜏|)
(e) 𝑅5 (𝜏) = 1 + cos (2𝜋𝜏)

2.12 Obtain the impulse response of a system with
frequency response function 𝐻 (𝑓 ) = 2∕ (3 + 𝑗2𝜋𝑓 ) +
1∕ (2 + 𝑗2𝜋𝑓 ). Plot the impulse response and the ampli-
tude and phase responses.

2.13 Tell whether or not the following systems are (1)
stable and (2) causal. Give reasons for your answers.

(a) ℎ1 (𝑡) = 3∕ (4 + |𝑡|)
(b) 𝐻2 (𝑓 ) = 1 + 𝑗2𝜋𝑓
(c) 𝐻3 (𝑓 ) = 1∕ (1 + 𝑗2𝜋𝑓 )
(d) ℎ4 (𝑡) = exp (−2 |𝑡|)
(e) ℎ5 (𝑡) =

[
2 exp (−3𝑡) + exp (−2𝑡)

]
𝑢 (𝑡)

2.14 Find the phase and group delays for the following
systems.

(a) ℎ1 (𝑡) = exp (−2𝑡) 𝑢 (𝑡)
(b) 𝐻2 (𝑓 ) = 1 + 𝑗2𝜋𝑓
(c) 𝐻3 (𝑓 ) = 1∕ (1 + 𝑗2𝜋𝑓 )
(d) ℎ4 (𝑡) = 2𝑡 exp (−3𝑡) 𝑢 (𝑡)

2.15 A filter has frequency response function

𝐻 (𝑓 ) =
[
Π
(
𝑓

30

)

+ Π
(
𝑓

10

)]
exp

[
−𝑗𝜋𝑓Π (𝑓∕15) ∕20

]

The input is 𝑥 (𝑡) = 2 cos
(
2𝜋𝑓1𝑡

)
+ cos

(
2𝜋𝑓2𝑡

)
. For the

values of 𝑓1 and 𝑓2 given below tell whether there is (1)
no distortion, (2) amplitude distortion, (3) phase or delay
distortion, or (4) both amplitude and phase (delay) distor-
tion.

(a) 𝑓1 = 2 Hz and 𝑓2 = 4 Hz
(b) 𝑓1 = 2 Hz and 𝑓2 = 6 Hz
(c) 𝑓1 = 2 Hz and 𝑓2 = 8 Hz
(d) 𝑓1 = 6 Hz and 𝑓2 = 7 Hz
(e) 𝑓1 = 6 Hz and 𝑓2 = 8 Hz
(f) 𝑓1 = 8 Hz and 𝑓2 = 16 Hz
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2.16 A filter has input-output transfer characteristic
given by 𝑦 (𝑡) = 𝑥 (𝑡) + 𝑥2 (𝑡). With the input 𝑥 (𝑡) =
cos

(
2𝜋𝑓1𝑡

)
+ cos

(
2𝜋𝑓2𝑡

)
tell what frequency compo-

nents will appear at the output.Which are distortion terms?

2.17 A filter has frequency response function

𝐻 (𝑗2𝜋𝑓 ) = 2
− (2𝜋𝑓 )2 + 𝑗4𝜋𝑓 + 1

. Find its 10% to 90%

risetime.

2.18 The signal 𝑥 (𝑡) = cos
(
2𝜋𝑓1𝑡

)
is sampled at 𝑓

𝑠
= 9

samples per second. Give the lowest frequency present in
the sampled signal spectrum for the following values of
𝑓1:

(a) 𝑓1 = 2 Hz
(b) 𝑓1 = 4 Hz
(c) 𝑓1 = 6 Hz
(d) 𝑓1 = 8 Hz

(e) 𝑓1 = 10 Hz

(f) 𝑓1 = 12 Hz

2.19 Give the Hilbert transforms of the following
signals:

(a) 𝑥1 (𝑡) = cos (4𝜋𝑡)
(b) 𝑥2 (𝑡) = sin (6𝜋𝑡)
(c) 𝑥3 (𝑡) = exp (𝑗5𝜋𝑡)
(d) 𝑥4 (𝑡) = exp (−𝑗8𝜋𝑡)
(e) 𝑥5 (𝑡) = 2 cos2 (4𝜋𝑡)
(f) 𝑥6 (𝑡) = cos (2𝜋𝑡) cos (10𝜋𝑡)
(g) 𝑥7 (𝑡) = 2 sin (4𝜋𝑡) cos (4𝜋𝑡)

2.20 Obtain the analytic signal and complex envelope of
the signal 𝑥 (𝑡) = cos (10𝜋𝑡), where 𝑓0 = 6 Hz.

Problems

Section 2.1

2.1 Sketch the single-sided and double-sided amplitude
and phase spectra of the following signals:

(a) 𝑥1(𝑡) = 10 cos(4𝜋𝑡 + 𝜋∕8) + 6 sin(8𝜋𝑡 + 3𝜋∕4)
(b) 𝑥2(𝑡) = 8 cos(2𝜋𝑡 + 𝜋∕3) + 4 cos(6𝜋𝑡 + 𝜋∕4)
(c) 𝑥3(𝑡) = 2 sin(4𝜋𝑡 + 𝜋∕8) + 12 sin(10𝜋𝑡)
(d) 𝑥4(𝑡) = 2 cos(7𝜋𝑡 + 𝜋∕4) + 3 sin(18𝜋𝑡 + 𝜋∕2)
(e) 𝑥5(𝑡) = 5 sin(2𝜋𝑡) + 4 cos(5𝜋𝑡 + 𝜋∕4)
(f) 𝑥6(𝑡) = 3 cos(4𝜋𝑡 + 𝜋∕8) + 4 sin(10𝜋𝑡 + 𝜋∕6)

2.2 A signal has the double-sided amplitude and phase
spectra shown in Figure 2.33.Write a time-domain expres-
sion for the signal.

Amplitude

4

2

20–2–4 4
f

Phase

–2 42–4
f

4
π–

2
π

2
π–

4
π

Figure 2.33

2.3 The sum of two or more sinusoids may or may not
be periodic depending on the relationship of their separate
frequencies. For the sum of two sinusoids, let the frequen-
cies of the individual terms be 𝑓1 and 𝑓2, respectively.
For the sum to be periodic, 𝑓1 and 𝑓2 must be commen-
surable; i.e., there must be a number 𝑓0 contained in each
an integral number of times. Thus, if 𝑓0 is the largest such
number,

𝑓1 = 𝑛1𝑓0 and 𝑓2 = 𝑛2𝑓0
where 𝑛1 and 𝑛2 are integers; 𝑓0 is the fundamental fre-
quency. Which of the signals given below are periodic?
Find the periods of those that are periodic.

(a) 𝑥1(𝑡) = 2 cos(2𝑡) + 4 sin(6𝜋𝑡)
(b) 𝑥2 (𝑡) = cos(6𝜋𝑡) + 7 cos(30𝜋𝑡)
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(c) 𝑥3(𝑡) = cos(4𝜋𝑡) + 9 sin(21𝜋𝑡)
(d) 𝑥4(𝑡) = 3 sin(4𝜋𝑡) + 5 cos(7𝜋𝑡) + 6 sin(11𝜋𝑡)
(e) 𝑥5 (𝑡) = cos(17𝜋𝑡) + 5 cos(18𝜋𝑡)
(f) 𝑥6(𝑡) = cos(2𝜋𝑡) + 7 sin(3𝜋𝑡)
(g) 𝑥7(𝑡) = 4 cos(7𝜋𝑡) + 5 cos(11𝜋𝑡)
(h) 𝑥8 (𝑡) = cos(120𝜋𝑡) + 3 cos(377𝑡)
(i) 𝑥9(𝑡) = cos(19𝜋𝑡) + 2 sin(21𝜋𝑡)
(j) 𝑥10(𝑡) = 5 cos(6𝜋𝑡) + 6 sin(7𝜋𝑡)

2.4 Sketch the single-sided and double-sided amplitude
and phase spectra of

(a) 𝑥1(𝑡) = 5 cos(12𝜋𝑡 − 𝜋∕6)
(b) 𝑥2(𝑡) = 3 sin(12𝜋𝑡) + 4 cos(16𝜋𝑡)
(c) 𝑥3 (𝑡) = 4 cos (8𝜋𝑡) cos (12𝜋𝑡)

(Hint: Use an appropriate trigonometric identity.)

(d) 𝑥4 (𝑡) = 8 sin (2𝜋𝑡) cos2 (5𝜋𝑡)

(Hint: Use appropriate trigonometric identities.)

(e) 𝑥5 (𝑡) = cos(6𝜋𝑡) + 7 cos(30𝜋𝑡)
(f) 𝑥6(𝑡) = cos(4𝜋𝑡) + 9 sin(21𝜋𝑡)
(g) 𝑥7(𝑡) = 2 cos(4𝜋𝑡) + cos(6𝜋𝑡) + 6 sin(17𝜋𝑡)

2.5

(a) Show that the function 𝛿
𝜖
(𝑡) sketched in Fig-

ure 2.4(b) has unity area.

(b) Show that

𝛿
𝜖
(𝑡) = 𝜖−1𝑒−𝑡∕𝜖𝑢(𝑡)

has unity area. Sketch this function for 𝜖 = 1, 1
2
,

and 1
4
. Comment on its suitability as an approxi-

mation for the unit impulse function.

(c) Show that a suitable approximation for the unit
impulse function as 𝜖 → 0 is given by

𝛿
𝜖
(𝑡) =

{
𝜖
−1 (1 − |𝑡| ∕𝜖) , |𝑡| ≤ 𝜖

0, otherwise

2.6 Use the properties of the unit impulse function
given after (2.14) to evaluate the following relations.

(a) ∫
∞
−∞[𝑡

2 + exp(−2𝑡)]𝛿(2𝑡 − 5) 𝑑𝑡

(b) ∫
10+

−10− (𝑡
2 + 1)

[∑∞
𝑛=−∞ 𝛿 (𝑡 − 5𝑛)

]
𝑑𝑡 (Note: 10+

means just to the right of 10; −10− means just

to the left of −10)

(c) 10𝛿 (𝑡) + 𝐴𝑑𝛿(𝑡)
𝑑𝑡

+ 3 𝑑
2
𝛿(𝑡)
𝑑𝑡2

= 𝐵𝛿 (𝑡) + 5 𝑑𝛿(𝑡)
𝑑𝑡

+

𝐶
𝑑
2
𝛿(𝑡)
𝑑𝑡2

; find 𝐴, 𝐵, and 𝐶

(d) ∫
11
−2 [𝑒

−4𝜋𝑡 + tan(10𝜋𝑡)]𝛿(4𝑡 + 3) 𝑑𝑡

(e) ∫
∞
−∞[cos(5𝜋𝑡) + 𝑒

−3𝑡] 𝑑𝛿
2(𝑡−2)
𝑑𝑡2

𝑑𝑡

2.7 Which of the following signals are periodic and
which are aperiodic? Find the periods of those that are
periodic. Sketch all signals.

(a) 𝑥
𝑎
(𝑡) = cos(5𝜋𝑡) + sin(7𝜋𝑡)

(b) 𝑥
𝑏
(𝑡) =

∑∞
𝑛=0 Λ(𝑡 − 2𝑛)

(c) 𝑥
𝑐
(𝑡) =

∑∞
𝑛=−∞ Λ(𝑡 − 2𝑛)

(d) 𝑥
𝑑
(𝑡) = sin(3𝑡) + cos(2𝜋𝑡)

(e) 𝑥
𝑒
(𝑡) =

∑∞
𝑛=−∞ Π(𝑡 − 3𝑛)

(f) 𝑥
𝑓
(𝑡) =

∑∞
𝑛=0 Π(𝑡 − 3𝑛)

2.8 Write the signal 𝑥(𝑡) = cos(6𝜋𝑡) + 2 sin(10𝜋𝑡) as

(a) The real part of a sum of rotating phasors.

(b) A sum of rotating phasors plus their complex
conjugates.

(c) From your results in parts (a) and (b), sketch
the single-sided and double-sided amplitude and
phase spectra of 𝑥(𝑡).

Section 2.2

2.9 Find the normalized power for each signal below
that is a power signal and the normalized energy for each
signal that is an energy signal. If a signal is neither a
power signal nor an energy signal, so designate it. Sketch
each signal (𝛼 is a positive constant).

(a) 𝑥1(𝑡) = 2 cos(4𝜋𝑡 + 2𝜋∕3)
(b) 𝑥2 (𝑡) = 𝑒−𝛼𝑡𝑢(𝑡)
(c) 𝑥3(𝑡) = 𝑒𝛼𝑡𝑢(−𝑡)

(d) 𝑥4(𝑡) =
(
𝛼
2 + 𝑡2

)−1∕2

(e) 𝑥5(𝑡) = 𝑒−𝛼|𝑡|

(f) 𝑥6 (𝑡) = 𝑒−𝛼𝑡𝑢(𝑡) − 𝑒−𝛼(𝑡−1)𝑢(𝑡 − 1)

2.10 Classify each of the following signals as an energy
signal or as a power signal by calculating 𝐸, the energy,
or 𝑃 , the power (𝐴,𝐵, 𝜃, 𝜔, and 𝜏 are positive constants).

(a) 𝑥1(𝑡) = 𝐴| sin (𝜔𝑡 + 𝜃) |

(b) 𝑥2(𝑡) = 𝐴𝜏∕
√
𝜏 + 𝑗𝑡, 𝑗 =

√
−1

(c) 𝑥3(𝑡) = 𝐴𝑡𝑒−𝑡∕𝜏𝑢 (𝑡)
(d) 𝑥4(𝑡) = Π(𝑡∕𝜏) + Π(𝑡∕2𝜏)
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(e) 𝑥5(𝑡) = Π (𝑡∕2) + Λ (𝑡)
(f) 𝑥6(𝑡) = 𝐴 cos (𝜔𝑡) + 𝐵 sin (2𝜔𝑡)

2.11 Find the powers of the following periodic signals. In
each case provide a sketch of the signal and give its period.

(a) 𝑥1 (𝑡) = 2 cos (4𝜋𝑡 − 𝜋∕3)

(b) 𝑥2 (𝑡) =
∑∞
𝑛=−∞ 3Π

(
𝑡−4𝑛
2

)

(c) 𝑥3 (𝑡) =
∑∞
𝑛=−∞ Λ

(
𝑡−6𝑛
2

)

(d) 𝑥4 (𝑡) =
∑∞
𝑛=−∞

[
Λ (𝑡 − 4𝑛) + Π

(
𝑡−4𝑛
2

)]

2.12 For each of the following signals, determine both
the normalized energy and power. Tell which are power
signals, which are energy signals, and which are neither.
(Note: 0 and ∞ are possible answers.)

(a) 𝑥1(𝑡) = 6𝑒(−3+𝑗4𝜋)𝑡𝑢 (𝑡)
(b) 𝑥2 (𝑡) = Π[(𝑡 − 3)∕2] + Π( 𝑡−3

6
)

(c) 𝑥3(𝑡) = 7𝑒𝑗6𝜋𝑡𝑢(𝑡)
(d) 𝑥4(𝑡) = 2 cos(4𝜋𝑡)
(e) 𝑥5 (𝑡) = |𝑡|

(f) 𝑥6 (𝑡) = 𝑡−1∕2𝑢 (𝑡 − 1)

2.13 Show that the following are energy signals. Sketch
each signal.

(a) 𝑥1(𝑡) = Π(𝑡∕12) cos(6𝜋𝑡)
(b) 𝑥2(𝑡) = 𝑒−|𝑡|∕3

(c) 𝑥3(𝑡) = 2𝑢(𝑡) − 2𝑢(𝑡 − 8)

(d) 𝑥4(𝑡) = ∫
𝑡

−∞ 𝑢(𝜆) 𝑑𝜆 − 2 ∫ 𝑡−10
−∞ 𝑢(𝜆) 𝑑𝜆 +

∫
𝑡−20
−∞ 𝑢 (𝜆) 𝑑𝜆

(Hint: Consider what the indefinite integral of a step func-
tion is first.)

2.14 Find the energies and powers of the following sig-
nals (note that 0 and ∞ are possible answers). Tell which
are energy signals and which are power signals.

(a) 𝑥1(𝑡) = cos(10𝜋𝑡)𝑢 (𝑡) 𝑢 (2 − 𝑡)

(b) 𝑥2(𝑡) =
∑∞
𝑛=−∞ Λ

(
𝑡−3𝑛
2

)

(c) 𝑥3(𝑡) = 𝑒−|𝑡| cos (2𝜋𝑡)

(d) 𝑥4 (𝑡) = Π
(
𝑡

2

)
+ Λ (𝑡)

Section 2.3

2.15 Using the uniqueness property of the Fourier series,
find exponential Fourier series for the following signals (𝑓0
is an arbitrary frequency):

(a) 𝑥1(𝑡) = sin2(2𝜋𝑓0𝑡)
(b) 𝑥2 (𝑡) = cos(2𝜋𝑓0𝑡) + sin(4𝜋𝑓0𝑡)
(c) 𝑥3(𝑡) = sin(4𝜋𝑓0𝑡) cos(4𝜋𝑓0𝑡)
(d) 𝑥4(𝑡) = cos3(2𝜋𝑓0𝑡)
(e) 𝑥5(𝑡) = sin(2𝜋𝑓0𝑡) cos2(4𝜋𝑓0𝑡)
(f) 𝑥6(𝑡) = sin2(3𝜋𝑓0𝑡) cos(5𝜋𝑓0𝑡)

(Hint: Use appropriate trigonometric identities and Euler’s
theorem.)

2.16 Expand the signal 𝑥(𝑡) = 2𝑡2 in a complex expo-
nential Fourier series over the interval |𝑡| ≤ 2. Sketch the
signal to which the Fourier series converges for all 𝑡.

2.17 If 𝑋
𝑛
= |𝑋

𝑛
| exp[𝑗⟋𝑋

𝑛
] are the Fourier coeffi-

cients of a real signal, 𝑥(𝑡), fill in all the steps to show that:

(a) ||𝑋𝑛
|| = ||𝑋−𝑛

|| and ∕𝑋
𝑛
= −∕𝑋−𝑛 .

(b) 𝑋
𝑛
is a real, even function of 𝑛 for 𝑥(𝑡) even.

(c) 𝑋
𝑛
is imaginary and an odd function of 𝑛 for 𝑥(𝑡)

odd.

(d) 𝑥(𝑡) = −𝑥(𝑡 + 𝑇0∕2) (halfwave odd symmetry)
implies that 𝑋

𝑛
= 0, 𝑛 even.

2.18 Obtain the complex exponential Fourier series coef-
ficients for the (a) pulse train, (b) half-rectified sinewave,
(c) full-rectified sinewave, and (d) triangular waveform as
given in Table 2.1.

2.19 Find the ratio of the power contained in a rectangu-
lar pulse train for ||𝑛𝑓0|| ≤ 𝜏

−1 to the total power for each
of the following cases:

(a) 𝜏∕𝑇0 =
1
2

(c) 𝜏∕𝑇0 =
1
10

(b) 𝜏∕𝑇0 =
1
5

(d) 𝜏∕𝑇0 =
1
20

(Hint: You can save work by noting the spectra are even
about 𝑓 = 0.)
2.20

(a) If 𝑥(𝑡) has the Fourier series

𝑥(𝑡) =
∞∑

𝑛=−∞
𝑋
𝑛
𝑒
𝑗2𝜋𝑛𝑓0𝑡

and 𝑦(𝑡) = 𝑥(𝑡 − 𝑡0), show that

𝑌
𝑛
= 𝑋

𝑛
𝑒
−𝑗2𝜋𝑛𝑓0𝑡0

where the 𝑌
𝑛
’s are the Fourier coefficients for

𝑦(𝑡).
(b) Verify the theorem proved in part (a) by exam-

ining the Fourier coefficients for 𝑥(𝑡) = cos(𝜔0𝑡)
and 𝑦(𝑡) = sin(𝜔0𝑡).
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(Hint: What delay, 𝑡0, will convert a cosine into a sine. Use
the uniqueness property to write down the corresponding
Fourier series.)

2.21 Use the Fourier series expansions of periodic square
wave and triangular wave signals to find the sum of the
following series:

(a) 1 − 1
3
+ 1

5
− 1

7
+⋯

(b) 1 + 1
9
+ 1

25
+ 1

49
+⋯

(Hint:Write down the Fourier series in each case and eval-
uate it for a particular, appropriately chosen value of 𝑡.)

2.22 Using the results given in Table 2.1 for the Fourier
coefficients of a pulse train, plot the double-sided am-
plitude and phase spectra for the waveforms shown in
Figure 2.34.
(Hint: Note that 𝑥

𝑏
(𝑡) = −𝑥

𝑎
(𝑡) + 𝐴. How is a sign change

and DC level shift manifested in the spectrum of the wave-
form?)

2.23

(a) Plot the single-sided and double-sided amplitude
and phase spectra of the square wave shown in
Figure 2.35(a).

(b) Obtain an expression relating the complex expo-
nential Fourier series coefficients of the triangular
waveform shown in Figure 2.35(b) and those of
𝑥
𝑎
(𝑡) shown in Figure 2.35(a).

(Hint: Note that 𝑥
𝑎
(𝑡) = 𝐾[𝑑𝑥

𝑏
(𝑡)∕𝑑𝑡], where 𝐾 is an

appropriate scale change.)

xa(t) xb(t)

A

tt

A
1
4

T0
1
4

T0

T0 2T0 T0 2T000

(b)(a)

Figure 2.34

A

–A
T0–T0 2T0

t

xa(t)

0

(b)(a)

B

B

T0–T0 2T0

t

xb(t)

0

Figure 2.35

(c) Plot the double-sided amplitude and phase spec-
tra for 𝑥

𝑏
(𝑡).

Section 2.4

2.24 Sketch each signal given below and find its Fourier
transform. Plot the amplitude and phase spectra of each
signal (𝐴 and 𝜏 are positive constants).

(a) 𝑥1(𝑡) = 𝐴 exp (−𝑡∕𝜏) 𝑢(𝑡)
(b) 𝑥2 (𝑡) = 𝐴 exp (𝑡∕𝜏) 𝑢(−𝑡)
(c) 𝑥3(𝑡) = 𝑥1(𝑡) − 𝑥2 (𝑡)
(d) 𝑥4(𝑡) = 𝑥1(𝑡) + 𝑥2 (𝑡) . Does the result check with

the answer found using Fourier-transform tables?

(e) 𝑥5 (𝑡) = 𝑥1 (𝑡 − 5)
(f) 𝑥6 (𝑡) = 𝑥1 (𝑡) − 𝑥1 (𝑡 − 5)

2.25

(a) Use the Fourier transform of

𝑥 (𝑡) = exp (−𝛼𝑡) 𝑢 (𝑡) − exp (𝛼𝑡) 𝑢 (−𝑡)

where 𝛼 > 0 to find the Fourier transform of the
signum function defined as

sgn (𝑡) =

{
1, 𝑡 > 0
−1, 𝑡 < 0

(Hint: Take the limit as 𝛼 → 0 of the Fourier transform
found.)
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Figure 2.36

(b) Use the result above and the relation 𝑢(𝑡) =
1
2

[
sgn (𝑡) + 1

]
to find the Fourier transform of

the unit step.

(c) Use the integration theorem and the Fourier trans-
form of the unit impulse function to find the
Fourier transform of the unit step. Compare the
result with part (b).

2.26 Using only the Fourier transform of the unit impulse
function and the differentiation theorem, find the Fourier
transforms of the signals shown in Figure 2.36.

2.27

(a) Write the signals of Figure 2.37 as the lin-
ear combination of two delayed triangular func-
tions. That is, write 𝑥

𝑎
(𝑡) = 𝑎1Λ

((
𝑡 − 𝑡1

)
∕𝑇1

)
+

𝑎2Λ
((
𝑡 − 𝑡2

)
∕𝑇2

)
by finding appropriate values

for 𝑎1, 𝑎2, 𝑡1, 𝑡2, 𝑇1, and 𝑇2. Do similar expres-
sions for all four signals shown in Figure 2.36.

(b) Given the Fourier-transform pair Λ (𝑡) ⟷
sinc2 (𝑓 ), find their Fourier transforms using the
superposition, scale-change, and time-delay the-

orems. Compare your results with the answers
obtained in Problem 2.26.

2.28

(a) Given Π (𝑡) ⟷ sinc(𝑓 ), find the Fourier trans-
forms of the following signals using the
frequency-translation followed by the time-delay
theorem.

(i) 𝑥1 (𝑡) = Π (𝑡 − 1) exp [𝑗4𝜋 (𝑡 − 1)]
(ii) 𝑥2 (𝑡) = Π (𝑡 + 1) exp [𝑗4𝜋 (𝑡 + 1)]

(b) Repeat the above, but now applying the time-
delay theorem followed by the frequency-
translation theorem.

2.29 By applying appropriate theorems and using the
signals defined in Problem 2.28, find Fourier transforms
of the following signals:

(a) 𝑥
𝑎
(𝑡) = 1

2
𝑥1 (𝑡) +

1
2
𝑥1 (−𝑡)

(b) 𝑥
𝑏
(𝑡) = 1

2
𝑥2 (𝑡) +

1
2
𝑥2 (−𝑡)
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2.30 Use the superposition, scale-change, and time-delay
theorems along with the transform pairsΠ (𝑡) ⟷ sinc(𝑓 ),
sinc(𝑡) ⟷ Π (𝑓 ), Λ (𝑡) ⟷ sinc2 (𝑓 ), and sinc2 (𝑡) ⟷
Λ (𝑓 ) to find Fourier transforms of the following:

(a) 𝑥1 (𝑡) = Π
(
𝑡−1
2

)

(b) 𝑥2 (𝑡) = 2 sinc[2 (𝑡 − 1)]

(c) 𝑥3 (𝑡) = Λ
(
𝑡−2
8

)

(d) 𝑥4 (𝑡) = sinc2
(
𝑡−3
4

)

(e) 𝑥5 (𝑡) = 5 sinc [2 (𝑡 − 1)] + 5 sinc [2 (𝑡 + 1)]

(f) 𝑥6 (𝑡) = 2Λ
(
𝑡−2
8

)
+ 2Λ

(
𝑡+2
8

)

2.31 Without actually computing them, but using appro-
priate sketches, tell if the Fourier transforms of the signals
given below are real, imaginary, or neither; even, odd, or
neither. Give your reasoning in each case.

(a) 𝑥1 (𝑡) = Π (𝑡 + 1∕2) − Π (𝑡 − 1∕2)
(b) 𝑥2 (𝑡) = Π (𝑡∕2) + Π (𝑡)
(c) 𝑥3 (𝑡) = sin (2𝜋𝑡) Π (𝑡)
(d) 𝑥4 (𝑡) = sin (2𝜋𝑡 + 𝜋∕4)Π (𝑡)
(e) 𝑥5 (𝑡) = cos (2𝜋𝑡) Π (𝑡)
(f) 𝑥6 (𝑡) = 1∕

[
1 + (𝑡∕5)4

]

2.32 Use the Poisson sum formula to obtain the Fourier
series of the signal

𝑥 (𝑡) =
∞∑

𝑚=−∞
Π
(
𝑡 − 4𝑚

2

)

2.33 Find and plot the energy spectral densities of the
following signals. Dimension your plots fully. Use appro-
priate Fourier-transforms pairs and theorems.

(a) 𝑥1(𝑡) = 10𝑒−5𝑡𝑢 (𝑡)
(b) 𝑥2 (𝑡) = 10 sinc (2𝑡)
(c) 𝑥3(𝑡) = 3Π(2𝑡)
(d) 𝑥4(𝑡) = 3Π(2𝑡) cos(10𝜋𝑡)

2.34 Evaluate the following integrals using Rayleigh’s
energy theorem (Parseval’s theorem for Fourier trans-
forms).

(a) 𝐼1 = ∫
∞
−∞

𝑑𝑓

𝛼2+(2𝜋𝑓 )2

[Hint: Consider the Fourier transform of exp (−𝛼𝑡) 𝑢 (𝑡).]

(b) 𝐼2 = ∫
∞
−∞ sinc 2(𝜏𝑓 ) 𝑑𝑓

(c) 𝐼3 = ∫
∞
−∞

𝑑𝑓

[𝛼2+(2𝜋𝑓 )2]2

(d) 𝐼4 = ∫
∞
−∞ sinc 4(𝜏𝑓 ) 𝑑𝑓

2.35 Obtain and sketch the convolutions of the following
signals.

(a) 𝑦1(𝑡) = 𝑒−𝛼𝑡𝑢(𝑡) ∗ Π(𝑡 − 𝜏), 𝛼 and 𝜏 positive con-
stants

(b) 𝑦2(𝑡) = [Π(𝑡∕2) + Π(𝑡)] ∗ Π(𝑡)
(c) 𝑦3(𝑡) = 𝑒−𝛼|𝑡| ∗ Π(𝑡), 𝛼 > 0
(d) 𝑦4(𝑡) = 𝑥(𝑡) ∗ 𝑢(𝑡), where 𝑥(𝑡) is any energy sig-

nal [you will have to assume a particular form
for 𝑥(𝑡) to sketch this one, but obtain the general
result before doing so].

2.36 Find the signals corresponding to the following
spectra. Make use of appropriate Fourier-transform the-
orems.

(a) 𝑋1 (𝑓 ) = 2 cos (2𝜋𝑓 ) Π (𝑓 ) exp (−𝑗4𝜋𝑓 )
(b) 𝑋2 (𝑓 ) = Λ (𝑓∕2) exp (−𝑗5𝜋𝑓 )

(c) 𝑋3 (𝑓 ) =
[
Π
(
𝑓+4
2

)
+ Π

(
𝑓−4
2

)]
exp (−𝑗8𝜋𝑓 )

2.37 Given the following signals, suppose that all energy
spectral components outside the bandwidth |𝑓 | ≤ 𝑊 are
removed by an ideal filter, while all energy spectral com-
ponents within this bandwidth are kept. Find the ratio of
energy kept to total energy in each case. (𝛼, 𝛽, and 𝜏 are
positive constants.)

(a) 𝑥1(𝑡) = 𝑒−𝛼𝑡𝑢(𝑡)
(b) 𝑥2 (𝑡) = Π(𝑡∕𝜏) (requires numerical integration)

(c) 𝑥3 (𝑡) = 𝑒−𝛼𝑡𝑢 (𝑡) − 𝑒−𝛽𝑡𝑢 (𝑡)

2.38

(a) Find the Fourier transform of the cosine pulse

𝑥(𝑡) = 𝐴Π
(
2𝑡
𝑇0

)
cos

(
𝜔0𝑡

)
, where 𝜔0 =

2𝜋
𝑇0

Express your answer in terms of a sum of sinc
functions. Provide MATLAB plots of 𝑥 (𝑡) and
𝑋 (𝑓 ) [note that 𝑋 (𝑓 ) is real].

(b) Obtain the Fourier transform of the raised cosine
pulse

𝑦(𝑡) = 1
2
𝐴Π

(
2𝑡
𝑇0

)[
1 + cos

(
2𝜔0𝑡

)]
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Provide MATLAB plots of 𝑦 (𝑡) and 𝑌 (𝑓 ) [note
that 𝑌 (𝑓 ) is real]. Compare with part (a).

(c) Use Equation (2.134) with the result of part (a)
to find the Fourier transform of the half-rectified
cosine wave.

2.39 Provide plots of the following functions of time and
find their Fourier transforms. Tell which ones should be
real and even functions of 𝑓 and which ones should be
imaginary and odd functions of 𝑓 . Do your results bear
this out?

(a) 𝑥1 (𝑡) = Λ
(
𝑡

2

)
+ Π

(
𝑡

2

)

(b) 𝑥2 (𝑡) = Π
(
𝑡

2

)
− Λ (𝑡)

(c) 𝑥3 (𝑡) = Π
(
𝑡 + 1

2

)
− Π

(
𝑡 − 1

2

)

(d) 𝑥4 (𝑡) = Λ (𝑡 − 1) − Λ (𝑡 + 1)
(e) 𝑥5 (𝑡) = Λ (𝑡)sgn(𝑡)
(f) 𝑥6 (𝑡) = Λ (𝑡) cos (2𝜋𝑡)

Section 2.5

2.40

(a) Obtain the time-average autocorrelation function
of 𝑥 (𝑡) = 3 + 6 cos (20𝜋𝑡) + 3 sin (20𝜋𝑡).

(Hint: Combine the cosine and sine terms into a single
cosine with a phase angle.)

(b) Obtain the power spectral density of the signal of
part (a). What is its total average power?

2.41 Find the power spectral densities and average pow-
ers of the following signals.

(a) 𝑥1 (𝑡) = 2 cos (20𝜋𝑡 + 𝜋∕3)
(b) 𝑥2 (𝑡) = 3 sin (30𝜋𝑡)
(c) x3 (𝑡) = 5 sin (10𝜋𝑡 − 𝜋∕6)
(d) 𝑥4 (𝑡) = 3 sin (30𝜋𝑡) + 5 sin (10𝜋𝑡 − 𝜋∕6)

2.42 Find the autocorrelation functions of the signals
having the following power spectral densities. Also give
their average powers.

(a) 𝑆1 (𝑓 ) = 4𝛿 (𝑓 − 15) + 4𝛿 (𝑓 + 15)
(b) 𝑆2 (𝑓 ) = 9𝛿 (𝑓 − 20) + 9𝛿 (𝑓 + 20)
(c) 𝑆3 (𝑓 ) = 16𝛿 (𝑓 − 5) + 16𝛿 (𝑓 + 5)
(d) 𝑆4 (𝑓 ) = 9𝛿 (𝑓 − 20) + 9𝛿 (𝑓 + 20) +

16𝛿 (𝑓 − 5) + 16𝛿 (𝑓 + 5)

2.43 By applying the properties of the autocorrelation
function, determine whether the following are acceptable

for autocorrelation functions. In each case, tell why or why
not.

(a) 𝑅1 (𝜏) = 2 cos (10𝜋𝜏) + cos (30𝜋𝜏)
(b) 𝑅2 (𝜏) = 1 + 3 cos (30𝜋𝜏)
(c) 𝑅3 (𝜏) = 3 cos (20𝜋𝜏 + 𝜋∕3)
(d) 𝑅4 (𝜏) = 4Λ (𝜏∕2)
(e) 𝑅5 (𝜏) = 3Π (𝜏∕6)
(f) 𝑅6 (𝜏) = 2 sin (10𝜋𝜏)

2.44 Find the autocorrelation functions corresponding to
the following signals.

(a) 𝑥1 (𝑡) = 2 cos (10𝜋𝑡 + 𝜋∕3)
(b) 𝑥2 (𝑡) = 2 sin (10𝜋𝑡 + 𝜋∕3)
(c) 𝑥3 (𝑡) = Re

[
3 exp (𝑗10𝜋𝑡) + 4𝑗 exp (𝑗10𝜋𝑡)

]

(d) 𝑥4 (𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡)

2.45 Show that the𝑅(𝜏) of Example 2.20 has the Fourier
transform𝑆(𝑓) given there. Plot the power spectral density.

Section 2.6

2.46 A system is governed by the differential equation
(𝑎, 𝑏, and 𝑐 are nonnegative constants)

𝑑𝑦 (𝑡)
𝑑𝑡

+ 𝑎𝑦 (𝑡) = 𝑏
𝑑𝑥 (𝑡)
𝑑𝑡

+ 𝑐𝑥 (𝑡)

(a) Find𝐻(𝑓 ).
(b) Find and plot |𝐻(𝑓 )| and ∕𝐻(𝑓 ) for 𝑐 = 0.

(c) Find and plot |𝐻(𝑓 )| and ∕𝐻(𝑓 ) for 𝑏 = 0.

2.47 For each of the following transfer functions, deter-
mine the unit impulse response of the system.

(a) 𝐻1(𝑓 ) =
1

7 + 𝑗2𝜋𝑓

(b) 𝐻2(𝑓 ) =
𝑗2𝜋𝑓

7 + 𝑗2𝜋𝑓
(Hint: Use long division first.)

(c) 𝐻3(𝑓 ) =
𝑒
−𝑗6𝜋𝑓

7 + 𝑗2𝜋𝑓

(d) 𝐻4(𝑓 ) =
1 − 𝑒−𝑗6𝜋𝑓
7 + 𝑗2𝜋𝑓

2.48 A filter has frequency response function 𝐻(𝑓 ) =
Π(𝑓∕2𝐵) and input 𝑥(𝑡) = 2𝑊 sinc (2𝑊 𝑡).

(a) Find the output 𝑦(𝑡) for𝑊 < 𝐵.

(b) Find the output 𝑦(𝑡) for𝑊 > 𝐵.

(c) In which case does the output suffer distortion?
What influenced your answer?
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2.49 A second-order active bandpass filter (BPF),
known as a bandpass Sallen--Key circuit, is shown in
Figure 2.37.

(a) Show that the frequency response function of this
filter is given by

𝐻(𝑗𝜔) =

(
𝐾𝜔0∕

√
2
)
(𝑗𝜔)

−𝜔2 +
(
𝜔0∕𝑄

)
(𝑗𝜔) + 𝜔2

0

, 𝜔 = 2𝜋𝑓

where

𝜔0 =
√
2(𝑅𝐶)−1

𝑄 =
√
2

4 −𝐾

𝐾 = 1 +
𝑅
𝑎

𝑅
𝑏

(b) Plot |𝐻(𝑓 )|.
(c) Show that the 3-dB bandwidth of the filter can be

expressed as 𝐵 = 𝑓0∕𝑄, where 𝑓0 = 𝜔0∕2𝜋.

R1 R1

R2

R2 L

L

x(t) y(t) y(t)

+

–

x(t)

+

–

+

–

Figure 2.38

(d) Design a BPF using this circuit with center fre-
quency 𝑓0 = 1000 Hz and 3-dB bandwidth of
300 Hz. Find values of 𝑅

𝑎
,𝑅

𝑏
, 𝑅, and 𝐶 that will

give these desired specifications.

2.50 For the two circuits shown in Figure 2.38, deter-
mine𝐻(𝑓 ) and ℎ(𝑡). Sketch accurately the amplitude and
phase responses. Plot the amplitude response in decibels.
Use a logarithmic frequency axis.

2.51 Using the Paley-Wiener criterion, show that

|𝐻 (𝑓 )| = exp(−𝛽𝑓 2)

is not a suitable amplitude response for a causal, linear
time-invariant filter.

2.52 Determine whether or not the filters with impulse
responses given below are BIBO stable. 𝛼 and 𝑓0 are pos-
tive constants.

(a) ℎ1 (𝑡) = exp (−𝛼 |𝑡|) cos
(
2𝜋𝑓0𝑡

)

(b) ℎ2 (𝑡) = cos
(
2𝜋𝑓0𝑡

)
𝑢 (𝑡)

(c) ℎ3 (𝑡) = 𝑡−1𝑢 (𝑡 − 1)
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Figure 2.39

(d) ℎ4 (𝑡) = 𝑒−𝑡𝑢 (𝑡) − 𝑒−(𝑡−1)𝑢 (𝑡 − 1)
(e) ℎ5 (𝑡) = 𝑡−2𝑢 (𝑡 − 1)
(f) ℎ6 (𝑡) = sinc(2𝑡)

2.53 Given a filter with frequency response function

𝐻 (𝑓 ) = 5
4 + 𝑗 (2𝜋𝑓 )

and input 𝑥(𝑡) = 𝑒−3𝑡𝑢(𝑡), obtain and plot accurately the
energy spectral densities of the input and output.

2.54 A filter with frequency response function

𝐻(𝑓 ) = 3Π
(
𝑓

62

)

has as an input a half-rectified cosine waveform of fun-
damental frequency 10 Hz. Determine an analytical ex-
pression for the output of the filter. Plot the output using
MATLAB.

2.55 Another definition of bandwidth for a signal is the
90% energy containment bandwidth. For a signal with en-
ergy spectral density 𝐺(𝑓 ) = |𝑋(𝑓 )|2, it is given by 𝐵90
in the relation

0.9𝐸Total =
∫

𝐵90

−𝐵90
𝐺(𝑓 ) 𝑑𝑓 = 2

∫

𝐵90

0
𝐺(𝑓 ) 𝑑𝑓 ;

𝐸Total =
∫

∞

−∞
𝐺(𝑓 ) 𝑑𝑓 = 2

∫

∞

0
𝐺(𝑓 ) 𝑑𝑓

Obtain 𝐵90 for the following signals if it is defined. If it is
not defined for a particular signal, state why it is not.

(a) 𝑥1(𝑡) = 𝑒−𝛼𝑡𝑢(𝑡), where 𝛼 is a positive constant

(b) 𝑥2 (𝑡) = 2𝑊 sinc (2𝑊 𝑡) where 𝑊 is a positive
constant

(c) 𝑥3(𝑡) = Π(𝑡∕𝜏) (requires numerical integration)

(d) 𝑥4 (𝑡) = Λ (𝑡∕𝜏) (requires numerical integration)

(e) 𝑥5 (𝑡) = 𝑒−𝛼|𝑡|

2.56 An ideal quadrature phase shifter has frequency re-
sponse function

𝐻(𝑓 ) =

{
𝑒
−𝑗𝜋∕2

, 𝑓 > 0
𝑒
+𝑗𝜋∕2

, 𝑓 < 0

Find the outputs for the following inputs:

(a) 𝑥1 (𝑡) = exp (𝑗100𝜋𝑡)
(b) 𝑥2 (𝑡) = cos (100𝜋𝑡)
(c) 𝑥3 (𝑡) = sin (100𝜋𝑡)
(d) 𝑥4 (𝑡) = Π (𝑡∕2)

2.57 A filter has amplitude response and phase shift
shown in Figure 2.39. Find the output for each of the
inputs given below. For which cases is the transmission
distortionless? Tell what type of distortion is imposed for
the others.

(a) cos (48𝜋𝑡) + 5 cos (126𝜋𝑡)
(b) cos (126𝜋𝑡) + 0.5 cos (170𝜋𝑡)
(c) cos (126𝜋𝑡) + 3 cos (144𝜋𝑡)
(d) cos (10𝜋𝑡) + 4 cos (50𝜋𝑡)

2.58 Determine and accurately plot, on the same set of
axes, the group delay and the phase delay for the systems
with unit impulse responses:

(a) ℎ1(𝑡) = 3𝑒−5𝑡𝑢 (𝑡)
(b) ℎ2(𝑡) = 5𝑒−3𝑡𝑢 (𝑡) − 2𝑒−5𝑡𝑢 (𝑡)
(c) ℎ3(𝑡) = sinc

[
2𝐵

(
𝑡 − 𝑡0

)]
where𝐵 and 𝑡0 are pos-

itive constants

(d) ℎ4(𝑡) = 5𝑒−3𝑡𝑢 (𝑡) − 2𝑒−3(𝑡−𝑡0)𝑢
(
𝑡 − 𝑡0

)
where 𝑡0

is a positive constant

2.59 A system has the frequency response function

𝐻 (𝑓 ) = 𝑗2𝜋𝑓
(8 + 𝑗2𝜋𝑓 ) (3 + 𝑗2𝜋𝑓 )

Determine and accurately plot the following: (a) The am-
plitude response; (b) The phase response; (c) The phase
delay; (d) The group delay.
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2.60 The nonlinear system defined by

𝑦(𝑡) = 𝑥(𝑡) + 0.1𝑥2(𝑡)

has an input signal with the bandpass spectrum

𝑋(𝑓 ) = 2Π
(
𝑓 − 10

4

)
+ 2Π

(
𝑓 + 10

4

)

Sketch the spectrum of the output, labeling all important
frequencies and amplitudes.

2.61 Given a filter with frequency response function

𝐻 (𝑓 ) = 𝑗2𝜋𝑓
(
9 − 4𝜋2𝑓 2

)
+ 𝑗0.3𝜋𝑓

Determine and accurately plot the following: (a) The am-
plitude response; (b) The phase response; (c) The phase
delay; (d) The group delay.

2.62 Given a nonlinear, zero-memory device with trans-
fer characteristic

𝑦 (𝑡) = 𝑥3 (𝑡) ,

find its output due to the input

𝑥 (𝑡) = cos (2𝜋𝑡) + cos (6𝜋𝑡)

List all frequency components and tell whether thay
are due to harmonic generation or intermodulation terms.

2.63 Find the impulse response of an ideal highpass filter
with the frequency response function

𝐻HP(𝑓 ) = 𝐻0

[
1 − Π

(
𝑓

2𝑊

)]
𝑒
−𝑗2𝜋𝑓𝑡0

2.64 Verify the pulsewidth-bandwidth relationship of
Equation (2.234) for the following signals. Sketch each
signal and its spectrum.

(a) 𝑥(𝑡) = 𝐴 exp(−𝑡2∕2𝜏2) (Gaussian pulse)
(b) 𝑥(𝑡) = 𝐴 exp(−𝛼 |𝑡|), 𝛼 > 0 (double-sided ex-

ponential)

2.65

(a) Show that the frequency response function of a
second-order Butterworth filter is

y(t) = x (t) * ∏[(t –     )/  ]τ τ
1
2δ

δ

δx(t) x (t)

(t – nTs)Σ
n=–∞

∞

h(t) = ∏[(t –     )/  ]τ τ
1
2

×

Figure 2.40

𝐻(𝑓 ) =
𝑓

2
3

𝑓
2
3 + 𝑗

√
2𝑓3𝑓 − 𝑓 2

where 𝑓3 is the 3-dB frequency in hertz.

(b) Find an expression for the group delay of this
filter. Plot the group delay as a function of 𝑓∕𝑓3.

(c) Given that the step response for a second-order
Butterworth filter is

𝑦
𝑠
(𝑡) =

[

1 − exp

(

−
2𝜋𝑓3𝑡√

2

)

×

(

cos
2𝜋𝑓3𝑡√

2
+ sin

2𝜋𝑓3𝑡√
2

)]

𝑢(𝑡)

where 𝑢(𝑡) is the unit step function, find the 10%
to 90% risetime in terms of 𝑓3.

Section 2.7

2.66 A sinusoidal signal of frequency 1 Hz is to be sam-
pled periodically.

(a) Find the maximum allowable time interval be-
tween samples.

(b) Samples are taken at 1
3
-s intervals (i.e., at a rate

of 𝑓
𝑠
= 3 sps). Construct a plot of the sampled

signal spectrum that illustrates that this is an ac-
ceptable sampling rate to allow recovery of the
original sinusoid.

(c) The samples are spaced 2
3
s apart. Construct a

plot of the sampled signal spectrum that shows
what the recovered signal will be if the samples
are passed through a lowpass filter such that only
the lowest frequency spectral lines are passed.

2.67 A flat-top sampler can be represented as the block
diagram of Figure 2.40.

(a) Assuming 𝜏 ≪ 𝑇
𝑠
, sketch the output for a typical

𝑥(𝑡).
(b) Find the spectrum of the output, 𝑌 (𝑓 ), in terms of

the spectrum of the input, 𝑋(𝑓 ). Determine the
relationship between 𝜏 and 𝑇

𝑠
required to mini-

mize distortion in the recovered waveform?

www.it-ebooks.info

http://www.it-ebooks.info/


110 Chapter 2 ∙ Signal and Linear System Analysis

y(t)δΣ
m=–∞

∞

h(t) = ∏[(t –       )/    ]
1
2

Ts Tsx(mTs)   (t – mTs)x (t) =δ

Figure 2.41

2.68 Figure 2.41 illustrates so-called zero-order-hold re-
construction.

(a) Sketch 𝑦(𝑡) for a typical 𝑥(𝑡). Under what condi-
tions is 𝑦(𝑡) a good approximation to 𝑥(𝑡)?

(b) Find the spectrum of 𝑦(𝑡) in terms of the spectrum
of 𝑥(𝑡). Discuss the approximation of 𝑦(𝑡) to 𝑥(𝑡)
in terms of frequency-domain arguments.

2.69 Determine the range of permissible cutoff frequen-
cies for the ideal lowpass filter used to reconstruct the
signal

𝑥(𝑡) = 10 cos2(600𝜋𝑡) cos(2400𝜋𝑡)

which is sampled at 4500 samples per second. Sketch𝑋(𝑓 )
and 𝑋

𝛿
(𝑓 ). Find the minimum allowable sampling fre-

quency.

2.70 Given the bandpass signal spectrum shown in Fig-
ure 2.42, sketch spectra for the following sampling rates
𝑓
𝑠
and indicate which ones are suitable.

(a) 2𝐵 (b) 2.5𝐵 (c) 3𝐵 (d) 4𝐵 (e) 5𝐵 (f) 6𝐵

Section 2.8

2.71 Using appropriate Fourier-transform theorems and
pairs, express the spectrum 𝑌 (𝑓 ) of

𝑦(𝑡) = 𝑥(𝑡) cos
(
𝜔0𝑡

)
+ 𝑥(𝑡) sin

(
𝜔0𝑡

)

in terms of the spectrum 𝑋(𝑓 ) of 𝑥(𝑡), where 𝑋(𝑓 ) is
lowpass with bandwidth

𝐵 < 𝑓0 =
𝜔0

2𝜋
Sketch 𝑌 (𝑓 ) for a typical 𝑋(𝑓 ).

X( f )

f (Hz)

A

–3B –2B –B 0 B 2B 3B

Figure 2.42

2.72 Show that 𝑥(𝑡) and 𝑥(𝑡) are orthogonal for the fol-
lowing signals:

X( f )

A

W
f

–W 0

Figure 2.43

(a) 𝑥1(𝑡) = sin
(
𝜔0𝑡

)

(b) 𝑥2(𝑡) = 2 cos
(
𝜔0𝑡

)
+ sin

(
𝜔0𝑡

)
cos

(
2𝜔0𝑡

)

(c) 𝑥3(𝑡) = 𝐴 exp
(
𝑗𝜔0𝑡

)

2.73 Assume that the Fourier transform of 𝑥(𝑡) is real
and has the shape shown in Figure 2.43. Determine and
plot the spectrum of each of the following signals:

(a) 𝑥1(𝑡) =
2
3
𝑥(𝑡) + 1

3
𝑗𝑥(𝑡)

(b) 𝑥2(𝑡) =
[
3
4
𝑥(𝑡) + 3

4
𝑗𝑥(𝑡)

]
𝑒
𝑗2𝜋𝑓0𝑡, 𝑓0 ≫ 𝑊

(c) 𝑥3(𝑡) =
[
2
3
𝑥(𝑡) + 1

3
𝑗𝑥(𝑡)

]
𝑒
𝑗2𝜋𝑊 𝑡

(d) 𝑥4(𝑡) =
[
2
3
𝑥(𝑡) − 1

3
𝑗𝑥(𝑡)

]
𝑒
𝑗𝜋𝑊 𝑡

2.74 Following Example 2.30, consider

𝑥 (𝑡) = 2 cos (52𝜋𝑡)

Find �̂� (𝑡), 𝑥
𝑝
(𝑡), �̃� (𝑡), 𝑥

𝑅
(𝑡), and 𝑥

𝐼
(𝑡) for the fol-

lowing cases: (a) 𝑓0 = 25 Hz; (b) 𝑓0 = 27 Hz; (c) 𝑓0 = 10
Hz; (d) 𝑓0 = 15 Hz; (e) 𝑓0 = 30 Hz; (f) 𝑓0 = 20 Hz.
2.75 Consider the input

𝑥(𝑡) = Π(𝑡∕𝜏) cos[2𝜋(𝑓0 + Δ𝑓 )𝑡], Δ𝑓 ≪ 𝑓0

to a filter with impulse response

ℎ(𝑡) = 𝛼𝑒−𝛼𝑡 cos(2𝜋𝑓0𝑡)𝑢(𝑡)

Find the output using complex envelope techniques.
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Computer Exercises

2.1 Write20 a computer program to sum the Fourier se-
ries for the signals given in Table 2.1. The number of terms
in the Fourier sum should be adjustable so that one may
study the convergence of each Fourier series.

2.2 Generalize the computer program of Computer Ex-
ample 2.1 to evaluate the coefficients of the complex
exponential Fourier series of several signals. Include a
plot of the amplitude and phase spectrum of the signal
for which the Fourier series coefficients are evaluated.
Check by evaluating the Fourier series coefficients of a
squarewave.

2.3 Write a computer program to evaluate the coeffi-
cients of the complex exponential Fourier series of a sig-
nal by using the fast Fourier transform (FFT). Check it by
evaluating the Fourier series coefficients of a squarewave
and comparing your results with Computer Exercise 2.2.

2.4 How would you use the same approach as in Com-
puter Exercise 2.3 to evaluate the Fourier transform of a
pulse-type signal. How do the two outputs differ? Com-
pute an approximation to the Fourier transform of a square
pulse signal 1 unit wide and compare with the theoretical
result.

2.5 Write a computer program to find the bandwidth of
a lowpass energy signal that contains a certain specified
percentage of its total energy, for example, 95%. In other
words, write a program to find𝑊 in the equation

𝐸
𝑊

=
∫
𝑊

0 𝐺
𝑥
(𝑓 ) 𝑑𝑓

∫
∞
0 𝐺

𝑥
(𝑓 ) 𝑑𝑓

× 100%

with 𝐸
𝑊

set equal to a specified value, where 𝐺
𝑋
(𝑓 ) is

the energy spectral density of the signal.

2.6 Write a computer program to find the time duration
of a lowpass energy signal that contains a certain specified
percentage of its total energy, for example, 95%. In other
words, write a program to find 𝑇 in the equation

𝐸
𝑇
=

∫
𝑇

0 |𝑥 (𝑡)|2 𝑑𝑡

∫
∞
0 |𝑥 (𝑡)|2 𝑑𝑡

× 100%

with 𝐸
𝑇
set equal to a specified value, where it is assumed

that the signal is zero for 𝑡 < 0.
2.7 Use a MATLAB program like Computer Example
2.2 to investigate the frequency response of the Sallen-
Key circuit for various 𝑄-values.

20When doing these computer exercises, we suggest that
the student make use of a mathematics package such as
MATLABTM. Considerable time will be saved in being able to
use the plotting capability of MATLABTM. You should strive
to use the vector capability of MATLABTM as well.
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CHAPTER3

LINEAR MODULATION TECHNIQUES

Before an information-bearing signal is transmitted through a communication channel, some type

of modulation process is typically utilized to produce a signal that can easily be accommodated

by the channel. In this chapter we will discuss various types of linear modulation techniques.

The modulation process commonly translates an information-bearing signal, usually referred to

as the message signal, to a new spectral location depending upon the intended frequency for

transmission. For example, if the signal is to be transmitted through the atmosphere or free

space, frequency translation is necessary to raise the signal spectrum to a frequency that can be

radiated efficiently with antennas of reasonable size. If more than one signal utilizes a channel,

modulation allows translation of different signals to different spectral locations, thus allowing

the receiver to select the desired signal. Multiplexing allows two or more message signals to be

transmitted by a single transmitter and received by a single receiver simultaneously. The logical

choice of a modulation technique for a specific application is influenced by the characteristics of

the message signal, the characteristics of the channel, the performance desired from the overall

communication system, the use to be made of the transmitted data, and the economic factors that

are always important in practical applications.

The two basic types of analog modulation are continuous-wave modulation and pulse modu-

lation. In continuous-wave modulation, which is the main focus of this chapter, a parameter of a

high-frequency carrier is varied proportionally to the message signal such that a one-to-one corre-

spondence exists between the parameter and the message signal. The carrier is usually assumed to

be sinusoidal, but as will be illustrated, this is not a necessary restriction. However, for a sinusoidal

carrier, a general modulated carrier can be represented mathematically as

𝒙
𝒄
(𝒕) = 𝑨(𝒕) 𝐜𝐨𝐬[𝟐𝝅𝒇

𝒄
𝒕+ 𝝓(𝒕)] (3.1)

where 𝒇
𝒄
is the carrier frequency. Since a sinusoid is completely specified by its amplitude,𝑨(𝒕), and

instantaneous phase, 𝟐𝝅𝒇
𝒄
+ 𝝓(𝒕), it follows that once the carrier frequency, 𝒇

𝒄
, is specified, only

two parameters are candidates to be varied in themodulation process: the instantaneous amplitude

𝑨(𝒕) and the phase deviation 𝝓(𝒕). When the amplitude 𝑨(𝒕) is linearly related to the modulating

signal, the result is linear modulation. Letting 𝝓(𝒕) or the time derivative of 𝝓(𝒕) be linearly related
to the modulating signal yields phase or frequency modulation, respectively. Collectively, phase

and frequencymodulation are referred to as anglemodulation, since the instantaneous phase angle

of the modulated carrier conveys the information.

112
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3.1 Double-Sideband Modulation 113

In this chapter we focus on continuous-wave linear modulation. However, at the end of
this chapter, we briefly consider pulse amplitude modulation, which is a linear process and a
simple application of the sampling theorem studied in the preceding chapter. In the following
chapter we consider angle modulation, both continuous wave and pulse.

■ 3.1 DOUBLE-SIDEBAND MODULATION

Ageneral linearlymodulated carrier is represented by setting the instantaneous phase deviation
𝜙(𝑡) in (3.1) equal to zero. Thus, a linearly modulated carrier is represented by

𝑥
𝑐
(𝑡) = 𝐴(𝑡) cos(2𝜋𝑓

𝑐
𝑡) (3.2)

in which the carrier amplitude 𝐴(𝑡) varies in one-to-one correspondence with the message
signal. We next discuss several different types of linear modulation as well as techniques that
can be used for demodulation.

Double-sideband (DSB) modulation results when 𝐴(𝑡) is proportional to the message
signal 𝑚(𝑡). Thus, the output of a DSB modulator can be represented as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) (3.3)

which illustrates that DSB modulation is simply the multiplication of a carrier, 𝐴
𝑐
cos(2𝜋𝑓

𝑐
𝑡),

by the message signal. It follows from the modulation theorem for Fourier transforms that the
spectrum of a DSB signal is given by

𝑋
𝑐
(𝑓 ) = 1

2
𝐴
𝑐
𝑀(𝑓 + 𝑓

𝑐
) + 1

2
𝐴
𝑐
𝑀(𝑓 − 𝑓

𝑐
) (3.4)

The process of DSB modulation is illustrated in Figure 3.1. Figure 3.1(a) illustrates
a DSB system and shows that a DSB signal is demodulated by multiplying the received
signal, denoted by 𝑥

𝑟
(𝑡), by the demodulation carrier 2 cos(2𝜋𝑓

𝑐
𝑡) and lowpass filtering. For

the idealized system that we are considering here, the received signal 𝑥
𝑟
(𝑡) is identical to the

transmitted signal 𝑥
𝑐
(𝑡). The output of the multiplier is

𝑑(𝑡) = 2𝐴
𝑐
[𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡)] cos(2𝜋𝑓

𝑐
𝑡) (3.5)

or

𝑑(𝑡) = 𝐴
𝑐
𝑚(𝑡) + 𝐴

𝑐
𝑚(𝑡) cos(4𝜋𝑓

𝑐
𝑡) (3.6)

where we have used the trigonometric identity 2 cos2 𝑥 = 1 + cos 2𝑥.
The time-domain signals are shown in Figure 3.1(b) for an assumed 𝑚(𝑡). The message

signal 𝑚(𝑡) forms the envelope, or instantaneous magnitude, of 𝑥
𝑐
(𝑡). The waveform for 𝑑(𝑡)

can be best understood by realizing that since cos2(2𝜋𝑓
𝑐
𝑡) is nonnegative for all 𝑡, then 𝑑(𝑡)

is positive if 𝑚(𝑡) is positive and 𝑑(𝑡) is negative if 𝑚(𝑡) is negative. Also note that 𝑚(𝑡)
(appropriately scaled) forms the envelope of 𝑑(𝑡) and that the frequency of the sinusoid under
the envelope is 2𝑓

𝑐
rather than 𝑓

𝑐
.

The spectra of the signals 𝑚(𝑡), 𝑥
𝑐
(𝑡) and 𝑑(𝑡) are shown in Figure 3.1(c) for an assumed

𝑀(𝑓 ) having a bandwidth𝑊 . The spectra𝑀(𝑓 + 𝑓
𝑐
) and𝑀(𝑓 − 𝑓

𝑐
) are simply the message

spectrum translated to 𝑓 = ±𝑓
𝑐
. The portion of𝑀(𝑓 − 𝑓

𝑐
) above the carrier frequency is called

the upper sideband (USB), and the portion below the carrier frequency is called the lower
sideband (LSB). Since the carrier frequency 𝑓

𝑐
is typically much greater than the bandwidth
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Figure 3.1
Double-sideband
modulation. (a) System.
(b) Example waveforms.
(c) Spectra.

of the message signal𝑊 , the spectra of the two terms in 𝑑(𝑡) do not overlap. Thus, 𝑑(𝑡) can be
lowpass filtered and amplitude scaled by𝐴

𝑐
to yield the demodulated output 𝑦

𝐷
(𝑡). In practice,

any amplitude scaling factor can be used since, as we saw in Chapter 2, multiplication by a
constant does not induce amplitude distortion and the amplitude can be adjusted as desired.
A volume control is an example. Thus, for convenience, 𝐴

𝑐
is usually set equal to unity at
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3.1 Double-Sideband Modulation 115

the demodulator output. For this case, the demodulated output 𝑦
𝐷
(𝑡) will equal the message

signal 𝑚(𝑡). The lowpass filter that removes the term at 2𝑓
𝑐
must have a bandwidth greater

than or equal to the bandwidth of the message signal𝑊 . We will see in Chapter 8 that when
noise is present, this lowpass filter, known as the postdetection filter, should have the smallest
possible bandwidth since minimizing the bandwidth of the postdetection filter is important for
removing out-of-band noise or interference.

We will see later that DSB is 100% power efficient because all of the transmitted power
lies in the sidebands and it is the sidebands that carry the message signal𝑚(𝑡). This makes DSB
modulation power efficient and therefore attractive, especially in power-limited applications.
Demodulation of DSB is difficult, however, because the presence of a demodulation carrier,
phase coherentwith the carrier used formodulation at the transmitter, is required at the receiver.
Demodulation utilizing a coherent reference is known as synchronous or coherent demodula-
tion. The generation of a phase coherent demodulation carrier can be accomplished using a
variety of techniques, including the use of a Costas phase-locked loop to be considered in the
following chapter. The use of these techniques complicate receiver design. In addition, careful
attention is required to ensure that phase errors in the demodulation carrier are minimized since
even small phase errors can result in serious distortion of the demodulated message waveform.
This effect will be thoroughly analyzed in Chapter 8, but a simplified analysis can be carried
out by assuming a demodulation carrier in Figure 3.1(a) of the form 2 cos[2𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)], where

𝜃(𝑡) is a time-varying phase error. Applying the trigonometric identity

2 cos (𝑥) cos (𝑦) = cos (𝑥 + 𝑦) + cos (𝑥 − 𝑦)

yields

𝑑(𝑡) = 𝐴
𝑐
𝑚(𝑡) cos 𝜃(𝑡) + 𝐴

𝑐
𝑚(𝑡) cos[4𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)] (3.7)

which, after lowpass filtering and amplitude scaling to remove the carrier amplitude, becomes

𝑦
𝐷
(𝑡) = 𝑚(𝑡) cos 𝜃(𝑡) (3.8)

assuming, once again, that the spectra of the two terms of 𝑑(𝑡) do not overlap. If the phase error
𝜃(𝑡) is a constant, the effect of the phase error is an attenuation of the demodulated message
signal. This does not represent distortion, since the effect of the phase error can be removed
by amplitude scaling unless 𝜃(𝑡) is 𝜋∕2. However, if 𝜃(𝑡) is time varying in an unknown and
unpredictable manner, the effect of the phase error can be serious distortion of the demodulated
output.

A simple technique for generating a phase coherent demodulation carrier is to square the
received DSB signal, which yields

𝑥
2
𝑟
(𝑡) = 𝐴2

𝑐
𝑚
2(𝑡) cos2(2𝜋𝑓

𝑐
𝑡)

= 1
2
𝐴
2
𝑐
𝑚
2(𝑡) + 1

2
𝐴
2
𝑐
𝑚
2(𝑡) cos(4𝜋𝑓

𝑐
𝑡) (3.9)

If 𝑚(𝑡) is a power signal, 𝑚2(𝑡) has a nonzero DC value. Thus, by the modulation theorem,
𝑥
2
𝑟
(𝑡) has a discrete frequency component at 2𝑓

𝑐
, which can be extracted from the spectrum of

𝑥
2
𝑟
(𝑡) using a narrowband bandpass filter. The frequency of this component can be divided by

2 to yield the desired demodulation carrier. Later we will discuss a convenient technique for
implementing the required frequency divider.
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The analysis of DSB illustrates that the spectrum of a DSB signal does not contain a
discrete spectral component at the carrier frequency unless 𝑚(𝑡) has a DC component. For
this reason, DSB systems with no carrier frequency component present are often referred to
as suppressed carrier systems. However, if a carrier component is transmitted along with
the DSB signal, demodulation can be simplified. The received carrier component can be
extracted using a narrowband bandpass filter and can be used as the demodulation carrier. If
the carrier amplitude is sufficiently large, the need for generating a demodulation carrier can
be completely avoided. This naturally leads to the subject of amplitude modulation.

■ 3.2 AMPLITUDE MODULATION (AM)

Amplitude modulation results when a carrier component is added to a DSB signal. Adding a
carrier component, 𝐴

𝑐
cos

(
2𝜋𝑓

𝑐
𝑡
)
to the DSB signal given by (3.3) and scaling the message

signal gives

𝑥
𝑐
(𝑡) = 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡) (3.10)

in which 𝑎 is the modulation index,1 which typically takes on values in the range 0 < 𝑎 ≤ 1,
and 𝑚

𝑛
(𝑡) is a scaled version of the message signal 𝑚(𝑡). The scaling is applied to ensure that

𝑚
𝑛
(𝑡) ≥ −1 for all 𝑡. Mathematically

𝑚
𝑛
(𝑡) = 𝑚(𝑡)

|min[𝑚(𝑡)]|
(3.11)

We note that for 𝑎 ≤ 1, the condition 𝑚
𝑛
(𝑡) ≥ −1 for all 𝑡 ensures that the envelope of the AM

signal defined by [1 + 𝑎𝑚
𝑛
(𝑡)] is nonnegative for all 𝑡. We will understand the importance of

this condition when we study envelope detection in the following section. The time-domain
representation of AM is illustrated in Figure 3.2(a) and (b), and the block diagram of the
modulator for producing AM is shown in Figure 3.2(c).

An AM signal can be demodulated using the same coherent demodulation technique
that was used for DSB. However, the use of coherent demodulation negates the advantage
of AM. The advantage of AM over DSB is that a very simple technique, known as envelope
detection or envelope demodulation, can be used. An envelope demodulator is implemented
as shown in Figure 3.3(a). It can be seen from Figure 3.2(b) that, as the carrier frequency
is increased, the envelope, defined as 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)], becomes well defined and easier to

observe. More importantly, it also follows from observation of Figure 3.3(b) that, if the
envelope of the AM signal 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] goes negative, distortion will result in the de-

modulated signal assuming that envelope demodulation is used. The normalized message
signal is defined so that this distortion is prevented. Thus, for 𝑎 = 1, the minimum value of
1 + 𝑎𝑚

𝑛
(𝑡) is zero. In order to ensure that the envelope is nonnegative for all 𝑡 we require

that 1 + 𝑚
𝑛
(𝑡) ≥ 0 or, equivalently, 𝑚

𝑛
(𝑡) ≥ −1 for all 𝑡. The normalized message signal 𝑚

𝑛
(𝑡)

is therefore found by dividing 𝑚(𝑡) by a positive constant so that the condition 𝑚
𝑛
(𝑡) ≥ −1

is satisfied. This normalizing constant is |min𝑚(𝑡)|. In many cases of practical interest,
such as speech or music signals, the maximum and minimum values of the message signal

1The parameter 𝑎 as used here is sometimes called the negative modulation factor. Also, the quantity 𝑎 × 100% is
often referred to as the percent modulation.
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are equal. We will see why this is true when we study probability and random signals in
Chapters 6 and 7.

3.2.1 Envelope Detection

In order for the envelope detection process to operate properly, the RC time constant of the
detector, shown in Figure 3.3(a), must be chosen carefully. The appropriate value for the
time constant is related to the carrier frequency and to the bandwidth of 𝑚(𝑡). In practice,
satisfactory operation requires a carrier frequency of at least 10 times the bandwidth of 𝑚(𝑡),
which is designated𝑊 . Also, the cutoff frequency of the RC circuit must lie between 𝑓

𝑐
and

𝑊 and must be well separated from both. This is illustrated in Figure 3.3(c).
All information in the modulator output is contained in the sidebands. Thus, the car-

rier component of (3.10), 𝐴
𝑐
cos𝜔

𝑐
𝑡, is wasted power as far as information transfer is con-

cerned. This fact can be of considerable importance in an environment where power is limited
and can completely preclude the use of AM as a modulation technique in power-limited
applications.

From (3.10) we see that the total power contained in the AM modulator output is

⟨𝑥2
𝑐
(𝑡)⟩ = ⟨𝐴2

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)]2 cos2(2𝜋𝑓

𝑐
𝑡)⟩ (3.12)

where ⟨⋅⟩ denotes the time average value. If 𝑚
𝑛
(𝑡) is slowly varying with respect to the carrier

⟨
𝑥
2
𝑐

⟩
=

⟨
𝐴
2
𝑐

[
1 + 𝑎𝑚

𝑛
(𝑡)

]2 [1
2
+ 1

2
cos(4𝜋𝑓

𝑐
𝑡

]⟩
(3.13)

=
⟨1
2
𝐴
2
𝑐

[
1 + 2𝑎𝑚

𝑛
(𝑡) + 𝑎2𝑚2

𝑛
(𝑡)

]⟩

Assuming 𝑚
𝑛
(𝑡) to have zero average value and taking the time average term-by-term

gives

⟨𝑥2
𝑐
(𝑡)⟩ = 1

2
𝐴
2
𝑐
+ 1

2
𝐴
2
𝑐
𝑎
2⟨𝑚2

𝑛
(𝑡)⟩ (3.14)

The first term in the preceding expression represents the carrier power, and the second term
represents the sideband (information) power. The efficiency of the modulation process is
defined as the ratio of the power in the information-bearing signal (the sideband power) to the
total power in the transmitted signal. This is

𝐸
𝑓𝑓

=
𝑎
2⟨𝑚2

𝑛
(𝑡)⟩

1 + 𝑎2⟨𝑚2
𝑛
(𝑡)⟩

(3.15)

The efficiency is typically multiplied by 100 so that efficiency can be expressed as a
percent.

If the message signal has symmetrical maximum and minimum values, such that
|min𝑚(𝑡)| and |max𝑚(𝑡)| are equal, then ⟨𝑚2

𝑛
(𝑡)⟩ ≤ 1. It follows that for 𝑎 ≤ 1, the maxi-

mum efficiency is 50% and is achieved for square-wave-type message signals. If𝑚(𝑡) is a sine
wave, ⟨𝑚2

𝑛
(𝑡)⟩ = 1

2 and the efficiency is 33:3% for 𝑎 = 1. Note that if we allow the modulation
index to exceed 1, efficiency can exceed 50% and that 𝐸

𝑓𝑓
→ 100% as 𝑎→ ∞. Values of 𝑎

greater than 1, as we have seen, preclude the use of envelope detection. Efficiency obviously
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Modulated carrier and
envelope detector outputs
for various values of the
modulation index.
(a) 𝑎 = 0.5. (b) 𝑎 = 1.0.
(c) 𝑎 = 1.5.

declines rapidly as the index is reduced below unity. If the message signal does not have sym-
metrical maximum and minimum values, then higher values of efficiency can be achieved.

The main advantage of AM is that since a coherent reference is not needed for demodula-
tion as long as 𝑎 ≤ 1, the demodulator becomes simple and inexpensive. In many applications,
such as commercial radio, this fact alone is sufficient to justify its use.

The AM modulator output 𝑥
𝑐
(𝑡) is shown in Figure 3.4 for three values of the modula-

tion index: 𝑎 = 0.5, 𝑎 = 1.0, and 𝑎 = 1.5. The message signal 𝑚(𝑡) is assumed to be a unity
amplitude sinusoid with a frequency of 1 Hz. A unity amplitude carrier is also assumed. The
envelope detector output 𝑒0(𝑡), as identified in Figure 3.3, is also shown for each value of
the modulation index. Note that for 𝑎 = 0.5 the envelope is always positive. For 𝑎 = 1.0 the
minimum value of the envelope is exactly zero. Thus, envelope detection can be used for both
of these cases. For 𝑎 = 1.5 the envelope goes negative and 𝑒0(𝑡), which is the absolute value
of the envelope, is a badly distorted version of the message signal.
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EXAMPLE 3.1

In this example we determine the efficiency and the output spectrum for an AM modulator operating
with a modulation index of 0.5. The carrier power is 50𝑊 , and the message signal is

𝑚(𝑡) = 4 cos
(
2𝜋𝑓

𝑚
𝑡 − 𝜋

9

)
+ 2 sin(4𝜋𝑓

𝑚
𝑡) (3.16)

The first step is to determine the minimum value of 𝑚(𝑡). There are a number of ways to accomplish this.
Perhaps the easiest way is to simply plot 𝑚(𝑡) and pick off the minimum value. MATLAB is very useful
for this purpose as shown in the following program. The only drawback to this approach is that𝑚(𝑡)must
be sampled at a sufficiently high frequency to ensure that the maximum value of 𝑚(𝑡) is determined with
the required accuracy.

%File: c3ex1.m
fmt=0:0.0001:1;
m=4*cos(2*pi*fmt-pi/9) + 2*sin(4*pi*fmt);
[minmessage,index]=min(m);
plot(fmt,m,‘k’),
grid, xlabel(‘Normalized Time’), ylabel(‘Amplitude’)
minmessage, mintime=0.0001*(index-1)

%End of script file.

Executing the program yields the plot of the message signal, the minimum value of 𝑚(𝑡), and the
occurrence time for the minimum value as follows:

minmessage=-4.3642

mintime=0.4352

The message signal as generated by the MATLAB program is shown in Figure 3.5(a). Note that the time
axis is normalized by multiplying by 𝑓

𝑚
. As shown, the minimum value of 𝑚(𝑡) is −4.364 and occurs at

𝑓
𝑚
𝑡 = 0.435, as shown. The normalized message signal is therefore given by

𝑚
𝑛
(𝑡) = 1

4.364

[
4 cos

(
2𝜋𝑓

𝑚
𝑡 − 𝜋

9

)
+ 2 sin(4𝜋𝑓

𝑐
𝑡)
]

(3.17)

or

𝑚
𝑛
(𝑡) = 0.9166 cos

(
2𝜋𝑓

𝑚
𝑡 − 𝜋

9

)
+ 0.4583 sin(4𝜋𝑓

𝑚
𝑡) (3.18)

The mean-square value of 𝑚
𝑛
(𝑡) is

⟨𝑚2
𝑛
(𝑡)⟩ = 1

2
(0.9166)2 + 1

2
(0.4583)2 = 0.5251 (3.19)

Thus, the efficiency is

𝐸
𝑓𝑓
= (0.25)(0.5251)

1 + (0.25)(0.5251)
= 0.116 (3.20)

or 11.6%.
Since the carrier power is 50 W, we have

1
2
(𝐴

𝑐
)2 = 50 (3.21)

from which

𝐴
𝑐
= 10 (3.22)
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Waveform and spectra for Example 3.1. (a) Message signal. (b) Amplitude spectrum of the modulator
output. (c) Phase spectrum of the modulator output.

Also, since sin 𝑥 = cos(𝑥 − 𝜋∕2), we can write 𝑥
𝑐
(𝑡) as

𝑥
𝑐
(𝑡) = 10

{
1 + 0.5

[
0.9166 cos

(
2𝜋𝑓

𝑚
𝑡 − 𝜋

9

)
+ 0.4583 cos

(
4𝜋𝑓

𝑚
𝑡 − 𝜋

2

)]}
cos(2𝜋𝑓

𝑐
𝑡) (3.23)

In order to plot the spectrum of 𝑥
𝑐
(𝑡), we write the preceding equation as

𝑥
𝑐
(𝑡) = 10 cos(2𝜋𝑓

𝑐
𝑡)

www.it-ebooks.info

http://www.it-ebooks.info/


122 Chapter 3 ∙ Linear Modulation Techniques

+2.292
{
cos

[
2𝜋(𝑓

𝑐
+ 𝑓

𝑚
)𝑡 − 𝜋

9

]
+ cos

[
2𝜋(𝑓

𝑐
+ 𝑓

𝑚
)𝑡 + 𝜋

9

]}

+1.146
{
cos

[
2𝜋(𝑓

𝑐
+ 2𝑓

𝑚
)𝑡 − 𝜋

2

]
+ cos

[
2𝜋(𝑓

𝑐
+ 2𝑓

𝑚
)𝑡 + 𝜋

2

]}
(3.24)

Figures 3.5(b) and (c) show the amplitude and phase spectra of 𝑥
𝑐
(𝑡). Note that the amplitude spectrum

has even symmetry about the carrier frequency and that the phase spectrum has odd symmetry about
the carrier frequency. Of course, since 𝑥

𝑐
(𝑡) is a real signal, the overall amplitude spectrum is also even

about 𝑓 = 0, and the overall phase spectrum is odd about 𝑓 = 0.
■

3.2.2 The Modulation Trapezoid

Anice tool formonitoring themodulation index of anAM signal is themodulation trapezoid. If
the modulated carrier, 𝑥

𝑐 (𝑡), is placed on the vertical input to an oscilloscope and the message
signal, 𝑚 (𝑡), on the horizonal input, the envelope of the modulation trapezoid is produced.
The basic form of the modulation trapezoid is illustrated in Figure 3.6. The trapezoid is easily
interpreted and is shown in Figure 3.6 for 𝑎 < 1. In drawing Figure 3.6 it is assumed that
max

[
𝑚
𝑛 (𝑡)

]
= 1 and that min

[
𝑚
𝑛 (𝑡)

]
= −1, which is typically the case. Note that

𝐴 = 2𝐴
𝑐
(1 + 𝑎) (3.25)

and

𝐵 = 2𝐴
𝑐
(1 − 𝑎) (3.26)

Therefore,

𝐴 + 𝐵 = 4𝐴
𝑐

(3.27)

and

𝐴 − 𝐵 = 4𝐴
𝑐
𝑎 (3.28)

The modulation index is given by

𝐴 − 𝐵
𝐴 + 𝐵

=
4𝐴

𝑐
𝑎

4𝐴
𝑐

= 𝑎 (3.29)

Figure 3.7 provides specific examples for 𝑎 = 0.3, 0.7, 1.0, and 1.5.

Ac(1 + a)

–Ac(1 + a)

Ac(1 – a)

–Ac(1 – a)

0 AB

Figure 3.6
General form of the modulation trapezoid.
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Figure 3.7
Modulation trapezoid for 𝑎 = 0.3, 0.7, 1.0, and 1.5.

Note that the tops and bottoms of the envelope of the modulation trapezoid are straight
lines. This provides a simple test for linearity. If the modulator/transmitter combination is
not linear, the shape of the top and bottom edges of the trapezoid are no longer straight
lines. Therefore, the modulation trapezoid is a test for linearity as illustrated in the following
Computer Example 3.1

COMPUTER EXAMPLE 3.1

In this example we consider a modulation/transmitter combination with a third-order nonlinearity.
Consider the following MATLAB program:

% Filename: c3ce1
a = 0.7;
fc = 2;
fm = 200.1;
t= 0:0.001:1;
m = cos(2*pi*fm*t);
c = cos(2*pi*fc*t);
xc = 2*(1+a*m).*c;
xc = xc+0.1*xc.*xc.*xc;
plot(m,xc)
axis([-1.2,1.2,-8,8])
grid

% End of script file.
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Figure 3.8
Modulation trapezoid for a modulator/transmitter having a third-order nonlinearity.

Executing this MATLAB program yields the modulation trapezoid illustrated in Figure 3.8. The
effect of the nonlinearity is clear.

■

■ 3.3 SINGLE-SIDEBAND (SSB) MODULATION

In our development of DSB, we saw that the USB and LSB have even amplitude and odd
phase symmetry about the carrier frequency. Thus, transmission of both sidebands is not
necessary, since either sideband contains sufficient information to reconstruct the message
signal 𝑚(𝑡). Elimination of one of the sidebands prior to transmission results in single-
sideband (SSB), which reduces the bandwidth of the modulator output from 2𝑊 to 𝑊 ,
where 𝑊 is the bandwidth of 𝑚(𝑡). However, this bandwidth savings is accompanied by a
considerable increase in complexity.

On the following pages, two different methods are used to derive the time-domain ex-
pression for the signal at the output of an SSB modulator. Although the two methods are
equivalent, they do present different viewpoints. In the first method, the transfer function
of the filter used to generate an SSB signal from a DSB signal is derived using the Hilbert
transform. The second method derives the SSB signal directly from 𝑚(𝑡) using the results
illustrated in Figure 2.29 and the frequency-translation theorem.

The generation of an SSB signal by sideband filtering is illustrated in Figure 3.9. First,
a DSB signal, 𝑥DSB(𝑡), is formed. Sideband filtering of the DSB signal then yields an upper-
sideband or a lower-sideband SSB signal, depending on the filter passband selected.
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Figure 3.9
Generation of SSB by sideband filtering. (a) SSB modulator. (b) Spectra (single-sided).

The filtering process that yields lower-sideband SSB is illustrated in detail in Figure 3.10.
A lower-sideband SSB signal can be generated by passing a DSB signal through an ideal
filter that passes the LSB and rejects the USB. It follows from Figure 3.10(b) that the transfer
function of this filter is

𝐻
𝐿
(𝑓 ) = 1

2
[sgn(𝑓 + 𝑓

𝑐
) − sgn(𝑓 − 𝑓

𝑐
)] (3.30)

Since the Fourier transform of a DSB signal is

𝑋DSB(𝑓 ) =
1
2
𝐴
𝑐
𝑀(𝑓 + 𝑓

𝑐
) + 1

2
𝐴
𝐶
𝑀(𝑓 − 𝑓

𝑐
) (3.31)

the transform of the lower-sideband SSB signal is

𝑋
𝑐
(𝑓 ) = 1

4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
)sgn(𝑓 + 𝑓

𝑐
) +𝑀(𝑓 − 𝑓

𝑐
)sgn(𝑓 + 𝑓

𝑐
)]

−1
4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
)sgn(𝑓 − 𝑓

𝑐
) +𝑀(𝑓 − 𝑓

𝑐
)sgn(𝑓 − 𝑓

𝑐
)] (3.32)

which is

𝑋
𝑐
(𝑓 ) = 1

4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
) +𝑀(𝑓 − 𝑓

𝑐
)]

+1
4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
)sgn(𝑓 + 𝑓

𝑐
) −𝑀(𝑓 − 𝑓

𝑐
)sgn(𝑓 − 𝑓

𝑐
)] (3.33)
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Figure 3.10
Generation of lower-sideband SSB.
(a) Sideband filtering process. (b) Generation
of lower-sideband filter.

From our study of DSB, we know that

1
2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) ↔ 1

4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
) +𝑀(𝑓 − 𝑓

𝑐
)] (3.34)

and from our study of Hilbert transforms in Chapter 2, we recall that

�̂�(𝑡) ↔ −𝑗(sgn𝑓 )𝑀(𝑓 )

By the frequency-translation theorem, we have

𝑚(𝑡)𝑒±𝑗2𝜋𝑓𝑐𝑡 ↔𝑀(𝑓 ∓ 𝑓
𝑐
) (3.35)

Replacing 𝑚(𝑡) by �̂�(𝑡) in the previous equation yields

�̂�(𝑡)𝑒±𝑗2𝜋𝑓𝑐𝑡 ↔ −𝑗𝑀(𝑓 ∓ 𝑓
𝑐
)sgn(𝑓 ∓ 𝑓

𝑐
) (3.36)

Thus,

ℑ−1
{1
4
𝐴
𝑐
[𝑀(𝑓 + 𝑓

𝑐
)sgn(𝑓 + 𝑓

𝑐
) −𝑀(𝑓 − 𝑓

𝑐
)sgn(𝑓 − 𝑓

𝑐
)]
}

= −𝐴
𝑐

1
4𝑗
�̂�(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝑡 + 𝐴

𝑐

1
4𝑗
�̂�(𝑡)𝑒+𝑗2𝜋𝑓𝑐𝑡 = 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.37)
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Figure 3.11
Phase-shift modulator.

Combining (3.34) and (3.37), we get the general form of a lower-sideband SSB signal:

𝑥
𝑐
(𝑡) = 1

2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) + 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.38)

A similar development can be carried out for upper-sideband SSB. The result is

𝑥
𝑐
(𝑡) = 1

2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) − 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.39)

which shows that LSB and USB modulators have the same defining equations except for
the sign of the term representing the Hilbert transform of the modulation. Observation of the
spectrum of an SSB signal illustrates that SSB systems do not have DC response.

The generation of SSB by the method of sideband filtering the output of DSB modulators
requires the use of filters that are very nearly ideal if low-frequency information is contained
in 𝑚(𝑡). Another method for generating an SSB signal, known as phase-shift modulation, is
illustrated in Figure 3.11. This system is a term-by-term realization of (3.38) or (3.39). Like the
ideal filters required for sideband filtering, the ideal wideband phase shifter, which performs
the Hilbert transforming operation, is impossible to implement exactly. However, since the
frequency at which the discontinuity occurs is 𝑓 = 0 instead of 𝑓 = 𝑓

𝑐
, ideal phase-shift

devices can be closely approximated.
An alternative derivation of 𝑥

𝑐
(𝑡) for an SSB signal is based on the concept of the analytic

signal. As shown in Figure 3.12(a), the positive-frequency portion of𝑀(𝑓 ) is given by

𝑀
𝑝
(𝑓 ) = 1

2
ℑ{𝑚(𝑡) + 𝑗�̂�(𝑡)} (3.40)

and the negative-frequency portion of𝑀(𝑓 ) is given by

𝑀
𝑛
(𝑓 ) = 1

2
ℑ{𝑚(𝑡) − 𝑗�̂�(𝑡)} (3.41)

By definition, an upper-sideband SSB signal is given in the frequency domain by

𝑋
𝑐
(𝑓 ) = 1

2
𝐴
𝑐
𝑀
𝑝
(𝑓 − 𝑓

𝑐
) + 1

2
𝐴
𝑐
𝑀
𝑛
(𝑓 + 𝑓

𝑐
) (3.42)
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Inverse Fourier-transforming yields

𝑥
𝑐
(𝑡) = 1

4
𝐴
𝑐
[𝑚(𝑡) + 𝑗�̂�(𝑡)]𝑒𝑗2𝜋𝑓𝑐𝑡 + 1

4
𝐴
𝑐
[𝑚(𝑡) − 𝑗�̂�(𝑡)]𝑒−𝑗2𝜋𝑓𝑐𝑡 (3.43)

which is

𝑥
𝑐
(𝑡) = 1

4
𝐴
𝑐
𝑚(𝑡)[𝑒𝑗2𝜋𝑓𝑐𝑡 + 𝑒−𝑗2𝜋𝑓𝑐𝑡] + 𝑗 1

4
𝐴
𝑐
�̂�(𝑡)[𝑒𝑗2𝜋𝑓𝑐𝑡 − 𝑒−𝑗2𝜋𝑓𝑐𝑡]

= 1
2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) − 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.44)

The preceding expression is clearly equivalent to (3.39).
The lower-sideband SSB signal is derived in a similar manner. By definition, for a lower-

sideband SSB signal,

𝑋
𝑐
(𝑓 ) = 1

2
𝐴
𝑐
𝑀
𝑝
(𝑓 + 𝑓

𝑐
) + 1

2
𝐴
𝑐
𝑀
𝑛
(𝑓 − 𝑓

𝑐
) (3.45)

This becomes, after inverse Fourier-transforming,

𝑥
𝑐
(𝑡) = 1

4
𝐴
𝑐
[𝑚(𝑡) + 𝑗�̂�(𝑡)]𝑒−𝑗2𝜋𝑓𝑐𝑡 + 1

4
𝐴
𝑐
[𝑚(𝑡) − 𝑗�̂�(𝑡)]𝑒𝑗2𝜋𝑓𝑐𝑡 (3.46)

which can be written as

𝑥
𝑐
(𝑡) = 1

4
𝐴
𝑐
𝑚(𝑡)[𝑒𝑗2𝜋𝑓𝑐𝑡 + 𝑒−𝑗2𝜋𝑓𝑐𝑡] − 𝑗 1

4
𝐴
𝑐
�̂�(𝑡)[𝑒𝑗2𝜋𝑓𝑐𝑡 − 𝑒−𝑗2𝜋𝑓𝑐𝑡]

= 1
2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) + 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡)

This expression is clearly equivalent to (3.38). Figures 3.12(b) and (c) show the four signal
spectra used in this development:𝑀

𝑝
(𝑓 + 𝑓

𝑐
),𝑀

𝑝
(𝑓 − 𝑓

𝑐
),𝑀

𝑛
(𝑓 + 𝑓

𝑐
), and𝑀

𝑛
(𝑓 − 𝑓

𝑐
).

There are several methods that can be employed to demodulate SSB. The simplest tech-
nique is to multiply 𝑥

𝑐
(𝑡) by a demodulation carrier and lowpass filter the result, as illustrated

in Figure 3.1(a). We assume a demodulation carrier having a phase error 𝜃(𝑡) that yields

𝑑(𝑡) =
[1
2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) ± 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡)
]
{4 cos[2𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)]} (3.47)

where the factor of 4 is chosen for mathematical convenience. The preceding expression can
be written as

𝑑(𝑡) = 𝐴
𝑐
𝑚(𝑡) cos 𝜃(𝑡) + 𝐴

𝑐
𝑚(𝑡) cos[4𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)]

∓𝐴
𝑐
�̂�(𝑡) sin 𝜃(𝑡) ± 𝐴

𝑐
�̂�(𝑡) sin[4𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)] (3.48)

Lowpass filtering and amplitude scaling yield

𝑦
𝐷
(𝑡) = 𝑚(𝑡) cos 𝜃(𝑡) ∓ �̂�(𝑡) sin 𝜃(𝑡) (3.49)
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Figure 3.12
Alternative derivation of SSB signals. (a)𝑀(𝑓 ),𝑀

𝑝
(𝑓 ), and𝑀

𝑛
(𝑓 ). (b) Upper-sideband SSB signal.

(c) Lower-sideband SSB signal.

for the demodulated output. Observation of (3.49) illustrates that for 𝜃(𝑡) equal to zero, the
demodulated output is the desired message signal. However, if 𝜃(𝑡) is nonzero, the output
consists of the sum of two terms. The first term is a time-varying attenuation of the message
signal and is the output present in a DSB system operating in a similar manner. The second
term is a crosstalk term and can represent serious distortion if 𝜃(𝑡) is not small.

Another useful technique for demodulating an SSB signal is carrier reinsertion, which is
illustrated in Figure 3.13. The output of a local oscillator is added to the received signal 𝑥

𝑟
(𝑡).

This yields

𝑒(𝑡) =
[1
2
𝐴
𝑐
𝑚(𝑡) +𝐾

]
cos(2𝜋𝑓

𝑐
𝑡) ± 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.50)

which is the input to the envelope detector. The output of the envelope detector must next
be computed. This is slightly more difficult for signals of the form of (3.50) than for signals
of the form of (3.10) because both cosine and sine terms are present. In order to derive the

e(t)
Σ

yD(t)xr(t)

K cos ctω

Envelope

detector

Figure 3.13
Demodulation using carrier reinsertion.
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Figure 3.14
Direct-quadrature signal representation.

desired result, consider the signal

𝑥(𝑡) = 𝑎(𝑡) cos(2𝜋𝑓
𝑐
𝑡) − 𝑏(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.51)

which can be represented as illustrated in Figure 3.14. Figure 3.14 shows the amplitude of the
direct component 𝑎(𝑡), the amplitude of the quadrature component 𝑏(𝑡), and the resultant 𝑅(𝑡).
It follows from Figure 3.14 that

𝑎(𝑡) = 𝑅(𝑡) cos 𝜃(𝑡) and 𝑏(𝑡) = 𝑅(𝑡) sin 𝜃(𝑡)

This yields

𝑥(𝑡) = 𝑅(𝑡)[cos 𝜃(𝑡) cos(2𝜋𝑓
𝑐
𝑡) − sin 𝜃(𝑡) sin(2𝜋𝑓

𝑐
𝑡)] (3.52)

which is

𝑥(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓
𝑐
𝑡 + 𝜃(𝑡)] (3.53)

where

𝜃(𝑡) = tan−1
(
𝑏(𝑡)
𝑎(𝑡)

)
(3.54)

The instantaneous amplitude 𝑅(𝑡), which is the envelope of the signal, is given by

𝑅(𝑡) =
√
𝑎2(𝑡) + 𝑏2(𝑡) (3.55)

and will be the output of an envelope detector with 𝑥(𝑡) on the input if 𝑎(𝑡) and 𝑏(𝑡) are slowly
varying with respect to cos𝜔

𝑐
𝑡.

A comparison of (3.50) and (3.55) illustrates that the envelope of an SSB signal, after
carrier reinsertion, is given by

𝑦
𝐷
(𝑡) =

√[1
2
𝐴
𝑐
𝑚(𝑡) +𝐾

]2
+

[1
2
𝐴
𝑐
�̂�(𝑡)

]2
(3.56)

which is the demodulated output 𝑦
𝐷
(𝑡) in Figure 3.13. If 𝐾 is chosen large enough such that

[1
2
𝐴
𝑐
𝑚(𝑡) +𝐾

]2
≫

[1
2
𝐴
𝑐
�̂�(𝑡)

]2

the output of the envelope detector becomes

𝑦
𝐷
(𝑡) ≅ 1

2
𝐴
𝑐
𝑚(𝑡) +𝐾 (3.57)
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from which the message signal can easily be extracted. The development shows that carrier
reinsertion requires that the locally generated carrier must be phase coherent with the original
modulation carrier. This is easily accomplished in speech-transmission systems. The frequency
and phase of the demodulation carrier can be manually adjusted until intelligibility of the
speech is obtained.

EXAMPLE 3.2

As we saw in the preceding analysis, the concept of single sideband is probably best understood by using
frequency-domain analysis. However, the SSB time-domain waveforms are also interesting and are the
subject of this example. Assume that the message signal is given by

𝑚(𝑡) = cos(2𝜋𝑓1𝑡) − 0.4 cos(4𝜋𝑓1𝑡) + 0.9 cos(6𝜋𝑓1𝑡) (3.58)

The Hilbert transform of 𝑚(𝑡) is

�̂�(𝑡) = sin(2𝜋𝑓1𝑡) − 0.4 sin(4𝜋𝑓1𝑡) + 0.9 sin(6𝜋𝑓1𝑡) (3.59)

These two waveforms are shown in Figures 3.15(a) and (b).
As we have seen, the SSB signal is given by

𝑥
𝑐
(𝑡) =

𝐴
𝑐

2
[𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) ± �̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡)] (3.60)

with the choice of sign depending upon the sideband to be used for transmission. Using (3.51) to (3.55),
we can place 𝑥

𝑐
(𝑡) in the standard form of (3.1). This gives

𝑥
𝑐
(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)] (3.61)

where the envelope 𝑅(𝑡) is

𝑅(𝑡) =
𝐴
𝑐

2
√
𝑚2(𝑡) + �̂�2(𝑡) (3.62)

and 𝜃(𝑡), which is the phase deviation of 𝑥
𝑐
(𝑡), is given by

𝜃(𝑡) = ± tan−1
(
�̂�(𝑡)
𝑚(𝑡)

)
(3.63)

The instantaneous frequency of 𝜃(𝑡) is therefore

𝑑

𝑑𝑡
[2𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)] = 2𝜋𝑓

𝑐
± 𝑑

𝑑𝑡

[
tan−1

(
�̂�(𝑡)
𝑚(𝑡)

)]
(3.64)

From (3.62) we see that the envelope of the SSB signal is independent of the choice of the sideband.
The instantaneous frequency, however, is a rather complicated function of the message signal and also
depends upon the choice of sideband. We therefore see that the message signal 𝑚(𝑡) affects both the
envelope and phase of the modulated carrier 𝑥

𝑐
(𝑡). In DSB and AM the message signal affected only the

envelope of 𝑥
𝑐
(𝑡).
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Figure 3.15
Time-domain signals for SSB
system. (a) Message signal.
(b) Hilbert transform of the message
signal. (c) Envelope of the SSB
signal. (d) Upper-sideband SSB
signal with message signal.
(e) Lower-sideband SSB signal with
message signal.

The envelope of the SSB signal, 𝑅(𝑡), is shown in Figure 3.15(c). The upper-sideband SSB signal
is illustrated in Figure 3.15(d) and the lower-sideband SSB signal is shown in Figure 3.15(e). It is
easily seen that both the upper-sideband and lower-sideband SSB signals have the envelope shown in
Figure 3.15(c). The message signal 𝑚(𝑡) is also shown in Figures 3.15(d) and (e).

■
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■ 3.4 VESTIGIAL-SIDEBAND (VSB) MODULATION

We have seen that DSB requires excessive bandwidth and that generation of SSB by side-
band filtering can only be approximently realized. In addition SSB has poor low-frequency
performance. Vestigial-sideband (VSB) modulation offers a compromize by allowing a small
amount, or vestige, of the unwanted sideband to appear at the output of an SSB modulator, the
design of the sideband filter is simplified, since the need for sharp cutoff at the carrier frequency
is eliminated. In addition, a VSB system has improved low-frequency response compared to
SSB and can even have DC response. A simple example will illustrate the technique.

EXAMPLE 3.3

For simplicity, let the message signal be the sum of two sinusoids:

𝑚(𝑡) = 𝐴 cos(2𝜋𝑓1𝑡) + 𝐵 cos(2𝜋𝑓2𝑡) (3.65)

This message signal is then multiplied by a carrier, cos(2𝜋𝑓
𝑐
𝑡), to form a DSB signal

𝑒
𝐷𝑆𝐵

(𝑡) = 1
2
𝐴 cos[2𝜋(𝑓

𝑐
− 𝑓1)𝑡] +

1
2
𝐴 cos[2𝜋(𝑓

𝑐
+ 𝑓1)𝑡]

+1
2
𝐵 cos[2𝜋(𝑓

𝑐
− 𝑓2)𝑡] +

1
2
𝐵 cos[2𝜋(𝑓

𝑐
+ 𝑓2)𝑡] (3.66)

Figure 3.16(a) shows the single-sided spectrum of this signal. Prior to transmission a VSB filter is used
to generate the VSB signal. Figure 3.16(b) shows the assumed amplitude response of the VSB filter.
The skirt of the VSB filter must have the symmetry about the carrier frequency as shown. Figure 3.16(c)
shows the single-sided spectrum of the VSB filter output.

Assume that the VSB filter has the following amplitude and phase responses:

𝐻(𝑓
𝑐
− 𝑓2) = 0, 𝐻(𝑓

𝑐
− 𝑓1) = 𝜖𝑒−𝑗𝜃𝑎 𝐻(𝑓

𝑐
+ 𝑓1) = (1 − 𝜖)𝑒−𝑗𝜃𝑏 , 𝐻(𝑓

𝑐
+ 𝑓2) = 1𝑒−𝑗𝜃𝑐 (3.67)

The VSB filter input is the DSB signal that, in complex envelope form, can be expressed as

𝑥
𝐷𝑆𝐵

(𝑡) = Re
[(
𝐴

2
𝑒
−𝑗2𝜋𝑓1𝑡 + 𝐴

2
𝑒
𝑗2𝜋𝑓1𝑡 + 𝐵

2
𝑒
−𝑗2𝜋𝑓2𝑡 + 𝐵

2
𝑒
𝑗2𝜋𝑓2𝑡

)
𝑒
𝑗2𝜋𝑓𝑐 𝑡

]
(3.68)

Using the amplitude and phase characteristics of the VSB filter yields the VSB signal

𝑥
𝑐
(𝑡) = Re

{[
𝐴

2
𝜖𝑒

−𝑗(2𝜋𝑓1𝑡+𝜃𝑎) + 𝐴
2
(1 − 𝜖)𝑒𝑗(2𝜋𝑓1𝑡−𝜃𝑏) + 𝐵

2
𝑒
𝑗(2𝜋𝑓2𝑡−𝜃𝑐 )

]
𝑒
𝑗2𝜋𝑓𝑐 𝑡

}
(3.69)

Demodulation is accomplished by multiplying by 2𝑒−𝑗2𝜋𝑓𝑐 𝑡 and taking the real part. This gives

𝑒(𝑡) = 𝐴𝜖 cos(2𝜋𝑓1𝑡 + 𝜃𝑎) + 𝐴(1 − 𝜖) cos(2𝜋𝑓1𝑡 − 𝜃𝑏) + 𝐵 cos(2𝜋𝑓2𝑡 − 𝜃𝑐) (3.70)

In order for the first two terms to combine as in (3.70), we must satisfy

𝜃
𝑎
= −𝜃

𝑏
(3.71)

which shows that the phase response must have odd symmetry about 𝑓
𝑐
and, in addition, since 𝑒(𝑡) is real,

the phase response of the VSB filter must also have odd phase response about 𝑓 = 0. With 𝜃
𝑎
= −𝜃

𝑏
we

have

𝑒(𝑡) = 𝐴 cos(2𝜋𝑓1𝑡 − 𝜃𝑏) + 𝐵 cos(2𝜋𝑓2𝑡 − 𝜃𝑐) (3.72)

We still must determine the relationship between 𝜃
𝑐
and 𝜃

𝑏
.
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Figure 3.16
Generation of vestigal-sideband
modulation. (a) DSB magnitude
spectrum (single sided). (b) VSB filter
characteristic near 𝑓

𝑐
. (c) VSB

magnitude spectrum.

As we saw in Chapter 2, in order for the demodulated signal 𝑒(𝑡) to be an undistorted (no amplitude
or phase distortion) version of the original message signal 𝑚(𝑡), 𝑒(𝑡) must be an amplitude scaled and
time-delayed version of 𝑚(𝑡). In other words

𝑒(𝑡) = 𝐾𝑚(𝑡 − 𝜏) (3.73)

Clearly the amplitude scaling 𝐾 = 1. With time delay 𝜏, 𝑒(𝑡) is

𝑒(𝑡) = 𝐴 cos[2𝜋𝑓1(𝑡 − 𝜏)] + 𝐵 cos[2𝜋𝑓2(𝑡 − 𝜏)] (3.74)

Comparing (3.72) and (3.74) shows that

𝜃
𝑏
= 2𝜋𝑓1𝜏 (3.75)

and

𝜃
𝑐
= 2𝜋𝑓2𝜏 (3.76)

In order to have no phase distortion, the time delay must be the same for both components of 𝑒(𝑡). This
gives

𝜃
𝑐
=
𝑓2

𝑓1
𝜃
𝑏

(3.77)

We therefore see that the phase response of the VSB filter must be linear over the bandwidth of the input
signal, which was to be expected from our discussion of distortionless systems in Chapter 2.

■

The slight increase in bandwidth required for VSB over that required for SSB is often
more than offset by the resulting implementation simplifications. As a matter of fact, if a
carrier component is added to a VSB signal, envelope detection can be used. The development
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of this technique is similar to the development of envelope detection of SSB with carrier
reinsertion and is relegated to the problems. The process, however, is demonstrated in the
following example.

EXAMPLE 3.4

In this example we consider the time-domain waveforms corresponding to VSBmodulation and consider
demodulation using envelope detection or carrier reinsertion. We assume the same message signal

𝑚(𝑡) = cos(2𝜋𝑓1𝑡) − 0.4 cos(4𝜋𝑓1𝑡) + 0.9 cos(6𝜋𝑓1𝑡) (3.78)

The message signal 𝑚(𝑡) is shown in Figure 3.17(a). The VSB signal can be expressed as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
[𝜖1 cos[2𝜋(𝑓𝑐 − 𝑓1)𝑡] + (1 − 𝜖1) cos[2𝜋(𝑓𝑐 − 𝑓1)𝑡]]

−0.4𝜖2 cos[2𝜋(𝑓𝑐 − 2𝑓1)𝑡] − 0.4(1 − 𝜖2) cos[2𝜋(𝑓𝑐 − 2𝑓1)𝑡

+0.9𝜖3 cos[2𝜋(𝑓𝑐 − 3𝑓1)𝑡] + 0.9(1 − 𝜖3) cos 2𝜋(𝑓𝑐 − 3𝑓1)𝑡] (3.79)

Themodulated carrier, alongwith themessage signal, is shown in Figure 3.17(b) for 𝜖1 = 0.64, 𝜖2 = 0.78,
and 𝜖3 = 0.92. The result of carrier reinsertion and envelope detection is shown in Figure 3.17(c). The
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Figure 3.17
Time-domain signals for VSB system. (a) Message signal. (b) VSB signal and message signal. (c) Sum
of VSB signal and carrier signal.
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message signal, biased by the amplitude of the carrier component, is clearly shown and will be the output
of an envelope detector.

■

■ 3.5 FREQUENCY TRANSLATION AND MIXING

It is often desirable to translate a bandpass signal to a new center frequency. Frequency
translation is used in the implementation of communications receivers as well as in a number of
other applications. The process of frequency translation can be accomplished bymultiplication
of the bandpass signal by a periodic signal and is referred to as mixing. A block diagram of
a mixer is given in Figure 3.18. As an example, the bandpass signal 𝑚(𝑡) cos(2𝜋𝑓1𝑡) can be
translated from 𝑓1 to a new carrier frequency 𝑓2 by multiplying it by a local oscillator signal
of the form 2 cos[2𝜋(𝑓1 ± 𝑓2)𝑡]. By using appropriate trigonometric identities, we can easily
show that the result of the multiplication is

𝑒(𝑡) = 𝑚(𝑡) cos(2𝜋𝑓2𝑡) + 𝑚(𝑡) cos(4𝜋𝑓1 ± 2𝜋𝑓2)𝑡 (3.80)

The undesired term is removed by filtering. The filter should have a bandwidth at least 2𝑊
for the assumed DSB modulation, where𝑊 is the bandwidth of 𝑚(𝑡).

A common problem with mixers results from the fact that two different input signals can
be translated to the same frequency, 𝑓2. For example, inputs of the form 𝑘(𝑡) cos[2𝜋𝑓1 ± 2𝑓2)𝑡]
are also translated to 𝑓2, since

2𝑘(𝑡) cos[2𝜋(𝑓1 ± 2𝑓2)𝑡] cos[2𝜋(𝑓1 ± 𝑓2)𝑡] = 𝑘(𝑡) cos(2𝜋𝑓2𝑡)

+𝑘(𝑡) cos[2𝜋(2𝑓1 ± 3𝑓2)𝑡] (3.81)

In (3.81), all three signs must be plus or all three signs must be minus. The input frequency
𝑓1 ± 2𝑓2, which results in an output at 𝑓2, is referred to as the image frequency of the desired
frequency 𝑓1.

To illustrate that image frequencies must be considered in receiver design, consider the
superheterodyne receiver shown in Figure 3.19. The carrier frequency of the signal to be
demodulated is 𝑓

𝑐
, and the intermediate-frequency (IF) filter is a bandpass filter with center

frequency 𝑓IF, which is fixed. The superheterodyne receiver has good sensitivity (the ability to
detect weak signals) and selectivity (the ability to separate closely spaced signals). This results
because the IF filter, which provides most of the predetection filtering, need not be tunable.
Thus, it can be a rather complex filter. Tuning of the receiver is accomplished by varying the

Bandpass

f ilter

Center

frequency

2ω

ωω

ωm(t) cos 2tωm(t) cos 1t e(t)

Local

oscillator

2 cos ( 1 ±    2)t

×

Figure 3.18
Mixer.
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Figure 3.19
Superheterodyne receiver.

frequency of the local oscillator. The superheterodyne receiver of Figure 3.19 is the mixer of
Figure 3.18 with 𝑓

𝑐
= 𝑓1 and 𝑓IF = 𝑓2. The mixer translates the input frequency 𝑓

𝑐
to the IF

frequency 𝑓IF.
As shown previously, the image frequency 𝑓

𝑐
± 2𝑓IF, where the sign depends on the

choice of local oscillator frequency, also will appear at the IF output. This means that if we
are attempting to receive a signal having carrier frequency 𝑓

𝑐
, we can also receive a signal

at 𝑓
𝑐
+ 2𝑓IF if the local oscillator frequency is 𝑓

𝑐
+ 𝑓IF or a signal at 𝑓

𝑐
− 2𝑓IF if the local

oscillator frequency is 𝑓
𝑐
− 𝑓IF. There is only one image frequency, and it is always separated

from the desired frequency by 2𝑓IF. Figure 3.20 shows the desired signal and image signal for
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Figure 3.20
Illustration of image frequencies (high-side tuning).
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Table 3.1 Low-Side and High-Side Tuning for AM Broadcast Band with 𝒇𝐈𝐅 = 455 kHz

Tuning range
Lower frequency Upper frequency of local oscillator

Standard AM 540 kHz 1600 kHz
broadcast band

Frequencies of 540 kHz -- 455 kHz 1600 kHz -- 455 kHz 13.47 to 1
local oscillator 85 kHz 1145 kHz
for low-side tuning

Frequencies of 540 kHz + 455 kHz 1600 kHz + 455 kHz 2.07 to 1
local oscillator = 995 kHz = 2055 kHz
for high-side tuning

a local oscillator having the frequency

𝑓LO = 𝑓
𝑐
+ 𝑓IF (3.82)

The image frequency can be eliminated by the radio-frequency (RF) filter. A standard IF
frequency for AM radio is 455 kHz. Thus, the image frequency is separated from the desired
signal by almost 1 MHz. This shows that the RF filter need not be narrowband. Furthermore,
since the AM broadcast band occupies the frequency range 540 kHz to 1.6 MHz, it is apparent
that a tunable RF filter is not required, provided that stations at the high end of the band are not
located geographically near stations at the low end of the band. Some inexpensive receivers
take advantage of this fact. Additionally, if the RF filter is made tunable, it need be tunable
only over a narrow range of frequencies.

One decision to be made when designing a superheterodyne receiver is whether the
frequency of the local oscillator is to be below the frequency of the input carrier (low-side
tuning) or above the frequency of the input carrier (high-side tuning). A simple example based
on the standard AM broadcast band illustrates one major consideration. The standard AM

2 lFƒ

2 lFƒ

LOƒ

LOƒ

ƒ
ƒ

ƒ

ƒ ƒc = LO + lFƒ ƒ ƒi = LO – lF

ƒ ƒ ƒi = LO + lFƒ ƒ ƒc = LO – lF

(a)

(b)

Image signal

Image signal

Desired signal

Desired signal

Figure 3.21
Relationship between 𝑓

𝑐

and 𝑓
𝑖
(a) low-side tuning

and (b) high-side tuning.
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broadcast band extends from 540 kHz to 1600 kHz. For this example, let us choose a common
intermediate frequency, 455 kHz. As shown in Table 3.1, for low-side tuning, the frequency
of the local oscillator must be variable from 85 to 1600 kHz, which represents a frequency
range in excess of 13 to 1. If high-side tuning is used, the frequency of the local oscillator
must be variable from 995 to 2055 kHz, which represents a frequency range slightly in excess
of 2 to 1. Oscillators whose frequency must vary over a large ratio are much more difficult to
implement than are those whose frequency varies over a small ratio.

The relationship between the desired signal to be demodulated and the image signal
is summarized in Figure 3.21 for low-side and high-side tuning. The desired signal to be
demodulated has a carrier frequency of 𝑓

𝑐
and the image signal has a carrier frequency of 𝑓

𝑖
.

■ 3.6 INTERFERENCE IN LINEAR MODULATION

We now consider the effect of interference in communication systems. In real-world systems
interference occurs from various sources, such as RF emissions from transmitters having
carrier frequencies close to that of the carrier being demodulated. We also study interference
because the analysis of systems in the presence of interference provides us with important
insights into the behavior of systems operating in the presence of noise, which is the topic of
Chapter 8. In this section we consider only interference in linear modulation. Interference in
angle modulation will be treated in the next chapter.

As a simple case of linear modulation in the presence of interference, we consider the
received signal having the spectrum (single sided) shown in Figure 3.22. The received signal
consists of three components: a carrier component, a pair of sidebands representing a sinusoidal
message signal, and an undesired interfering tone of frequency 𝑓

𝑐
+ 𝑓

𝑖
. The input to the

demodulator is therefore

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) + 𝐴

𝑖
cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) cos(2𝜋𝑓

𝑐
𝑡) (3.83)

Multiplying 𝑥
𝑐
(𝑡) by 2 cos(2𝜋𝑓

𝑐
𝑡) and lowpass filtering (coherent demodulation) yields

𝑦
𝐷
(𝑡) = 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) + 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡) (3.84)

where we have assumed that the interference component is passed by the filter and that
the DC term resulting from the carrier is blocked. From this simple example we see that the
signal and interference are additive at the receiver output if the interference is additive at the
receiver input. This result was obtained because the coherent demodulator operates as a linear
demodulator.

1
2

Am

Ac

1
2

Am

Ai

f
fc + fifc + fmfc – fm fc

Figure 3.22
Assumed received-signal spectrum.
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The effect of interference with envelope detection is quite different because of the non-
linear nature of the envelope detector. The analysis with envelope detection is much more
difficult than the coherent demodulation case. Some insight can be gained by writing 𝑥

𝑐
(𝑡)

in a form that leads to the phasor diagram. In order to develop the phasor diagram, we write
(3.83) in the form

𝑥
𝑟
(𝑡) = Re

[(
𝐴
𝑐
+ 𝐴

𝑖
𝑒
𝑗2𝜋𝑓𝑖𝑡 + 1

2
𝐴
𝑚
𝑒
𝑗2𝜋𝑓𝑚𝑡 + 1

2
𝐴
𝑚
𝑒
−𝑗2𝜋𝑓𝑚𝑡

)
𝑒
𝑗2𝜋𝑓𝑐𝑡

]
(3.85)

The phasor diagram is constructed with respect to the carrier by taking the carrier frequency
as equal to zero. In other words, we plot the phasor diagram corresponding to the complex
envelope signal. The phasor diagrams are illustrated in Figure 3.23, both with and without
interference. The output of an ideal envelope detector is𝑅(𝑡) in both cases. The phasor diagrams
illustrate that interference induces both an amplitude distortion and a phase deviation.

The effect of interference with envelope detection is determined by writing (3.83) as

𝑥
𝑟
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) cos(2𝜋𝑓

𝑐
𝑡)

+𝐴
𝑖
[cos(2𝜋𝑓

𝑐
𝑡) cos(2𝜋𝑓

𝑖
𝑡) − sin(2𝜋𝑓

𝑐
𝑡) sin(2𝜋𝑓

𝑖
𝑡)] (3.86)

which is

𝑥
𝑟
(𝑡) = [𝐴

𝑐
+ 𝐴

𝑚
cos(2𝜋𝑓

𝑐
𝑡) + 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡)] cos(2𝜋𝑓

𝑐
𝑡) − 𝐴

𝑖
sin(2𝜋𝑓

𝑖
𝑡) sin(2𝜋𝑓

𝑐
𝑡) (3.87)

If 𝐴
𝑐
≫ 𝐴

𝑖
, which is the usual case of interest, the last term in (3.87) is negligible compared

to the first term and the output of the envelope detector is

𝑦
𝐷
(𝑡) ≅ 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) + 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡) (3.88)

assuming that the DC term is blocked. Thus, for the small interference case, envelope detection
and coherent demodulation are essentially equivalent.

If 𝐴
𝑐
≪ 𝐴

𝑖
, the assumption cannot be made that the last term of (3.87) is negligible, and

the output is significantly different. To show this, (3.83) is rewritten as

𝑥
𝑟
(𝑡) = 𝐴

𝑐
cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
− 𝑓

𝑖
)𝑡] + 𝐴

𝑖
cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡]

+𝐴
𝑚
cos(2𝜋𝑓

𝑚
𝑡) cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
− 𝑓

𝑖
)𝑡] (3.89)

which, when we use appropriate trigonometric identities, becomes

𝑥
𝑟
(𝑡) = 𝐴

𝑐
{cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] cos(2𝜋𝑓

𝑖
𝑡) + sin[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] sin(2𝜋𝑓

𝑖
𝑡)}

+𝐴
𝑖
cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡){cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] cos(2𝜋𝑓

𝑖
𝑡)

+ sin[2𝜋(𝑓
𝑐
+ 𝑓

𝑖
)𝑡] sin(2𝜋𝑓

𝑖
𝑡)} (3.90)

Equation (3.90) can also be written as

𝑥
𝑟
(𝑡) = [𝐴

𝑖
+ 𝐴

𝑐
cos(2𝜋𝑓

𝑖
𝑡) + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) cos(2𝜋𝑓

𝑖
𝑡)] cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡]

+[𝐴
𝑐
sin(2𝜋𝑓

𝑖
𝑡) + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) sin(2𝜋𝑓

𝑖
𝑡)] sin[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] (3.91)

If 𝐴
𝑖
≫ 𝐴

𝑐
, the last term in (3.91) is negligible with respect to the first term. It follows that

the envelope detector output is approximated by

𝑦
𝐷
(𝑡) ≅ 𝐴

𝑐
cos(2𝜋𝑓

𝑖
𝑡) + 𝐴

𝑚
cos(2𝜋𝑓

𝑚
𝑡) cos(2𝜋𝑓

𝑖
𝑡) (3.92)
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Figure 3.23
Phasor diagrams illustrating interference.
(a) Phasor diagram without interference.
(b) Phasor diagram with interference.

At this point, several observations are in order. In envelope detectors, the largest high-
frequency component is treated as the carrier. If 𝐴

𝑐
≫ 𝐴

𝑖
, the effective demodulation carrier

has a frequency 𝑓
𝑐
, whereas if 𝐴

𝑖
≫ 𝐴

𝑐
, the effective carrier frequency becomes the interfer-

ence frequency 𝑓
𝑐
+ 𝑓

𝑖
.

The spectra of the envelope detector output are illustrated in Figure 3.24 for 𝐴
𝑐
≫ 𝐴

𝑖

and for𝐴
𝑐
≪ 𝐴

𝑖
. For𝐴

𝑐
≫ 𝐴

𝑖
the interfering tone simply appears as a sinusoidal component,

having frequency 𝑓
𝑖
at the output of the envelope detector. This illustrates that for 𝐴

𝑐
≫ 𝐴

𝑖
,

the envelope detector performs as a linear demodulator. The situation is much different for
𝐴
𝑐
≪ 𝐴

𝑖
, as can be seen from (3.92) and Figure 3.24(b). For this case we see that the

sinusoidal message signal, having frequency 𝑓
𝑚
, modulates the interference tone. The output

of the envelope detector has a spectrum that reminds us of the spectrum of an AM signal
with carrier frequency 𝑓

𝑖
and sideband components at 𝑓

𝑖
+ 𝑓

𝑚
and 𝑓

𝑖
− 𝑓

𝑚
. The message

signal is effectively lost. This degradation of the desired signal is called the threshold effect
and is a consequence of the nonlinear nature of the envelope detector. We shall study the
threshold effect in detail in Chapter 8 when we investigate the effect of noise in analog
systems.
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Ai

ff
fm fi + fmfi – fmfi fi

Ac
Am
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(b)(a)

1
2
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2

Figure 3.24
Envelope detector output spectra. (a) 𝐴

𝑐
≫ 𝐴

𝑖
. (b) 𝐴

𝑐
≪ 𝐴

𝑖
.
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■ 3.7 PULSE AMPLITUDE MODULATION---PAM

In Chapter 2 (Section 2.8) we saw that continuous bandlimited signals can be represented
by a sequence of discrete samples and that the continuous signal can be reconstructed with
negligible error if the sampling rate is sufficiently high. Consideration of sampled signals
leads us to the topic of pulse modulation. Pulse modulation can be either analog, in which
some attribute of a pulse varies continuously in one-to-one correspondence with a sample
value, or digital, in which some attribute of a pulse can take on a certain value from a set
of allowable values. In this section we examine pulse amplitude modulation (PAM). In the
following section we examine a couple of examples of digital pulse modulation.

As mentioned, analog pulse modulation results when some attribute of a pulse varies
continuously in one-to-one correspondence with a sample value. Three attributes can be
readily varied: amplitude, width, and position. These lead to pulse amplitude modulation
(PAM), pulse-width modulation (PWM), and pulse-position modulation (PPM) as illustrated
in Figure 3.25. Only PAM will be treated in this chapter. Pulse-width modulation and pulse-
position modulation, which have the characteristics of angle modulation, are considered in the
next chapter.

t

t

t

t
0 Ts 2Ts 9Ts

Analog

signal

(Samples)

PAM signal

PWM

signal

PPM

signal

Figure 3.25
Illustration of PAM, PWM, and PPM.
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Figure 3.26
Generation of PAM. (a) Holding network. (b) Impulse response of holding network. (c) Amplitude
response of holding network. (d) Phase response of holding network.

A PAMwaveform consists of a sequence of flat-topped pulses designating sample values.
The amplitude of each pulse corresponds to the value of the message signal 𝑚(𝑡) at the leading
edge of the pulse. The essential difference between PAM and the sampling operation discussed
in the previous chapter is that in PAM we allow the sampling pulse to have finite width. The
finite-width pulse can be generated from the impulse-train sampling function by passing the
impulse-train samples through a holding circuit as shown in Figure 3.26. The impulse response
of the ideal holding circuit is given by

ℎ(𝑡) = Π
⎛
⎜
⎜
⎝

𝑡 − 1
2𝜏

𝜏

⎞
⎟
⎟
⎠

(3.93)

The holding circuit transforms the impulse function samples, given by

𝑚
𝛿
(𝑡) = 𝑚(𝑛𝑇

𝑠
)𝛿(𝑡 − 𝑛𝑇

𝑠
) (3.94)

to the PAM waveform given by

𝑚
𝑐
(𝑡) = 𝑚(𝑛𝑇

𝑠
)Π

⎡
⎢
⎢
⎣

(𝑡 − 𝑛𝑇
𝑠
) + 1

2𝜏

𝜏

⎤
⎥
⎥
⎦

(3.95)

as illustrated in Figure 3.26. The transfer function of the holding circuit is

𝐻(𝑓 ) = 𝜏 sinc (𝑓𝜏)𝑒−𝑗𝜋𝑓𝜏 (3.96)

Since the holding network does not have a constant amplitude response over the bandwidth of
𝑚(𝑡), amplitude distortion results. This amplitude distortion, which can be significant unless
the pulse width 𝜏 is very small, can be removed by passing the samples, prior to reconstruction
of 𝑚(𝑡), through a filter having an amplitude response equal to 1∕|𝐻(𝑓 )|, over the bandwidth
of 𝑚(𝑡). This process is referred to as equalization and will be treated in more detail later in
this book. Since the phase response of the holding network is linear, the effect is a time delay
and can usually be neglected.
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■ 3.8 DIGITAL PULSE MODULATION

We now briefly examine two types of digital pulse modulation: delta modulation and pulse-
code modulation (PCM).

3.8.1 Delta Modulation

Delta modulation (DM) is a modulation technique in which the message signal is encoded into
a sequence of binary symbols. These binary symbols are represented by the polarity of impulse
functions at the modulator output. The electronic circuits to implement both the modulator
and the demodulator are extremely simple. This simplicity makes DM an attractive technique
for a number of applications.

A block diagram of a delta modulator is illustrated in Figure 3.27(a). The input to the
pulse modulator portion of the circuit is

𝑑(𝑡) = 𝑚(𝑡) − 𝑚
𝑠
(𝑡) (3.97)

where 𝑚(𝑡) is the message signal and 𝑚
𝑠
(𝑡) is a reference waveform. The signal 𝑑(𝑡) is hard-

limited and multiplied by the pulse-generator output. This yields

𝑥
𝑐
(𝑡) = Δ(𝑡)𝛿(𝑡 − 𝑛𝑇

𝑠
) (3.98)

where Δ(𝑡) is a hard-limited version of 𝑑(𝑡). The preceding expression can be written as

𝑥
𝑐
(𝑡) = Δ(𝑛𝑇

𝑠
)𝛿(𝑡 − 𝑛𝑇

𝑠
) (3.99)

Thus, the output of the delta modulator is a series of impulses, each having positive or negative
polarity depending on the sign of 𝑑(𝑡) at the sampling instants. In practical applications, the
output of the pulse generator is not, of course, a sequence of impulse functions but rather a
sequence of pulses that are narrowwith respect to their periods. Impulse functions are assumed
here because of the resulting mathematical simplicity. The reference signal 𝑚

𝑠
(𝑡) is generated

by integrating 𝑥
𝑐
(𝑡). This yields at

𝑚
𝑠
(𝑡) = Δ(𝑛𝑇

𝑠
)
∫

𝑡

𝛿(𝛼 − 𝑛𝑇
𝑠
)𝑑𝛼 (3.100)

which is a stairstep approximation of 𝑚(𝑡). The reference signal 𝑚
𝑠
(𝑡) is shown in Figure

3.27(b) for an assumed 𝑚(𝑡). The transmitted waveform 𝑥
𝑐
(𝑡) is illustrated in Figure 3.27(c).

Demodulation of DM is accomplished by integrating 𝑥
𝑐
(𝑡) to form the stairstep approxi-

mation 𝑚
𝑠
(𝑡). This signal can then be lowpass filtered to suppress the discrete jumps in 𝑚

𝑠
(𝑡).

Since a lowpass filter approximates an integrator, it is often possible to eliminate the integrator
portion of the demodulator and to demodulate DM simply by lowpass filtering, as was done
for PAM and PWM. A difficulty with DM is the problem of slope overload. Slope overload
occurs when the message signal 𝑚(𝑡) has a slope greater than can be followed by the stairstep
approximation 𝑚

𝑠
(𝑡). This effect is illustrated in Figure 3.28(a), which shows a step change

in 𝑚(𝑡) at time 𝑡0. Assuming that each pulse in 𝑥
𝑐
(𝑡) has weight 𝛿0, the maximum slope that

can be followed by 𝑚
𝑠
(𝑡) is 𝛿0∕𝑇𝑠, as shown. Figure 3.28(b) shows the resulting error signal

due to a step change in 𝑚(𝑡) at 𝑡0. It can be seen that significant error exists for some time
following the step change in 𝑚(𝑡). The duration of the error due to slope overload depends on
the amplitude of the step, the impulse weights 𝛿0, and the sampling period 𝑇

𝑠
.
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Figure 3.27
Delta modulation. (a) Delta modulator. (b) Modulation waveform and stairstep approximation.
(c) Modulator output.

A simple analysis can be carried out assuming that themessage signal𝑚(𝑡) is the sinusoidal
signal

𝑚(𝑡) = 𝐴 sin(2𝜋𝑓1𝑡) (3.101)

The maximum slope that 𝑚
𝑠
(𝑡) can follow is

𝑆
𝑚
=
𝛿0
𝑇
𝑠

(3.102)

and the derivative of 𝑚(𝑡) is

𝑑

𝑑𝑡
𝑚(𝑡) = 2𝜋𝐴𝑓1 cos(2𝜋𝑓1𝑡) (3.103)
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Figure 3.28
Illusation of slope overload. (a) Illustration of 𝑚(𝑡) and 𝑚

𝑠
(𝑡) for a step change in 𝑚(𝑡). (b) Error

between 𝑚(𝑡) and 𝑚
𝑠
(𝑡) resulting from a step change in 𝑚(𝑡).

It follows that 𝑚
𝑠
(𝑡) can follow 𝑚(𝑡) without slope overload if

𝛿0
𝑇
𝑠

≥ 2𝜋𝐴𝑓1 (3.104)

3.8.2 Pulse-Code Modulation

The generation of PCM is a three-step process, as illustrated in Figure 3.29(a). The message
signal 𝑚(𝑡) is first sampled, and the resulting sample values are then quantized. In PCM,
the quantizing level of each sample is the transmitted quantity instead of the sample value.
Typically, the quantization level is encoded into a binary sequence, as shown in Figure 3.29(b).
Themodulator output is a pulse representation of the binary sequence, which is shown in Figure
3.29(c). A binary ‘‘one’’ is represented as a pulse, and a binary ‘‘zero’’ is represented as the
absence of a pulse. This absence of a pulse is indicated by a dashed line in Figure 3.29(c). The
PCM waveform of Figure 3.29(c) shows that a PCM system requires synchronization so that
the starting points of the digital words can be determined at the demodulator. PCMalso requires
a bandwidth sufficiently large to support transmission of the narrow pulses. Figure 3.29(c) is a
highly idealized representation of a PCM signal. More practical signal representations, along
with the bandwidth requirements for each, when we study line codes in Chapter 5.

To consider the bandwidth requirements of a PCM system, suppose that 𝑞 quantization
levels are used, satisfying

𝑞 = 2𝑛 (3.105)

where 𝑛, the word length, is an integer. For this case, 𝑛 = log2 𝑞 binary pulses must be
transmitted for each sample of the message signal. If this signal has bandwidth 𝑊 and the
sampling rate is 2𝑊 , then 2𝑛𝑊 binary pulses must be transmitted per second. Thus, the
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Figure 3.29
Generation of PCM. (a) PCM modulator. (b) Quantizer and coder. (c) Representation of coder output.

maximum width of each binary pulse is

(Δ𝜏)max =
1

2𝑛𝑊
(3.106)

We saw in Chapter 2 that the bandwidth required for transmission of a pulse is inversely
proportional to the pulse width, so that

𝐵 = 2𝑘𝑛𝑊 (3.107)

where 𝐵 is the required bandwidth of the PCM system and 𝑘 is a constant of proportionality.
Note that we have assumed both a minimum sampling rate and a minimum value of bandwidth
for transmitting a pulse. Equation (3.107) shows that the PCM signal bandwidth is proportional
to the product of the message signal bandwidth𝑊 and the word length 𝑛.

If the major source of error in the system is quantizing error, it follows that a small error
requirement dictates large word length resulting in large transmission bandwidth. Thus, in a
PCM system, quantizing error can be exchanged for bandwidth.We shall see that this behavior
is typical of many nonlinear systems operating in noisy environments. However, before noise
effects can be analyzed, we must take a detour and develop the theory of probability and
random processes. Knowledge of this area enables one to accurately model realistic and
practical communication systems operating in everyday, nonidealized environments.

3.8.3 Time-Division Multiplexing

Time-division multiplexing (TDM) is best understood by considering Figure 3.30(a). The data
sources are assumed to have been sampled at the Nyquist rate or higher. The commutator then
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Figure 3.30
Time-division multiplexing. (a) TDM system. (b) Baseband signal.

interlaces the samples to form the baseband signal shown in Figure 3.30(b). At the channel
output, the baseband signal is demultiplexed by using a second commutator as illustrated.
Proper operation of this system obviously depends on proper synchronization between the two
commutators.

If all message signals have equal bandwidth, then the samples are transmitted sequentially,
as shown in Figure 3.30(b). If the sampled data signals have unequal bandwidths, more samples
must be transmitted per unit time from the wideband channels. This is easily accomplished if
the bandwidths are harmonically related. For example, assume that a TDM system has four
channels of data. Also assume that the bandwidth of the first and second data sources, 𝑠1(𝑡)
and 𝑠2(𝑡), is𝑊 Hz, the bandwidth of 𝑠3(𝑡) is 2𝑊 Hz, and the bandwidth of 𝑠4(𝑡) is 4𝑊 Hz. It
is easy to show that a permissible sequence of baseband samples is a periodic sequence, one
period of which is… 𝑠1𝑠4𝑠3𝑠4𝑠2𝑠4𝑠3𝑠4 …

The minimum bandwidth of a TDM baseband is easy to determine using the sampling
theorem. Assuming Nyquist rate sampling, the baseband contains 2𝑊

𝑖
𝑇 samples from the 𝑖th

channel in each 𝑇 -s interval, where 𝑊 is the bandwidth of the 𝑖th channel. Thus, the total
number of baseband samples in a 𝑇 -s interval is

𝑛
𝑠
=

𝑁∑

𝑖=1
2𝑊

𝑖
𝑇 (3.108)

Assuming that the baseband is a lowpass signal of bandwidth 𝐵, the required sampling rate is
2𝐵. In a 𝑇 -s interval, we then have 2𝐵𝑇 total samples. Thus,

𝑛
𝑠
= 2𝐵𝑇 =

𝑁∑

𝑖=1
2𝑊

𝑖
𝑇 (3.109)
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Figure 3.31
Digital multiplexing scheme for digital telephone. (a) T1 frame. (b) Digital multiplexing.

or

𝐵 =
𝑁∑

𝑖=1
𝑊
𝑖

(3.110)

which is the same as the minimum required bandwidth obtained for FDM.

3.8.4 An Example: The Digital Telephone System

As an example of a digital TDM system, we consider a multiplexing scheme common to many
telephone systems. The sampling format is illustrated in Figure 3.31(a). A voice signal is
sampled at 8000 samples per second, and each sample is quantized into seven binary digits. An
additional binary digit, known as a signaling bit, is added to the basic seven bits that represent
the sample value. The signaling bit is used in establishing calls and for synchronization. Thus,
eight bits are transmitted for each sample value, yielding a bit rate of 64,000 bit/s (64 kbps).
Twenty-four of these 64-kbps voice channels are grouped together to yield a T1 carrier. The
T1 frame consists of 24(8) + 1 = 193 bits. The extra bit is used for frame synchronization. The
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frame duration is the reciprocal of the fundamental sampling frequency, or 0.125 ms. Since the
frame rate is 8000 frames per second, with 193 bits per frame, the T1 data rate is 1.544 Mbps.

As shown in Figure 3.31(b), four T1 carriers can bemultiplexed to yield a T2 carrier, which
consists of 96 voice channels. Seven T2 carriers yield a T3 carrier, and six T3 carriers yield a
T4 carrier. The bit rate of a T4 channel, consisting of 4032 voice channels with signaling bits
and framing bits, is 274.176 Mbps. A T1 link is typically used for short transmission distances
in areas of heavy usage. T4 and T5 channels are used for long transmission distances.

Further Reading

One can find basic treatments of modulation theory at about the same technical level of this text in a wide
variety of books. Several selected examples are Carlson and Crilly (2009), Haykin and Moher (2009),
Lathi and Ding (2009), and Couch (2013).

Summary

1. Modulation is the process by which a parameter of
a carrier is varied in one-to-one correspondence with an
information-bearing signal usually referred to as the mes-
sage. Several uses of modulation are to achieve efficient
transmission, to allocate channels, and for multiplexing.

2. If the carrier is continuous, the modulation is
continuous-wave modulation. If the carrier is a sequence
of pulses, the modulation is pulse modulation.

3. There are two basic types of continuous-wave mod-
ulation: linear modulation and angle modulation.

4. Assume that a general modulated carrier is given by

𝑥
𝑐
(𝑡) = 𝐴(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)]

If 𝐴(𝑡) is proportional to the message signal, the result is
linear modulation. If 𝜙(𝑡) is proportional to the message
signal, the result is PM. If the time derivative of 𝜙(𝑡) is
proportional to the message signal, the result is FM. Both
PM and FM are examples of angle modulation. Angle
modulation is a nonlinear process.

5. The simplest example of linear modulation is DSB.
Double sideband is implemented as a simple product de-
vice, and coherent demodulation must be used, where co-
herent demodulation means that a local reference at the
receiver that is of the same frequency and phase as the
incoming carrier is used in demodulation.

6. An AM signal is formed by adding a carrier com-
ponent to a DSB signal. This is a useful modulation tech-
nique because it allows simple envelope detection to be
used for implementation very simple, and inexpensive,
receivers.

7. The efficiency of a modulation process is defined
as the percentage of total power that conveys information.
For AM, this is given by

𝐸 =
𝑎
2⟨𝑚2

𝑛
(𝑡)⟩

1 + 𝑎2⟨𝑚2
𝑛
(𝑡)⟩

(100%)

where the parameter 𝑎 is the modulation index and 𝑚
𝑛
(𝑡)

is 𝑚(𝑡) normalized so that the negative peak value is unity.
If envelope demodulation is used, the index must be less
than unity.

8. The modulation trapezoid provides a simple tech-
nique for monitoring the modulation index of an AM sig-
nal. It also provides a visual indication of the linearity of
the modulator and transmitter.

9. An SSB signal is generated by transmitting only one
of the sidebands in a DSB signal. Single-sideband signals
are generated either by sideband filtering a DSB signal or
by using a phase-shift modulator. Single-sideband signals
can be written as

𝑥
𝑐
(𝑡) = 1

2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) ± 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡)

in which the plus sign is used for lower-sideband SSB and
the minus sign is used for upper-sideband SSB. These sig-
nals can be demodulated either through the use of coherent
demodulation or through the use of carrier reinsertion.

10. Vestigial sideband results when a vestige of one side-
band appears on an otherwise SSB signal. Vestigial side-
band is easier to generate than SSB. Either coherent de-
modulation or carrier reinsertion can be used for message
recovery.
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11. Frequency translation is accomplished by multiply-
ing a signal by a carrier and filtering. These systems are
known as mixers.

12. The concept of mixing has many applications in-
cluding the implementation of superheterodyne receivers.
Mixing results in image frequencies, which can be trou-
blesome if not removed by filtering.

13. Interference, the presence of undesired signal com-
ponents, can be a problem in demodulation. Interference at
the input of a demodulator results in undesired components
at the demodulator output. If the interference is large and
if the demodulator is nonlinear, thresholding can occur.
The result of this is a drastic loss of the signal component.
14. Pulse-amplitude modulation results when the ampli-
tude of each carrier pulse is proportional to the value of the
message signal at each sampling instant. Pulse-amplitude
modulation is essentially a sample-and-hold operation.De-
modulation of PAM is accomplished by lowpass filtering.

15. Digital pulse modulation results when the sample
values of the message signal are quantized and encoded
prior to transmission.

16. Delta modulation is an easily implemented form of
digital pulse modulation. In DM, the message signal is
encoded into a sequence of binary symbols. The binary
symbols are represented by the polarity of impulse func-
tions at the modulator output. Demodulation is ideally
accomplished by integration, but lowpass filtering is often
a simple and satisfactory substitute.

17. Pulse-codemodulation results when themessage sig-
nal is sampled and quantized, and each quantized sample
value is encoded as a sequence of binary symbols. Pulse-
code modulation differs from DM in that in PCM each
quantized sample value is transmitted but in DM the trans-
mitted quantity is the polarity of the change in the message
signal from one sample to the next.
18. Multiplexing is a scheme allowing two or more mes-
sage signals to be communicated simultaneously using a
single system.

19. Frequency-division multiplexing results when si-
multaneous transmission is accomplished by translating
message spectra, using modulation to nonoverlapping lo-
cations in a baseband spectrum. The baseband signal is
then transmitted using any carrier modulation method.

20. Quadrature multiplexing results when two message
signals are translated, using linearmodulationwith quadra-
ture carriers, to the same spectral locations. Demodulation
is accomplished coherently using quadrature demodula-
tion carriers. A phase error in a demodulation carrier re-
sults in serious distortion of the demodulated signal. This
distortion has two components: a time-varying attenua-
tion of the desired output signal and crosstalk from the
quadrature channel.

21. Time-division multiplexing results when samples
from two or more data sources are interlaced, using com-
mutation, to form a baseband signal. Demultiplexing is
accomplished by using a second commutator, which must
be synchronous with the multiplexing commutator.

Drill Problems

3.1 A DSB signal has the message signal

𝑚(𝑡) = 3 cos(40𝜋𝑡) + 7 sin(64𝜋𝑡)

The unmodulated carrier is given by

𝑐(𝑡) = 40 cos(2000𝜋𝑡)

Determine the frequencies of the upper-sideband compo-
nents, the frequencies of the lower-sideband components,
and the total transmitted power.

3.2 Using the same message signal and unmodulated
carrier as given in the previous problem, and assuming that
the modulation technique is AM, determine the modula-
tion index and the efficiency.

3.3 An AM system operates with 𝐴
𝑐
= 100 and 𝑎 =

0.8. Sketch and fully dimension the modulation trapezoid.

3.4 Sketch and fully dimension the modulation trape-
zoid for AM with 𝑎 > 1. Write the equation for determing
the modulation index in terms of 𝐴 and 𝐵.

3.5 Show that an AM signal can be demodulated us-
ing coherent demodulation by assuming a demodulation
carrier of the form

2 cos[2𝜋𝑓
𝑐
𝑡 + 𝜃(𝑡)]

where 𝜃(𝑡) is the demodulation phase error.

3.6 A message signal is given by

𝑚(𝑡) = 3 cos(40𝜋𝑡) + 7 sin(64𝜋𝑡)
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Also 𝐴
𝑐
= 20 V and 𝑓

𝑐
= 300 Hz. Determine the expres-

sion for the upper-sideband SSB signal and the lower-
sideband SSB signal. Write these in a way that shows the
amplitude and frequency of all transmitted components.

3.7 Equation (3.63) gives the amplitude and phase for
the VSB signal components centered about 𝑓 = +𝑓

𝑐
. Give

the amplitude and phase of the signal comonents centered
about 𝑓 = −𝑓

𝑐
. Using these values show that the VSB

signal is real.

3.8 AnAM radio uses the standard IF frequency of 455
kHz and is tuned to receive a signal having a carrier fre-
quency of 1020 kHz. Determine the frequency of the local
oscillator for both low-side tuning and high-side tuning.
Give the image frequencies for each.

3.9 The input to an AM receiver input consists of
both modulated carrier (the message signal is a sin-
gle tone) and interference terms. Assuming that 𝐴

𝑖
=

100 V, 𝐴
𝑚
= 0.2 V, 𝐴

𝑐
= 1 V, 𝑓

𝑚
= 10 Hz, 𝑓

𝑐
=

300 Hz, and 𝑓
𝑖
= 320 Hz, approximate the envelope

detector output by giving the amplitudes and fre-
quencies of all components at the envelope detector
output.

3.10 APAM signal is formed by sampling an analog sig-
nal at 5 kHz. The duty cycle of the generated PAM pulses
is to be 5%. Define the transfer function of the holding cir-
cuit by giving the value of 𝜏 in (3.92). Define the transfer
function of the equalizing filter.

3.11 Rewrite (3.100) to show that relationship between
𝛿0∕𝐴 and 𝑇

𝑠
𝑓1. A signal defined by

𝑚(𝑡) = 𝐴 cos(40𝜋𝑡)

is sampled at 1000 Hz to form a DM signal. Give the
minium value of 𝛿0∕𝐴 to prevent slope overload.

3.12 ATDM signal consists of four signals having band-
widths of 1000, 2000, 4000, and 6000 Hz.What is the total
bandwidth of the composite TDM signal. What is the low-
est possible sampling frequency for the TDM signal?

Problems

Section 3.1

3.1 Assume that a DSB signal

𝑥
𝑐
(𝑡) = 𝐴

𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜙0)

is demodulated using the demodulation carrier
2 cos[2𝜋𝑓

𝑐
𝑡 + 𝜃(𝑡)]. Determine, in general, the demod-

ulated output 𝑦
𝐷
(𝑡). Let 𝐴

𝑐
= 1 and 𝜃(𝑡) = 𝜃0, where 𝜃0 is

a constant, and determine the mean-square error between
𝑚(𝑡) and the demodulated output as a function of 𝜙0 and
𝜃0. Now let 𝜃0 = 2𝜋𝑓0𝑡 and compute the mean-square error
between 𝑚(𝑡) and the demodulated output.

3.2 A message signal is given by

𝑚(𝑡) =
5∑

𝑘=1

10
𝑘

sin(2𝜋𝑘𝑓
𝑚
𝑡)

K1

–K1

0 t
T

(a)

K2

–K2

0 t
T

(b)

K3

–K3

0 t
T

(c)

Figure 3.32

and the carrier is given by

𝑐(𝑡) = 100 cos(200𝜋𝑡)
Write the transmitted signal as a Fourier series and deter-
mine the transmitted power.

Section 3.2

3.3 Design an envelope detector that uses a full-wave
rectifier rather than the half-wave rectifier shown in Fig-
ure 3.3. Sketch the resulting waveforms, as was done in
for a half-wave rectifier. What are the advantages of the
full-wave rectifier?

3.4 Three message signals are periodic with period 𝑇 ,
as shown in Figure 3.32. Each of the three message signals
is applied to an AM modulator. For each message signal,
determine the modulation efficiency for 𝑎 = 0.2, 𝑎 = 0.3,
𝑎 = 0.4, 𝑎 = 0.7, and 𝑎 = 1.
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3.5 The positive portion of the envelope of the output
of an AMmodulator is shown in Figure 3.33. The message
signal is a waveform having zero DC value. Determine the
modulation index, the carrier power, the efficiency, and
the power in the sidebands.

3.6 A message signal is a square wave with maxi-
mum and minimum values of 8 and −8 V, respectively.
The modulation index 𝑎 = 0.7 and the carrier amplitude
𝐴
𝑐
= 100 V. Determine the power in the sidebands and

the efficiency. Sketch the modulation trapezoid.

3.7 In this problem we examine the efficiency of AM
for the case in which the message signal does not have
symmetrical maximum and minimum values. Two mes-
sage signals are shown in Figure 3.34. Each is periodic
with period 𝑇 , and 𝜏 is chosen such that the DC value
of 𝑚(𝑡) is zero. Calculate the efficiency for each 𝑚(𝑡) for
𝑎 = 0.7 and 𝑎 = 1.
3.8 An AM modulator operates with the message

signal

𝑚(𝑡) = 9 cos(20𝜋𝑡) − 8 cos(60𝜋𝑡)

m(t)

T t

m(t)

5

0

–1

1

–5

0

τ

T tτ

Figure 3.34

The unmodulated carrier is given by 110 cos(200𝜋𝑡),
and the system operates with an index of 0.8.

(a) Write the equation for 𝑚
𝑛
(𝑡), the normalized sig-

nal with a minimum value of −1.
(b) Determine ⟨𝑚2

𝑛
(𝑡)⟩, the power in 𝑚

𝑛
(𝑡).

(c) Determine the efficiency of the modulator.

(d) Sketch the double-sided spectrum of 𝑥
𝑐
(𝑡), the

modulator output, giving the weights and fre-
quencies of all components.

3.9 Rework Problem 3.8 for the message signal

𝑚(𝑡) = 9 cos(20𝜋𝑡) + 8 cos(60𝜋𝑡)

3.10 An AM modulator has output

𝑥
𝑐
(𝑡) = 40 cos[2𝜋(200)𝑡] + 5 cos[2𝜋(180)𝑡]

+5 cos[2𝜋(220)𝑡]

Determine the modulation index and the efficiency.

3.11 An AM modulator has output

𝑥
𝑐
(𝑡) = 𝐴 cos[2𝜋(200)𝑡] + 𝐵 cos[2𝜋(180)𝑡]

+𝐵 cos[2𝜋(220)𝑡]

The carrier power is 𝑃0 and the efficiency is 𝐸
𝑓𝑓
. Derive

an expression for 𝐸
𝑓𝑓

in terms of 𝑃0, 𝐴, and 𝐵. Deter-
mine 𝐴, 𝐵, and the modulation index for 𝑃0 = 200𝑊 and
𝐸
𝑓𝑓
= 30%.

3.12 An AM modulator has output

𝑥
𝑐
(𝑡) = 25 cos[2𝜋(150)𝑡] + 5 cos[2𝜋(160)𝑡]

+5 cos[2𝜋(140)𝑡]

Determine the modulation index and the efficiency.
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Figure 3.35

3.13 AnAMmodulator is operating with an index of 0.8.
The modulating signal is

𝑚(𝑡) = 2 cos(2𝜋𝑓
𝑚
𝑡) + cos(4𝜋𝑓

𝑚
𝑡)

+2 cos(10𝜋𝑓
𝑚
𝑡)

(a) Sketch the spectrum of the modulator output
showing the weights of all impulse functions.

(b) What is the efficiency of the modulation process?

3.14 Consider the system shown in Figure 3.35. Assume
that the average value of 𝑚(𝑡) is zero and that the maxi-
mumvalue of |𝑚(𝑡)| is𝑀 . Also assume that the square-law
device is defined by 𝑦(𝑡) = 4𝑥(𝑡) + 2𝑥2(𝑡).

(a) Write the equation for 𝑦(𝑡).
(b) Describe the filter that yields an AM signal for

𝑔(𝑡). Give the necessary filter type and the fre-
quencies of interest.

(c) What value of 𝑀 yields a modulation index of
0.1?

(d) What is an advantage of this method of modula-
tion?

Section 3.3

3.15 Assume that a message signal is given by

𝑚(𝑡) = 4 cos(2𝜋𝑓
𝑚
𝑡) + cos(4𝜋𝑓

𝑚
𝑡)

Calculate an expression for

𝑥
𝑐
(𝑡) = 1

2
𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) ± 1

2
𝐴
𝑐
�̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡)

for𝐴
𝑐
= 10. Show, by sketching the spectra, that the result

is upper-sideband or lower-sideband SSB depending upon
the choice of the algebraic sign.

3.16 Redraw Figure 3.10 to illustrate the generation of
upper-sidebandSSB.Give the equation defining the upper-
sideband filter. Complete the analysis by deriving the ex-
pression for the output of an upper-sideband SSB modu-
lator.

fc

f
*fc 0

Figure 3.36

3.17 Squaring aDSBorAMsignal generates a frequency
component at twice the carrier frequency. Is this also true
for SSB signals? Show that it is or is not.

Section 3.4

3.18 Prove analytically that carrier reinsertion with en-
velope detection can be used for demodulation of VSB.

3.19 Figure 3.36 shows the spectrum of a VSB signal.
The amplitude and phase characteristics are the same as
described in Example 3.3. Show that upon coherent de-
modulation, the output of the demodulator is real.

Section 3.5

3.20 Sketch Figure 3.20 for the case where 𝑓LO =
𝑓
𝑐
− 𝑓IF.

3.21 A mixer is used in a short-wave superheterodyne
receiver. The receiver is designed to receive transmitted
signals between 10 and 30 MHz. High-side tuning is to
be used. Determine an acceptable IF frequency and the
tuning range of the local oscillator. Strive to generate a
design that yields the minimum tuning range.

3.22 A superheterodyne receiver uses an IF frequency
of 455 kHz. The receiver is tuned to a transmitter hav-
ing a carrier frequency of 1100 kHz. Give two permissi-
ble frequencies of the local oscillator and the image fre-
quency for each. Repeat assuming that the IF frequency is
2500 kHz.

Section 3.6

3.23 A DSB signal is squared to generate a carrier com-
ponent that may then be used for demodulation. (A tech-
nique for doing this, namely the phase-locked loop, will
be studied in the next chapter.) Derive an expression that
illustrates the impact of interference on this technique.

Section 3.7

3.24 A continuous-time signal is sampled and input to a
holding circuit. The product of the holding time and the
sampling frequency is 𝜏𝑓

𝑠
. Plot the amplitude response of

the required equalizer as a function of 𝜏𝑓
𝑠
. What problem,

or problems, arise if a large value of 𝜏 is used while the
sampling frequency is held constant?
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Section 3.8

3.25 A continuous data signal is quantized and transmit-
ted using a PCM system. If each data sample at the receiv-
ing end of the system must be known to within ±0.25% of
the peak-to-peak full-scale value, how many binary sym-
bols must each transmitted digital word contain? Assume
that the message signal is speech and has a bandwidth of 4
kHz. Estimate the bandwidth of the resulting PCM signal
(choose 𝑘).

3.26 A delta modulator has the message signal
𝑚 (𝑡) = 3 sin 2𝜋(10)𝑡 + 4 sin 2𝜋(20)𝑡

Determine the minimum sampling frequency required to
prevent slope overload, assuming that the impulse weights
𝛿0 are 0.05𝜋.
3.27 Five messages bandlimited to 𝑊 ,𝑊 , 2𝑊 , 4𝑊 ,

and 4𝑊 Hz, respectively, are to be time-division multi-
plexed. Devise a commutator configuration such that each
signal is periodically sampled at its ownminimum rate and
the samples are properly interlaced. What is the minimum
transmission bandwidth required for this TDM signal?

3.28 Repeat the preceding problem assuming that the
commutator is run at twice the minimum rate. What are
the advantages and disadvantages of doing this?

3.29 Five messages bandlimited to 𝑊 ,𝑊 , 2𝑊 , 5𝑊 ,

and 7𝑊 Hz, respectively, are to be time-division multi-
plexed. Devise a sampling scheme requiring the minimum
sampling frequency.

3.30 In an FDM communication system, the transmitted
baseband signal is

𝑥(𝑡) = 𝑚1 (𝑡) cos(2𝜋𝑓1𝑡) + 𝑚2 (𝑡) cos(2𝜋𝑓2𝑡)

This systemhas a second-order nonlinearity between trans-
mitter output and receiver input. Thus, the received base-
band signal 𝑦(𝑡) can be expressed as

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡)

Assuming that the two message signals, 𝑚1 (𝑡) and 𝑚2 (𝑡),
have the spectra

𝑀1(𝑓 ) =𝑀2(𝑓 ) = Π
(
𝑓

𝑊

)

sketch the spectrum of 𝑦(𝑡). Discuss the difficulties en-
countered in demodulating the received baseband signal.
In many FDM systems, the subcarrier frequencies 𝑓1 and
𝑓2 are harmonically related. Describe any additional prob-
lems this presents.

Computer Exercises

3.1 In Example 3.1 we determined the minimum value
of 𝑚(𝑡) using MATLAB. Write a MATLAB program that
provides a complete solution for Example 3.1. Use the
FFT for finding the amplitude and phase spectra of the
transmitted signal 𝑥

𝑐
(𝑡).

3.2 The purpose of this exercise is to demonstrate the
properties of SSB modulation. Develop a computer pro-
gram to generate both upper-sideband and lower-sideband
SSB signals and display both the time-domain signals and
the amplitude spectra of these signals. Assume the mes-
sage signal

𝑚(𝑡) = 2 cos(2𝜋𝑓
𝑚
𝑡) + cos(4𝜋𝑓

𝑚
𝑡)

Select both 𝑓
𝑚
and 𝑓

𝑐
so that both the time and frequency

axes can be easily calibrated. Plot the envelope of the
SSB signals, and show that both the upper-sideband and
the lower-sideband SSB signals have the same envelope.
Use the FFT algorithm to generate the amplitude spectrum
for both the upper-sideband and the lower-sideband SSB
signal.

3.3 Using the same message signal and value for 𝑓
𝑚
used

in the preceding computer exercise, show that carrier rein-

sertion can be used to demodulate an SSB signal. Illustrate
the effect of using a demodulation carrier with insufficient
amplitude when using the carrier reinsertion technique.

3.4 In this computer exercise we investigate the prop-
erties of VSB modulation. Develop a computer program
(using MATLAB) to generate and plot a VSB signal and
the corresponding amplitude spectrum.Using the program,
show that VSB can be demodulated using carrier reinser-
tion.

3.5 Using MATLAB simulate delta modulation.
Generate a signal, using a sum of sinusoids, so that the
bandwidth is known. Sample at an appropriate sampling
frequency (no slope overload). Show the stairstep approx-
imation. Now reduce the sampling frequency so that slope
overload occurs. Once again, show the stairstep approxi-
mation.

3.6 Using a sum of sinusoids as the sampling frequency,
sample and generate a PAM signal. Experiment with var-
ious values of 𝜏𝑓

𝑠
. Show that the message signal is recov-

ered by lowpass filtering. A third-order Butterworth filter
is suggested.
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CHAPTER4

ANGLE MODULATION AND
MULTIPLEXING

In the previous chapter, we considered analog linear modulation. We now consider angle modu-

lation. To generate angle modulation, the amplitude of the modulated carrier is held constant and

either the phase or the time derivative of the phase of the carrier is varied linearly with themessage

signal 𝒎(𝒕). These lead to phase modulation (PM) or frequency modulation (FM), respectively.

The most efficient technique for demodulating angle modulated signals is the phase-locked

loop (PLL). The PLL is ubiquitous in modern communication systems. Both analog systems and,

as we will see later, digital systems make extensive use of PLLs. Because of the importance of the

PLL, we give considerable emphasis to it in this chapter.

Also in this chapter we consider pulse modulation techniques related to angle modulation,

PWM and PPM. The motivation for doing this is, with the exception of pulse-amplitude modu-

lation, many of the characteristics of pulse modulation are similar to the characteristics of angle

modulation.

■ 4.1 PHASE AND FREQUENCY MODULATION DEFINED

Our starting point is the general signal model first used in the previous chapter, which is

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)] (4.1)

For angle modulation, the amplitude 𝐴(𝑡) is held constant at 𝐴
𝑐
and the message signal is

communicated by the phase. The instantaneous phase of 𝑥
𝑐
(𝑡) is defined as

𝜃
𝑖
(𝑡) = 2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡) (4.2)

and the instantaneous frequency, in hertz, is defined as

𝑓
𝑖
(𝑡) = 1

2𝜋
𝑑𝜃
𝑖

𝑑𝑡
= 𝑓

𝑐
+ 1

2𝜋
𝑑𝜙

𝑑𝑡
(4.3)

The functions 𝜙(𝑡) and 𝑑𝜙∕𝑑𝑡 are known as the phase deviation and frequency deviation (in
radians per second), respectively.

Phase modulation implies that the phase deviation of the carrier is proportional to the
message signal. Thus, for phase modulation,

𝜙(𝑡) = 𝑘
𝑝
𝑚(𝑡) (4.4)
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where 𝑘
𝑝
is the deviation constant in radians per unit of 𝑚(𝑡). Similarly, FM implies that the

frequency deviation of the carrier is proportional to the modulating signal. This yields

𝑑𝜙

𝑑𝑡
= 𝑘

𝑓
𝑚(𝑡) (4.5)

The phase deviation of a frequency-modulated carrier is given by

𝜙(𝑡) = 𝑘
𝑓
∫

𝑡

𝑡0

𝑚(𝛼)𝑑𝛼 + 𝜙0 (4.6)

in which 𝜙0 is the phase deviation at 𝑡 = 𝑡0. It follows from (4.5) that 𝑘
𝑓
is the frequency-

deviation constant, expressed in radians per second per unit of 𝑚(𝑡). Since it is often more
convenient to measure frequency deviation in Hz, we define

𝑘
𝑓
= 2𝜋𝑓

𝑑
(4.7)

where 𝑓
𝑑
is known as the frequency-deviation constant of the modulator and is expressed in

Hz per unit of 𝑚(𝑡).
With these definitions, the phase modulator output is

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝑘

𝑝
𝑚(𝑡)] (4.8)

and the frequency modulator output is

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 + 2𝜋𝑓

𝑑
∫

𝑡

𝑚(𝛼)𝑑𝛼
]

(4.9)

The lower limit of the integral is typically not specified, since to do so would require the
inclusion of an initial condition as shown in (4.6).

Figures 4.1 and 4.2 illustrate the outputs of PM and FM modulators. With a unit-step
message signal, the instantaneous frequency of the PM modulator output is 𝑓

𝑐
for both 𝑡 < 𝑡0

and 𝑡 > 𝑡0. The phase of the unmodulated carrier is advanced by 𝑘
𝑝
= 𝜋∕2 radians for 𝑡 > 𝑡0

giving rise to a signal that is discontinuous at 𝑡 = 𝑡0. The frequency of the output of the FM
modulator is 𝑓

𝑐
for 𝑡 < 𝑡0, and the frequency is 𝑓𝑐 + 𝑓𝑑 for 𝑡 > 𝑡0. The modulator output phase

is, however, continuous at 𝑡 = 𝑡0.
With a sinusoidal message signal, the phase deviation of the PM modulator output is

proportional to 𝑚(𝑡). The frequency deviation is proportional to the derivative of the phase
deviation. Thus, the instantaneous frequency of the output of the PM modulator is maximum
when the slope of 𝑚(𝑡) is maximum and minimum when the slope of 𝑚(𝑡) is minimum. The
frequency deviation of the FMmodulator output is proportional to𝑚(𝑡). Thus, the instantaneous
frequency of the FMmodulator output ismaximumwhen𝑚(𝑡) ismaximumandminimumwhen
𝑚(𝑡) is minimum. It should be noted that if 𝑚(𝑡) were not shown along with the modulator
outputs, it would not be possible to distinguish the PM and FM modulator outputs. In the
following sections wewill devote considerable attention to the case in which𝑚(𝑡) is sinusoidal.

4.1.1 Narrowband Angle Modulation

We start with a discussion of narrowband angle modulation because of the close relationship
of narrowband angle modulation to AM, which we studied in the preceding chapter. To begin,
we write an angle-modulated carrier in exponential form by writing (4.1) as

𝑥
𝑐
(𝑡) = Re(𝐴

𝑐
𝑒
𝑗𝜙(𝑡)
𝑒
𝑗2𝜋𝑓𝑐𝑡) (4.10)
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m(t)

1

t0
t

t

t

t

(a)

t0
(b)

t0
(c)

t0
(d)

Frequency = fc + fdFrequency = fc

Figure 4.1
Comparison of PM and FM modulator
outputs for a unit-step input.
(a) Message signal. (b) Unmodulated
carrier. (c) Phase modulator output
(𝑘
𝑝
= 1

2
𝜋). (d) Frequency modulator

output.

where Re(⋅) implies that the real part of the argument is to be taken. Expanding 𝑒𝑗𝜙(𝑡) in a
power series yields

𝑥
𝑐
(𝑡) = Re

{
𝐴
𝑐

[
1 + 𝑗𝜙(𝑡) − 𝜙

2(𝑡)
2!

−⋯
]
𝑒
𝑗2𝜋𝑓𝑐𝑡

}
(4.11)

If the peak phase deviation is small, so that the maximum value of |𝜙(𝑡)| is much less than
unity, the modulated carrier can be approximated as

𝑥
𝑐
(𝑡) ≅ Re[𝐴

𝑐
𝑒
𝑗2𝜋𝑓𝑐𝑡 + 𝐴

𝑐
𝜙(𝑡)𝑗𝑒𝑗2𝜋𝑓𝑐𝑡]

Taking the real part yields

𝑥
𝑐
(𝑡) ≅ 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) − 𝐴

𝑐
𝜙(𝑡) sin(2𝜋𝑓

𝑐
𝑡) (4.12)

The form of (4.12) is reminiscent of AM. The modulator output contains a carrier com-
ponent and a term in which a function of 𝑚(𝑡) multiplies a 90◦ phase-shifted carrier. The
first term yields a carrier component. The second term generates a pair of sidebands. Thus,
if 𝜙(𝑡) has a bandwidth 𝑊 , the bandwidth of a narrowband angle modulator output is 2𝑊 .
The important difference between AM and angle modulation is that the sidebands are pro-
duced by multiplication of the message-bearing signal, 𝜙 (𝑡), with a carrier that is in phase
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(a)

(b)

(c)

(d)

Figure 4.2
Angle modulation with sinusoidal messsage signal. (a) Message signal. (b) Unmodulated carrier. (c)
Output of phase modulator with 𝑚(𝑡). (d) Output of frequency modulator with 𝑚(𝑡).

quadrature with the carrier component, whereas for AM they are not. This will be illustrated in
Example 4.1.

The generation of narrowband angle modulation is easily accomplished using the method
shown in Figure 4.3. The switch allows for the generation of either narrowband FM or narrow-

m(t)

(.)dt
2   fd

kp

Ac

π

ω ω

FM

PM

(t)
×

−sin   ct cos ct

Σ

xc(t)

Carrier

oscillator

90° phase

shifter

Figure 4.3
Generation of narrowband angle modulation.
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band PM. We will show later that narrowband angle modulation is useful for the generation
of angle-modulated signals that are not necessarily narrowband. This is accomplished through
a process called narrowband-to-wideband conversion.

EXAMPLE 4.1

Consider an FM system with message signal

𝑚(𝑡) = 𝐴 cos(2𝜋𝑓
𝑚
𝑡) (4.13)

From (4.6), with 𝑡0 and 𝜙(𝑡0) equal to zero,

𝜙(𝑡) = 𝑘
𝑓
∫

𝑡

0
𝐴 cos(2𝜋𝑓

𝑚
𝛼)𝑑𝛼 =

𝐴𝑘
𝑓

2𝜋𝑓
𝑚

sin(2𝜋𝑓
𝑚
𝑡) =

𝐴𝑓
𝑑

𝑓
𝑚

sin(2𝜋𝑓
𝑚
𝑡) (4.14)

so that

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 +
𝐴𝑓

𝑑

𝑓
𝑚

sin(2𝜋𝑓
𝑚
𝑡)
]

(4.15)

If 𝐴𝑓
𝑑
∕𝑓
𝑚
≪ 1, the modulator output can be approximated as

𝑥
𝑐
(𝑡) = 𝐴

𝑐

[
cos(2𝜋𝑓

𝑐
𝑡) −

𝐴𝑓
𝑑

𝑓
𝑚

sin(2𝜋𝑓
𝑐
𝑡) sin(2𝜋𝑓

𝑚
𝑡)
]

(4.16)

which is

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) +

𝐴
𝑐

2
𝐴𝑓

𝑑

𝑓
𝑚

{cos[2𝜋(𝑓
𝑐
+ 𝑓

𝑚
)𝑡] − cos[2𝜋(𝑓

𝑐
− 𝑓

𝑚
)𝑡]} (4.17)

Thus, 𝑥
𝑐
(𝑡) can be written as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
Re

{[
1 +

𝐴𝑓
𝑑

2𝑓
𝑚

(
𝑒
𝑗2𝜋𝑓𝑚𝑡 − 𝑒−𝑗2𝜋𝑓𝑚𝑡

)]
𝑒
𝑗2𝜋𝑓𝑐 𝑡

}
(4.18)

It is interesting to compare this result with the equivalent result for an AM signal. Since sinusoidal
modulation is assumed, the AM signal can be written as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
[1 + 𝑎 cos(2𝜋𝑓

𝑚
𝑡)] cos(2𝜋𝑓

𝑐
𝑡) (4.19)

where 𝑎 = 𝐴𝑓
𝑑
∕𝑓
𝑚
is the modulation index. Combining the two cosine terms yields

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) +

𝐴
𝑐
𝑎

2
[cos 2𝜋(𝑓

𝑐
+ 𝑓

𝑚
)𝑡 + cos 2𝜋(𝑓

𝑐
− 𝑓

𝑚
)𝑡] (4.20)

This can be written in exponential form as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
Re

{[
1 + 𝑎

2
(𝑒𝑗2𝜋𝑓𝑚𝑡 + 𝑒−𝑗2𝜋𝑓𝑚𝑡)

]
𝑒
𝑗2𝜋𝑓𝑐 𝑡

}
(4.21)

Comparing (4.18) and (4.21) illustrates the similarity between the two signals. The first, and most
important, difference is the sign of the term at frequency 𝑓

𝑐
− 𝑓

𝑚
, which represents the lower sideband.

The other difference is that the index 𝑎 in the AM signal is replaced by 𝐴𝑓
𝑑
∕𝑓
𝑚
in the narrowband FM

signal. We will see in the following section that 𝐴𝑓
𝑑
∕𝑓
𝑚
determines the modulation index for an FM

signal. Thus, these two parameters are in a sense equivalent since each defines the modulation index.
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Figure 4.4
Comparison of AM and narrowband angle modulation. (a) Phasor diagrams. (b) Single-sided amplitude
spectra. (c) Single-sided phase spectra.

Additional insight is gained by sketching the phasor diagrams and the amplitude and phase spectra
for both signals. These are given in Figure 4.4. The phasor diagrams are drawn using the carrier phase as
a reference. The difference between AM and narrowband angle modulation with a sinusoidal message
signal lies in the fact that the phasor resulting from the LSB and USB phasors adds to the carrier for
AM but is in phase quadrature with the carrier for angle modulation. This difference results from the
minus sign in the LSB component and is also clearly seen in the phase spectra of the two signals. The
amplitude spectra are equivalent.

■

4.1.2 Spectrum of an Angle-Modulated Signal

The derivation of the spectrum of an angle-modulated signal is typically a very difficult
task. However, if the message signal is sinusoidal, the instantaneous phase deviation of the
modulated carrier is sinusoidal for both FM and PM, and the spectrum can be obtained with
ease. This is the case we will consider. Even though we are restricting our attention to a very
special case, the results provide much insight into the frequency-domain behavior of angle
modulation. In order to compute the spectrum of an angle-modulated signal with a sinusoidal
message signal, we assume that

𝜙(𝑡) = 𝛽 sin(2𝜋𝑓
𝑚
𝑡) (4.22)

The parameter 𝛽 is known as the modulation index and is the maximum phase deviation for
both FM and PM. The signal

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝛽 sin(2𝜋𝑓

𝑚
𝑡)] (4.23)
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can be expressed as

𝑥
𝑐
(𝑡) = Re

[
𝐴
𝑐
𝑒
𝑗𝛽 sin(2𝜋𝑓𝑚𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡

]
(4.24)

This expression has the form

𝑥
𝑐
(𝑡) = Re[�̃�

𝑐
(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡] (4.25)

where

�̃�
𝑐
(𝑡) = 𝐴

𝑐
𝑒
𝑗𝛽 sin(2𝜋𝑓𝑚𝑡) (4.26)

is the complex envelope of the modulated carrier signal. The complex envelope is periodic
with frequency 𝑓

𝑚
and can therefore be expanded in a Fourier series. The Fourier coefficients

are given by

𝑓
𝑚
∫

1∕2𝑓𝑚

−1∕2𝑓𝑚
𝑒
𝑗𝛽 sin(2𝜋𝑓𝑚𝑡)𝑒−𝑗2𝜋𝑛𝑓𝑚𝑡𝑑𝑡 = 1

2𝜋 ∫

𝜋

−𝜋
𝑒
−[𝑗𝑛𝑥−𝛽 sin(𝑥)]

𝑑𝑥 (4.27)

This integral cannot be evaluated in closed form. However, this integral arises in a variety of
studies and, therefore, has been well tabulated. The integral is a function of 𝑛 and 𝛽 and is
known as the Bessel function of the first kind of order 𝑛 and argument 𝛽. It is denoted 𝐽

𝑛
(𝛽)

and is tabulated for several values of 𝑛 and 𝛽 in Table 4.1. The significance of the underlining
of various values in the table will be explained later.

With the aid of Bessel functions, we have

𝑒
𝑗𝛽 sin(2𝜋𝑓𝑚𝑡) = 𝐽

𝑛
(𝛽)𝑒𝑗2𝜋𝑛𝑓𝑚𝑡 (4.28)

which allows the modulated carrier to be written as

𝑥
𝑐
(𝑡) = Re

[(

𝐴
𝑐

∞∑

𝑛=−∞
𝐽
𝑛
(𝛽)𝑒𝑗2𝜋𝑛𝑓𝑚𝑡

)

𝑒
𝑗2𝜋𝑓𝑐𝑡

]

(4.29)

Taking the real part yields

𝑥
𝑐
(𝑡) = 𝐴

𝑐

∞∑

𝑛=−∞
𝐽
𝑛
(𝛽) cos[2𝜋(𝑓

𝑐
+ 𝑛𝑓

𝑚
)𝑡] (4.30)

from which the spectrum of 𝑥
𝑐
(𝑡) can be determined by inspection. The spectrum has com-

ponents at the carrier frequency and has an infinite number of sidebands separated from the
carrier frequency by integer multiples of the modulation frequency 𝑓

𝑚
. The amplitude of each

spectral component can be determined from a table of values of the Bessel function. Such
tables typically give 𝐽

𝑛
(𝛽) only for positive values of 𝑛. However, from the definition of 𝐽

𝑛
(𝛽)

it can be determined that

𝐽−𝑛(𝛽) = 𝐽𝑛(𝛽), 𝑛 even (4.31)

and

𝐽−𝑛(𝛽) = −𝐽
𝑛
(𝛽), 𝑛 odd (4.32)

These relationships allow us to plot the spectrum of (4.30), which is shown in Figure 4.5. The
single-sided spectrum is shown for convenience.

A useful relationship between values of 𝐽
𝑛
(𝛽) for various values of 𝑛 is the recursion

formula

𝐽
𝑛+1(𝛽) =

2𝑛
𝛽
𝐽
𝑛
(𝛽) + 𝐽

𝑛−1(𝛽) (4.33)
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Figure 4.5
Spectra of an angle-modulated signal. (a) Single-sided amplitude spectrum. (b) Single-sided phase
spectrum.

Thus, 𝐽
𝑛+1(𝛽) can be determined from knowledge of 𝐽

𝑛
(𝛽) and 𝐽

𝑛−1(𝛽). This enables us to
compute a table of values of the Bessel function, as shown in Table 4.1, for any value of 𝑛
from 𝐽0(𝛽) and 𝐽1(𝛽).

Figure 4.6 illustrates the behavior of the Fourier--Bessel coefficients 𝐽
𝑛
(𝛽), for 𝑛 =

0, 1, 2, 4, and 6 with 0 ≤ 𝛽 ≤ 9. Several interesting observations can be made. First, for 𝛽 ≪ 1,
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Figure 4.6
𝐽
𝑛
(𝛽) as a function of 𝛽.
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Table 4.2 Values of 𝜷 for which 𝑱
𝒏
(𝜷) = 𝟎 for 𝟎 ≤ 𝜷 ≤ 𝟗

𝒏 𝜷
𝒏0 𝜷

𝒏1 𝜷
𝒏2

0 𝐽0(𝛽) = 0 2.4048 5.5201 8.6537
1 𝐽1(𝛽) = 0 0.0000 3.8317 7.0156
2 𝐽2(𝛽) = 0 0.0000 5.1356 8.4172
4 𝐽4(𝛽) = 0 0.0000 7.5883 --
6 𝐽6(𝛽) = 0 0.0000 -- --

it is clear that 𝐽0(𝛽) predominates, giving rise to narrowband angle modulation. It also can
be seen that 𝐽

𝑛
(𝛽) oscillates for increasing 𝛽 but that the amplitude of oscillation decreases

with increasing 𝛽. Also of interest is the fact that the maximum value of 𝐽
𝑛
(𝛽) decreases with

increasing 𝑛.
As Figure 4.6 shows, 𝐽

𝑛
(𝛽) is equal to zero at several values of 𝛽. Denoting these values

of 𝛽 by 𝛽
𝑛𝑘
, where 𝑘 = 0, 1, 2, we have the results in Table 4.2. As an example, 𝐽0(𝛽) is

zero for 𝛽 equal to 2.4048, 5.5201, and 8.6537. Of course, there are an infinite number of
points at which 𝐽

𝑛
(𝛽) is zero for any 𝑛, but consistent with Figure 4.6, only the values in

the range 0 ≤ 𝛽 ≤ 9 are shown in Table 4.2. It follows that since 𝐽0(𝛽) is zero at 𝛽 equal
to 2.4048, 5.5201, and 8.6537, the spectrum of the modulator output will not contain a
component at the carrier frequency for these values of the modulation index. These points are
referred to as carrier nulls. In a similar manner, the components at 𝑓 = 𝑓

𝑐
± 𝑓

𝑚
are zero if

𝐽1(𝛽) is zero. The values of the modulation index giving rise to this condition are 0, 3.8317,
and 7.0156. It should be obvious why only 𝐽0(𝛽) is nonzero at 𝛽 = 0. If the modulation
index is zero, then either 𝑚(𝑡) is zero or the deviation constant 𝑓

𝑑
is zero. In either case,

the modulator output is the unmodulated carrier, which has frequency components only at the
carrier frequency. In computing the spectrumof themodulator output, our starting pointwas the
assumption that

𝜙(𝑡) = 𝛽 sin(2𝜋𝑓
𝑚
𝑡) (4.34)

Note that in deriving the spectrum of the angle-modulated signal defined by (4.30), the
modulator type (FM or PM) was not specified. The assumed 𝜙(𝑡), defined by (4.34), could
represent either the phase deviation of a PM modulator with 𝑚(𝑡) = 𝐴 sin(𝜔

𝑚
𝑡) and an index

𝛽 = 𝑘
𝑝
𝐴, or an FM modulator with 𝑚(𝑡) = 𝐴 cos(2𝜋𝑓

𝑚
𝑡) with index

𝛽 =
𝑓
𝑑
𝐴

𝑓
𝑚

(4.35)

Equation (4.35) shows that the modulation index for FM is a function of the modulation
frequency. This is not the case for PM. The behavior of the spectrum of an FM signal is
illustrated in Figure 4.7, as 𝑓

𝑚
is decreased while holding 𝐴𝑓

𝑑
constant. For large values of

𝑓
𝑚
, the signal is narrowband FM, since only two sidebands are significant. For small values

of 𝑓
𝑚
, many sidebands have significant value. Figure 4.7 is derived in the following computer

example.
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Figure 4.7
Amplitude spectrum of a complex envelope signal for increasing 𝛽 and decreasing 𝑓

𝑚
.

COMPUTER EXAMPLE 4.1

In this computer example we determine the spectrum of the complex envelope signal given by (4.26).
In the next computer example we will determine and plot the two-sided spectrum, which is determined
from the complex envelope by writing the real bandpass signal as

𝑥
𝑐
(𝑡) = 1

2
𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑐 𝑡 + 1

2
𝑥
∗(𝑡)𝑒−𝑗2𝜋𝑓𝑐 𝑡 (4.36)

Note once more that knowledge of the complex envelope signal and the carrier frequency fully determine
the bandpass signal. In this example the spectrum of the complex envelope signal is determined for three
different values of the modulation index. The MATLAB program, which uses the FFT for determination
of the spectrum, follows.

%file c4ce1.m
fs=1000;
delt=1/fs;
t=0:delt:1-delt;
npts=length(t);
fm=[200 100 20];
fd=100;
for k=1:3

beta=fd/fm(k);
cxce=exp(i*beta*sin(2*pi*fm(k)*t));
as=(1/npts)*abs(fft(cxce));
evenf=[as(fs/2:fs)as(1:fs/2-1)];
fn=-fs/2:fs/2-1;
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subplot(3,1,k); stem(fn,2*evenf,‘.’)
ylabel(‘Amplitude’)

end

%End of script file.

Note that the modulation index is set by varying the frequency of the sinusoidal message signal 𝑓
𝑚

with the peak deviation held constant at 100 Hz. Since 𝑓
𝑚
takes on the values of 200, 100, and 20, the

corresponding values of the modulation index are 0.5, 1, and 5, respectively. The corresponding spectra
of the complex envelope signal are illustrated as a function of frequency in Figure 4.7.

■

COMPUTER EXAMPLE 4.2

We now consider the calculation of the two-sided amplitude spectrum of an FM (or PM) signal using
the FFT algorithm. As can be seen from the MATLAB code, a modulation index of 3 is assumed. Note
the manner in which the amplitude spectrum is divided into positive frequency and negative frequency
segments (line nine in the following program). The student should verify that the various spectral
components fall at the correct frequencies and that the amplitudes are consistent with the Bessel function
values given in Table 4.1. The output of the MATLAB program is illustrated in Figure 4.8.

%File: c4ce2.m
fs=1000; %sampling frequency
delt=1/fs; %sampling increment
t=0:delt:1-delt; %time vector
npts=length(t); %number of points
fn=(0:npts)-(fs/2); %frequency vector for plot
m=3*cos(2*pi*25*t); %modulation
xc=sin(2*pi*200*t+m); %modulated carrier
asxc=(1/npts)*abs(fft(xc)); %amplitude spectrum
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Figure 4.8
Two-sided amplitude spectrum computed using the FFT algorithm.
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evenf=[asxc((npts/2):npts)asxc(1:npts/2)]; %even amplitude spectrum
stem(fn,evenf,‘.’);
xlabel(‘Frequency-Hz’)
ylabel(‘Amplitude’)

%End of script.file.
■

4.1.3 Power in an Angle-Modulated Signal

The power in an angle-modulated signal is easily computed from (4.1). Squaring (4.1) and
taking the time-average value yields

⟨𝑥2
𝑐
(𝑡)⟩ = 𝐴2

𝑐
⟨cos2[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)]⟩ (4.37)

which can be written as

⟨𝑥2
𝑐
(𝑡)⟩ = 1

2
𝐴
2
𝑐
+ 1

2
𝐴
2
𝑐
⟨cos{2[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)]}⟩ (4.38)

If the carrier frequency is large so that 𝑥
𝑐
(𝑡) has negligible frequency content in the region of

DC, the second term in (4.38) is negligible and

⟨𝑥2
𝑐
(𝑡)⟩ = 1

2
𝐴
2
𝑐

(4.39)

Thus, the power contained in the output of an angle modulator is independent of the
message signal. Given that, for this example, 𝑥

𝑐
(𝑡) is a sinusoid, although of varying frequency,

the result expressed by (4.39) was to be expected. Constant transmitter power, independent
of the message signal, is one important difference between angle modulation and linear
modulation.

4.1.4 Bandwidth of Angle-Modulated Signals

Strictly speaking, the bandwidth of an angle-modulated signal is infinite, since angle modula-
tion of a carrier results in the generation of an infinite number of sidebands. However, it can
be seen from the series expansion of 𝐽

𝑛
(𝛽) (Appendix F, Table F.3) that for large 𝑛

𝐽
𝑛
(𝛽) ≈ 𝛽

𝑛

2𝑛𝑛!
(4.40)

Thus, for fixed 𝛽,

lim
𝑛→∞

𝐽
𝑛
(𝛽) = 0 (4.41)

This behavior can also be seen from the values of 𝐽
𝑛
(𝛽) given in Table 4.1. Since the values

of 𝐽
𝑛
(𝛽) become negligible for sufficiently large 𝑛, the bandwidth of an angle-modulated signal

can be defined by considering only those terms that contain significant power. The power ratio
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𝑃
𝑟
is defined as the ratio of the power contained in the carrier (𝑛 = 0) component and the 𝑘

components on each side of the carrier to the total power in 𝑥
𝑐
(𝑡). Thus,

𝑃
𝑟
=

1
2𝐴

2
𝑐

∑𝑘
𝑛=−𝑘 𝐽

2
𝑛
(𝛽)

1
2𝐴

2
𝑐

=
𝑘∑

𝑛=−𝑘
𝐽
2
𝑛
(𝛽) (4.42)

or simply

𝑃
𝑟
= 𝐽 20 (𝛽) + 2

𝑘∑

𝑛=1
𝐽
2
𝑛
(𝛽) (4.43)

Bandwidth for a particular application is often determined by defining an acceptable
power ratio, solving for the required value of 𝑘 using a table of Bessel functions, and then
recognizing that the resulting bandwidth is

𝐵 = 2𝑘𝑓
𝑚

(4.44)

The acceptable value of the power ratio is dictated by the particular application of the system.
Two power ratios are depicted in Table 4.1: 𝑃

𝑟
≥ 0.7 and 𝑃

𝑟
≥ 0.98. The value of 𝑛 corre-

sponding to 𝑘 for 𝑃
𝑟
≥ 0.7 is indicated by a single underscore, and the value of 𝑛 corresponding

to 𝑘 for 𝑃
𝑟
≥ 0.98 is indicated by a double underscore. For 𝑃

𝑟
≥ 0.98 it is noted that 𝑛 is equal

to the integer part of 1 + 𝛽, so that

𝐵 ≅ 2(𝛽 + 1)𝑓
𝑚

(4.45)

which will take on greater significance when Carson’s rule is discussed in the following
paragraph.

The preceding expression assumes sinusoidal modulation, since the modulation index 𝛽
is defined only for sinusoidal modulation. For arbitrary 𝑚(𝑡), a generally accepted expression
for bandwidth results if the deviation ratio 𝐷 is defined as

𝐷 =
peak frequency deviation

bandwidth of 𝑚(𝑡)
(4.46)

which is

𝐷 =
𝑓
𝑑

𝑊
(max |𝑚(𝑡)|) (4.47)

The deviation ratio plays the same role for nonsinusoidal modulation as the modulation
index plays for sinusoidal systems. Replacing 𝛽 by 𝐷 and replacing 𝑓

𝑚
by 𝑊 in (4.45), we

obtain

𝐵 = 2(𝐷 + 1)𝑊 (4.48)

This expression for bandwidth is generally referred to as Carson’s rule. If 𝐷 ≪ 1, the
bandwidth is approximately 2𝑊 , and the signal is known as a narrowband angle-modulated
signal. Conversely, if 𝐷 ≫ 1, the bandwidth is approximately 2𝐷𝑊 = 2𝑓

𝑑
(max |𝑚(𝑡)|),

which is twice the peak frequency deviation. Such a signal is known as a wideband angle-
modulated signal.
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EXAMPLE 4.2

In this example we consider an FM modulator with output

𝑥
𝑐
(𝑡) = 100 cos[2𝜋(1000)𝑡 + 𝜙(𝑡)] (4.49)

The modulator operates with 𝑓
𝑑
= 8 and has the input message signal

𝑚(𝑡) = 5 cos 2𝜋(8)𝑡 (4.50)

The modulator is followed by a bandpass filter with a center frequency of 1000 Hz and a bandwidth of
56 Hz, as shown in Figure 4.9(a). Our problem is to determine the power at the filter output.

The peak deviation is 5𝑓
𝑑
or 40 Hz, and 𝑓

𝑚
= 8 Hz. Thus, the modulation index is 40/5 = 8. This

yields the single-sided amplitude spectrum shown in Figure 4.9(b). Figure 4.9(c) shows the passband of
the bandpass filter. The filter passes the component at the carrier frequency and three components on
each side of the carrier. Thus, the power ratio is

𝑃
𝑟
= 𝐽 2

0 (5) + 2[𝐽 2
1 (5) + 𝐽

2
2 (5) + 𝐽

2
3 (5)] (4.51)

m(t) = 5 cos 2   (8)tπ xc(t tuptuO)

(a)

(b)

(c)
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System and spectra for Example 4.2. (a) FM system. (b) Single-sided spectrum of modulator output. (c)
Amplitude response of bandpass filter.
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which is

𝑃
𝑟
= (0.178)2 + 2

[
(0.328)2 + (0.047)2 + (0.365)2

]
(4.52)

This yields

𝑃
𝑟
= 0.518 (4.53)

The power at the output of the modulator is

𝑥2
𝑐
= 1

2
𝐴

2
𝑐
= 1

2
(100)2 = 5000W (4.54)

The power at the filter output is the power of the modulator output multiplied by the power ratio. Thus,
the power at the filter output is

𝑃
𝑟
𝑥2
𝑐
= 2589W (4.55)

■

EXAMPLE 4.3

In the development of the spectrum of an angle-modulated signal, it was assumed that the message signal
was a single sinusoid. We now consider a somewhat more general problem in which the message signal
is the sum of two sinusoids. Let the message signal be

𝑚(𝑡) = 𝐴 cos(2𝜋𝑓1𝑡) + 𝐵 cos(2𝜋𝑓2𝑡) (4.56)

For FM modulation the phase deviation is therefore given by

𝜙(𝑡) = 𝛽1 sin(2𝜋𝑓1𝑡) + 𝛽2 sin(2𝜋𝑓2𝑡) (4.57)

where 𝛽1 = 𝐴𝑓𝑑∕𝑓1 > 1 and 𝛽2 = 𝐵𝑓𝑑∕𝑓2. The modulator output for this case becomes

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝛽1 sin(2𝜋𝑓1𝑡) + 𝛽2 sin(2𝜋𝑓2𝑡)] (4.58)

which can be expressed as

𝑥
𝑐
(𝑡) = 𝐴

𝑐
Re

{
𝑒
𝑗𝛽1 sin(2𝜋𝑓1𝑡)𝑒𝑗𝛽2 sin(2𝜋𝑓2𝑡)𝑒𝑗2𝜋𝑓𝑐 𝑡

}
(4.59)

Using the Fourier series

𝑒
𝑗𝛽1 sin(2𝜋𝑓1𝑡) =

∞∑

𝑛=−∞
𝐽
𝑛
(𝛽1)𝑒𝑗2𝜋𝑛𝑓1𝑡 (4.60)

and

𝑒
𝑗𝛽2 sin(2𝜋𝑓2𝑡) =

∞∑

𝑚=−∞
𝐽
𝑚
(𝛽2)𝑒𝑗2𝜋𝑛𝑓2𝑡 (4.61)
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f

Figure 4.10
Amplitude spectrum for (4.63) with 𝛽1 = 𝛽2 and 𝑓2 = 12𝑓1.

the modulator output can be written

𝑥
𝑐
(𝑡) = 𝐴

𝑐
Re

{[ ∞∑

𝑛=−∞
𝐽
𝑛
(𝛽1)𝑒𝑗2𝜋𝑓1𝑡

∞∑

𝑚=−∞
𝐽
𝑚
(𝛽2)𝑒𝑗2𝜋𝑓2𝑡

]

𝑒
𝑗2𝜋𝑓𝑐 𝑡

}

(4.62)

Taking the real part gives

𝑥
𝑐
(𝑡) = 𝐴

𝑐

∞∑

𝑛=−∞

∞∑

𝑚=−∞
𝐽
𝑛
(𝛽1)𝐽𝑚(𝛽2) cos[2𝜋(𝑓𝑐 + 𝑛𝑓1 + 𝑚𝑓2)𝑡] (4.63)

Examination of the signal 𝑥
𝑐
(𝑡) shows that it not only contains frequency components at 𝑓

𝑐
+ 𝑛𝑓1 and

𝑓
𝑐
+ 𝑚𝑓2, but also contains frequency components at 𝑓

𝑐
+ 𝑛𝑓1 + 𝑚𝑓2 for all combinations of 𝑛 and 𝑚.

Therefore, the spectrum of the modulator output due to a message signal consisting of the sum of
two sinusoids contains additional components over the spectrum formed by the superposition of the
two spectra resulting from the individual message components. This example therefore illustrates the
nonlinear nature of anglemodulation. The spectrum resulting from amessage signal consisting of the sum
of two sinusoids is shown in Figure 4.10 for the case in which 𝛽1 = 𝛽2 and 𝑓2 = 12𝑓1.

■

COMPUTER EXAMPLE 4.3

In this computer example we consider a MATLAB program for computing the amplitude spectrum
of an FM (or PM) signal having a message signal consisting of a pair of sinusoids. The single-sided
amplitude spectrum is calculated. (Note the multiplication by 2 in the definitions of ampspec1 and
ampspec2 in the following computer program.) The single-sided spectrum is determined by using
only the positive portion of the spectrum represented by the first 𝑁∕2 points generated by the FFT
program. In the following program𝑁 is represented by the variable npts.

Two plots are generated for the output. Figure 4.11(a) illustrates the spectrum with a single sinusoid
for the message signal. The frequency of this sinusoidal component (50 Hz) is evident. Figure 4.11(b)
illustrates the amplitude spectrum of the modulator output when a second component, having a frequency
of 5 Hz, is added to the message signal. For this exercise the modulation index associated with each
component of the message signal was carefully chosen to ensure that the spectra were essentially
constrained to lie within the bandwidth defined by the carrier frequency (250 Hz).
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Figure 4.11
Frequency modulation spectra. (a) Single-tone modulating signal. (b) Two-tone modulating signal.

%File: c4ce3.m
fs=1000; %sampling frequency
delt=1/fs; %sampling increment
t=0:delt:1-delt; %time vector
npts=length(t); %number of points
fn=(0:(npts/2))*(fs/npts); %frequency vector for plot
m1=2*cos(2*pi*50*t); %modulation signal 1
m2=2*cos(2*pi*50*t)+1*cos(2*pi*5*t); %modulation signal 2
xc1=sin(2*pi*250*t+m1); %modulated carrier 1
xc2=sin(2*pi*250*t+m2); %modulated carrier 2
asxc1=(2/npts)*abs(fft(xc1)); %amplitude spectrum 1
asxc2=(2/npts)*abs(fft(xc2)); %amplitude spectrum 2
ampspec1=asxc1(1:((npts/2)+1)); %positive frequency portion 1
ampspec2=asxc2(1:((npts/2)+1)); %positive frequency portion 2
subplot(211)
stem(fn,ampspec1,‘.k’);
xlabel(‘Frequency-Hz’)
ylabel(‘Amplitude’)
subplot(212)
stem(fn,ampspec2,‘.k’);
xlabel(‘Frequency-Hz’)
ylabel(‘Amplitude’)
subplot(111)

%End of script file.
■

4.1.5 Narrowband-to-Wideband Conversion

One technique for generating wideband FM is illustrated in Figure 4.12. The carrier frequency
of the narrowband frequency modulator is 𝑓

𝑐1, and the peak frequency deviation is 𝑓
𝑑1. The

frequency multiplier multiplies the argument of the input sinusoid by 𝑛. In other words, if the
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oscillator
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Narrowband

frequency

modulator system

of Figure 3.22

Mixer

Narrowband FM signal:

Carrier frequency = fc1

Peak frequency deviation = fd1

Deviation ratio = D1

Wideband FM signal:

Carrier frequency = fc2 = nfc1

Peak frequency deviation = fd2 = nfd1

Deviation ratio = D2 = nD1

× n
×

Figure 4.12
Frequency modulation utilizing narrowband-to-wideband conversion.

input of a frequency multiplier is

𝑥(𝑡) = 𝐴
𝑐
cos[2𝜋𝑓0𝑡 + 𝜙(𝑡)] (4.64)

the output of the frequency multiplier is

𝑦(𝑡) = 𝐴
𝑐
cos[2𝜋𝑛𝑓0𝑡 + 𝑛𝜙(𝑡)] (4.65)

Assuming that the output of the local oscillator is

𝑒LO(𝑡) = 2 cos(2𝜋𝑓LO𝑡) (4.66)

results in

𝑒(𝑡) = 𝐴
𝑐
cos[2𝜋(𝑛𝑓0 + 𝑓LO)𝑡 + 𝑛𝜙(𝑡)]

+𝐴
𝑐
cos[2𝜋(𝑛𝑓0 − 𝑓LO)𝑡 + 𝑛𝜙(𝑡)] (4.67)

for the multiplier output. This signal is then filtered, using a bandpass filter having center
frequency 𝑓

𝑐
, given by

𝑓
𝑐
= 𝑛𝑓0 + 𝑓LO or 𝑓

𝑐
= 𝑛𝑓0 − 𝑓LO

This yields the output

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝑛𝜙(𝑡)] (4.68)

The bandwidth of the bandpass filter is chosen in order to pass the desired term in (4.67).
One can use Carson’s rule to determine the bandwidth of the bandpass filter if the transmitted
signal is to contain 98% of the power in 𝑥

𝑐
(𝑡).

The central idea in narrowband-to-wideband conversion is that the frequency multiplier
changes both the carrier frequency and the deviation ratio by a factor of 𝑛, whereas the mixer
changes the effective carrier frequency but does not affect the deviation ratio. This technique
of implementing wideband frequency modulation is known as indirect frequency modulation.
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EXAMPLE 4.4

A narrowband-to-wideband converter is implemented as shown in Figure 4.12. The output of the
narrowband frequency modulator is given by (4.64) with 𝑓0 = 100,000 Hz. The peak frequency deviation
of 𝜙(𝑡) is 50 Hz and the bandwidth of 𝜙(𝑡) is 500 Hz. The wideband output 𝑥

𝑐
(𝑡) is to have a carrier

frequency of 85 MHz and a deviation ratio of 5. In this example we determine the frequency multiplier
factor, 𝑛, two possible local oscillator frequencies, and the center frequency and the bandwidth of the
bandpass filter.

The deviation ratio at the output of the narrowband FM modulator is

𝐷1 =
𝑓
𝑑1

𝑊
= 50

500
= 0.1 (4.69)

The frequency multiplier factor is therefore

𝑛 =
𝐷2

𝐷1
= 5

0.1
= 50 (4.70)

Thus, the carrier frequency at the output of the narrowband FM modulator is

𝑛𝑓0 = 50(100,000) = 5MHz (4.71)

The two permissible frequencies for the local oscillator are

85 + 5 = 90 MHz (4.72)

and

85 − 5 = 80 MHz (4.73)

The center frequency of the bandpass filter must be equal to the desired carrier frequency of the wideband
output. Thus, the center frequency of the bandpass filter is 85 MHz. The bandwidth of the bandpass filter
is established using Carson’s rule. From (4.48) we have

𝐵 = 2(𝐷 + 1)𝑊 = 2(5 + 1)(500) (4.74)

Thus,

𝐵 = 6000 Hz (4.75)

■

■ 4.2 DEMODULATION OF ANGLE-MODULATED SIGNALS

The demodulation of an FM signal requires a circuit that yields an output proportional to the
frequency deviation of the input. Such circuits are known as frequency discriminators.1 If the
input to an ideal discriminator is the angle-modulated signal

𝑥
𝑟
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)] (4.76)

the output of the ideal discriminator is

𝑦
𝐷
(𝑡) = 1

2𝜋
𝐾
𝐷

𝑑𝜙

𝑑𝑡
(4.77)

1The terms frequency demodulator and frequency discriminator are equivalent.
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Ideal discriminator.

For FM, 𝜙(𝑡) is given by

𝜙(𝑡) = 2𝜋𝑓
𝑑
∫

𝑡

𝑚(𝛼)𝑑𝛼 (4.78)

so that (4.77) becomes

𝑦
𝐷
(𝑡) −𝐾

𝐷
𝑓
𝑑
𝑚(𝑡) (4.79)

The constant𝐾
𝐷
is known as the discriminator constant and has units of volts per Hz. Since an

ideal discriminator yields an output signal proportional to the frequency deviation of a carrier,
it has a linear frequency-to-voltage transfer function, which passes through zero at 𝑓 = 𝑓

𝑐
.

This is illustrated in Figure 4.13.
The system characterized by Figure 4.13 can also be used to demodulate PM signals. Since

𝜙(𝑡) is proportional to 𝑚(𝑡) for PM, 𝑦
𝐷
(𝑡) given by (4.77) is proportional to the time derivative

of 𝑚(𝑡) for PM inputs. Integration of the discriminator output yields a signal proportional to
𝑚(𝑡). Thus, a demodulator for PM can be implemented as an FM discriminator followed by
an integrator. We define the output of a PM discriminator as

𝑦
𝐷
(𝑡) = 𝐾

𝐷
𝑘
𝑝
𝑚(𝑡) (4.80)

It will be clear from the context whether 𝑦
𝐷
(𝑡) and 𝐾

𝐷
refer to an FM or a PM system.

An approximation to the characteristic illustrated in Figure 4.13 can be obtained by the
use of a differentiator followed by an envelope detector, as shown in Figure 4.14. If the input
to the differentiator is

𝑥
𝑟
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)] (4.81)

the output of the differentiator is

𝑒(𝑡) = −𝐴
𝑐

[
2𝜋𝑓

𝑐
+ 𝑑𝜙
𝑑𝑡

]
sin[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)] (4.82)

This is exactly the same form as an AM signal, except for the phase deviation 𝜙(𝑡). Thus, after
differentiation, envelope detection can be used to recover the message signal. The envelope
of 𝑒(𝑡) is

𝑦(𝑡) = 𝐴
𝑐

(
2𝜋𝑓

𝑐
+ 𝑑𝜙
𝑑𝑡

)
(4.83)

and is always positive if

𝑓
𝑐
> − 1

2𝜋
𝑑𝜙

𝑑𝑡
for all 𝑡
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Figure 4.14
FM discriminator implementation.

which is usually satisfied since 𝑓
𝑐
is typically significantly greater than the bandwidth of the

message signal. Thus, the output of the envelope detector is

𝑦
𝐷
(𝑡) = 𝐴

𝑐

𝑑𝜙

𝑑𝑡
= 2𝜋𝐴

𝑐
𝑓
𝑑
𝑚(𝑡) (4.84)

assuming that the DC term, 2𝜋𝐴
𝑐
𝑓
𝑐
, is removed. Comparing (4.84) and (4.79) shows that the

discriminator constant for this discriminator is

𝐾
𝐷
= 2𝜋𝐴

𝑐
(4.85)

We will see later that interference and channel noise perturb the amplitude 𝐴
𝑐
of 𝑥

𝑟
(𝑡). In

order to ensure that the amplitude at the input to the differentiator is constant, a limiter is
placed before the differentiator. The output of the limiter is a signal of square-wave type,
which is 𝐾sgn [𝑥

𝑟
(𝑡)]. A bandpass filter having center frequency 𝑓

𝑐
is then placed after the

limiter to convert the signal back to the sinusoidal form required by the differentiator to yield
the response defined by (4.82). The cascade combination of a limiter and a bandpass filter is
known as a bandpass limiter. The complete discriminator is illustrated in Figure 4.14.

The process of differentiation can often be realized using a time-delay implementation,
as shown in Figure 4.15. The signal 𝑒(𝑡), which is the input to the envelope detector, is
given by

𝑒(𝑡) = 𝑥
𝑟
(𝑡) − 𝑥

𝑟
(𝑡 − 𝜏) (4.86)

which can be written

𝑒(𝑡)
𝜏

=
𝑥
𝑟
(𝑡) − 𝑥

𝑟
(𝑡 − 𝜏)

𝜏
(4.87)

Since, by definition,

lim
𝜏→0

𝑒(𝑡)
𝜏

= lim
𝜏→0

𝑥
𝑟
(𝑡) − 𝑥

𝑟
(𝑡 − 𝜏)

𝜏
=
𝑑𝑥
𝑟
(𝑡)
𝑑𝑡

(4.88)

it follows that for small 𝜏,

𝑒(𝑡) ≅ 𝜏
𝑑𝑥
𝑟
(𝑡)
𝑑𝑡

(4.89)

This is, except for the constant factor 𝜏, identical to the envelope detector input shown in
Figure 4.15 and defined by (4.82). The resulting discriminator constant 𝐾

𝐷
is 2𝜋𝐴

𝑐
𝜏. There

are many other techniques that can be used to implement a discriminator. Later in this chapter
we will examine the phase-locked loop, which is an especially attractive, and common,
implementation.
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Figure 4.15
Discriminator implementation using a time delay and envelope detection.

EXAMPLE 4.5

Consider the simple RC network shown in Figure 4.16(a). The transfer function is

𝐻(𝑓 ) = 𝑅

𝑅 + 1∕𝑗2𝜋𝑓𝐶
= 𝑗2𝜋𝑓𝑅𝐶

1 + 𝑗2𝜋𝑓𝑅𝐶
(4.90)

The amplitude response is shown in Figure 4.16(b). If all frequencies present in the input are low, so that

𝑓 ≪
1

2𝜋𝑅𝐶

C

R

)b()a(

(c)

H( f )

f
fc

1

0.707

1

2π RC

Filter Envelope detector

Figure 4.16
Implementation of a simple
frequency discriminator based
on a high-pass filter. (a) RC
network. (b) Transfer
function. (c) Discriminator.
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the transfer function can be approximated by

𝐻(𝑓 ) = 𝑗2𝜋𝑓𝑅𝐶 (4.91)

Thus, for small 𝑓 , the RC network has the linear amplitude--frequency characteristic required of an
ideal discriminator. Equation (4.91) illustrates that for small 𝑓 , the RC filter acts as a differentiator
with gain RC. Thus, the RC network can be used in place of the differentiator in Figure 4.14 to yield a
discriminator with

𝐾
𝐷
= 2𝜋𝐴

𝑐
𝑅𝐶 (4.92)

■

This example again illustrates the essential components of a frequency discriminator,
a circuit that has an amplitude response linear with frequency and an envelope detector.
However, a highpass filter does not in general yield a practical implementation. This can be
seen from the expression for 𝐾

𝐷
. Clearly the 3-dB frequency of the filter, 1∕2𝜋𝑅𝐶 , must

exceed the carrier frequency 𝑓
𝑐
. In commercial FM broadcasting, the carrier frequency at

the discriminator input, i.e., the IF frequency, is on the order of 10 MHz. As a result, the
discriminator constant 𝐾

𝐷
is very small indeed.

A solution to the problem of a very small 𝐾
𝐷
is to use a bandpass filter, as illustrated

in Figure 4.17. However, as shown in Figure 4.17(a), the region of linear operation is often
unacceptably small. In addition, use of a bandpass filter results in aDCbias on the discriminator
output. This DC bias could of course be removed by a blocking capacitor, but the blocking
capacitor would negate an inherent advantage of FM---namely, that FM has DC response. One
can solve these problems by using two filters with staggered center frequencies 𝑓1 and 𝑓2,
as shown in Figure 4.17(b). The magnitudes of the envelope detector outputs following the
two filters are proportional to |𝐻1(𝑓 )| and |𝐻2(𝑓 )|. Subtracting these two outputs yields the
overall characteristic

𝐻(𝑓 ) = |𝐻1(𝑓 )| − |𝐻2(𝑓 )| (4.93)

as shown in Figure 4.17(c). The combination, known as a balanced discriminator, is linear
over a wider frequency range than would be the case for either filter used alone, and it is
clearly possible to make𝐻(𝑓

𝑐
) = 0.

In Figure 4.17(d), a center-tapped transformer supplies the input signal 𝑥
𝑐
(𝑡) to the inputs

of the two bandpass filters. The center frequencies of the two bandpass filters are given by

𝑓
𝑖
= 1

2𝜋
√
𝐿
𝑖
𝐶
𝑖

(4.94)

for 𝑖 = 1, 2. The envelope detectors are formed by the diodes and the resistor--capacitor
combinations𝑅

𝑒
𝐶
𝑒
. The output of the upper envelope detector is proportional to |𝐻1(𝑓 )|, and

the output of the lower envelope detector is proportional to |𝐻2(𝑓 )|. The output of the upper
envelope detector is the positive portion of its input envelope, and the output of the lower
envelope detector is the negative portion of its input envelope. Thus, 𝑦

𝐷
(𝑡) is proportional

to |𝐻1(𝑓 )| − |𝐻2(𝑓 )|. The term balanced discriminator is used because the response to the
undeviated carrier is balanced so that the net response is zero.
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Derivation of a balanced
discriminator. (a) Bandpass filter.
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■ 4.3 FEEDBACK DEMODULATORS: THE PHASE-LOCKED LOOP

We have previously studied the technique of FM to AM conversion for demodulating an
angle-modulated signal. We shall see in Chapter 8 that improved performance in the presence
of noise can be gained by utilizing a feedback demodulator. The subject of this section is the
phase-locked loop (PLL), which is a basic form of the feedback demodulator. Phase-locked
loops are widely used in today’s communication systems, not only for demodulation of angle-
modulated signals but also for carrier and symbol synchronization, for frequency synthesis,
and as the basic building block for a variety of digital demodulators. Phase-locked loops are
flexible in that they can be used in a wide variety of applications, are easily implemented, and
give superior performance to many other techniques. It is therefore not surprising that they
are ubiquitous in modern communications systems. Therefore, a detailed look at the PLL is
justified.

4.3.1 Phase-Locked Loops for FM and PM Demodulation

Ablock diagram of a PLL is shown in Figure 4.18. The basic PLL contains four basic elements.
These are

1. Phase detector

2. Loop filter

3. Loop amplifier (assume 𝜇 = 1)
4. Voltage-controlled oscillator (VCO).

In order to understand the operation of the PLL, assume that the input signal is given by

𝑥
𝑟
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)] (4.95)

and that the VCO output signal is given by

𝑒0(𝑡) = 𝐴𝑣 sin[2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)] (4.96)

(Note that these are in phase quadrature.) There are many different types of phase detectors, all
having different operating properties. For our application, we assume that the phase detector is
a multiplier followed by a lowpass filter to remove the second harmonic of the carrier. We also
assume that an inverter is present to remove the minus sign resulting from the multiplication.
With these assumptions, the output of the phase detector becomes

𝑒
𝑑
(𝑡) = 1

2
𝐴
𝑐
𝐴
𝑣
𝐾
𝑑
sin[𝜙(𝑡) − 𝜃(𝑡)] = 1

2
𝐴
𝑐
𝐴
𝑣
𝐾
𝑑
sin[𝜓(𝑡)] (4.97)

Phase

detector

Loop

f ilter

VCO

Loop

amplif ier

xr(t) ed(t)

ev(t)e0(t)

Demodulated output

Figure 4.18
Phase-locked loop for
demodulation of FM.
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where 𝐾
𝑑
is the phase detector constant and 𝜓(𝑡) = 𝜙(𝑡) − 𝜃(𝑡) is the phase error. Note that

for small phase error the two inputs to the multiplier are approximately orthogonal so that the
result of the multiplication is an odd function of the phase error 𝜙(𝑡) − 𝜃(𝑡). This is a necessary
requirement so that the phase detector can distinguish between positive and negative phase
errors. This illustrates why the PLL input and VCO output must be in phase quadrature.

The output of the phase detector is filtered, amplified, and applied to the VCO. A VCO
is essentially a frequency modulator in which the frequency deviation of the output, 𝑑𝜃∕𝑑𝑡, is
proportional to the VCO input signal. In other words,

𝑑𝜃

𝑑𝑡
= 𝐾

𝑣
𝑒
𝑣
(𝑡) rad∕𝑠 (4.98)

which yields

𝜃(𝑡) = 𝐾
𝑣
∫

𝑡

𝑒
𝑣
(𝛼)𝑑𝛼 (4.99)

The parameter 𝐾
𝑣
is known as the VCO constant and is measured in radians per second per

unit of input.
From the block diagram of the PLL it is clear that

𝐸
𝑣
(𝑠) = 𝐹 (𝑠)𝐸

𝑑
(𝑠) (4.100)

where 𝐹 (𝑠) is the transfer function of the loop filter. In the time domain the preceding
expression is

𝑒
𝑣
(𝛼) =

∫

𝑡

𝑒
𝑑
(𝜆)𝑓 (𝛼 − 𝜆)𝑑𝜆 (4.101)

which follows by simply recognizing that multiplication in the frequency domain is con-
volution in the time domain. Substitution of (4.97) into (4.101) and this result into (4.99)
gives

𝜃(𝑡) = 𝐾
𝑡
∫

𝑡

∫

𝛼

sin[𝜙(𝜆) − 𝜃(𝜆)]𝑓 (𝛼 − 𝜆)𝑑𝜆𝑑𝛼 (4.102)

where 𝐾
𝑡
is the total loop gain defined by

𝐾
𝑡
= 1

2
𝐴
𝑣
𝐴
𝑐
𝐾
𝑑
𝐾
𝑣

(4.103)

Equation (4.102) is the general expression relating the VCO phase 𝜃(𝑡) to the input phase 𝜙(𝑡).
The system designer must select the loop filter transfer function 𝐹 (𝑠), thereby defining the
filter impulse response 𝑓 (𝑡), and the loop gain 𝐾

𝑡
. We see from (4.103) that the loop gain is a

function of the input signal amplitude 𝐴
𝑣
. Thus, PLL design requires knowledge of the input

signal level, which is often unknown and time varying. This dependency on the input signal
level is typically removed by placing a hard limiter at the loop input. If a limiter is used, the
loop gain 𝐾

𝑡
is selected by appropriately choosing 𝐴

𝑣
, 𝐾

𝑑
, and 𝐾

𝑣
, which are all parameters

of the PLL. The individual values of these parameters are arbitrary so long as their product
gives the desired loop gain. However, hardware considerations typically place constraints on
these parameters.
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Figure 4.19
Nonlinear PLL model.
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Figure 4.20
Linear PLL model.

Equation (4.102) defines the nonlinear model of the PLL, having a sinusoidal nonlin-
earity.2 This model is illustrated in Figure 4.19. Since (4.102) is nonlinear, analysis of the
PLL using (4.102) is difficult and often involves a number of approximations. In practice,
we typically have interest in PLL operation in either the tracking mode or in the acquisition
mode. In the acquisition mode the PLL is attempting to acquire a signal by synchronizing the
frequency and phase of the VCO with the input signal. In the acquisition mode of operation,
the phase errors are typically large, and the nonlinear model is required for analysis.

In the tracking mode, however, the phase error 𝜙(𝑡) − 𝜃(𝑡) is typically small the linear
model for PLL design and analysis in the tracking mode can be used. For small phase errors
the sinusoidal nonlinearity may be neglected and the PLL becomes a linear feedback system.
Equation (4.102) simplifies to the linear model defined by

𝜃(𝑡) = 𝐾
𝑡
∫

𝑡

∫

𝛼

[𝜙(𝜆) − 𝜃(𝜆)]𝑓 (𝛼 − 𝜆)𝑑𝜆𝑑𝛼 (4.104)

The linear model that results is illustrated in Figure 4.20. Both the nonlinear and linear models
involve 𝜃(𝑡) and 𝜙(𝑡) rather than 𝑥

𝑟
(𝑡) and 𝑒0(𝑡). However, note that if we know 𝑓𝑐 , knowledge

of 𝜃(𝑡) and 𝜙(𝑡) fully determine 𝑥
𝑟
(𝑡) and 𝑒0(𝑡), as can be seen from (4.95) and (4.96). If the

2Many nonlinearities are possible and used for various purposes.
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Table 4.3 Loop Filter Transfer Functions

PLL order Loop filter transfer function, F(s)

1 1
2 1 + 𝑎

𝑠
= (𝑠 + 𝑎)∕𝑠

3 1 + 𝑎
𝑠
+ 𝑏

𝑠2
= (𝑠2 + 𝑎𝑠 + 𝑏)∕𝑠2

PLL is in phase lock, 𝜃(𝑡) ≅ 𝜙(𝑡), and it follows that, assuming FM,

𝑑𝜃(𝑡)
𝑑𝑡

≅ 𝑑𝜙(𝑡)
𝑑𝑡

= 2𝜋𝑓
𝑑
𝑚(𝑡) (4.105)

and the VCO frequency deviation is a good estimate of the input frequency deviation, which is
proportional to the message signal. Since the VCO frequency deviation is proportional to the
VCO input 𝑒

𝑣
(𝑡), it follows that the input is proportional to 𝑚(𝑡) if (4.105) is satisfied. Thus,

the VCO input, 𝑒
𝑣
(𝑡), is the demodulated output for FM systems.

The form of the loop filter transfer function𝐹 (𝑠) has a profound effect on both the tracking
and acquisition behavior of the PLL. In the work to follow we will have interest in first-order,
second-order, and third-order PLLs. The loop filter transfer functions for these three cases are
given in Table 4.3. Note that the order of the PLL exceeds the order of the loop filter by one.
The extra integration results from the VCO as we will see in the next section. We now consider
the PLL in both the tracking and acquisition mode. Tracking mode operation is considered
first since the model is linear and, therefore, more straightforward.

4.3.2 Phase-Locked Loop Operation in the Tracking Mode:
The Linear Model

As we have seen, in the tracking mode the phase error is small, and linear analysis can be
used to define PLL operation. Considerable insight into PLL operation can be gained by
investigating the steady-state errors for first-order, second-order, and third-order PLLs with a
variety of input signals.

The Loop Transfer Function and Steady-State Errors

The frequency-domain equivalent of Figure 4.20 is illustrated in Figure 4.21. It follows from
Figure 4.21 and (4.104) that

Θ(𝑠) = 𝐾
𝑡
[Φ(𝑠) − Θ(𝑠)]𝐹 (𝑠)

𝑠
(4.106)

from which the transfer function relating the VCO phase to the input phase is

𝐻(𝑠) = Θ(𝑠)
Φ(𝑠)

=
𝐾
𝑡
𝐹 (𝑠)

𝑠 +𝐾
𝑡
𝐹 (𝑠)

(4.107)

immediately follows. The Laplace transform of the phase error is

Ψ(𝑠) = Φ(𝑠) − Θ(𝑠) (4.108)
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Loop
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Loop
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−
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Ψ(s)

Θ(s)
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1/s

Figure 4.21
Linear PLL model in the frequency domain.

Therefore, we can write the transfer function relating the phase error to the input phase as

𝐺(𝑠) = Ψ(𝑠)
Φ(𝑠)

= Φ(𝑠) − Θ(𝑠)
Φ(𝑠)

= 1 −𝐻(𝑠) (4.109)

so that

𝐺(𝑠) = 𝑠

𝑠 +𝐾
𝑡
𝐹 (𝑠)

(4.110)

The steady-state error can be determined through the final value theorem from Laplace
transform theory. The final value theorem states that the lim

𝑡→∞ 𝑎(𝑡) is given by lim𝑠→0 𝑠𝐴(𝑠),
where 𝑎(𝑡) and 𝐴(𝑠) are a Laplace transform pair.

In order to determine the steady-state errors for various loop orders, we assume that the
phase deviation has the general form

𝜙(𝑡) = 𝜋𝑅𝑡2 + 2𝜋𝑓Δ𝑡 + 𝜃0, 𝑡 > 0 (4.111)

The corresponding frequency deviation is

1
2𝜋
𝑑𝜙

𝑑𝑡
= 𝑅𝑡 + 𝑓Δ, 𝑡 > 0 (4.112)

We see that the frequency deviation is the sum of a frequency ramp, 𝑅 Hz/s, and a frequency
step 𝑓Δ. The Laplace transform of 𝜙(𝑡) is

Φ(𝑠) = 2𝜋𝑅
𝑠3

+
2𝜋𝑓Δ
𝑠2

+
𝜃0
𝑠

(4.113)

Thus, the steady-state phase error is given by

𝜓
𝑠𝑠
= lim
𝑠→0
𝑠

[
2𝜋𝑅
𝑠3

+
2𝜋𝑓Δ
𝑠2

+
𝜃0
𝑠

]
𝐺(𝑠) (4.114)

where 𝐺(𝑠) is given by (4.110).
In order to generalize, consider the third-order filter transfer function defined in Table 4.4:

𝐹 (𝑠) = 1
𝑠2
(𝑠2 + 𝑎𝑠 + 𝑏) (4.115)

If 𝑎 = 0 and 𝑏 = 0, 𝐹 (𝑠) = 1, which is the loop filter transfer function for a first-order PLL. If
𝑎 ≠ 0, and 𝑏 = 0, 𝐹 (𝑠) = (𝑠 + 𝑎)∕𝑠, which defines the loop filter for second-order PLL. With
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Table 4.4 Steady-state Errors

𝜽𝟎 ≠ 𝟎 𝜽𝟎 ≠ 𝟎 𝜽𝟎 ≠ 𝟎
𝒇𝚫 = 𝟎 𝒇𝚫 ≠ 𝟎 𝒇𝚫 ≠ 𝟎

PLL order 𝑹 = 𝟎 𝑹 = 𝟎 𝑹 ≠ 𝟎

1 (𝑎 = 0, 𝑏 = 0) 0 2𝜋𝑓Δ∕𝐾𝑡 ∞
2 (𝑎 ≠ 0, 𝑏 = 0) 0 0 2𝜋𝑅∕𝐾

𝑡

3 (𝑎 ≠ 0, 𝑏 ≠ 0) 0 0 0

𝑎 ≠ 0 and 𝑏 ≠ 0 we have a third-order PLL. We can therefore use 𝐹 (𝑠), as defined by (4.115)
with 𝑎 and 𝑏 taking on appropriate values, to analyze first-order, second-order, and third-order
PLLs.

Substituting (4.115) into (4.110) yields

𝐺(𝑠) = 𝑠
3

𝑠3 +𝐾
𝑡
𝑠2 +𝐾

𝑡
𝑎𝑠 +𝐾

𝑡
𝑏

(4.116)

Using the expression for 𝐺(𝑠) in (4.114) gives the steady-state phase error expression

𝜓
𝑠𝑠
= lim
𝑠→0

𝑠(𝜃0𝑠2 + 2𝜋𝑓Δ𝑠 + 2𝜋𝑅)
𝑠3 +𝐾

𝑡
𝑠2 +𝐾

𝑡
𝑎𝑠 +𝐾

𝑡
𝑏

(4.117)

We now consider the steady-state phase errors for first-order, second-order, and third-order
PLLs. For various input signal conditions, defined by 𝜃0, 𝑓Δ, and 𝑅 and the loop filter
parameters 𝑎 and 𝑏, the steady-state errors given in Table 4.4 can be determined. Note that a
first-order PLL can track a phase step with a zero steady-state error. A second-order PLL can
track a frequency step with zero steady-state error, and a third-order PLL can track a frequency
ramp with zero steady-state error.

Note that for the cases given in Table 4.4 for which the steady-state error is nonzero
and finite, the steady-state error can be made as small as desired by increasing the loop gain
𝐾
𝑡
. However, increasing the loop gain increases the loop bandwidth. When we consider the

effects of noise in Chapter 8, we will see that increasing the loop bandwidth makes the PLL
performance more sensitive to the presence of noise. We therefore see a trade-off between
steady-state error and loop performance in the presence of noise.

EXAMPLE 4.6

We now consider a first-order PLL, which from (4.110) and (4.115), with 𝑎 = 0 and 𝑏 = 0, has the
transfer function

𝐻(𝑠) = Θ(𝑠)
Φ(𝑠)

=
𝐾
𝑡

𝑠 +𝐾
𝑡

(4.118)

The loop impulse response is therefore

ℎ(𝑡) = 𝐾
𝑡
𝑒
−𝐾𝑡𝑡𝑢(𝑡) (4.119)

The limit of ℎ(𝑡) as the loop gain 𝐾
𝑡
tends to infinity satisfies all properties of the delta function.

Therefore,

lim
𝐾𝑡→∞

𝐾
𝑡
𝑒
−𝐾𝑡𝑡𝑢(𝑡) = 𝛿(𝑡) (4.120)
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which illustrates that for large loop gain 𝜃(𝑡) ≈ 𝜙(𝑡). This also illustrates, as we previously discussed,
that the PLL serves as a demodulator for angle-modulated signals. Used as an FM demodulator, the VCO
input is the demodulated output since the VCO input signal is proportional to the frequency deviation of
the PLL input signal. For PM the VCO input is simply integrated to form the demodulated output, since
phase deviation is the integral of frequency deviation.

■

EXAMPLE 4.7

As an extension of the preceding example, assume that the input to an FM modulator is 𝑚(𝑡) = 𝐴𝑢(𝑡).
The resulting modulated carrier

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 + 𝑘

𝑓
𝐴
∫

𝑡

𝑢(𝛼)𝑑𝛼
]

(4.121)

is to be demodulated using a first-order PLL. The demodulated output is to be determined.
This problem will be solved using linear analysis and the Laplace transform. The loop transfer

function (4.118) is

Θ(𝑠)
Φ(𝑠)

=
𝐾
𝑡

𝑠 +𝐾
𝑡

(4.122)

The phase deviation of the PLL input 𝜙(𝑡) is

𝜙(𝑡) = 𝐴𝑘
𝑓
∫

𝑡

𝑢(𝛼)𝑑𝛼 (4.123)

The Laplace transform of 𝜙(𝑡) is

Φ(𝑠) =
𝐴𝑘

𝑓

𝑠2
(4.124)

which gives

Θ(𝑠) =
𝐴𝐾

𝑓

𝑠2

𝐾
𝑡

𝑠 +𝐾
𝑡

(4.125)

The Laplace transform of the defining equation of the VCO, (4.99), yields

𝐸
𝑣
(𝑠) = 𝑠

𝐾
𝑣

Θ(𝑠) (4.126)

so that

𝐸
𝑣
(𝑠) =

𝐴𝐾
𝑓

𝐾
𝑣

𝐾
𝑡

𝑠(𝑠 +𝐾
𝑡
)

(4.127)

Partial fraction expansion gives

𝐸
𝑣
(𝑠) =

𝐴𝐾
𝑓

𝐾
𝑣

(
1
𝑠
− 1
𝑠 +𝐾

𝑡

)
(4.128)

Thus, the demodulated output is given by

𝑒
𝑣
(𝑡) =

𝐴𝐾
𝑓

𝐾
𝑣

(1 − 𝑒−𝐾𝑡𝑡)𝑢(𝑡) (4.129)

Note that for 𝑡 ≫ 1∕𝐾
𝑡
and 𝐾

𝑓
= 𝐾

𝑣
we have, as desired, 𝑒

𝑣
(𝑡) = 𝐴𝑢(𝑡) as the demodulated output.

The transient time is set by the total loop gain 𝐾
𝑡
, and 𝐾

𝑓
∕𝐾

𝑣
is simply an amplitude scaling of the

demodulated output signal.
■
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As previously mentioned, very large values of loop gain cannot be used in practical
applications without difficulty. However, the use of appropriate loop filters allows good
performance to be achieved with reasonable values of loop gain and bandwidth. These filters
make the analysis more complicated than our simple example, as we shall soon see.

Even though the first-order PLL can be used for demodulation of angle-modulated signals
and for synchronization, the first-order PLL has a number of drawbacks that limit its use for
most applications. Among these drawbacks are the limited lock range and the nonzero steady-
state phase error to a step-frequency input. Both these problems can be solved by using a
second-order PLL, which is obtained by using a loop filter of the form

𝐹 (𝑠) = 𝑠 + 𝑎
𝑠

= 1 + 𝑎
𝑠

(4.130)

This choice of loop filter results in what is generally referred to as a perfect second-order PLL.
Note that the loop filter defined by (4.130) can be implemented using a single integrator, as
will be demonstrated in a Computer Example 4.4 to follow.

The Second-Order PLL: Loop Natural Frequency and Damping Factor

With 𝐹 (𝑠) given by (4.130), the transfer function (4.107) becomes

𝐻(𝑠) = Θ(𝑠)
Φ(𝑠)

=
𝐾
𝑡
(𝑠 + 𝑎)

𝑠2 +𝐾
𝑡
𝑠 +𝐾

𝑡
𝑎

(4.131)

We also can write the relationship between the phase error Ψ(𝑠) and the input phase Φ(𝑠).
From Figure 4.21 or (4.110), we have

𝐺(𝑠) = Ψ(𝑠)
Φ(𝑠)

= 𝑠
2

𝑠2 +𝐾
𝑡
𝑎𝑠 +𝐾

𝑡
𝑎

(4.132)

Since the performance of a linear second-order system is typically parameterized in terms
of the natural frequency and damping factor, we now place the transfer function in the standard
form for a second-order system. The result is

Ψ(𝑠)
Φ(𝑠)

= 𝑠
2

𝑠2 + 2𝜁𝜔
𝑛
𝑠 + 𝜔2

𝑛

(4.133)

in which 𝜁 is the damping factor and 𝜔
𝑛
is the natural frequency. It follows from the preceding

expression that the natural frequency is

𝜔
𝑛
=
√
𝐾
𝑡
𝑎 (4.134)

and that the damping factor is

𝜁 = 1
2

√
𝐾
𝑡

𝑎
(4.135)

A typical value of the damping factor is 1∕
√
2 = 0.707. Note that this choice of damping

factor gives a second-order Butterworth response.
In simulating a second-order PLL, one usually specifies the loop natural frequency and

the damping factor and determines loop performance as a function of these two fundamental
parameters. The PLL simulation model, however, is a function of the physical parameters 𝐾

𝑡
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and 𝑎. Equations (4.134) and (4.135) allow 𝐾
𝑡
and 𝑎 to be written in terms of 𝜔

𝑛
and 𝜁 . The

results are

𝑎 =
𝜔
𝑛

2𝜁
=
𝜋𝑓
𝑛

𝜁
(4.136)

and

𝐾
𝑡
= 4𝜋𝜁𝑓

𝑛
(4.137)

where 2𝜋𝑓
𝑛
= 𝜔

𝑛
. These last two expressions will be used to develop the simulation program

for the second-order PLL that is given in Computer Example 4.4.

EXAMPLE 4.8

We now work a simple second-order example. Assume that the input signal to the PLL experiences a
small step change in frequency. (The step in frequency must be small to ensure that the linear model is
applicable. We will consider the result of large step changes in PLL input frequency when we consider
operation in the acquisition mode.) Since instantaneous phase is the integral of instantaneous frequency
and integration is equivalent to division by 𝑠, the input phase due to a step in frequency of magnitude
Δ𝑓 is

Φ(𝑠) = 2𝜋Δ𝑓
𝑠2

(4.138)

From (4.133) we see that the Laplace transform of the phase error 𝜓(𝑡) is

Ψ(𝑠) = Δ𝜔
𝑠2 + 2𝜁𝜔

𝑛
𝑠 + 𝜔2

𝑛

(4.139)

Inverse transforming and replacing 𝜔
𝑛
by 2𝜋𝑓

𝑛
yields, for 𝜁 < 1,

𝜓(𝑡) = Δ𝑓
𝑓
𝑛

√
1 − 𝜁 2

𝑒
−2𝜋𝜁𝑓𝑛𝑡[sin(2𝜋𝑓

𝑛

√
1 − 𝜁 2𝑡)]𝑢(𝑡) (4.140)

and we see that 𝜓(𝑡) → 0 as 𝑡 → ∞. Note that the steady-state phase error is zero, which is consistent
with the values shown in Table 4.4.

■

4.3.3 Phase-Locked Loop Operation in the Acquisition Mode

In the acquisition mode we must determine that the PLL actually achieves phase lock and the
time required for the PLL to achieve phase lock. In order to show that the phase error signal
tends to drive the PLL into lock, we will simplify the analysis by assuming a first-order PLL
for which the loop filter transfer function 𝐹 (𝑠) = 1 or 𝑓 (𝑡) = 𝛿(𝑡). Simulation will be used for
higher-order loops. Using the general nonlinear model defined by (4.102) with ℎ(𝑡) = 𝛿(𝑡) and
applying the sifting property of the delta function yields

𝜃(𝑡) = 𝐾
𝑡
∫

𝑡

sin[𝜙(𝛼) − 𝜃(𝛼)]𝑑𝛼 (4.141)

Taking the derivative of 𝜃(𝑡) gives
𝑑𝜃

𝑑𝑡
= 𝐾

𝑡
sin[𝜙(𝑡) − 𝜃(𝑡)] (4.142)
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Figure 4.22
Phase-plane plot for sinusoidal
nonlinearity.

Assume that the input to the FMmodulator is a unit step so that the frequency deviation 𝑑𝜙∕𝑑𝑡
is a unit step of magnitude 2𝜋Δ𝑓 = Δ𝜔. Let the phase error 𝜙(𝑡) − 𝜃(𝑡) be denoted 𝜓(𝑡). This
yields

𝑑𝜃

𝑑𝑡
= 𝑑𝜙
𝑑𝑡

− 𝑑𝜓
𝑑𝑡

= Δ𝜔 − 𝑑𝜓
𝑑𝑡

= 𝐾
𝑡
sin𝜓(𝑡), 𝑡 ≥ 0 (4.143)

or

𝑑𝜓

𝑑𝑡
+𝐾

𝑡
sin𝜓(𝑡) = Δ𝜔 (4.144)

This equation is shown in Figure 4.22. It relates the frequency error and the phase error and is
known as a phase plane.

The phase plane tells us much about the operation of a nonlinear system. The PLL must
operate with a phase error 𝜓(𝑡) and a frequency error 𝑑𝜓∕𝑑𝑡 that are consistent with (4.144).
To demonstrate that the PLL achieves lock, assume that the PLL is operating with zero phase
and frequency error prior to the application of the frequency step. When the step in frequency
is applied, the frequency error becomes Δ𝜔. This establishes the initial operating point, point
𝐵 in Figure 4.22, assumingΔ𝜔 > 0. In order to determine the trajectory of the operating point,
we need only recognize that since 𝑑𝑡, a time increment, is always a positive quantity, 𝑑𝜓 must
be positive if 𝑑𝜓∕𝑑𝑡 is positive. Thus, in the upper half plane 𝜓 increases. In other words,
the operating point moves from left-to-right in the upper half plane. In the same manner,
the operating point moves from right-to-left in the lower half plane, the region for which
𝑑𝜓∕𝑑𝑡 is less than zero. Thus, the operating point must move from point 𝐵 to point 𝐴. When
the operating point attempts to move from point 𝐴 by a small amount, it is forced back to
point 𝐴. Thus, point 𝐴 is a stable operating point and is the steady-state operating point of
the system. The steady-state phase error is 𝜓𝑠𝑠, and the steady-state frequency error is zero
as shown.

The preceding analysis illustrates that the loop locks only if there is an intersection of the
operating curve with the 𝑑𝜓∕𝑑𝑡 = 0 axis. Thus, if the loop is to lock, Δ𝜔 must be less than
𝐾
𝑡
. For this reason, 𝐾

𝑡
is known as the lock range for the first-order PLL.

The phase-plane plot for a first-order PLL with a frequency-step input is illustrated in
Figure 4.23. The loop gain is 2𝜋(50), and four values for the frequency step are shown:
Δ𝑓 = 12, 24, 48, and 55 Hz. The steady-state phase errors are indicated by 𝐴,𝐵, and 𝐶 for
frequency-step values of 12, 24, and 48 Hz, respectively. For Δ𝑓 = 55, the loop does not lock
but forever oscillates.

A mathematical development of the phase-plane plot of a second-order PLL is well
beyond the level of our treatment here. However, the phase-plane plot is easily obtained, using
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Phase-plane plot for first-order
PLL for several step function
frequency errors.

computer simulation. For illustrative purposes, assume a second-order PLL having a damping
factor 𝜁 of 0.707 and a natural frequency 𝑓

𝑛
of 10 Hz. For these parameters, the loop gain

𝐾
𝑡
is 88.9, and the filter parameter 𝑎 is 44.4. The input to the PLL is assumed to be a step

change in frequency at time 𝑡 = 𝑡0. Four values were used for the step change in frequency
Δ𝜔 = 2𝜋(Δ𝑓 ). These were Δ𝑓 = 20, 35, 40, and 45 Hz.

The results are illustrated in Figure 4.24. Note that for Δ𝑓 = 20 Hz, the operating point
returns to a steady-state value for which the frequency and phase error are both zero, as
should be the case from Table 4.4. For Δ𝑓 = 35 Hz, the phase plane is somewhat more
complicated. The steady-state frequency error is zero, but the steady-state phase error is
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Figure 4.24
Phase-plane plot for second-order
PLL for several step function
frequency errors.
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2𝜋 rad. We say that the PLL has slipped one cycle. Note that the steady-state error is zero
mod(2𝜋). The cycle-slipping phenomenon accounts for the nonzero steady-state phase error.
The responses for Δ𝑓 = 40 and 45 Hz illustrate that three and four cycles are slipped, respec-
tively. The instantaneous VCO frequency is shown in Figure 4.24 for these four cases. The
cycle-slipping behavior is clearly shown. The second-order PLL does indeed have an infinite
lock range, and cycle slipping occurs until the phase error is within 𝜋 rad of the steady-state
value.

COMPUTER EXAMPLE 4.4

A simulation program is easily developed for the PLL.We simply replace the continuous-time integrators
by appropriate discrete-time integrators. Many different discrete-time integrators exist, all of which are
approximations to the continuous-time integrators. Here we consider only the trapesoidal approximation.
Two integration routines are required; one for the loop filter and one for the VCO. The trapezoidal
approximation is

y[n] = y[n-1] + (T/2)[x[n] + x[n-1]]

wherey[n] represents the current output of the integrator,y[n-1] represents the previous integrator
output,x[n] represents the current integrator input,x[n-1] represents the previous integrator input,
and T represents the simulation step size, which is the reciprocal of the sampling frequency. The values
of y[n-1] and x[n-1] must be initialized prior to entering the simulation loop. Initializing the
integrator inputs and outputs usually result in a transient response. The parameter nsettle, which
in the simulation program to follow, is set equal to 10% of the simulation run length, allows any initial
transients to decay to negligible values prior to applying the loop input. The following simulation program
is divided into three parts. The preprocessor defines the system parameters, the system input, and the
parameters necessary for execution of the simulation, such as the sampling frequency. The simulation
loop actually performs the simulation. Finally, the postprocessor allows for the data generated by the
simulation to be displayed in a manner convenient for interpretation by the simulation user. Note that
the postprocessor used here is interactive in that a menu is displayed and the simulation user can execute
postprocessor commands without typing them. The simulation program given here assumes a frequency
step on the loop input and can therefore be used to generate Figures 4.24 and 4.25.

%File: c4ce4.m
%beginning of preprocessor
clear all %be safe
fdel = input(‘Enter frequency step size in Hz > ’);
n = input(‘Enter the loop natural frequency in Hz > ’);
zeta = input(‘Enter zeta (loop damping factor) > ’);
npts = 2000; %default number of simulation points
fs = 2000; %default sampling frequency
T = 1/fs;
t = (0:(npts-1))/fs; %time vector
nsettle = fix(npts/10) %set nsettle time as 0.1*npts
Kt = 4*pi*zeta*fn; %loop gain
a = pi*fn/zeta; %loop filter parameter
filt in last = 0; filt out last=0;
vco in last = 0; vco out = 0; vco out last=0;
%end of preprocessor

%beginning of simulation loop
for i=1:npts

if i < nsettle
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Figure 4.25
Voltage-controlled frequency for four values of the input frequency step. (a) VCO frequency for
Δ𝑓 = 20 Hz. (b) VCO frequency for Δ𝑓 = 35 Hz. (c) VCO frequency for Δ𝑓 = 40 Hz. (d) VCO
frequency for Δ𝑓 = 45 Hz.

fin(i) = 0;
phin = 0;

else
fin(i) = fdel;
phin = 2*pi*fdel*T*(i-nsettle);

end
s1=phin - vco out;
s2=sin(s1); %sinusoidal phase detector
s3=Kt*s2;
filt in = a*s3;
filt out = filt out last + (T/2)*(filt in + filt in last);
filt in last = filt in;
filt out last = filt out;
vco in = s3 + filt out;
vco out = vco out last + (T/2)*(vco in + vco in last);
vco in last = vco in;
vco out last = vco out;
phierror(i)=s1;
fvco(i)=vco in/(2*pi);
freqerror(i) = fin(i)-fvco(i);

end
%end of simulation loop

%beginning of postprocessor
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kk = 0;
while kk == 0

k = menu(‘Phase Lock Loop Postprocessor’,...
‘Input Frequency and VCO Frequency’,...
‘Phase Plane Plot’,...
‘Exit Program’);
if k == 1

plot(t,fin,t,fvco)
title(‘Input Frequency and VCO Frequency’)
xlabel(‘Time - Seconds’)
ylabel(‘Frequency - Hertz’)
pause

elseif k == 2
plot(phierror/2/pi,freqerror)
title(‘Phase Plane’)
xlabel(‘Phase Error / pi’)
ylabel(‘Frequency Error - Hz’)
pause

elseif k == 3
kk = 1;

end
end

%end of postprocessor
■

4.3.4 Costas PLLs

We have seen that systems utilizing feedback can be used to demodulate angle-modulated
carriers. A feedback system also can be used to generate the coherent demodulation carrier
necessary for the demodulation of DSB signals. One system that accomplishes this is the
Costas PLL illustrated in Figure 4.26. The input to the loop is the assumed DSB signal

𝑥
𝑟
(𝑡) = 𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) (4.145)

Demodulated

output

xr(t) = m(t) cos ctω

2 cos ( ct +   ) ω θ

2 sin ( ct +   ) ω θ

θ

θ

90° phase

shift

Lowpass

f ilter

Lowpass

f ilter

Lowpass

f ilter
VCO

K sin 2

m(t) cos

θ

θ

m(t) sin

m2(t) sin 2
1

2
×

×

×

Figure 4.26
Costas phase-locked loop.
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The signals at the various points within the loop are easily derived from the assumed input
and VCO output and are included in Figure 4.26. The lowpass filter preceding the VCO is
assumed to have sufficiently small bandwidth so that the output is approximately 𝐾 sin(2𝜃),
essentially the DC value of the filter input. This signal drives the VCO such that 𝜃 is reduced.
For sufficiently small 𝜃, the output of the top lowpass filter is the demodulated output, and the
output of the lower filter is negligible. We will later see in that the Costas PLL is useful in the
implementation of digital receivers.

4.3.5 Frequency Multiplication and Frequency Division

Phase-locked loops also allow for simple implementation of frequencymultipliers and dividers.
There are two basic schemes. In the first scheme, harmonics of the input are generated, and the
VCO tracks one of these harmonics. This scheme is most useful for implementing frequency
multipliers. The second scheme is to generate harmonics of the VCO output and to phase lock
one of these frequency components to the input. This scheme can be used to implement either
frequency multipliers or frequency dividers.

Figure 4.27 illustrates the first technique. The limiter is a nonlinear device and therefore
generates harmonics of the input frequency. If the input is sinusoidal, the output of the limiter
is a square wave; therefore, odd harmonics are present. In the example illustrated, the VCO
quiescent frequency [VCO output frequency 𝑓

𝑐
with 𝑒

𝑣
(𝑡) equal to zero] is set equal to 5𝑓0.

The result is that the VCO phase locks to the fifth harmonic of the input. Thus, the system
shown multiplies the input frequency by 5.

Figure 4.28 illustrates frequency division by a factor of 2. The VCO quiescent frequency
is 𝑓0∕2 Hz, but the VCO output waveform is a narrow pulse that has the spectrum shown. The

Phase
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Limiter

Loop

amplif ier

and f ilter

VCO
Input, x(t)

Limiter output, xe(t)

t

t

Spectrum of

limiter output

3f0f0 5f0 7f0
f

xe(t)x(t) = A cos 2 f0t

ev(t)

Output = Av cos (10 f0t)π

π

Figure 4.27
Phase-locked loop implementation of a frequency multiplier.
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Figure 4.28
Phase-locked loop implementation of a frequency divider.

component at frequency 𝑓0 phase locks to the input. A bandpass filter can be used to select
the component desired from the VCO output spectrum. For the example shown, the center
frequency of the bandpass filter should be 𝑓0∕2. The bandwidth of the bandpass filter must be
less than the spacing between the components in the VCO output spectrum; in this case, this
spacing is 𝑓0∕2. It is worth noting that the system shown in Figure 4.28 could also be used
to multiply the input frequency by 5 by setting the center frequency of the bandpass filter to
5𝑓0. Thus, this system could also serve as a ×5 frequency multiplier, like the first example.
Many variations of these basic techniques are possible.

■ 4.4 INTERFERENCE IN ANGLE MODULATION

We now consider the effect of interference in angle modulation. We will see that the effect
of interference in angle modulation is quite different from what was observed in linear mod-
ulation. Furthermore, we will see that the effect of interference in an FM system can be
reduced by placing a lowpass filter at the discriminator output. We will consider this problem
in considerable detail since the results will provide significant insight into the behavior of FM
discriminators operating in the presence of noise, a subject to be treated in Chapter 8.

Assume that the input to a PM or FM ideal discriminator is an unmodulated carrier plus
an interfering tone at frequency 𝑓

𝑐
+ 𝑓

𝑖
. Thus, the input to the discriminator is assumed to

have the form

𝑥
𝑡
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) + 𝐴

𝑖
cos[2𝜋(𝑓

𝑐
+ 𝑓

𝑖
)𝑡] (4.146)

which can be written as

𝑥
𝑡
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑖
𝑡) + 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡) cos(2𝜋𝑓

𝑐
𝑡) − 𝐴

𝑖
sin(2𝜋𝑓

𝑖
) sin(2𝜋𝑓

𝑐
𝑡) (4.147)

Writing the preceding expression in magnitude and phase form gives

𝑥
𝑟
(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜓(𝑡)] (4.148)
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in which the amplitude 𝑅(𝑡) is given by

𝑅(𝑡) =
√

[𝐴
𝑐
+ 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡)]2 + [𝐴

𝑖
sin(2𝜋𝑓

𝑖
𝑡)]2 (4.149)

and the phase deviation 𝜓(𝑡) is given by

𝜓(𝑡) = tan−1
(

𝐴
𝑖
sin(2𝜋𝑓

𝑖
𝑡)

𝐴
𝑐
+ 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡)

)
(4.150)

If 𝐴
𝑐
≫ 𝐴

𝑖
, Equations (4.149) and (4.150) can be approximated

𝑅(𝑡) = 𝐴
𝑐
+ 𝐴

𝑖
cos(2𝜋𝑓

𝑖
𝑡) (4.151)

and

𝜓(𝑡) =
𝐴
𝑖

𝐴
𝑐

sin(2𝜋𝑓
𝑖
𝑡) (4.152)

Thus, (4.148) is

𝑥
𝑟
(𝑡) = 𝐴

𝑐

[
1 +

𝐴
𝑖

𝐴
𝑐

cos(2𝜋𝑓
𝑖
𝑡)
]
cos

[
2𝜋𝑓

𝑖
𝑡 +
𝐴
𝑖

𝐴
𝑐

sin(2𝜋𝑓
𝑖
𝑡)
]

(4.153)

The instantaneous phase deviation 𝜓(𝑡) is given by

𝜓(𝑡) =
𝐴
𝑖

𝐴
𝑐

sin(2𝜋𝑓
𝑖
𝑡) (4.154)

Thus, the output of an ideal PM discriminator is

𝑦
𝐷
(𝑡) = 𝐾

𝐷

𝐴
𝑖

𝐴
𝑐

sin(2𝜋𝑓
𝑖
𝑡) (4.155)

and the output of an ideal FM discriminator is

𝑦
𝐷
(𝑡) = 1

2𝜋
𝐾
𝐷

𝑑

𝑑𝑡

𝐴
𝑖

𝐴
𝑐

sin(2𝜋𝑓
𝑖
𝑡) (4.156)

or

𝑦
𝐷
(𝑡) = 𝐾

𝐷

𝐴
𝑖

𝐴
𝑐

𝑓
𝑖
cos

(
2𝜋𝑓

𝑖
𝑡
)

(4.157)

Aswith linearmodulation, the discriminator output is a sinusoid of frequency𝑓
𝑖
. The amplitude

of the discriminator output, however, is proportional to the frequency 𝑓
𝑖
for the FM case. It can

be seen that for small 𝑓
𝑖
, the interfering tone has less effect on the FM system than on the PM

system and that the opposite is true for large values of 𝑓
𝑖
. Values of 𝑓

𝑖
> 𝑊 , the bandwidth

of 𝑚(𝑡), are of little interest, since they can be removed by a lowpass filter following the
discriminator.

If the condition𝐴
𝑖
≪ 𝐴

𝑐
does not hold, the discriminator is not operating above threshold

and the analysis becomes much more difficult. Some insight into this case can be obtained
from the phasor diagram, which is obtained by writing (4.146) in the form

𝑥
𝑟
(𝑡) = Re[(𝐴

𝑐
+ 𝐴

𝑖
𝑒
𝑗2𝜋𝑓𝑖𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡] (4.158)
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Phasor diagram for carrier plus single-tone interference. (a) Phasor diagram for general 𝜃(𝑡). (b) Phasor
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𝐴
𝑖
≧ 𝐴

𝑐
.

The term in parentheses defines a phasor, which is the complex envelope signal. The phasor
diagram is shown in Figure 4.29(a). The carrier phase is taken as the reference and the
interference phase is

𝜃(𝑡) = 2𝜋𝑓
𝑖
𝑡 (4.159)

Approximations to the phase of the resultant 𝜓(𝑡) can be determined using the phasor diagram.
From Figure 4.29(b) we see that the magnitude of the discriminator output will be small

when 𝜃(𝑡) is near zero. This results because for 𝜃(𝑡) near zero, a given change in 𝜃(𝑡)will result
in a much smaller change in 𝜓(𝑡). Using the relationship between arc length 𝑠, angle 𝜃, and
radius 𝑟, which is 𝑠 = 𝜃𝑟, we obtain

𝑠 = 𝜃(𝑡)𝐴
𝑖
≈ (𝐴

𝑐
+ 𝐴

𝑖
)𝜓(𝑡), 𝜃(𝑡) ≈ 0 (4.160)

Solving for 𝜓(𝑡) yields

𝜓(𝑡) ≈
𝐴
𝑖

𝐴
𝑐
+ 𝐴

𝑖

𝜔
𝑖
𝑡 (4.161)

Since the discriminator output is defined by

𝑦
𝐷
(𝑡) =

𝐾
𝐷

2𝜋
𝑑𝜓

𝑑𝑡
(4.162)

we have

𝑦
𝐷
(𝑡) = 𝐾

𝐷

𝐴
𝑖

𝐴
𝑐
− 𝐴

𝑖

𝑓
𝑖
, 𝜃(𝑡) ≈ 0 (4.163)

This is a positive quantity for 𝑓
𝑖
> 0 and a negative quantity for 𝑓

𝑖
< 0.

If 𝐴
𝑖
is slightly less than 𝐴

𝑐
, denoted 𝐴

𝑖
≲ 𝐴

𝑐
, and 𝜃(𝑡) is near 𝜋, a small positive change

in 𝜃(𝑡) will result in a large negative change in 𝜓(𝑡). The result will be a negative spike
appearing at the discriminator output. From Figure 4.29(c) we can write

𝑠 = 𝐴
𝑖
(𝜋 − 𝜃(𝑡)) ≈ (𝐴

𝑐
− 𝐴

𝑖
)𝜓(𝑡), 𝜃(𝑡) ≈ 𝜋 (4.164)

which can be expressed

𝜓(𝑡) ≈
𝐴
𝑖
(𝜋 − 2𝜋𝑓

𝑖
𝑡)

𝐴
𝑐
− 𝐴

𝑖

(4.165)
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Using (4.162), we see that the discriminator output is

𝑦
𝐷
(𝑡) = −𝐾

𝐷

𝐴
𝑖

𝐴
𝑐
− 𝐴

𝑖

𝑓
𝑖
, 𝜃(𝑡) ≈ 𝜋 (4.166)

This is a negative quantity for 𝑓
𝑖
> 0 and a positive quantity for 𝑓

𝑖
< 0.

If 𝐴
𝑖
is slightly greater than 𝐴

𝑐
, denoted 𝐴

𝑖
≳ 𝐴

𝑐
, and 𝜃(𝑡) is near 𝜋, a small positive

change in 𝜃(𝑡) will result in a large positive change in 𝜓(𝑡). The result will be a positive spike
appearing at the discriminator output. From Figure 4.29(d) we can write

𝑠 = 𝐴
𝑖
[𝜋 − 𝜃(𝑡)] ≈ (𝐴

𝑖
− 𝐴

𝑐
)[𝜋 − 𝜓(𝑡)], 𝜃(𝑡) ≈ 𝜋 (4.167)

Solving for 𝜓(𝑡) and differentiating gives the discriminator output

𝑦
𝐷
(𝑡) ≈ −𝐾

𝐷

𝐴
𝑖

𝐴
𝑐
− 𝐴

𝑖

𝑓
𝑖

(4.168)

Note that this is a positive quantity for 𝑓
𝑖
> 0 and a negative quantity for 𝑓

𝑖
< 0.

The phase deviation and discriminator output waveforms are shown in Figure 4.30 for
𝐴
𝑖
= 0.1𝐴

𝑐
,𝐴
𝑖
= 0.9𝐴

𝑐
, and𝐴

𝑖
= 1.1𝐴

𝑐
. Figure 4.30(a) illustrates that for small𝐴

𝑖
the phase

deviation and the discriminator output are nearly sinusoidal as predicted by the results of
the small interference analysis given in (4.154) and (4.157). For 𝐴

𝑖
= 0.9𝐴

𝑐
, we see that we

have a negative spike at the discriminator output as predicted by (4.166). For 𝐴
𝑐
= 1.1𝐴

𝑐
, we

have a positive spike at the discriminator output as predicted by (4.168). Note that for𝐴
𝑖
> 𝐴

𝑐
,

the origin of the phasor diagram is encircled as 𝜃(𝑡) goes from 0 to 2𝜋. In other words, 𝜓(𝑡)
goes from 0 to 2𝜋 as 𝜃(𝑡) goes from 0 to 2𝜋. The origin is not encircled if 𝐴

𝑖
< 𝐴

𝑐
. Thus, the

integral

∫
𝑇

(
𝑑𝜓

𝑑𝑡

)
𝑑𝑡 =

{2𝜋, 𝐴
𝑖
> 𝐴

𝑐

0, 𝐴
𝑖
< 𝐴

𝑐

(4.169)

where 𝑇 is the time required for 𝜃(𝑡) to go from 𝜃(𝑡) = 0 to 𝜃(𝑡) = 2𝜋. In other words, 𝑇 = 1∕𝑓
𝑖
.

Thus, the area under the discriminator output curve is 0 for parts (a) and (b) of Figure 4.30
and 2𝜋𝐾

𝐷
for the discriminator output curve in Figure 4.30(c). The origin encirclement

phenomenon will be revisited in Chapter 8 when demodulation of FM signals in the presence
of noise is examined. An understanding of the interference results presented here will provide
valuable insights when noise effects are considered.

For operation above threshold 𝐴
𝑖
≪ 𝐴

𝑐
, the severe effect of interference on FM for large

𝑓
𝑖
can be reduced by placing a filter, called a de-emphasis filter, at the FMdiscriminator output.

This filter is typically a simple RC lowpass filter with a 3-dB frequency considerably less than
the modulation bandwidth𝑊 . The de-emphasis filter effectively reduces the interference for
large 𝑓

𝑖
, as shown in Figure 4.31. For large frequencies, the magnitude of the transfer function

of a first-order filter is approximately 1∕𝑓 . Since the amplitude of the interference increases
linearly with 𝑓

𝑖
for FM, the output is constant for large 𝑓

𝑖
, as shown in Figure 4.31.

Since 𝑓3 < 𝑊 , the lowpass de-emphasis filter distorts the message signal in addition
to combating interference. The distortion can be avoided by passing the message signal,
prior to modulation, through a highpass pre-emphasis filter that has a transfer function
equal to the reciprocal of the transfer function of the lowpass de-emphasis filter. Since the
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Phase deviation and discriminator output due to interference. (a) Phase deviation and discriminator
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Amplitude of discriminator output due to
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Figure 4.32
Frequency modulation system with pre-emphasis and de-emphasis.

transfer function of the cascade combination of the pre-emphasis and de-emphasis filters
is unity, there is no detrimental effect on the modulation. This yields the system shown in
Figure 4.32.

The improvement offered by the use of pre-emphasis and de-emphasis is not gained
without a price. The highpass pre-emphasis filter amplifies the high-frequency components
relative to lower-frequency components, which can result in increased deviation and bandwidth
requirements. We shall see in Chapter 8, when the impact of channel noise is studied, that
the use of pre-emphasis and de-emphasis often provides significant improvement in system
performance with very little added complexity or implementation costs.

The idea of pre-emphasis and/or de-emphasis filtering has found application in a number
of areas. For example, signals recorded on long-playing (LP) records are, prior to recording,
filtered using a highpass pre-emphasis filter. This attenuates the low-frequency content of the
signal being recorded. Since the low-frequency components typically have large amplitudes,
the distance between the groves on the record must be increased to accommodate these large
amplitude signals if pre-emphasis filtering were not used. The impact of more widely spaced
record groves is reduced recording time. The playback equipment applies de-emphasis filtering
to compensate for the pre-emphasis filtering used in the recording process. In the early days of
LP recording, several different pre-emphasis filter designs were used among different record
manufacturers. The playback equipment was consequently required to provide for all of the
different pre-emphasis filter designs in common use. This later became standardized. With
modern digital recording techniques this is no longer an issue.

■ 4.5 ANALOG PULSE MODULATION

As defined in the preceding chapter, analog pulse modulation results when some attribute
of a pulse varies continuously in one-to-one correspondence with a sample value. Three
attributes can be readily varied: amplitude, width, and position. These lead to pulse-amplitude
modulation (PAM), pulse-width modulation (PWM), and pulse-position modulation (PPM)
as can be seen by referring back to Figure 3.25. We looked at PAM in the previous chapter.
We now briefly look at PWM and PPM.

4.5.1 Pulse-Width Modulation (PWM)

A PWM waveform, as illustrated in Figure 3.25, consists of a sequence of pulses with each
pulse having a width proportional to the values of the message signal at the sampling instants.
If the message is 0 at the sampling time, the width of the PWM pulse is typically 1

2𝑇𝑠. Thus,

pulse widths less than 1
2𝑇𝑠 correspond to negative sample values, and pulse widths greater
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than 1
2𝑇𝑠 correspond to positive sample values. The modulation index 𝛽 is defined so that for

𝛽 = 1, the maximum pulse width of the PWM pulses is exactly equal to the sampling period
1∕𝑇

𝑠
. Pulse width modulation is seldom used in modern communications systems. However,

PWM has found uses in other areas. For example, PWM is used extensively for DC motor
control in which motor speed is proportional to the width of the pulses. Large amplitude pulses
are therefore avoided. Since the pulses have equal amplitude, the energy in a given pulse is
proportional to the pulse width. The sample values can be recovered from a PWM waveform
by lowpass filtering.

COMPUTER EXAMPLE 4.5

Due to the complixity of determining the spectrum of a PWM signal we resort to using the FFT to
determine the spectrum. The MATLAB program follows.

%File: c4ce5.m
clear all; %be safe
N = 20000; %FFT size
N samp = 200; %200 samples per period
f = 1; %frequency
beta = 0.7; %modulation index
period = N/N samp; %sample period (Ts)
Max width = beta*N/N samp; %maximum width
y = zeros(1,N); %initialize
for n=1:N samp

x = sin(2*pi*f*(n-1)/N samp);
width = (period/2)+round((Max width/2)*x);
for k=1:Max width

nn = (n-1)*period+k;
if k<width

y(nn) = 1; %pulse amplitude
end

end
end
ymm = y-mean(y); %remove mean
z = (1/N)*fft(ymm,N); %compute FFT
subplot(211)
stem(0:999,abs(z(1:1000)),‘.k’)
xlabel(‘Frequency - Hz.’)
ylabel(‘Amplitude’)
subplot(212)
stem(180:220,abs(z(181:221)),‘.k’)
xlabel(‘Frequency - Hz.’)
ylabel(‘Amplitude’)

%End of script file.
■

In the preceding program the message signal is a sinusoid having a frequency of 1 Hz. The
message signal is sampled at 200 samples per period or 200 Hz. The FFT covers 10 periods of
the waveform. The spectrum, as determined by the FFT, is illustrated in Figures 4.33(a) and
(b). Figure 4.33(a) illustrates the spectrum in the range 0 ≤ 𝑓 ≤ 1000. Since the individual
spectral components are spaced 1 Hz apart, corresponding to the 1-Hz sinusoid, they cannot be
clearly seen. Figure 4.26(b) illustrates the spectrum in the neighborhood of 𝑓 = 200 Hz. The
spectrum in this region reminds us of a Fourier--Bessel spectrum for a sinusoid FMmodulated
by a pair of sinusoids (see Figure 4.10). We observe that PWM is much like angle modulation.
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Figure 4.33
Spectrum of a PWM signal. (a) Spectrum for 0 ≤ 𝑓 ≤ 1000 Hz. (b) Spectrum in the neighborhood of
𝑓 = 200.

4.5.2 Pulse-Position Modulation (PPM)

APPM signal consists of a sequence of pulses in which the pulse displacement from a specified
time reference is proportional to the sample values of the information-bearing signal. The PPM
signal was illustrated in Figure 3.25 and can be represented by the expression

𝑥(𝑡) = 𝑔(𝑡 − 𝑡
𝑛
) (4.170)

where 𝑔(𝑡) represents the shape of the individual pulses, and the occurrence times 𝑡
𝑛
are

related to the values of the message signal 𝑚(𝑡) at the sampling instants 𝑛𝑇
𝑠
, as discussed in

the preceding paragraph. The spectrum of a PPM signal is very similar to the spectrum of a
PWM signal. (See the computer examples at the end of the chapter.)

If the time axis is slotted so that a given range of sample values is associated with each
slot, the pulse positions are quantized, and a pulse is assigned to a given slot depending upon
the sample value. Slots are nonoverlapping and are therefore orthogonal. If a given sample
value is assigned to one of 𝑀 slots, the result is𝑀-ary orthogonal communications, which
will be studied in detail in Chapter 11. Pulse-position modulation is finding a number of
applications in the area of ultra-wideband communications.3 (Note that short-duration pulses
require a large bandwidth for transmission.)

3See, for example, R. A. Scholtz, ‘‘Multiple Access with Time-Hopping Impulse Modulation,’’ Proceedings of the
IEEE 1993 MILCOM Conference, 1993, and Reed (2005).
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■ 4.6 MULTIPLEXING

In many applications, a large number of data sources are located at a common point, and it
is desirable to transmit these signals simultaneously using a single communication channel.
This is accomplished using multiplexing. We will now examine several different types of
multiplexing, each having advantages and disadvantages.

4.6.1 Frequency-Division Multiplexing

Frequency-division multiplexing (FDM) is a technique whereby several message signals are
translated, using modulation, to different spectral locations and added to form a baseband
signal. The carriers used to form the baseband are usually referred to as subcarriers. If desired,
the baseband signal can be transmitted over a single channel using a single modulation process.
Several different types of modulation can be used to form the baseband, as illustrated in
Figure 4.34. In this example, there are 𝑁 information signals contained in the baseband.
Observation of the baseband spectrum in Figure 4.34(c) suggests that baseband modulator 1
is a DSB modulator with subcarrier frequency 𝑓1. Modulator 2 is an upper-sideband SSB
modulator, and modulator𝑁 is an angle modulator.
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Demod.

2

Demod.

N
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BPF
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BPF

N

Mod.
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Mod.
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Figure 4.34
Frequency-division
multiplexing. (a) FDM
modulator. (b) FDM
demodulator. (c) Assumed
baseband spectrum.
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An FDM demodulator is shown in Figure 4.34(b). The demodulator output is ideally the
baseband signal. The individual channels in the baseband are extracted using bandpass filters.
The bandpass filter outputs are demodulated in the conventional manner.

Observation of the baseband spectrum illustrates that the baseband bandwidth is equal
to the sum of the bandwidths of the modulated signals plus the sum of the guardbands, the
empty spectral bands between the channels necessary for filtering. This bandwidth is lower
bounded by the sum of the bandwidths of the message signals. This bandwidth,

𝐵 =
𝑁∑

𝑖=1
𝑊
𝑖

(4.171)

where 𝑊
𝑖
is the bandwidth of 𝑚

𝑖
(𝑡), is achieved when all baseband modulators are SSB and

all guardbands have zero width.

4.6.2 Example of FDM: Stereophonic FM Broadcasting

As an example of FDM, we now consider stereophonic FM broadcasting. A necessary condi-
tion established in the early development of stereophonic FM is that stereo FM be compatible
with monophonic FM receivers. In other words, the output from a monophonic FM receiver
must be the composite (left-channel plus right-channel) stereo signal.

The scheme adopted for stereophonic FM broadcasting is shown in Figure 4.35(a). As
can be seen, the first step in the generation of a stereo FM signal is to first form the sum
and the difference of the left- and right-channel signals, 𝑙(𝑡) ± 𝑟(𝑡). The difference sig-
nal, 𝑙(𝑡) − 𝑟(𝑡), is then translated to 38 kHz using DSB modulation with a carrier derived
from a 19-kHz oscillator. A frequency doubler is used to generate a 38-kHz carrier from a
19-kHz oscillator. We previously saw that a PLL could be used to implement this frequency
doubler.

The baseband signal is formed by adding the sum and difference signals and the 19-kHz
pilot tone. The spectrum of the baseband signal is shown in Figure 4.35(b) for assumed left-
channel and right-channel signals. The baseband signal is the input to the FM modulator. It
is important to note that if a monophonic FM transmitter, having a message bandwidth of
15 kHz, and a stereophonic FM transmitter, having a message bandwidth of 53 kHz, both
have the same constraint on the peak deviation, the deviation ratio 𝐷, of the stereophonic
FM transmitter is reduced by a factor of 53∕15 = 3.53. The impact of this reduction in the
deviation ratio will be seen when we consider noise effects in Chapter 8.

The block diagram of a stereophonic FM receiver is shown in Figure 4.35(c). The out-
put of the FM discriminator is the baseband signal 𝑥𝑏(𝑡), which, under ideal conditions, is
identical to the baseband signal at the input to the FM modulator. As can be seen from the
spectrum of the baseband signal, the left-plus right-channel signal can be generated by filter-
ing the baseband signal with a lowpass filter having a bandwidth of 15 kHz. Note that this
signal constitutes the monophonic output. The left-minus right-channel signal is obtained by
coherently demodulating the DSB signal using a 38-kHz demodulation carrier. This coherent
demodulation carrier is obtained by recovering the 19-kHz pilot using a bandpass filter and
then using a frequency doubler as was done in the modulator. The left-plus right-channel
signal and the left-minus right-channel signal are added and subtracted, as shown in Figure
4.35(c) to generate the left-channel signal and the right-channel signal.
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Stereophonic FM transmitter and receiver. (a) Stereophonic FM transmitter. (b) Single-sided spectrum
of FM baseband signal. (c) Stereophonic FM receiver.

4.6.3 Quadrature Multiplexing

Another type of multiplexing is quadrature multiplexing (QM), in which quadrature carriers
are used for frequency translation. For the system shown in Figure 4.36, the signal

𝑥
𝑐
(𝑡) = 𝐴

𝑐
[𝑚1(𝑡) cos(2𝜋𝑓𝑐𝑡) + 𝑚2(𝑡) sin(2𝜋𝑓𝑐𝑡)] (4.172)

is a quadrature-multiplexed signal. By sketching the spectra of 𝑥
𝑐
(𝑡) we see that these spec-

tra overlap in frequency if the spectra of 𝑚1(𝑡) and 𝑚2(𝑡) overlap. Even though frequency
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Quadrature multiplexing.

translation is used in QM, it is not an FDM technique since the two channels do not occupy
disjoint spectral locations. Note that SSB is a QM signal with𝑚1(𝑡) = 𝑚(𝑡) and𝑚2(𝑡) = ±�̂�(𝑡).

A QM signal is demodulated by using quadrature demodulation carriers. To show this,
multiply 𝑥

𝑟
(𝑡) by 2 cos(2𝜋𝑓

𝑐
𝑡 + 𝜃). This yields

2𝑥
𝑟
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) = 𝐴

𝑐
[𝑚1(𝑡) cos 𝜃 − 𝑚2(𝑡) sin 𝜃]

+𝐴
𝑐
[𝑚1(𝑡) cos(4𝜋𝑓𝑐𝑡 + 𝜃) + 𝑚2(𝑡) sin(4𝜋𝑓𝑐𝑡 + 𝜃)] (4.173)

The terms on the second line of the preceding equation have spectral content about 2𝑓
𝑐
and

can be removed by using a lowpass filter. The output of the lowpass filter is

𝑦
𝐷𝐷

(𝑡) = 𝐴
𝑐
[𝑚1(𝑡) cos 𝜃 − 𝑚2(𝑡) sin 𝜃] (4.174)

which yields𝑚1(𝑡), the desired output for 𝜃 = 0. The quadrature channel is demodulated using
a demodulation carrier of the form 2 sin(2𝜋𝑓

𝑐
𝑡).

The preceding result illustrates the effect of a demodulation phase error on QM. The result
of this phase error is both an attenuation, which can be time varying, of the desired signal and
crosstalk from the quadrature channel. It should be noted that QM can be used to represent
both DSB and SSB with appropriate definitions of 𝑚1(𝑡) and 𝑚2(𝑡). We will take advantage
of this observation when we consider the combined effect of noise and demodulation phase
errors in Chapter 8.

Frequency-division multiplexing can be used with QM by translating pairs of signals,
using quadrature carriers, to each subcarrier frequency. Each channel has bandwidth 2𝑊 and
accommodates two message signals, each having bandwidth 𝑊 . Thus, assuming zero-width
guardbands, a baseband of bandwidth NW can accommodate 𝑁 message signals, each of
bandwidth𝑊 , and requires 1

2𝑁 separate subcarrier frequencies.

4.6.4 Comparison of Multiplexing Schemes

We have seen that for all three types of multiplexing studied, the baseband bandwidth is lower-
bounded by the total information bandwidth. However, there are advantages and disadvantages
to each multiplexing technique.

The basic advantage of FDM is simplicity of implementation, and if the channel is linear,
disadvantages are difficult to identify. However, many channels have small, but nonnegligible
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nonlinearities. As we saw in Chapter 2, nonlinearities lead to intermodulation distortion. In
FDM systems, the result of intermodulation distortion is crosstalk between channels in the
baseband.

TDM, which we discussed in the previous chapter, also has a number of inherent dis-
advantages. Samplers are required, and if continuous data are required by the data user, the
continuous waveforms must be reconstructed from the samples. One of the biggest diffi-
culties with TDM is maintaining synchronism between the multiplexing and demultiplexing
commutators. The basic advantage of QM is that QM allows simple DSB modulation to
be used while at the same time making efficient use of baseband bandwidth. It also al-
lows DC response, which SSB does not. The basic problem with QM is crosstalk between
the quadrature channels, which results if perfectly coherent demodulation carriers are not
available.

Other advantages and disadvantages of FDM, QM, and TDMwill become apparent when
we study performance in the presence of noise in Chapter 8.

Further Reading

With the exception of the material on phase-locked loops, the references given in the previous chapter
apply equally to this chapter. Once again, there are a wide variety of books available that cover this
material and the books cited in Chapter 3 are only a small sample. A number of books are also available
that treat the PLL. Examples are Stephens (1998), Egan (2008), Gardner (2005), and Tranter, Thamvichi,
and Bose (2010). Additional material of the simulation of PLLs can be found in Tranter, Shanmugan,
Rappaport, and Kosbar (2004).

Summary

1. The general expression for an angle-modulated sig-
nal is

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡)]

For a PM signal, 𝜙(𝑡) is given by

𝜙(𝑡) = 𝑘
𝑝
𝑚(𝑡)

and for an FM signal, it is

𝜙(𝑡) = 2𝜋𝑓
𝑑
∫

𝑡

𝑚(𝛼)𝑑𝛼

where 𝑘
𝑝
and 𝑓

𝑑
are the phase and frequency deviation

constants, respectively.

2. Angle modulation results in an infinite number of
sidebands for sinusoidal modulation. If only a single pair
of sidebands is significant, the result is narrowband an-
gle modulation. Narrowband angle modulation, with sinu-
soidal message, has approximately the same spectrum as
an AM signal except for a 180◦ phase shift of the lower
sideband.

3. An angle-modulated carrier with a sinusoidal mes-
sage signal can be expressed as

𝑥
𝑐
(𝑡) = 𝐴

𝑐

∑

𝑛

𝐽
𝑛
(𝛽) cos[2𝜋(𝑓

𝑐
+ 𝑛𝑓

𝑚
)𝑡]

The term 𝐽
𝑛
(𝛽) is the Bessel function of the first kind of

order 𝑛 and argument 𝛽. The parameter 𝛽 is known as the
modulation index. If 𝑚(𝑡) = 𝐴 sin𝜔

𝑚
𝑡, then 𝛽 = 𝑘

𝑝
𝐴 for

PM, and 𝛽 = 𝑓
𝑑
𝐴∕𝑓

𝑚
for FM.

4. The power contained in an angle-modulated carrier
is ⟨𝑥2

𝑐
(𝑡)⟩ = 1

2
𝐴

2
𝑐
, if the carrier frequency is large compared

to the bandwidth of the modulated carrier.

5. The bandwidth of an angle-modulated signal is,
strictly speaking, infinite. However, ameasure of the band-
width can be obtained by defining the power ratio

𝑃
𝑟
= 𝐽 2

0 (𝛽) + 2
𝑘∑

𝑛=1
𝐽
2
𝑛
(𝛽)
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which is the ratio of the total power 1
2
𝐴

2
𝑐
to the power

in the bandwidth 𝐵 = 2𝑘𝑓
𝑚
. A power ratio of 0.98 yields

𝐵 = 2(𝛽 + 1)𝑓
𝑚
.

6. The deviation ratio of an angle-modulated signal is

𝐷 =
peak frequency deviation

bandwith of 𝑚(𝑡)

7. Carson’s rule for estimating the bandwidth of an
angle-modulated carrier with an arbitrary message signal
is 𝐵 = 2(𝐷 + 1)𝑊 .

8. Narrowband-to-wideband conversion is a technique
whereby a wideband FM signal is generated from a nar-
rowband FM signal. The system makes use of a frequency
multiplier, which, unlike a mixer, multiplies the deviation
as well as the carrier frequency.

9. Demodulation of an angle-modulated signal is ac-
complished through the use of a frequency discriminator.
This device yields an output signal proportional to the
frequency deviation of the input signal. Placing an inte-
grator at the discriminator output allows PM signals to be
demodulated.

10. An FM discriminator can be implemented as a dif-
ferentiator followed by an envelope detector. Bandpass
limiters are used at the differentiator input to eliminate
amplitude variations.

11. A PLL is a simple and practical system for the de-
modulation of angle-modulated signals. It is a feedback
control system and is analyzed as such. Phase-locked loops
also provide simple implementations of frequency multi-
pliers and frequency dividers.

12. The Costas PLL, which is a variation of the basic
PLL, is a system for the demodulation of DSB signals.

13. Interference, the presence of undesired signal com-
ponents, can be a problem in demodulation. Interference at
the input of a demodulator results in undesired components
at the demodulator output. If the interference is large and

if the demodulator is nonlinear, thresholding can occur.
The result of this is a drastic loss of the signal component.
In FM systems, the effect of interference is a function of
both the amplitude and frequency of the interfering tone.
In PM systems, the effect of interference is a function only
of the amplitude of the interfering tone. In FM systems in-
terference can be reduced by the use of pre-emphasis and
de-emphasis wherein the high-frequency message compo-
nents are boosted at the transmitter before modulation and
the inverse process is done at the receiver after demodula-
tion.

14. Pulse-width modulation results when the width of
each carrier pulse is proportional to the value of the mes-
sage signal at each sampling instant. Demodulation of
PWM is also accomplished by lowpass filtering.

15. Pulse-position modulation results when the position
of each carrier pulse, as measured by the displacement of
each pulse from a fixed reference, is proportional to the
value of the message signal at each sampling instant.

16. Multiplexing is a scheme allowing two or more mes-
sage signals to be communicated simultaneously using a
single system.

17. Frequency-division multiplexing results when
simultaneous transmission is accomplished by translat-
ing message spectra, using modulation to nonoverlapping
locations in a baseband spectrum. The baseband signal is
then transmitted using any carrier modulation method.

18. Quadrature multiplexing results when two message
signals are translated, using linearmodulationwith quadra-
ture carriers, to the same spectral locations. Demodulation
is accomplished coherently using quadrature demodula-
tion carriers. A phase error in a demodulation carrier re-
sults in serious distortion of the demodulated signal. This
distortion has two components: a time-varying attenua-
tion of the desired output signal and crosstalk from the
quadrature channel.

Drill Problems

4.1 Find the instantaneous phase of the angle-
modulated signals assuming a phase deviation constant 𝑘

𝑝
,

a carrier frequency of 𝑓
𝑐
, and the following three message

signals:

(a) 𝑚1(𝑡) = 10 cos(5𝜋𝑡)
(b) 𝑚2(𝑡) = 10 cos(5𝜋𝑡) + 2 sin(7𝜋𝑡)
(c) 𝑚3(𝑡) = 10 cos(5𝜋𝑡) + 2 sin(7𝜋𝑡) + 3 cos(6.5𝜋𝑡)

4.2 Using the three message signals in the previous
drill problem, determine the instantaneous frequency.

4.3 An FM transmitter has a frequency deviation con-
stant of 15 Hz per unit of𝑚(𝑡). Assuming a message signal
of 𝑚(𝑡) = 9 sin (40𝜋𝑡), write the expression for 𝑥

𝑐
(𝑡) and

determine the maximum phase deviation.

4.4 Using the value of 𝑓
𝑑
and the expression for 𝑚(𝑡)

given in the preceding drill problem, determine the expres-
sion for the phase deviation.
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4.5 A signal, which is treated as narrowband angle
modulation has a modulation index 𝛽 = 0.2. Determine
the ratio of sideband power to carrier power. Describe the
spectrum of the transmitted signal.

4.6 An angle-modulated signal, with sinusoidal 𝑚(𝑡)
has a modulation index 𝛽 = 5. Determine the ratio of side-
band power to carrier power assuming that 5 sidebands are
transmitted each side of the carrier.

4.7 An FM signal is formed by narrowband-to-
wideband conversion. The peak frequency deviation of
the narrowband signal is 40 Hz and the bandwidth of the
message signal is 200 Hz. The wideband (transmitted)
signal is to have a deviation ratio of 6 and a carrier fre-
quency of 1 MHz. Determine the multiplying factor 𝑛,
the carrier frequency of the narrowband signal, and, us-
ing Carson’s rule, estimate the bandwidth of the wideband
signal.

4.8 A first-order PLL has a total loop gain of 10.
Determine the lock range.

4.9 A second-order loop filter, operating in the track-
ing mode, has a loop gain of 10 and a loop filter transfer
function of (𝑠 + 𝑎)∕𝑠. Determine the value of 𝑎 so that the

loop damping factor is 0.8. With this choice of 𝑎, what is
the loop natural frequency?

4.10 A first-order PLL has a loop gain of 300. The input
to the loop instantaneously changes frequency by 40 Hz.
Determine the steady-state phase error due to this step
change in frequency.

4.11 An FDM system is capable of transmitting a base-
band signal having a bandwidth of 100 kHz. One channel
is input to the system without modulation (about 𝑓 = 0).
Assume that all message signals have a lowpass spectrum
with a bandwidth of 2 kHz and that the guardband between
channels is 1 kHz. Howmany channels can be multiplexed
together to form the baseband?

4.12 A QM system has two message signals defined by

𝑚1(𝑡) = 5 cos (8𝜋𝑡)

and

𝑚2(𝑡) = 8 sin (12𝜋𝑡)

Due to a calibration error, the demodulation carriers have a
phase error of 10 degrees. Determine the two demodulated
message signals.

Problems

Section 4.1

4.1 Let the input to a phase modulator be 𝑚(𝑡) =
𝑢(𝑡 − 𝑡0), as shown in Figure 4.1(a). Assume that the
unmodulated carrier is 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡) and that 𝑓

𝑐
𝑡0 = 𝑛,

where 𝑛 is an integer. Sketch accurately the phase mod-
ulator output for 𝑘

𝑝
= 𝜋 and −3

8
𝜋 as was done in Figure

4.1(c) for 𝑘
𝑝
= 1

2
𝜋.

4.2 Repeat the preceding problem for 𝑘
𝑝
= −1

2
𝜋 and

3
8
𝜋.

4.3 Redraw Figure 4.4 assuming 𝑚(𝑡) =
𝐴 sin

(
2𝜋𝑓

𝑚
𝑡 + 𝜋

6

)
.

4.4 We previously computed the spectrum of the FM
signal defined by

𝑥
𝑐1(𝑡) = 𝐴𝑐 cos[2𝜋𝑓𝑐𝑡 + 𝛽 sin(2𝜋𝑓𝑚𝑡)]

Now assume that the modulated signal is given by

𝑥
𝑐2(𝑡) = 𝐴𝑐 cos[2𝜋𝑓𝑐𝑡 + 𝛽 cos(2𝜋𝑓𝑚𝑡)]

Show that the amplitude spectrum of 𝑥
𝑐1(𝑡) and 𝑥𝑐2(𝑡) are

identical. Compute the phase spectrum of 𝑥
𝑐2(𝑡) and com-

pare with the phase spectrum of 𝑥
𝑐1(𝑡).

4.5 Compute the single-sided amplitude and phase
spectra of

𝑥
𝑐3(𝑡) = 𝐴 sin[2𝜋𝑓

𝑐
𝑡 + 𝛽 sin(2𝜋𝑓

𝑚
𝑡)]

and

𝑥
𝑐4(𝑡) = 𝐴𝑐 sin[2𝜋𝑓𝑐𝑡 + 𝛽 cos(2𝜋𝑓𝑚𝑡)]

Compare the results with Figure 4.5.

4.6 The power of an unmodulated carrier signal is
50 W, and the carrier frequency is 𝑓

𝑐
= 40 Hz. A sinu-

soidal message signal is used to FMmodulate it with index
𝛽 = 10. The sinusoidal message signal has a frequency of
5 Hz. Determine the average value of 𝑥

𝑐
(𝑡). By drawing

appropriate spectra, explain this apparent contradiction.

4.7 Given that 𝐽0(5) = −0.178 and that 𝐽1(5) =
−0.328, determine 𝐽3(5) and 𝐽4(5).
4.8 Determine and sketch the spectrum (amplitude and

phase) of an angle-modulated signal assuming that the in-
stantaneous phase deviation is 𝜙(𝑡) = 𝛽 sin(2𝜋𝑓

𝑚
𝑡). Also

assume 𝛽 = 10, 𝑓
𝑚
= 30 Hz, and 𝑓

𝑐
= 2000 Hz.

4.9 A transmitter uses a carrier frequency of 1000Hz so
that the unmodulated carrier is 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡). Determine
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both the phase and frequency deviation for each of the
following transmitter outputs:

(a) 𝑥
𝑐
(𝑡) = cos[2𝜋(1000)𝑡 + 40 sin

(
5𝑡2

)
]

(b) 𝑥
𝑐
(𝑡) = cos[2𝜋(600)𝑡]

4.10 Repeat the preceding problem assuming that the
transmitter outputs are defined by

(a) 𝑥
𝑐
(𝑡) = cos[2𝜋(1200)𝑡2]

(b) 𝑥
𝑐
(𝑡) = cos[2𝜋(900)𝑡 + 10

√
𝑡]

4.11 An FM modulator has output

𝑥
𝑐
(𝑡) = 100 cos

[
2𝜋𝑓

𝑐
𝑡 + 2𝜋𝑓

𝑑
∫

𝑡

𝑚(𝛼)𝑑𝛼
]

where 𝑓
𝑑
= 20 Hz/V. Assume that 𝑚(𝑡) is the rectangular

pulse 𝑚(𝑡) = 4Π
[
1
8
(𝑡 − 4)

]

4

3

2

1

0
0 1 2 3 4

m(t)

t

3

2

1

1 2 3 4
0

–1

–2

–3

t

m(t)

3

2

1

1 2

2.5

3 4
0

−1

−2

−3

t

m(t)

Figure 4.37

(a) Sketch the phase deviation in radians.

(b) Sketch the frequency deviation in hertz.

(c) Determine the peak frequency deviation in hertz.

(d) Determine the peak phase deviation in radians.

(e) Determine the power at the modulator output.

4.12 Repeat the preceding problem assuming that 𝑚(𝑡)
is the triangular pulse 4Λ

[
1
3
(𝑡 − 6)

]
.

4.13 An FMmodulator with 𝑓
𝑑
= 10 Hz/V. Plot the fre-

quency deviation in Hz and the phase deviation in radians
for the three message signals shown in Figure 4.37.

4.14 An FM modulator has 𝑓
𝑐
= 2000 Hz and 𝑓

𝑑
= 20

Hz/V. The modulator has input 𝑚(𝑡) = 5 cos[2𝜋(10)𝑡].

(a) What is the modulation index?

(b) Sketch, approximately to scale, the magnitude
spectrum of the modulator output. Show all fre-
quencies of interest.
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(c) Is this narrowband FM? Why?

(d) If the same 𝑚(𝑡) is used for a phase modulator,
what must 𝑘

𝑝
be to yield the index given in (a)?

4.15 An audio signal has a bandwidth of 15 kHz. The
maximum value of |𝑚(𝑡)| is 10 V. This signal frequency
modulates a carrier. Estimate the peak deviation and the
bandwidth of the modulator output, assuming that the de-
viation constant of the modulator is

(a) 20 Hz/V

(b) 200 Hz/V

(c) 2 kHz/V

(d) 20 kHz/V

4.16 By making use of (4.30) and (4.39), show that
∞∑

𝑛=−∞
𝐽
2
𝑛
(𝛽) = 1

4.17 Prove that 𝐽
𝑛
(𝛽) can be expressed as

𝐽
𝑛
(𝛽) = 1

𝜋 ∫

𝜋

0
cos(𝛽 sin 𝑥 − 𝑛𝑥)𝑑𝑥

and use this result to show that

𝐽−𝑛(𝛽) = (−1)𝑛𝐽
𝑛
(𝛽)

4.18 An FMmodulator is followed by an ideal bandpass
filter having a center frequency of 500 Hz and a band-
width of 70 Hz. The gain of the filter is 1 in the passband.
The unmodulated carrier is given by 10 cos(1000𝜋𝑡), and
the message signal is𝑚(𝑡) = 10 cos(20𝜋𝑡). The transmitter
frequency-deviation constant 𝑓

𝑑
is 8 Hz/V.

(a) Determine the peak frequency deviation in hertz.

(b) Determine the peak phase deviation in radians.

(c) Determine the modulation index.

(d) Determine the power at the filter input and the
filter output

(e) Draw the single-sided spectrum of the signal at
the filter input and the filter output. Label the
amplitude and frequency of each spectral com-
ponent.

R = 103 Ω

L = 10–3 H C = 10–9 F

xr(t) yD(t)e(t)
Envelope

detector

Figure 4.38

4.19 A sinusoidal message signal has a frequency of 250
Hz. This signal is the input to an FMmodulator with an in-
dex of 8. Determine the bandwidth of the modulator output
if a power ratio, 𝑃

𝑟
, of 0.8 is needed. Repeat for a power

ratio of 0.9.

4.20 A narrowband FM signal has a carrier frequency
of 110 kHz and a deviation ratio of 0.05. The modula-
tion bandwidth is 10 kHz. This signal is used to generate
a wideband FM signal with a deviation ratio of 20 and
a carrier frequency of 100 MHz. The scheme utilized to
accomplish this is illustrated in Figure 4.12. Give the re-
quired value of frequency multiplication, 𝑛. Also, fully
define the mixer by giving two permissible frequencies for
the local oscillator, and define the required bandpass filter
(center frequency and bandwidth).

Section 4.2

4.21 Consider the FM discriminator shown in Fig-
ure 4.38. The envelope detector can be considered ideal
with an infinite input impedance. Plot the magnitude of the
transfer function 𝐸(𝑓 )∕𝑋

𝑟
(𝑓 ). From this plot, determine

a suitable carrier frequency and the discriminator constant
𝐾
𝐷
, and estimate the allowable peak frequency deviation

of the input signal.

4.22 By adjusting the values of 𝑅,𝐿, and 𝐶 in Figure
4.38, design a discriminator for a carrier frequency of
100 MHz, assuming that the peak frequency deviation is
4 MHz. What is the discriminator constant 𝐾

𝐷
for your

design?

Section 4.3

4.23 Starting with (4.117) verify the steady-state errors
given in Table 4.4.

4.24 Using 𝑥
𝑟
(𝑡) = 𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡) and 𝑒0(𝑡) =

2 cos(2𝜋𝑓
𝑐
𝑡 + 𝜃) for the assumed Costas PLL input and

VCO output, respectively, verify that all signals shown
at the various points in Figure 4.26 are correct. As-
suming that the VCO frequency deviation is defined by
𝑑𝜃∕𝑑𝑡 = −𝐾

𝑣
𝑒
𝑣
(𝑡), where 𝑒

𝑣
(𝑡) is the VCO input and 𝐾

𝑣

is a positive constant, derive the phase plane. Using the
phase plane, verify that the loop locks.
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4.25 Using a single PLL, design a system that has an
output frequency equal to 7

3
𝑓0, where 𝑓0 is the input fre-

quency. Describe fully, by sketching, the output of the
VCO for your design. Draw the spectrum at the VCO
output and at any other point in the system necessary to
explain the operation of your design. Describe any filters
used in your design by defining the center frequency and
the appropriate bandwidth of each.

4.26 A first-order PLL is operating with zero frequency
and phase error when a step in frequency of magnitude
Δ𝜔 is applied. The loop gain 𝐾

𝑡
is 2𝜋(100). Determine

the steady-state phase error, in degrees, for Δ𝜔 = 2𝜋(30),
2𝜋(50), 2𝜋(80), and −2𝜋(80) rad/s. What happens if
Δ𝜔 = 2𝜋(120) rad/s?
4.27 Verify (4.120) by showing that 𝐾

𝑡
𝑒
−𝐾𝑡𝑡𝑢(𝑡) satis-

fies all properties of an impulse function in the limit as
𝐾
𝑡
→ ∞.

4.28 The imperfect second-order PLL is defined as a
PLL with the loop filter

𝐹 (𝑠) = 𝑠 + 𝑎
𝑠 + 𝜆𝑎

in which 𝜆 is the offset of the pole from the origin rela-
tive to the zero location. In practical implementations 𝜆 is
small but often cannot be neglected. Use the linear model
of the PLL and derive the transfer function for Θ(𝑠)∕Φ(𝑠).
Derive expressions for 𝜔

𝑛
and 𝜁 in terms of 𝐾

𝑡
, 𝑎, and 𝜆.

4.29 Assuming the loop filter model for an imperfect
second-order PLL described in the preceding problem, de-
rive the steady-state phase errors under the three conditions
of 𝜃0, 𝑓Δ, and 𝑅 given in Table 4.4.

4.30 A Costas PLL operates with a small phase error
so that sin𝜓 ≈ 𝜓 and cos𝜓 ≈ 1. Assuming that the low-
pass filter preceding the VCO is modeled as 𝑎∕(𝑠 + 𝑎),
where 𝑎 is an arbitrary constant, determine the response to
𝑚(𝑡) = 𝑢(𝑡 − 𝑡0).
4.31 In this problem we wish to develop a baseband
(lowpass equivalent model) for a Costas PLL. We assume
that the loop input is the complex envelope signal

�̃�(𝑡) = 𝐴
𝑐
𝑚(𝑡)𝑒𝑗𝜙(𝑡)

and that the VCO output is 𝑒𝑗𝜃(𝑡). Derive and sketch the
model giving the signals at each point in the model.

Section 4.4

4.32 Assume that an FM demodulator operates in the
presence of sinusoidal interference. Show that the dis-
criminator output is a nonzero constant for each of the
following cases: 𝐴

𝑖
= 𝐴

𝑐
, 𝐴

𝑖
= −𝐴

𝑐
, and 𝐴

𝑖
≫ 𝐴

𝑐
. De-

termine the FM demodulator output for each of these three
cases.

Section 4.5

4.33 A continuous data signal is quantized and transmit-
ted using a PCM system. If each data sample at the receiv-
ing end of the system must be known to within ±0.20% of
the peak-to-peak full-scale value, how many binary sym-
bols must each transmitted digital word contain? Assume
that the message signal is speech and has a bandwidth of
5 kHz. Estimate the bandwidth of the resulting PCM signal
(choose 𝑘).

Section 4.6

4.34 In an FDM communication system, the transmitted
baseband signal is

𝑥(𝑡) = 𝑚1(𝑡) cos(2𝜋𝑓1𝑡) + 𝑚2(𝑡) cos(2𝜋𝑓2𝑡)

This systemhas a second-order nonlinearity between trans-
mitter output and receiver input. Thus, the received base-
band signal 𝑦(𝑡) can be expressed as

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡)

Assuming that the two message signals, 𝑚1(𝑡) and 𝑚2(𝑡),
have the spectra

𝑀1(𝑓 ) =𝑀2(𝑓 ) = Π
(
𝑓

𝑊

)

sketch the spectrum of 𝑦(𝑡). Discuss the difficulties en-
countered in demodulating the received baseband signal.
In many FDM systems, the subcarrier frequencies 𝑓1 and
𝑓2 are harmonically related. Describe any additional prob-
lems this presents.

Computer Exercises

4.1 Reconstruct Figure 4.7 for the case in which 3 val-
ues of the modulation index (0.5, 1, and 5) are achieved
by adjusting the peak frequency deviation while holding
𝑓
𝑚
constant.

4.2 Develop a computer program to generate the ampli-
tude spectrum at the output of an FM modulator assuming
a square-wave message signal. Plot the output for various
values of the peak deviation. Compare the result with the
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spectrum of a PWM signal and comment on your obser-
vations.
4.3 Develop a computer program and use the program

to verify the simulation results shown in Figures 4.24
and 4.25.

4.4 Referring to Computer Example 4.4, draw the
block diagram of the system represented by the simula-
tion loop, and label the inputs and outputs of the various
loop components with the names used in the simulation
code. Using this block diagram, verify that the simulation
program is correct. What are the sources of error in the
simulation program? How can these errors be mitigated?

4.5 Modify the simulation program given in Computer
Example 4.4 to allow the sampling frequency to be en-
tered interactively. Examine the effect of using different
sampling frequencies by executing the simulation with a
range of sampling frequencies. Be sure that you start with
a sampling frequency that is clearly too low and gradually
increase the sampling frequency until you reach a sampling
frequency that is clearly higher than is required for an ac-
curate simulation result. Comment on the results. How do
you know that the sampling frequency is sufficiently high?

4.6 Modify the simulation program given in Computer
Example 4.4 by replacing the trapezoidal integrator by a
rectangular integrator. Show that for sufficently high sam-
pling frequencies the two PLLs give performances that are
essentially equivalent. Also show that for sufficently small
sampling frequencies the two PLLs give performances that

are not equivalent. What does this tell you about selecting
a sampling frequency?

4.7 Modify the simulation program given in Computer
Example 4.4 so that the phase detector includes a limiter
so that the phase detector characteristic is defined by

𝑒
𝑑
(𝑡) =

⎧
⎪
⎨
⎪
⎩

𝐴, sin[𝜓(𝑡)] > 𝐴
sin[𝜓(𝑡)], −𝐴 ≤ sin[𝜓(𝑡)] ≤ 𝐴

−𝐴, sin[𝜓(𝑡)] < −𝐴

where 𝜓(𝑡) is the phase error 𝜙(𝑡) − 𝜃(𝑡) and 𝐴 is a param-
eter that can be adjusted by the simulation user. Adjust the
value of 𝐴 and comment on the impact that decreasing 𝐴
has on the number of cycles slipped and therefore on the
time required to achieve phase lock.

4.8 Using the result of Problem 4.26, modify the simu-
lation program given in Computer Example 4.4 so that an
imperfect second-order PLL is simulated. Use the same
parameter values as in Computer Example 4.4 and let
𝜆 = 0.1. Compare the time required to achieve phase lock.

4.9 A third-order PLL has the unusual property that it is
unstable for small loop gain and stable for large loop gain.
Use the MATLAB root-locus routine, and appropriately
chosen values of 𝑎 and 𝑏, demonstrate this property.

4.10 Using MATLAB, develop a program to simulate
a phase-locked loop where the loop output frequency is
7
5
𝑓0, where 𝑓0 is the input frequency. Demonstrate that the

simulated system operates properly.
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CHAPTER5

PRINCIPLES OF BASEBAND DIGITAL DATA
TRANSMISSION

So farwehave dealt primarilywith the transmission of analog signals. In this chapterwe introduce

the idea of transmission of digital data---that is, signals that can assume one of only a finite number

of values during each transmission interval. This may be the result of sampling and quantizing an

analog signal, as in the case of pulse code modulation discussed in Chapter 4, or it might be the

result of the need to transmit a message that is naturally discrete, such as a data or text file. In this

chapter, we will discuss several features of a digital data transmission system. One feature that will

not be covered in this chapter is the effect of random noise. This will be dealt with in Chapter 8 and

following chapters. Another restriction of our discussion is that modulation onto a carrier signal is

not assumed---hence, the modifier ‘‘baseband.’’ Thus, the types of data transmission systems to be

dealt with utilize signals with power concentrated from zero hertz to a few kilohertz or megahertz,

depending on the application. Digital data transmission systems that utilize bandpass signals will

be considered in Chapter 9 and following.

■ 5.1 BASEBAND DIGITAL DATA TRANSMISSION SYSTEMS

Figure 5.1 shows a block diagram of a baseband digital data transmission system, which
includes several possible signal processing operations. Each will be discussed in detail in
future sections of the chapter. For now we give only a short description.

As already mentioned, the analog-to-digital converter (ADC) block is present only if the
source produces an analog message. It can be thought of as consisting of two operations---
sampling and quantization. The quantization operation can be thought of as broken up into
rounding the samples to the nearest quantizing level and then converting them to a binary
number representation (designated as 0s and 1s, although their actual waveform representation
will be determined by the line code used, to be discussed shortly). The requirements of sampling
in order to minimize errors were discussed in Chapter 2, where it was shown that, in order to
avoid aliasing, the source had to be lowpass bandlimited, say to 𝑊 hertz, and the sampling
rate had to satisfy 𝑓

𝑠
> 2𝑊 samples per second (sps). If the signal being sampled is not strictly

bandlimited or if the sampling rate is less than 2𝑊 sps, aliasing results. Error characterization
due to quantizing will be dealt with in Chapter 8. If the message is analog, necessitating the
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Message
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DAC

(if source
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Figure 5.1
Block diagram of a baseband digital data transmission system.

use of an ADC at the transmitter, the inverse operation must take place at the receiver output
in order to convert the digital signal back to analog form (called digital-to-analog conversion,
or DAC). As seen in Chapter 2, after converting from binary format to quantized samples, this
can be as simple as a lowpass filter or, as analyzed in Problem 2.60, a zero- or higher-order
hold operation can be used.

The next block, line coding, will be dealt with in the next section. It is sufficient for
now to simply state that the purposes of line coding are varied, and include spectral shaping,
synchronization considerations, and bandwidth considerations, among other reasons.

Pulse shaping might be used to further shape the transmitted signal spectrum in order for
it to be better accommodated by the transmission channel available. In fact, we will discuss the
effects of filtering and how, if inadequate attention is paid to it, severe degradation can result
from transmitted pulses interfering with each other. This is termed intersymbol interference
(ISI) and can very severely impact overall system performance if steps are not taken to
counteract it. On the other hand, we will also see that careful selection of the combination of
pulse shaping (transmitter filtering) and receiver filtering (it is assumed that any filtering done
by the channel is not open to choice) can completely eliminate ISI.

At the output of the receiver filter, it is necessary to synchronize the sampling times to
coincide with the received pulse epochs. The samples of the received pulses are then compared
with a threshold in order to make a decision as to whether a 0 or a 1 was sent (depending on the
line code used, this may require some additional processing). If the data transmission system
is operating reliably, these 1--0 decisions are correct with high probability and the resulting
DAC output is a close replica of the input message waveform.

Although the present discussion is couched in terms of two possible levels, designated as
a 0 or 1, being sent it is found to be advantageous in certain situations to utilize more than two
levels. If two levels are used, the data format is referred to as ‘‘binary’’; if 𝑀 > 2 levels are
utilized, the data format is called ‘‘𝑀-ary.’’ If a binary format is used, the 0--1 symbols are
called ‘‘bits.’’ If an 𝑀-ary format is used, each transmission is called a ‘‘symbol.’’

■ 5.2 LINE CODES AND THEIR POWER SPECTRA

5.2.1 Description of Line Codes

The spectrum of a digitally modulated signal is influenced both by the particular baseband
data format used to represent the digital data and any additional pulse shaping (filtering) used
to prepare the signal for transmission. Several commonly used baseband data formats are
illustrated in Figure 5.2. Names for the various data formats shown are given on the vertical
axis of the respective sketch of a particular waveform, although these are not the only terms
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Figure 5.2
Abbreviated list of binary data formats.1

applied to certain of these. Briefly, during each signaling interval, the following descriptions
apply:

• Nonreturn-to-zero (NRZ) change (referred to as NRZ for simplicity)---a 1 is represented by
a positive level, 𝐴; a 0 is represented by −𝐴

• NRZ mark---a 1 is represented by a change in level (i.e., if the previous level sent was 𝐴,
−𝐴 is sent to represent a 1, and vice versa); a 0 is represented by no change in level

• Unipolar return-to-zero (RZ)---a 1 is represented by a 1
2 -width pulse (i.e., a pulse that

‘‘returns to zero’’); a 0 is represented by no pulse

1Adapted from J. K. Holmes, Coherent Spread Spectrum Systems, New York: John Wiley, 1982.
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• Polar RZ---a 1 is represented by a positive RZ pulse; a 0 is represented by a negative RZ
pulse

• Bipolar RZ---a 0 is represented by a 0 level; 1s are represented by RZ pulses that alternate
in sign

• Split phase (Manchester)---a 1 is represented by 𝐴 switching to −𝐴 at 1
2 the symbol period;

a 0 is represented by −𝐴 switching to 𝐴 at 1
2 the symbol period

Two of the most commonly used formats are NRZ and split phase. Split phase, we note,
can be thought of as being obtained from NRZ change by multiplication by a squarewave
clock waveform with a period equal to the symbol duration.

Several considerations should be taken into account in choosing an appropriate data
format for a given application. Among these are:

• Self-synchronization---Is there sufficient timing information built into the code so that syn-
chronizers can be easily designed to extract a timing clock from the code?

• Power spectrum suitable for the particular channel available---For example, if the channel
does not pass low frequencies, does the power spectrum of the chosen data format have a
null at zero frequency?

• Transmission bandwidth---If the available transmission bandwidth is scarce, which it often
is, a data format should be conservative in terms of bandwidth requirements. Sometimes
conflicting requirements may force difficult choices.

• Transparency---Every possible data sequence should be faithfully and transparently re-
ceived, regardless of whether it is infrequent or not.

• Error detection capability---Although the subject of forward error correction deals with the
design of codes to provide error correction, inherent data correction capability is an added
bonus for a given data format.

• Good bit error probability performance---There should be nothing about a given data format
that makes it difficult to implement minimum error probability receivers.

5.2.2 Power Spectra for Line-Coded Data

It is important to know the spectral occupancy of line-coded data in order to predict the
bandwidth requirements for the data transmission system (conversely, given a certain system
bandwidth specification, the line code used will imply a certain maximum data rate). We
now consider the power spectra for line-coded data assuming that the data source produces a
random coin-toss sequence of 1s and 0s, with a binary digit being produced each 𝑇 seconds
(recall that each binary digit is referred to as a bit, which is a contraction for ‘‘binary digit’’).
Since all waveforms are binary in this chapter, we use 𝑇 without the subscript 𝑏 for the bit
period.

To compute the power spectra for line-coded data, we use a result to be derived in
Chapter 7, Section 7.3.4, for the autocorrelation function of pulse-train-type signals. While it
may be pedagogically unsound to use a result yet to be described, the avenue suggested to the
student is to simply accept the result of Section 7.3.4 for now and concentrate on the results
to be derived and the system implications of these results. In particular, a pulse-train signal
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of the form

𝑋 (𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝑝(𝑡 − 𝑘𝑇 − Δ) (5.1)

is considered in Section 7.3.4 where ...𝑎−1, 𝑎0, 𝑎1,… , 𝑎
𝑘
... is a sequence of random variables

with the averages

𝑅
𝑚
=

⟨
𝑎
𝑘
𝑎
𝑘+𝑚

⟩
𝑚 = 0, ± 1, ± 2, ... (5.2)

The function 𝑝(𝑡) is a deterministic pulse-type waveform, 𝑇 is the separation between pulses,
and Δ is a random variable that is independent of the value of 𝑎

𝑘
and uniformly distributed in

the interval (−𝑇 ∕2, 𝑇 ∕2). It is shown that the autocorrelation function of such a waveform is

𝑅
𝑋
(𝜏) =

∞∑

𝑚=−∞
𝑅

𝑚
𝑟 (𝜏 − 𝑚𝑇 ) (5.3)

in which

𝑟 (𝜏) = 1
𝑇 ∫

∞

−∞
𝑝 (𝑡 + 𝜏) 𝑝 (𝑡) 𝑑𝑡 (5.4)

The power spectral density is the Fourier transform of 𝑅
𝑋
(𝜏), which is

𝑆
𝑋 (𝑓 ) = ℑ

[
𝑅

𝑋
(𝜏)

]
= ℑ

[ ∞∑

𝑚=−∞
𝑅

𝑚
𝑟 (𝜏 − 𝑚𝑇 )

]

=
∞∑

𝑚=−∞
𝑅

𝑚
ℑ [𝑟 (𝜏 − 𝑚𝑇 )]

=
∞∑

𝑚=−∞
𝑅

𝑚
𝑆
𝑟 (𝑓 ) 𝑒−𝑗2𝜋𝑚𝑇𝑓

= 𝑆
𝑟 (𝑓 )

∞∑

𝑚=−∞
𝑅

𝑚
𝑒
−𝑗2𝜋𝑚𝑇𝑓 (5.5)

where 𝑆
𝑟 (𝑓 ) = ℑ [𝑟 (𝜏)]. Noting that 𝑟 (𝜏) = 1

𝑇
∫
∞
−∞ 𝑝 (𝑡 + 𝜏) 𝑝 (𝑡) 𝑑𝑡 =

(
1
𝑇

)
𝑝 (−𝑡) ∗ 𝑝 (𝑡), we

obtain

𝑆
𝑟 (𝑓 ) =

|𝑃 (𝑓 )|2

𝑇
(5.6)

where 𝑃 (𝑓 ) = ℑ [𝑝 (𝑡)].

EXAMPLE 5.1

In this example we apply the above result to find the power spectral density of NRZ. For NRZ, the pulse
shape function is 𝑝 (𝑡) = Π (𝑡∕𝑇 ) so that

𝑃 (𝑓 ) = 𝑇 sinc (𝑇𝑓 ) (5.7)

and

𝑆
𝑟
(𝑓 ) = 1

𝑇
|𝑇 sinc (𝑇𝑓 )|2 = 𝑇 sinc2 (𝑇𝑓 ) (5.8)
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The time average 𝑅
𝑚
=

⟨
𝑎
𝑘
𝑎
𝑘+𝑚

⟩
can be deduced by noting that, for a given pulse, the amplitude is +𝐴

half the time and −𝐴 half the time, while, for a sequence of two pulses with a given sign on the first
pulse, the second pulse is +𝐴 half the time and −𝐴 half the time. Thus,

𝑅
𝑚
=

⎧
⎪
⎨
⎪
⎩

1
2
𝐴

2 + 1
2
(−𝐴)2 = 𝐴

2
, 𝑚 = 0

1
4
𝐴 (𝐴) + 1

4
𝐴 (−𝐴) + 1

4
(−𝐴)𝐴 + 1

4
(−𝐴) (−𝐴) = 0, 𝑚 ≠ 0

(5.9)

Thus, using (5.8) and (5.9) in (5.5), the power spectral density for NRZ is

𝑆NRZ (𝑓 ) = 𝐴
2
𝑇 sinc2 (𝑇𝑓 ) (5.10)

This is plotted in Figure 5.3(a) where it is seen that the bandwidth to the first null of the power spectral
density is 𝐵NRZ = 1∕𝑇 hertz. Note that 𝐴 = 1 gives unit power as seen from squaring and averaging the
time-domain waveform.

■

EXAMPLE 5.2

The computation of the power spectral density for split phase differs from that for NRZ only in the
spectrum of the pulse-shape function because the coefficients 𝑅

𝑚
are the same as for NRZ. The pulse-

shape function for split phase is given by

𝑝 (𝑡) = Π
(
𝑡 + 𝑇 ∕4
𝑇 ∕2

)
− Π

(
𝑡 − 𝑇 ∕4
𝑇 ∕2

)
(5.11)

By applying the time delay and superposition theorems of Fourier transforms, we have

𝑃 (𝑓 ) = 𝑇

2
sinc

(
𝑇

2
𝑓

)
𝑒
𝑗2𝜋(𝑇 ∕4)𝑓 − 𝑇

2
sinc

(
𝑇

2
𝑓

)
𝑒
−𝑗2𝜋(𝑇 ∕4)𝑓

= 𝑇

2
sinc

(
𝑇

2
𝑓

) (
𝑒
𝑗𝜋𝑇𝑓∕2 − 𝑒

−𝑗𝜋𝑇𝑓∕2)

= 𝑗𝑇 sinc
(
𝑇

2
𝑓

)
sin

(
𝜋𝑇

2
𝑓

)
(5.12)

Thus,

𝑆
𝑟
(𝑓 ) = 1

𝑇

||||
𝑗𝑇 sinc

(
𝑇

2
𝑓

)
sin

(
𝜋𝑇

2
𝑓

)||||

2

= 𝑇 sinc2
(
𝑇

2
𝑓

)
sin2

(
𝜋𝑇

2
𝑓

)
(5.13)

Hence, for split phase the power spectral density is

𝑆SP (𝑓 ) = 𝐴
2
𝑇 sinc2

(
𝑇

2
𝑓

)
sin2

(
𝜋𝑇

2
𝑓

)
(5.14)

This is plotted in Figure 5.3(b) where it is seen that the bandwidth to the first null of the power spectral
density is 𝐵SP = 2∕𝑇 hertz. However, unlike NRZ, split phase has a null at 𝑓 = 0, which might have
favorable implications if the transmission channel does not pass DC. Note that by squaring the time
waveform and averaging the result, it is evident that 𝐴 = 1 gives unit power.

■
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EXAMPLE 5.3

In this example, we compute the power spectrum of unipolar RZ, which provides the additional challenge
of discrete spectral lines. For unipolar RZ, the data correlation coefficients are

𝑅
𝑚
=

⎧
⎪
⎨
⎪
⎩

1
2
𝐴

2 + 1
2
(0)2 = 1

2
𝐴

2
, 𝑚 = 0

1
4
(𝐴) (𝐴) + 1

4
(𝐴) (0) + 1

4
(0) (𝐴) + 1

4
(0) (0) = 1

4
𝐴

2
, 𝑚 ≠ 0

(5.15)

The pulse-shape function is given by

𝑝 (𝑡) = Π (2𝑡∕𝑇 ) (5.16)

Therefore, we have

𝑃 (𝑓 ) = 𝑇

2
sinc

(
𝑇

2
𝑓

)
(5.17)

and

𝑆
𝑟
(𝑓 ) = 1

𝑇

||||
𝑇

2
sinc

(
𝑇

2
𝑓

)||||

2

= 𝑇

4
sinc2

(
𝑇

2
𝑓

)
(5.18)

For unipolar RZ, we therefore have

𝑆URZ(𝑓 ) =
𝑇

4
sinc2

(
𝑇

2
𝑓

)[
1
2
𝐴

2 + 1
4
𝐴

2
∞∑

𝑚=−∞, 𝑚≠ 0
𝑒
−𝑗2𝜋𝑚𝑇𝑓

]

= 𝑇

4
sinc2

(
𝑇

2
𝑓

)[
1
4
𝐴

2 + 1
4
𝐴

2
∞∑

𝑚=−∞
𝑒
−𝑗2𝜋𝑚𝑇𝑓

]

(5.19)

where 1
2
𝐴

2 has been split between the initial term inside the brackets and the summation (which supplies
the term for 𝑚 = 0 in the summation). But from (2.121) we have

∞∑

𝑚=−∞
𝑒
−𝑗2𝜋𝑚𝑇𝑓 =

∞∑

𝑚=−∞
𝑒
𝑗2𝜋𝑚𝑇𝑓 = 1

𝑇

∞∑

𝑛=−∞
𝛿 (𝑓 − 𝑛∕𝑇 ) (5.20)

Thus, 𝑆URZ(𝑓 ) can be written as

𝑆URZ(𝑓 ) =
𝑇

4
sinc2

(
𝑇

2
𝑓

)[
1
4
𝐴

2 + 1
4
𝐴

2

𝑇

∞∑

𝑛=−∞
𝛿 (𝑓 − 𝑛∕𝑇 )

]

= 𝐴
2
𝑇

16
sinc2

(
𝑇

2
𝑓

)
+ 𝐴

2

16
𝛿(𝑓 ) + 𝐴

2

16
sinc2

(1
2

) [
𝛿

(
𝑓 − 1

𝑇

)
+ 𝛿

(
𝑓 + 1

𝑇

)]

+𝐴
2

16
sinc2

(3
2

) [
𝛿

(
𝑓 − 3

𝑇

)
+ 𝛿

(
𝑓 + 3

𝑇

)]
+⋯ (5.21)

where the fact that 𝑌 (𝑓 ) 𝛿
(
𝑓 − 𝑓

𝑛

)
= 𝑌

(
𝑓
𝑛

)
𝛿
(
𝑓 − 𝑓

𝑛

)
for 𝑌 (𝑓 ) continuous at 𝑓 = 𝑓

𝑛
has been used

to simplify the sinc2
(

𝑇

2
𝑓

)
𝛿 (𝑓 − 𝑛∕𝑇 ) terms. [Note that sinc2

(
𝑛

2

)
= 0 for 𝑛 even.]
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The power spectrum of unipolar RZ is plotted in Figure 5.3(c) where it is seen that the bandwidth
to the first null of the power spectral density is 𝐵URZ = 2∕𝑇 hertz. The reason for the impulses in the
spectrum is because the unipolar nature of this waveform is reflected in finite power at DC and harmonics
of 1∕𝑇 hertz. This can be a useful feature for synchronization purposes.

Note that for unit power in unipolar RZ, 𝐴 = 2 because the average of the time-domain waveform

squared is 1
𝑇

[
1
2

(
𝐴

2 𝑇

2
+ 02 𝑇

2

)
+ 1

2
02𝑇

]
= 𝐴

2

4
.

■

EXAMPLE 5.4

The power spectral density of polar RZ is straightforward to compute based on the results for NRZ. The
data correlation coeffients are the same as for NRZ. The pulse-shape function is 𝑝 (𝑡) = Π (2𝑡∕𝑇 ), the
same as for unipolar RZ, so 𝑆

𝑟
(𝑓 ) = 𝑇

4
sinc2

(
𝑇

2
𝑓

)
. Thus,

𝑆PRZ (𝑓 ) =
𝐴

2
𝑇

4
sinc2

(
𝑇

2
𝑓

)
(5.22)

The power spectrum of polar RZ is plotted in Figure 5.3(d) where it is seen that the bandwidth to the first
null of the power spectral density is 𝐵PRZ = 2∕𝑇 hertz. Unlike polar RZ, there are no discrete spectral

lines. Note that by squaring and averaging the time-domain waveform, we get 1
𝑇

(
𝐴

2 𝑇

2
+ 02 𝑇

2

)
= 𝐴

2

2
, so

𝐴 =
√
2 for unit average power.

■

EXAMPLE 5.5

The final line code for which we will compute the power spectrum is bipolar RZ. For 𝑚 = 0, the possible
𝑎
𝑘
𝑎
𝑘
products are𝐴𝐴 = (−𝐴) (−𝐴) = 𝐴

2---each of which occurs 1
4
the time and (0) (0) = 0which occurs

1
2
the time. For 𝑚 = ±1, the possible data sequences are (1, 1), (1, 0), (0, 1), and (0, 0) for which the

possible 𝑎
𝑘
𝑎
𝑘+1 products are −𝐴2, 0, 0, and 0, respectively, each of which occurs with probability 1

4
. For

𝑚 > 1 the possible products are 𝐴2 and −𝐴2, each of which occurs with probability 1
8
, and ±𝐴 (0), and

(0) (0), each of which occur with probability 1
4
. Thus, the data correlation coefficients become

𝑅
𝑚
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
4
𝐴

2 + 1
4
(−𝐴)2 + 1

2
(0)2 = 1

2
𝐴

2
, 𝑚 = 0

1
4
(−𝐴)2 + 1

4
(𝐴) (0) + 1

4
(0) (𝐴) + 1

4
(0) (0) = −𝐴

2

4
, 𝑚 = ±1

1
8
𝐴

2 + 1
8
(
−𝐴2) + 1

4
(𝐴) (0) + 1

4
(−𝐴) (0) + 1

4
(0) (0) = 0, |𝑚| > 1

(5.23)

The pulse-shape function is

𝑝 (𝑡) = Π (2𝑡∕𝑇 ) (5.24)

Therefore, we have

𝑃 (𝑓 ) = 𝑇

2
sinc

(
𝑇

2
𝑓

)
(5.25)

and

𝑆
𝑟
(𝑓 ) = 1

𝑇

||||
𝑇

2
sinc

(
𝑇

2
𝑓

)||||

2

= 𝑇

4
sinc2

(
𝑇

2
𝑓

)
(5.26)
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Therefore, for bipolar RZ we have

𝑆BPRZ (𝑓 ) = 𝑆
𝑟
(𝑓 )

∞∑

𝑚=−∞
𝑅

𝑚
𝑒
−𝑗2𝜋𝑚𝑇𝑓

= 𝐴
2
𝑇

8
sinc2

(
𝑇

2
𝑓

)(
1 − 1

2
𝑒
𝑗2𝜋𝑇𝑓 − 1

2
𝑒
−𝑗2𝜋𝑇𝑓

)

= 𝐴
2
𝑇

8
sinc2

(
𝑇

2
𝑓

)
[1 − cos (2𝜋𝑇𝑓 )]

= 𝐴
2
𝑇

4
sinc2

(
𝑇

2
𝑓

)
sin2 (𝜋𝑇𝑓 ) (5.27)

which is shown in Figure 5.3(e).
Note that by squaring the time-domain waveform and accounting for it being 0 for the time when

logic 0s are sent and it being 0 half the time when logic 1s are sent, we get for the power

1
𝑇

[1
2

(1
2
𝐴

2 𝑇

2
+ 1

2
(−𝐴)2 𝑇

2
+ 02 𝑇

2

)
+ 1

2
02𝑇

]
= 𝐴

2

4
(5.28)

so 𝐴 = 2 for unit average power.
■

Typical power spectra are shown in Figure 5.3 for all of the data modulation formats
shown in Figure 5.2, assuming a random (coin toss) bit sequence. For data formats lacking
power spectra with significant frequency content at multiples of the bit rate, 1∕𝑇 , nonlinear
operations are required to generate power at a frequency of 1∕𝑇 Hz or multiples thereof for
symbol synchronization purposes. Note that split phase guarantees at least one zero crossing
per bit interval, but requires twice the transmission bandwidth of NRZ. Around 0 Hz, NRZ
possesses significant power. Generally, no data format possesses all the desired features listed
in Section 5.2.1, and the choice of a particular data format will involve trade-offs.

COMPUTER EXAMPLE 5.1

A MATLAB script file for plotting the power spectra of Figure 5.3 is given below.

% File: c5ce1.m
%
clf
ANRZ = 1;
T = 1;
f = -40:.005:40;
SNRZ = ANRZˆ2*T*(sinc(T*f)).ˆ2;
areaNRZ = trapz(f, SNRZ) % Area of NRZ spectrum as check
ASP = 1;
SSP = ASPˆ2*T*(sinc(T*f/2)).ˆ2.*(sin(pi*T*f/2)).ˆ2;
areaSP = trapz(f, SSP) % Area of split-phase spectrum as check
AURZ = 2;
SURZc = AURZˆ2*T/16*(sinc(T*f/2)).ˆ2;
areaRZc = trapz(f, SURZc)
fdisc = -40:1:40;
SURZd = zeros(size(fdisc));
SURZd = AURZˆ2/16*(sinc(fdisc/2)).ˆ2;
areaRZ = sum(SURZd)+areaRZc % Area of unipolar return-to-zero spect as

check
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Figure 5.3
Power spectra for line-coded binary data formats.

APRZ = sqrt(2);
SPRZ = APRZˆ2*T/4*(sinc(T*f/2)).ˆ2;
areaSPRZ = trapz(f, SPRZ) % Area of polar return-to-zero spectrum as

check
ABPRZ = 2;
SBPRZ = ABPRZˆ2*T/4*((sinc(T*f/2)).ˆ2).*(sin(pi*T*f)).ˆ2;
areaBPRZ = trapz(f, SBPRZ) % Area of bipolar return-to-zero spectrum

as check
subplot(5,1,1), plot(f, SNRZ), axis([-5, 5, 0, 1]), ylabel(’S N R Z(f)’)
subplot(5,1,2), plot(f, SSP), axis([-5, 5, 0, 1]), ylabel(’S S P(f)’)
subplot(5,1,3), plot(f, SURZc), axis([-5, 5, 0, 1]), yla-

bel(’S U R Z(f)’)
hold on
subplot(5,1,3), stem(fdisc, SURZd, ’ˆ’), axis([-5, 5, 0, 1])
subplot(5,1,4), plot(f, SPRZ), axis([-5, 5, 0, 1]), ylabel(’S P R Z(f)’)
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subplot(5,1,5), plot(f, SBPRZ), axis([-5, 5, 0, 1]),
xlabel(’Tf’), ylabel(’S B P R Z(f)’)

% End of script file
■

■ 5.3 EFFECTS OF FILTERING OF DIGITAL DATA---ISI

One source of degradation in a digital data transmission system has already been mentioned
and termed intersymbol interference, or ISI. ISI results when a sequence of signal pulses
is passed through a channel with a bandwidth insufficient to pass the significant spectral
components of the signal. Example 2.20 illustrated the response of a lowpass RC filter to a
rectangular pulse. For an input of

𝑥1 (𝑡) = 𝐴Π
(
𝑡 − 𝑇 ∕2

𝑇

)
= 𝐴 [𝑢 (𝑡) − 𝑢 (𝑡 − 𝑇 )] (5.29)

the output of the filter was found to be

𝑦1 (𝑡) = 𝐴

[
1 − exp

(
− 𝑡

𝑅𝐶

)]
𝑢 (𝑡) − 𝐴

[
1 − exp

(
− 𝑡 − 𝑇

𝑅𝐶

)]
𝑢 (𝑡 − 𝑇 ) (5.30)

This is plotted in Figure 2.16(a),which shows that the output ismore ‘‘smeared out’’ the smaller
𝑇 ∕𝑅𝐶 is [although not in exactly the same form as (2.182), they are in fact equivalent]. In
fact, by superposition, a sequence of two pulses of the form

𝑥2 (𝑡) = 𝐴Π
(
𝑡 − 𝑇 ∕2

𝑇

)
− 𝐴Π

(
𝑡 − 3𝑇 ∕2

𝑇

)

= 𝐴 [𝑢 (𝑡) − 2𝑢 (𝑡 − 𝑇 ) + 𝑢 (𝑡 − 2𝑇 )] (5.31)

will result in the response

𝑦2 (𝑡) = 𝐴

[
1 − exp

(
− 𝑡

𝑅𝐶

)]
𝑢 (𝑡) − 2𝐴

[
1 − exp

(
− 𝑡 − 𝑇

𝑅𝐶

)]
𝑢 (𝑡 − 𝑇 )

+𝐴
[
1 − exp

(
− 𝑡 − 2𝑇

𝑅𝐶

)]
𝑢 (𝑡 − 2𝑇 ) (5.32)

At a simple level, this illustrates the idea of ISI. If the channel, represented by the lowpass RC
filter, has only a single pulse at its input, there is no problem from the transient response of the
channel. However, when two or more pulses are input to the channel in time sequence [in the
case of the input 𝑥2 (𝑡), a positive pulse followed by a negative one], the transient response due
to the initial pulse interferes with the responses due to the trailing pulses. This is illustrated in
Figure 5.4 where the two-pulse response (5.32) is plotted for two values of 𝑇 ∕𝑅𝐶 , the first of
which results in negligible ISI and the second of which results in significant ISI in addition to
distortion of the output pulses. In fact, the smaller 𝑇 ∕𝑅𝐶 , the more severe the ISI effects are
because the time constant, 𝑅𝐶 , of the filter is large compared with the pulse width, 𝑇 .

To consider a more realistic example, we reconsider the line codes of Figure 5.2. These
waveforms are shown filtered by a lowpass, second-order Butterworth filter in Figure 5.5
for the filter 3-dB frequency equal to 𝑓3 = 1∕𝑇bit = 1∕𝑇 and in Figure 5.6 for 𝑓3 = 0.5∕𝑇 .
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Figure 5.4
Response of a lowpass RC filter to a positive rectangular pulse followed by a negative rectangular pulse
to illustrate the concept of ISI: (a) 𝑇 ∕𝑅𝐶 = 20; (b) 𝑇 ∕𝑅𝐶 = 2.
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Figure 5.5
Data sequences formatted with various line codes passed through a channel represented by a
second-order lowpass Butterworth filter of bandwidth one bit rate.

www.it-ebooks.info

http://www.it-ebooks.info/


5.4 Pulse Shaping: Nyquist’S Criterion for Zero ISI 227

0 2 4 6 8 10 12 14 16 18

1

0

N
R

Z
ch

an
g
e

–1

0 2 4 6 8 10 12 14 16 18

1

0
N

R
Z

m
ar

k
–1

0 2 4 6 8 10 12 14 16 18

1

0

U
n
ip

o
la

r
R

Z

–1

0 2 4 6 8 10 12 14 16 18

1

0

P
o
la

r
R

Z

–1

0 2 4 6 8 10 12 14 16 18

1

0

B
ip

o
la

r
R

Z

–1

0 2 4 6 8 10

t, seconds

Butterworth f ilter; order = 2; BW = 0.5/Tbit

12 14 16 18

1

0

S
p
li

t
p
h
as

e

–1

Figure 5.6
Data sequences formatted with various line codes passed through a channel represented by a
second-order lowpass Butterworth filter of bandwidth one-half bit rate.

The effects of ISI are evident. In Figure 5.5 the bits are fairly discernible, even for data
formats using pulses of width 𝑇 ∕2 (i.e., all the RZ cases and split phase). In Figure 5.6, the
NRZ cases have fairly distinguishable bits, but the RZ and split-phase formats suffer greatly
from ISI. Recall that from the plots of Figure 5.3 and the analysis that led to them, the RZ and
split-phase formats occupy essentially twice the bandwidth of the NRZ formats for a given
data rate.

The question about what can be done about ISI naturally arises. One perhaps surpris-
ing solution is that with proper transmitter and receiver filter design (the filter represent-
ing the channel is whatever it is) the effects of ISI can be completely eliminated. We in-
vestigate this solution in the following section. Another somewhat related solution is the
use of special filtering at the receiver called equalization. At a very rudimentary level, an
equalization filter can be looked at as having the inverse of the channel filter frequency
response, or a close approximation to it. We consider one form of equalization filtering in
Section 5.5.

■ 5.4 PULSE SHAPING: NYQUIST’S CRITERION FOR ZERO ISI

In this section we examine designs for the transmitter and receiver filters that shape the overall
signal pulse-shape function so as to ideally eliminate interference between adjacent pulses.
This is formally stated as Nyquist’s criterion for zero ISI.
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5.4.1 Pulses Having the Zero ISI Property

To see how one might implement this approach, we recall the sampling theorem, which gives
a theoretical maximum spacing between samples to be taken from a signal with an ideal
lowpass spectrum in order that the signal can be reconstructed exactly from the sample values.
In particular, the transmission of a lowpass signal with bandwidth 𝑊 hertz can be viewed as
sending aminimum of 2𝑊 independent sps. If these 2𝑊 sps represent 2𝑊 independent pieces
of data, this transmission can be viewed as sending 2𝑊 pulses per second through a channel
represented by an ideal lowpass filter of bandwidth 𝑊 . The transmission of the 𝑛th piece of
information through the channel at time 𝑡 = 𝑛𝑇 = 𝑛∕ (2𝑊 ) is accomplished by sending an
impulse of amplitude 𝑎

𝑛
. The output of the channel due to this impulse at the input is

𝑦
𝑛
(𝑡) = 𝑎

𝑛
sinc

[
2𝑊

(
𝑡 − 𝑛

2𝑊

)]
(5.33)

For an input consisting of a train of impulses spaced by 𝑇 = 1∕ (2𝑊 ) s, the channel output is

𝑦(𝑡) =
∑

𝑛

𝑦
𝑛
(𝑡) =

∑

𝑛

𝑎
𝑛
sinc

[
2𝑊

(
𝑡 − 𝑛

2𝑊

)]
(5.34)

where
{
𝑎
𝑛

}
is the sequence of sample values (i.e., the information). If the channel output is

sampled at time 𝑡
𝑚
= 𝑚∕2𝑊 , the sample value is 𝑎

𝑚
because

sinc (𝑚 − 𝑛) =
{1, 𝑚 = 𝑛

0, 𝑚 ≠ 𝑛
(5.35)

which results in all terms in (5.34) except the 𝑚th being zero. In other words, the 𝑚th sample
value at the output is not affected by preceding or succeeding sample values; it represents an
independent piece of information.

Note that the bandlimited channel implies that the time response due to the 𝑛th impulse
at the input is infinite in extent; a waveform cannot be simultaneously bandlimited and time-
limited. It is of interest to inquire if there are any bandlimitedwaveforms other than sinc (2𝑊 𝑡)
that have the property of (5.35), that is, that their zero crossings are spaced by 𝑇 = 1∕ (2𝑊 )
seconds. One such family of pulses are those having raised cosine spectra. Their time response
is given by

𝑝RC (𝑡) =
cos(𝜋𝛽𝑡∕𝑇 )
1 − (2𝛽𝑡∕𝑇 )2

sinc
(
𝑡

𝑇

)
(5.36)

and their spectra by

𝑃RC (𝑓 ) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑇 , |𝑓 | ≤ 1−𝛽
2𝑇

𝑇

2

{
1 + cos

[
𝜋𝑇

𝛽

(
|𝑓 | − 1−𝛽

2𝑇

)]}
,

1−𝛽
2𝑇 < |𝑓 | ≤ 1+𝛽

2𝑇

0, |𝑓 | > 1+𝛽
2𝑇

(5.37)

where 𝛽 is called the roll-off factor. Figure 5.7 shows this family of spectra and the corre-
sponding pulse responses for several values of 𝛽. Note that zero crossings for 𝑝RC(𝑡) occur
at least every 𝑇 seconds. If 𝛽 = 1, the single-sided bandwidth of 𝑃RC(𝑓 ) is

1
𝑇

hertz (just

substitute 𝛽 = 1 into (5.37)), which is twice that for the case of 𝛽 = 0
[
sinc (𝑡∕𝑇 ) pulse

]
. The

price paid for the raised cosine roll-off with increasing frequency of 𝑃RC(𝑓 ), which may be
easier to realize as practical filters in the transmitter and receiver, is increased bandwidth.
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Figure 5.7
(a) Raised cosine spectra and (b) corresponding pulse responses.

Also, 𝑝RC(𝑡) for 𝛽 = 1 has a narrow main lobe with very low side lobes. This is advanta-
geous in that interference with neighboring pulses is minimized if the sampling instants are
slightly in error. Pulses with raised cosine spectra are used extensively in the design of digital
communication systems.

5.4.2 Nyquist’s Pulse-Shaping Criterion

Nyquist’s pulse-shaping criterion states that a pulse-shape function 𝑝(𝑡), having a Fourier
transform 𝑃 (𝑓 ) that satisfies the criterion

∞∑

𝑘=−∞
𝑃

(
𝑓 + 𝑘

𝑇

)
= 𝑇 , |𝑓 | ≤ 1

2𝑇
(5.38)

results in a pulse-shape function with sample values

𝑝 (𝑛𝑇 ) =
{1, 𝑛 = 0

0, 𝑛 ≠ 0
(5.39)

Using this result, we can see that no adjacent pulse interference will result if the received data
stream is represented as

𝑦(𝑡) =
∞∑

𝑛=−∞
𝑎
𝑛
𝑝(𝑡 − 𝑛𝑇 ) (5.40)
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and the sampling at the receiver occurs at integer multiples of 𝑇 seconds at the pulse epochs.
For example, to obtain the 𝑛 = 10th sample, one simply sets 𝑡 = 10𝑇 in (5.40), and the resulting
sample is 𝑎10, given that the result of Nyquist’s pulse-shaping criterion of (5.39) holds.

The proof of Nyquist’s pulse-shaping criterion follows easily bymaking use of the inverse
Fourier representation for 𝑝(𝑡), which is

𝑝(𝑡) =
∫

∞

−∞
𝑃 (𝑓 ) exp(𝑗2𝜋𝑓𝑡) 𝑑𝑓 (5.41)

For the 𝑛th sample value, this expression can be written as

𝑝 (𝑛𝑇 ) =
∞∑

𝑘=−∞
∫

(2𝑘+1)∕2𝑇

−(2𝑘+1)∕2𝑇
𝑃 (𝑓 ) exp(𝑗2𝜋𝑓𝑛𝑇 ) 𝑑𝑓 (5.42)

where the inverse Fourier transform integral for 𝑝(𝑡) has been broken up into contiguous
frequency intervals of length 1∕𝑇 Hz. By the change of variables 𝑢 = 𝑓 − 𝑘∕𝑇 , (5.42) becomes

𝑝 (𝑛𝑇 ) =
∞∑

𝑘=−∞
∫

1∕2𝑇

−1∕2𝑇
𝑃

(
𝑢 + 𝑘

𝑇

)
exp(𝑗2𝜋𝑛𝑇 𝑢)𝑑𝑢

=
∫

1∕2𝑇

−1∕2𝑇

∞∑

𝑘=−∞
𝑃

(
𝑢 + 𝑘

𝑇

)
exp(𝑗2𝜋𝑛𝑇 𝑢)𝑑𝑢 (5.43)

where the order of integration and summation has been reversed. By hypothesis

∞∑

𝑘=−∞
𝑃 (𝑢 + 𝑘∕𝑇 ) = 𝑇 (5.44)

between the limits of integration, so that (5.43) becomes

𝑝 (𝑛𝑇 ) =
∫

1∕2𝑇

−1∕2𝑇
𝑇 exp(𝑗2𝜋𝑛𝑇 𝑢) 𝑑𝑢 = sinc (𝑛)

=
{1, 𝑛 = 0

0, 𝑛 ≠ 0
(5.45)

which completes the proof of Nyquist’s pulse-shaping criterion.
With the aid of this result, it is now apparent why the raised-cosine pulse family is free

of intersymbol interference, even though the family is by no means unique. Note that what is
excluded from the raised-cosine spectrum for |𝑓 | < 1

𝑇
hertz is filled by the spectral translate

tail for |𝑓 | > 1
𝑇
hertz. Example 5.6 illustrates this for a simpler, although more impractical,

spectrum than the raised-cosine spectrum.
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EXAMPLE 5.6

Consider the triangular spectrum

𝑃Δ (𝑓 ) = 𝑇 Λ (𝑇𝑓 ) (5.46)

It is shown in Figure 5.8(a) and in Figure 5.8(b)
∑∞

𝑘=−∞ 𝑃Δ

(
𝑓 + 𝑘

𝑇

)
is shown where it is evident that the

sum is a constant. Using the transform pair Λ (𝑡∕𝐵) ⟷ 𝐵 sinc2 (𝐵𝑓 ) and duality to get the transform
pair 𝑝Δ (𝑡) = sinc2 (𝑡∕𝑇 ) ⟷ 𝑇Λ (𝑇𝑓 ) = 𝑃Δ (𝑓 ), we see that this pulse-shape function does indeed have
the zero-ISI property because 𝑝Δ (𝑛𝑇 ) = sinc2 (𝑛) = 0, 𝑛 ≠ 0, 𝑛 integer.
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Figure 5.8
Illustration that a triangular spectrum (a), satisfies Nyquist’s zero-ISI criterion (b).

■

5.4.3 Transmitter and Receiver Filters for Zero ISI

Consider the simplified pulse transmission system of Figure 5.9. A source produces a sequence
of sample values

{
𝑎
𝑛

}
. Note that these are not necessarily quantized or binary digits, but they

could be. For example, two bits per sample could be sent with four possible levels, representing
00, 01, 10, and 11. In the simplified transmitter model under consideration here, the 𝑘th
sample value multiplies a unit impulse occuring at time 𝑘𝑇 and this weighted impulse train
is the input to a transmitter filter with impulse response ℎ

𝑇 (𝑡) and corresponding frequency
response𝐻

𝑇 (𝑓 ). The noise for now is assumed to be zero (effects of noise will be considered
in Chapter 9). Thus, the input signal to the transmission channel, represented by a filter having
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Figure 5.9
Transmitter, channel, and receiver cascade illustrating the implementation of a zero-ISI communication
system.

impulse response ℎ
𝐶 (𝑡) and corresponding frequency response 𝐻

𝐶 (𝑓 ), for all time is

𝑥 (𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝛿 (𝑡 − 𝑘𝑇 ) ∗ ℎ

𝑇 (𝑡)

=
∞∑

𝑘=−∞
𝑎
𝑘
ℎ
𝑇 (𝑡 − 𝑘𝑇 ) (5.47)

The output of the channel is

𝑦 (𝑡) = 𝑥(𝑡) ∗ ℎ
𝐶 (𝑡) (5.48)

and the output of the receiver filter is

𝑣 (𝑡) = 𝑦(𝑡) ∗ ℎ
𝑅 (𝑡) (5.49)

We want the output of the receiver filter to have the zero-ISI property and, to be specific, we
set

𝑣 (𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝐴𝑝RC

(
𝑡 − 𝑘𝑇 − 𝑡

𝑑

)
(5.50)

where 𝑝RC (𝑡) is the raised-cosine pulse function, 𝑡
𝑑
represents the delay introduced by the

cascade of filters, and𝐴 represents an amplitude scale factor. Putting this all together, we have

𝐴𝑝RC(𝑡 − 𝑡
𝑑
) = ℎ

𝑇 (𝑡) ∗ ℎ
𝐶
(𝑡) ∗ ℎ

𝑅
(𝑡) (5.51)

or, by Fourier-transforming both sides, we have

𝐴𝑃RC(𝑓 ) exp(−𝑗2𝜋𝑓𝑡𝑑) = 𝐻
𝑇
(𝑓 )𝐻

𝐶
(𝑓 )𝐻

𝑅
(𝑓 ) (5.52)

In terms of amplitude responses this becomes

𝐴𝑃RC(𝑓 ) = ||𝐻𝑇
(𝑓 )|| ||𝐻𝐶

(𝑓 )|| ||𝐻𝑅
(𝑓 )|| (5.53)
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Figure 5.10
Transmitter and receiver filter amplitude responses that implement the zero-ISI condition assuming a
first-order Butterworth channel filter and raised-cosine pulse shapes.

Now ||𝐻𝐶
(𝑓 )|| is fixed (the channel is whatever it is) and 𝑃RC(𝑓 ) is specified. Suppose

we want the transmitter and receiver filter amplitude responses to be the same. Then, solving
(5.46) with ||𝐻𝑇

(𝑓 )|| = ||𝐻𝑅
(𝑓 )||, we have

||𝐻𝑇
(𝑓 )||

2 = ||𝐻𝑅
(𝑓 )||

2 =
𝐴𝑃RC(𝑓 )
||𝐻𝐶

(𝑓 )||
(5.54)

or

||𝐻𝑇
(𝑓 )|| = ||𝐻𝑅

(𝑓 )|| =
𝐴
1∕2

𝑃
1∕2
RC (𝑓 )

||𝐻𝐶
(𝑓 )||

1∕2 (5.55)

This amplitude response is shown in Figure 5.10 for raised-cosine spectra of various
roll-off factors and for a channel filter assumed to have a first-order Butterworth amplitude
response. We have not accounted for the effects of additive noise. If the noise spectrum is flat,
the only change would be another multiplicative constant. The constants are arbitrary since
they multiply both signal and noise alike.

■ 5.5 ZERO-FORCING EQUALIZATION

In the previous section, it was shown how to choose transmitter and receiver filter amplitude
responses, given a certain channel filter, to provide output pulses satisfying the zero-ISI
condition. In this section, we present a procedure for designing a filter that will accept a
channel output pulse response not satisfying the zero-ISI condition and produce a pulse at its
output that has 𝑁 zero-valued samples on either side of its maximum sample value taken to
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Figure 5.11
A transversal filter implementation for equalization of intersymbol interference.

be 1 for convenience. This filter will be called a zero-forcing equalizer. We specialize our
considerations of an equalization filter to a particular form---a transversal or tapped-delay-line
filter. Figure 5.11 shows the block diagram of such a filter.

There are at least two reasons for considering a transversal structure for the purpose of
equalization. First, it is simple to analyze. Second, it is easy to mechanize by electronic means
(i.e., transmission line delays and analog multipliers) at high frequencies and by digital signal
processors at lower frequencies.

Let the pulse response of the channel output be 𝑝
𝑐
(𝑡). The output of the equalizer in

response to 𝑝
𝑐
(𝑡) is

𝑝eq(𝑡) =
𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑝
𝑐
(𝑡 − 𝑛Δ) (5.56)

where Δ is the tap spacing and the total number of transversal filter taps is 2𝑁 + 1. We want
𝑝eq(𝑡) to satisfy Nyquist’s pulse-shaping criterion, which we will call the zero-ISI condition.
Since the output of the equalizer is sampled every 𝑇 seconds, it is reasonable that the tap
spacing be Δ = 𝑇 . The zero-ISI condition therefore becomes

𝑝eq(𝑚𝑇 ) =
𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑝
𝑐
[(𝑚 − 𝑛)𝑇 ]

=
{1, 𝑚 = 0

0, 𝑚 ≠ 0
𝑚 = 0,±1,±2,… ,±𝑁 (5.57)

Note that the zero-ISI condition can be satisfied at only 2𝑁 time instants because there are
only 2𝑁 + 1 coefficients to be selected in (5.57) and the output of the filter for 𝑡 = 0 is forced
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to be 1. Defining the matrices (actually column matrices or vectors for the first two)

[𝑃eq] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0
1
0
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝑁 zeros

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝑁 zeros

(5.58)

[𝐴] =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼−𝑁
𝛼−𝑁+1

⋮

𝛼
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

(5.59)

and

[
𝑃
𝑐

]
=

⎡
⎢
⎢
⎢
⎢
⎣

𝑝
𝑐 (0) 𝑝

𝑐 (−𝑇 ) ⋯ 𝑝
𝑐 (−2𝑁𝑇 )

𝑝
𝑐 (𝑇 ) 𝑝

𝑐 (0) ⋯ 𝑝
𝑐
[(−2𝑁 + 1) 𝑇 ]

⋮ ⋮

𝑝
𝑐 (2𝑁𝑇 ) 𝑝

𝑐 (0)

⎤
⎥
⎥
⎥
⎥
⎦

(5.60)

it follows that (5.57) can be written as the matrix equation

[𝑃eq] = [𝑃
𝑐
][𝐴] (5.61)

The method of solution of the zero-forcing coefficients is now clear. Since [𝑃eq] is
specified by the zero-ISI condition, all we must do is multiply through by the inverse of [𝑃

𝑐
].

The desired coefficient matrix [𝐴] is then the middle column of [𝑃
𝑐
]−1, which follows by

multiplying [𝑃
𝑐
]−1 times [𝑃eq]:

[𝐴] = [𝑃c]−1[𝑃eq] = [𝑃
𝑐
]−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0
1
0
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= middle column of [𝑃
𝑐
]−1 (5.62)
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EXAMPLE 5.7

Consider a channel for which the following sample values of the channel pulse response are obtained:

𝑝
𝑐
(−3𝑇 ) = 0.02 𝑝

𝑐
(−2𝑇 ) = −0.05 𝑝

𝑐
(−𝑇 ) = 0.2 𝑝

𝑐
(0) = 1.0

𝑝
𝑐
(𝑇 ) = 0.3 𝑝

𝑐
(2𝑇 ) = −0.07 𝑝

𝑐
(3𝑇 ) = 0.03

The matrix [𝑃
𝑐
] is

[𝑃
𝑐
] =

⎡
⎢
⎢
⎢
⎣

1.0 0.2 −0.05
0.3 1.0 0.2

−0.07 0.3 1.0

⎤
⎥
⎥
⎥
⎦

(5.63)

and the inverse of this matrix is

[𝑃
𝑐
]−1 =

⎡
⎢
⎢
⎢
⎣

1.0815 −0.2474 0.1035
−0.3613 1.1465 −0.2474
0.1841 −0.3613 1.0815

⎤
⎥
⎥
⎥
⎦

(5.64)

Thus, by (5.62)

[𝐴] =
⎡
⎢
⎢
⎢
⎣

1.0815 −0.2474 0.1035
−0.3613 1.1465 −0.2474
0.1841 −0.3613 1.0815

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−0.2474
1.1465
−0.3613

⎤
⎥
⎥
⎥
⎦

(5.65)
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Figure 5.12
Samples for (a) an assumed channel response and (b) the output of a zero-forcing equalizer of
length 3.
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Using these coefficients, the equalizer output is

𝑝eq(𝑚) = −0.2474𝑝
𝑐
[(𝑚 + 1)𝑇 ] + 1.1465𝑝

𝑐
(𝑚𝑇 )

−0.3613𝑝
𝑐
[(𝑚 − 1)𝑇 ], 𝑚 = … ,−1, 0, 1, … (5.66)

Putting values in shows that 𝑝eq(0) = 1 and that the single samples on either side of 𝑝eq(0) are zero.
Samplesmore than one away from the center sample are not necessarily zero for this example. Calculation
using the extra samples for 𝑝

𝑐
(𝑛𝑇 ) gives 𝑝

𝑐
(−2𝑇 ) = −0.1140 and 𝑝

𝑐
(2𝑇 ) = −0.1961. Samples for the

channel and the equalizer outputs are shown in Figure 5.12.
■

■ 5.6 EYE DIAGRAMS

We now consider eye diagrams that, although not a quantitative measure of system perfor-
mance, are simple to construct and give significant insight into system performance. An eye
diagram is constructed by plotting overlapping 𝑘-symbol segments of a baseband signal. In
other words, an eye diagram can be displayed on an oscilloscope by triggering the time sweep
of the oscilloscope, as shown in Figure 5.13, at times 𝑡 = 𝑛𝑘𝑇

𝑠
where 𝑇

𝑠
is the symbol period,

𝑘𝑇
𝑠
is the eye period, and 𝑛 is an integer. A simple example will demonstrate the process of

generating an eye diagram.

EXAMPLE 5.8

Consider the eye diagram of a bandlimited digital NRZ baseband signal. In this example the signal
is generated by passing an NRZ waveform through a third-order Butterworth filter as illustrated in
Figure 5.13. The filter bandwidth is normalized to the symbol rate. In other words, if the symbol rate of
the NRZ waveform is 1000 symbols per second, and the normalized filter bandwidth is 𝐵

𝑁
= 0.6, the

filter bandwidth is 600 hertz. The eye diagrams corresponding to the signal at the filter output are those
illustrated in Figure 5.14 for normalized bandwidths, 𝐵

𝑁
, of 0.4, 0.6, 1.0, and 2.0. Each of the four eye

diagrams span 𝑘 = 4 symbols. Sampling is performed at 20 samples/symbol and therefore the sampling
index ranges from 1 to 80 as shown. The effect of bandlimiting by the filter, leading to intersymbol
interference, on the eye diagram is clearly seen.

We now look at an eye diagram in more detail. Figure 5.15 shows the top pane of Figure 5.14
(𝐵

𝑁
= 0.4), in which two symbols are illustrated rather than four. Observation of Figure 5.15 suggests

that the eye diagram is composed of two fundamentalwaveforms, each ofwhich approximates a sinewave.
One waveform goes through two periods in the two symbol eyes and the other waveform goes through
a single period. A little thought shows that the high-frequency waveform corresponds to the binary
sequences 01 or 10 while the low-frequency waveform corresponds to the binary sequences 00 or 11.

Also shown in Figure 5.15 is the optimal sampling time, which is when the eye is most open.
Note that for significant bandlimiting the eye will be more closed due to intersymbol interference. This
shrinkage of the eye opening due to ISI is labeled amplitude jitter, 𝐴

𝑗
. Referring back to Figure 5.14 we

see that increasing the filter bandwidth decreases the amplitude jitter. When we consider the effects of

Data Filter

Trigger Signal

Oscilloscope
Figure 5.13
Simple technique for generating an eye diagram
for a bandlimited signal.
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Figure 5.14
Eye diagrams for 𝐵

𝑁
= 0.4, 0.6, 1.0, and 2.0.

noise in later chapters of this book, we will see that if the vertical eye opening is reduced, the probability
of symbol error increases. Note also that ISI leads to timing jitter, denoted 𝑇

𝑗
in Figure 5.15, which is a

perturbation of the zero crossings of the filtered signal. Also note that a large slope of the signal at the
zero crossings will result in a more open eye and that increasing this slope is accomplished by increasing
the signal bandwidth. If the signal bandwidth is decreased leading to increased intersymbol interference,
𝑇
𝑗
increases and synchronization becomes more difficult. As we will see in later chapters, increasing the

bandwith of a channel often results in increased noise levels. This leads to both an increase in timing
jitter and amplitude jitter. Thus, many trade-offs exist in the design of communication systems, several
of which will be explored in later sections of this book.

+1

–1

Tj Ts, optimal

Aj

0

Figure 5.15
Two-symbol eye diagrams for 𝐵

𝑁
= 0.4.

■
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COMPUTER EXAMPLE 5.2

The eye diagrams illustrated in Figure 5.15 were generated using the following MATLAB code:

% File: c5ce2.m
clf
nsym = 1000; nsamp = 50; bw = [0.4 0.6 1 2];
for k = 1:4

lambda = bw(k);
[b,a] = butter(3,2*lambda/nsamp);
l = nsym*nsamp; % Total sequence length
y = zeros(1,l-nsamp+1); % Initalize output vector
x = 2*round(rand(1,nsym))-1; % Components of x = +1 or -1
for i = 1:nsym % Loop to generate info symbols

kk = (i-1)*nsamp+1;
y(kk) = x(i);

end
datavector = conv(y,ones(1,nsamp)); % Each symbol is nsamp long
filtout = filter(b, a, datavector);
datamatrix = reshape(filtout, 4*nsamp, nsym/4);
datamatrix1 = datamatrix(:, 6:(nsym/4));
subplot(4,1,k), plot(datamatrix1, ’k’), ylabel(’Amplitude’), ...
axis([0 200 -1.4 1.4]), legend([’{∖itB N} = ’, num2str(lambda)])
if k == 4

xlabel(’{∖itt/T} s a m p’)
end

end

% End of script file.

Note: The bandwidth values shown on Figure 5.14 were added using an editor after the figure was
generated. Figure 5.15 was generated from the top pane of Figure 5.14 using an editor.

■

■ 5.7 SYNCHRONIZATION

We now briefly look at the important subject of synchronization. There are many different
levels of synchronization in a communications system. Coherent demodulation requires carrier
synchronization as we discussed in the preceding chapter where we noted that a Costas PLL
could be used to demodulate a DSB signal. In a digital communications system bit or symbol
synchronization gives us knowledge of the starting and ending times of discrete-time symbols.
This is a necessary step in data recovery. When block coding is used for error correction in a
digital communications system, knowledge of the initial symbols in the code words must be
identified for decoding. This process is known a word synchronization. In addition, groups
of symbols are often grouped together to form data frames and frame synchronization is
required to identify the starting and ending symbols in each data frame. In this section we
focus on symbol synchronization. Other types of synchronization will be considered later in
this book.

Three general methods exist by which symbol synchronization2 can be obtained. These
are (1) derivation from a primary or secondary standard (for example, transmitter and receiver

2See Stiffler (1971), Part II, or Lindsey and Simon (1973), Chapter 9, for a more extensive discussion.
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slaved to a master timing source), (2) utilization of a separate synchronization signal (pilot
clock), and (3) derivation from the modulation itself, referred to as self-synchronization. In
this section we explore two self-synchronization techniques.

As we saw earlier in this chapter (see Figure 5.2), several binary data formats, such as
polar RZ and split phase, guarantee a level transition within every symbol period that may
aid in synchronization. For other data formats a discrete spectral component is present at the
symbol frequency. A phase-locked loop, such as we studied in the preceding chapter, can then
be used to track this component in order to recover symbol timing. For data formats that do not
have a discrete spectral line at the symbol frequency, a nonlinear operation is performed on the
signal in order to generate such a spectral component. A number of techniques are in common
use for accomplishing this. The following examples illustrate two basic techniques, both of
which make use of the PLL for timing recovery. Techniques for acquiring symbol synchro-
nization that are similar in form to the Costas loop are also possible and will be discussed in
Chapter 10.3

COMPUTER EXAMPLE 5.3

To demonstrate the first method we assume that a data signal is represented by an NRZ signal that has
been bandlimited by passing it through a bandlimited channel. If this NRZ signal is squared, a component
is generated at the symbol frequency. The component generated at the symbol frequency can then be
phase tracked by a PLL in order to generate the symbol synchronization as illustrated by the following
MATLAB simulation:

% File: c5ce3.m
nsym = 1000; nsamp = 50; lambda = 0.7;
[b,a] = butter(3,2*lambda/nsamp);
l = nsym*nsamp; % Total sequence length
y = zeros(1,l-nsamp+1); % Initalize output vector
x =2*round(rand(1,nsym))-1; % Components of x = +1 or -1
for i = 1:nsym % Loop to generate info symbols

k = (i-1)*nsamp+1;
y(k) = x(i);

end
datavector1 = conv(y,ones(1,nsamp)); % Each symbol is nsamp long
subplot(3,1,1), plot(datavector1(1,200:799),’k’, ’LineWidth’, 1.5)
axis([0 600 -1.4 1.4]), ylabel(’Amplitude’)
filtout = filter(b,a,datavector1);
datavector2 = filtout.*filtout;
subplot(3,1,2), plot(datavector2(1,200:799),’k’, ’LineWidth’, 1.5)
ylabel(’Amplitude’)
y = fft(datavector2);
yy = abs(y)/(nsym*nsamp);
subplot(3,1,3), stem(yy(1,1:2*nsym),’k’)
xlabel(’FFT Bin’), ylabel(’Spectrum’)
% End of script file.

The results of executing the preceding MATLAB program are illustrated in Figure 5.16. Assume that
the 1000 symbols generated by the MATLAB program occur in a time span of 1 s. Thus, the symbol rate

3Again, see Stiffler (1971) or Lindsey and Simon (1973).
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Figure 5.16
Simulation results for Computer Example 5.2: (a) NRZ waveform; (b) NRZ waveform filtered and
squared; (c) FFT of squared NRZ waveform.

is 1000 symbols/s and, since the NRZ signal is sampled at 50 samples/symbol, the sampling frequency
is 50,000 samples/second. Figure 5.16(a) illustrates 600 samples of the NRZ signal. Filtering by a third-
order Butterworth filter having a bandwidth of twice the symbol rate and squaring this signal results
in the signal shown in Figure 5.16(b). The second-order harmonic created by the squaring operation
can clearly be seen by observing a data segment consisting of alternating data symbols. The spectrum,
generated using the FFT algorithm, is illustrated in Figure 5.16(c). Two spectral components can clearly
be seen; a component at DC (0 Hz), which results from the squaring operation, and a component at
1000 Hz, which represents the component at the symbol rate. This component is tracked by a PLL to
establish symbol timing.

It is interesting to note that a sequence of alternating data states, e.g., 101010..., will result in an
NRZ waveform that is a square wave. If the spectrum of this square wave is determined by forming
the Fourier series, the period of the square wave will be twice the symbol period. The frequency of the
fundamental will therefore be one-half the symbol rate. The squaring operation doubles the frequency
to the symbol rate of 1000 symbols/s.

■

COMPUTER EXAMPLE 5.4

To demonstrate a second self-synchronization method, consider the system illustrated in Figure 5.17.
Because of the nonlinear operation provided by the delay-and-multiply operation power is produced at
the symbol frequency. The following MATLAB program simulates the symbol synchronizer:

% File: c5ce4.m
nsym = 1000; nsamp = 50; % Make nsamp even
m = nsym*nsamp;
y = zeros(1,m-nsamp+1); % Initalize output vector
x =2*round(rand(1,nsym))-1; % Components of x = +1 or -1
for i = 1:nsym % Loop to generate info symbols

k = (i-1)*nsamp+1;
y(k) = x(i);

www.it-ebooks.info

http://www.it-ebooks.info/


242 Chapter 5 ∙ Principles of Baseband Digital Data Transmission

Phase

detector

Loop f ilter

and amplif ier

Delay,

Tb/2

VCO

Clock

From data demodulator
×

Figure 5.17
System for deriving a symbol clock simulated in Computer Example 5.4.
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Figure 5.18
Simulation results for Computer Example 5.4: (a) data waveform; (b) data waveform multiplied by a
half-bit delayed version of itself; (c) FFT spectrum of (b).

end
datavector1 = conv(y,ones(1,nsamp)); % Make symbols nsamp samples long
subplot(3,1,1), plot(datavector1(1,200:10000),’k’, ’LineWidth’, 1.5)
axis([0 600 -1.4 1.4]), ylabel(’Amplitude’)
datavector2 = [datavector1(1,m-nsamp/2+1:m) datavector1(1,1:m-

nsamp/2)];
datavector3 = datavector1.*datavector2;
subplot(3,1,2), plot(datavector3(1,200:10000),’k’, ’LineWidth’, 1.5),
axis([0 600 -1.4 1.4]), ylabel(’Amplitude’)
y = fft(datavector3);
yy = abs(y)/(nsym*nsamp);
subplot(3,1,3), stem(yy(1,1:4*nsym),’k.’)
xlabel(’FFT Bin’), ylabel(’Spectrum’)

% End of script file.
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The data waveform is shown in Figure 5.18(a), and this waveform multiplied by its delayed version
is shown in Figure 5.18(b). The spectral component at 1000 Hz, as seen in Figure 5.18(c), represents the
symbol-rate component and is tracked by a PLL for timing recovery.

■

■ 5.8 CARRIER MODULATION OF BASEBAND DIGITAL SIGNALS

The baseband digital signals considered in this chapter are typically transmitted using RF
carrier modulation. As in the case of analog modulation considered in the preceding chapter,
the fundamental techniques are based on amplitude, phase, or frequency modulation. This is
illustrated in Figure 5.19 for the case in which the data bits are represented by an NRZ data
format. Six bits are shown corresponding to the data sequence 101001. For digital amplitude
modulation, known as amplitude-shift keying (ASK), the carrier amplitude is determined by
the data bit for that interval. For digital phase modulation, known as phase-shift keying (PSK),
the excess phase of the carrier is established by the data bit. The phase changes can clearly
be seen in Figure 5.19. For digital frequency modulation, known as frequency-shift keying

t

t

t

t

0001 11

Data

ASK

PSK

FSK

Figure 5.19
Examples of digital modulation schemes.
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(FSK), the carrier frequency deviation is established by the data bit. To illustrate the similarity
to the material studied in Chapters 3 and 4, note that the ASK RF signal can be represented by

𝑥ASK(𝑡) = 𝐴
𝑐
[1 + 𝑑(𝑡)] cos(2𝜋𝑓

𝑐
𝑡) (5.67)

where 𝑑(𝑡) is the NRZ waveform. Note that this is identical to AM modulation with the only
essential difference being the definition of the message signal. PSK and FSK can be similarly
represented by

𝑥PSK(𝑡) = 𝐴
𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 + 𝜋

2
𝑑(𝑡)

]
(5.68)

and

𝑥FSK(𝑡) = 𝐴
𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 + 𝑘

𝑓
∫

𝑡

𝑑(𝛼)𝑑𝛼
]

(5.69)

respectively. We therefore see that many of the concepts introduced in Chapters 3 and 4 carry
over to digital data systems. These techniques will be studied in detail in Chapters 9 and
10. However, a major concern of both analog and digital communication systems is system
performance in the presence of channel noise and other random disturbances. In order to have
the tools required to undertake a study of system performance, we interrupt our discussion of
communication systems to study random variables and stochastic processes.

Further Reading

Further discussions on the topics of this chapter may be found in Ziemer and Peterson (2001), Couch
(2013), Proakis and Salehi (2005), and Anderson (1998).

Summary

1. The block diagram of the baseband model of a digi-
tal communications systems contains several components
not present in the analog systems studied in the preceding
chapters. The underlying message signal may be analog or
digital. If themessage signal is analog, an analog-to-digital
converter must be used to convert the signal from analog
to digital form. In such cases a digital-to-analog converter
is usually used at the receiver output to convert the digi-
tal data back to analog form. Three operations covered in
detail in this chapter were line coding, pulse shaping, and
symbol synchronization.

2. Digital data can be represented using a number of for-
mats, generally referred to as line codes. The two basic
classifications of line codes are those that do not have an
amplitude transition within each symbol period and those
that do have an amplitude transition within each symbol
period. A number of possibilities exist within each of these
classifications. Two of the most popular data formats are
NRZ (nonreturn to zero), which does not have an ampli-
tude transition within each symbol period and split phase,

which does have an amplitude transition within each sym-
bol period. The power spectral density corresponding to
various data formats is important because of the impact on
transmission bandwidth.Data formats having an amplitude
transition within each symbol period may simplify symbol
synchronization at the cost of increased bandwidth. Thus,
bandwidth versus ease of synchronization are among the
trade-offs available in digital transmission system design.

3. A major source of performance degradation in a dig-
ital system is intersymbol interference or ISI. Distortion
due to ISI results when the bandwith of a channel is not suf-
ficient to pass all significant spectral components of the
channel input signal. Channel equalization is often used
to combat the effects of ISI. Equalization, in its simplest
form, can be viewed as filtering the channel output using
a filter having a frequency response function that is the
inverse of the frequency response function of the channel.

4. A number of pulse shapes satisfy the Nyquist pulse-
shaping criterion and result in zero ISI. A simple example
is the pulse defined by 𝑝(𝑡) = sinc(𝑡∕𝑇 ), where 𝑇 is the
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sampling (symbol) period. Zero ISI results since 𝑝(𝑡) = 1
for 𝑡 = 0 and 𝑝(𝑡) = 0 for 𝑡 = 𝑛𝑇 , 𝑛 ≠ 0.
5. A popular technique for implementing zero-ISI con-
ditions is to use identical filters in both the transmitter and
receiver. If the frequency resonse function of the channel is
known and the underlying pulse shape is defined, the fre-
quency response function of the transmitter/receiver filters
can easily be found so that the Nyquist zero-ISI condition
is satisfied. This technique is typically used with pulses
having raised cosine spectra.

6. A zero-forcing equalizer is a digital filter that operates
upon a channel output to produce a sequence of samples
satisfying the Nyquist zero-ISI condition. The implemen-
tation takes the form of a tapped delay line, or transver-
sal, filter. The tap weights are determined by the inverse
of the matrix defining the pulse response of the channel.
Attributes of the zero-forcing equalizer include ease of
implementation and ease of analysis.

7. Eye diagrams are formed by overlaying segments of
signals representing 𝑘 data symbols. The eye diagrams,
while not a quantitative measure of system performance,
provide a qualitative measure of system performance. Sig-
nals with large vertical eye openings display lower levels
of intersymbol interference than those with smaller ver-
tical openings. Eyes with small horizontal openings have
high levels of timing jitter, which makes symbol synchro-
nization more difficult.

8. Many levels of synchronization are required in digital
communication systems, including carrier, symbol, word,
and frame synchronization. In this chapter we considered
only symbol synchronization. Symbol synchronization is
typically accomplished by using a PLL to track a compo-
nent in the data signal at the symbol frequency. If the data
format does not have discrete spectral lines at the symbol
rate or multiples thereof, a nonlinear operation must be
applied to the data signal in order to generate a spectral
component at the symbol rate.

Drill Problems

5.1 Which data formats, for a random (coin toss) data
stream, have (a) zero dc level; (b) built in redundancy that
could be used for error checking; (c) discrete spectral lines
present in their power spectra; (d) nulls in their spectra
at zero frequency; (e) the most compact power spectra
(measured to first null of their power spectra)?

(i) NRZ change;

(ii) NRZ mark;

(iii) Unipolar RZ;

(iv) Polar RZ;

(v) Bipolar RZ;

(vi) Split phase.

5.2 Tell which binary data format(s) shown in Fig-
ure 5.2 satisfy the following properties, assuming random
(fair coin toss) data:

(a) Zero DC level;

(b) A zero crossing for each data bit;

(c) Binary 0 data bits represented by 0 voltage level
for transmission and the waveform has nonzero
DC level;

(d) Binary 0 data bits represented by 0 voltage level
for transmission and the waveform has zero DC
level;

(e) The spectrum is zero at frequency zero (𝑓 = 0
Hz);

(f) The spectrum has a discrete spectral line at fre-
quency zero (𝑓 = 0 Hz).

5.3 Explain what happens to a line-coded data se-
quence when passed through a severely bandlimited
channel.

5.4 What is meant by a pulse having the zero-ISI prop-
erty?What must be true of the pulse spectrum in order that
it have this property?

5.5 Which of the following pulse spectra have inverse
Fourier transforms with the zero-ISI property?

(a) 𝑃1 (𝑓 ) = Π (𝑇𝑓 ) where 𝑇 is the pulse duration;

(b) 𝑃2 (𝑓 ) = Λ (𝑇𝑓∕2);
(c) 𝑃3 (𝑓 ) = Π (2𝑇𝑓 );
(d) 𝑃4 (𝑓 ) = Π (𝑇𝑓 ) + Π (2𝑇𝑓 ).

5.6 True or false: The zero-ISI property exists only for
pulses with raised cosine spectra.

5.7 How many total samples of the incoming pulse
are required to force the following number of zeros
on either side of the middle sample for a zero-forcing
equalizer?

(a) 1; (b) 3; (c) 4; (d) 7; (e) 8; (f) 10.
5.8 Choose the correct adjective: A wider bandwidth

channel implies (more) (less) timing jitter.
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5.9 Choose the correct adjective: A narrower band-
width channel implies (more) (less) amplitude jitter.
5.10 Judging from the results of Figures 5.16.and 5.18,
which method for generating a spectral component at the

data clock frequency generates a higher-power one: the
squarer or the delay-and-multiply circuit?

5.11 Give advantages and disadvantages of the carrier
modulation methods illustrated in Figure 5.19.

Problems

Section 5.1

5.1 Given the channel features or objectives below.
For each part, tell which line code(s) is (are) the best
choice(s).

(a) The channel frequency response has a null at
𝑓 = 0 hertz.

(b) The channel has a passband from 0 to 10 kHz and
it is desired to transmit data through it at 10,000
bits/s.

(c) At least one zero crossing per bit is desired for
synchronization purposes.

(d) Built-in redundancy is desired for error-checking
purposes.

(e) For simplicity of detection, distinct positive
pulses are desired for ones and distinct negative
pulses are desired for zeros.

(f) A discrete spectral line at the bit rate is desired
from which to derive a clock at the bit rate.

5.2 For the ±1-amplitude waveforms of Figure 5.2,
show that the average powers are:

(a) NRZ change---𝑃ave = 1W;

(b) NRZ mark---𝑃ave = 1W;

(c) Unipolar RZ---𝑃ave =
1
4
W;

(d) Polar RZ---𝑃ave =
1
2
W;

(e) Bipolar RZ---𝑃ave =
1
4
W;

(f) Split phase---𝑃ave = 1W;

5.3

(a) Given the random binary data sequence 0 1 1 0 0
0 1 0 1 1. Provide waveform sketches for:

(i) NRZ change;

(ii) Split phase.

(b) Demonstrate satisfactorily that the split-phase
waveform can be obtained from the NRZ wave-
form by multiplying the NRZ waveform by a
±1-valued clock signal of period 𝑇 .

5.4 For the data sequence of Problem 5.3 provide a
waveform sketch for NRZ mark.

5.5 For the data sequence of Problem5.3 providewave-
form sketches for:

(a) Unipolar RZ;

(b) Polar RZ;

(c) Bipolar RZ.

5.6 A channel of bandwidth 4 kHz is available. Deter-
mine the data rate that can be accommodated for the fol-
lowing line codes (assume a bandwidth to the first spectral
null):

(a) NRZ change;

(b) Split phase;

(c) Unipolar RZ and polar RZ

(d) Bipolar RZ.

Section 5.2

5.7 Given the step response for a second-order But-
terworth filter as in Problem 2.65c, use the superposition
and time-invariance properties of a linear time-invariant
system to write down the filter’s response to the input

𝑥 (𝑡) = 𝑢 (𝑡) − 2𝑢 (𝑡 − 𝑇 ) + 𝑢 (𝑡 − 2𝑇 )

where 𝑢 (𝑡) is the unit step. Plot as a function of 𝑡∕𝑇 for
(a) 𝑓3𝑇 = 20 and (b) 𝑓3𝑇 = 2.
5.8 Using the superposition and time-invariance prop-

erties of an RC filter, show that (5.27) is the response of a
lowpass RC filter to (5.26) given that the filter’s response
to a unit step is

[
1 − exp (−𝑡∕𝑅𝐶)

]
𝑢 (𝑡) .

Section 5.3

5.9 Show that (5.32) is an ideal rectangular spectrum
for 𝛽 = 0. What is the corresponding pulse-shape func-
tion?

5.10 Show that (5.31) and (5.32) are Fourier-transform
pairs.

5.11 Sketch the following spectra and tell which ones
satisfy Nyquist’s pulse-shape criterion. For those that do,
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find the appropriate sample interval, 𝑇 , in terms of 𝑊 .
Find the corresponding pulse-shape function 𝑝 (𝑡) . (Recall
thatΠ

(
𝑓

𝐴

)
is a unit-high rectangular pulse from −𝐴

2
to 𝐴

2
;

Λ
(

𝑓

𝐵

)
is a unit-high triangle from −𝐵 to 𝐵.)

(a) 𝑃1 (𝑓 ) = Π
(

𝑓

2𝑊

)
+ Π

(
𝑓

𝑊

)

(b) 𝑃2 (𝑓 ) = Λ
(

𝑓

2𝑊

)
+ Π

(
𝑓

𝑊

)

(c) 𝑃3 (𝑓 ) = Π
(

𝑓

4𝑊

)
− Λ

(
𝑓

𝑊

)

(d) 𝑃4 (𝑓 ) = Π
(

𝑓−𝑊
𝑊

)
+ Π

(
𝑓+𝑊
𝑊

)

(e) 𝑃5 (𝑓 ) = Λ
(

𝑓

2𝑊

)
− Λ

(
𝑓

𝑊

)

5.12 If ||𝐻𝐶
(𝑓 )|| =

[
1 + (𝑓∕5000)2

]−1∕2
, provide a plot

for ||𝐻𝑇
(𝑓 )|| = ||𝐻𝑅

(𝑓 )|| assuming the pulse spectrum
𝑃RC (𝑓 ) with

1
𝑇
= 5000 Hz for (a) 𝛽 = 1; (b) 𝛽 = 1

2
.

5.13 It is desired to transmit data at 9 kbps over a chan-
nel of bandwidth 7 kHz using raised-cosine pulses. What
is the maximum value of the roll-off factor, 𝛽, that can be
used?

5.14

(a) Show by a suitable sketch that the trapezoidal
spectrum given below satisfies Nyquist’s pulse-
shaping criterion:

𝑃 (𝑓 ) = 2Λ (𝑓∕2𝑊 ) − Λ (𝑓∕𝑊 )

(b) Find the pulse-shape function corresponding to
this spectrum.

∑

∑

Delay Delay

Delay

mτ

Gain

β

Delay

Nβ

y(t)

x(t)

z(t)

y(t)

3
β

1
β

2
β

(b)

(a)

+

+

x(t – m)β τ

∆∆∆

Figure 5.20

Section 5.4

5.15 Given the following channel pulse response sam-
ples:

𝑝
𝑐
(−3𝑇 ) = 0.001 𝑝

𝑐
(−2𝑇 ) = −0.01 𝑝

𝑐
(−𝑇 ) = 0.1 𝑝

𝑐
(0) = 1.0

𝑝
𝑐
(𝑇 ) = 0.2 𝑝

𝑐
(2𝑇 ) = −0.02 𝑝

𝑐
(3𝑇 ) = 0.005

(a) Find the tap coefficients for a three-tap zero-
forcing equalizer.

(b) Find the output samples for𝑚𝑇 = −2𝑇 ,−𝑇 , 0, 𝑇 ,
and 2𝑇 .

5.16 Repeat Problem 5.15 for a five-tap zero-forcing
equalizer.

5.17 A simple model for a multipath communications
channel is shown in Figure 5.20(a).

(a) Find 𝐻
𝑐
(𝑓 ) = 𝑌 (𝑓 )∕𝑋(𝑓 ) for this channel and

plot ||𝐻𝑐
(𝑓 )|| for 𝛽 = 1 and 0.5.

(b) In order to equalize, or undo, the channel-induced
distortion, an equalization filter is used. Ideally,
its frequency response function should be

𝐻eq(𝑓 ) =
1

𝐻
𝑐
(𝑓 )

if the effects of noise are ignored and only dis-
tortion caused by the channel is considered. A
tapped-delay-line or transversal filter, as shown
in Figure 5.20(b), is commonly used to approxi-
mate𝐻eq(𝑓 ). Write down a series expression for

𝐻
′
eq(𝑓 ) = 𝑍(𝑓 )∕𝑌 (𝑓 ).
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(c) Using (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥
2 − 𝑥

3 +… , |𝑥|
< 1, find a series expression for 1∕𝐻

𝑐
(𝑓 ). Equat-

ing this with 𝐻eq(𝑓 ) found in part (b), find the
values for 𝛽1, 𝛽2,… , 𝛽

𝑁
, assuming 𝜏

𝑚
= Δ.

5.18 Given the following channel pulse response:

𝑝
𝑐
(−4𝑇 ) = −0.01; 𝑝

𝑐
(−3𝑇 ) = 0.02; 𝑝

𝑐
(−2𝑇 )

= −0.05; 𝑝
𝑐
(−𝑇 ) = 0.07; 𝑝

𝑐
(0) = 1;

𝑝
𝑐
(𝑇 ) = −0.1; 𝑝

𝑐
(2𝑇 ) = 0.07; 𝑝

𝑐
(3𝑇 )

= −0.05; 𝑝
𝑐
(4𝑇 ) = 0.03;

(a) Find the tap weights for a three-tap zero-forcing
equalizer.

(b) Find the output samples for 𝑚𝑇 = −2𝑇 , − 𝑇 ,

0, 𝑇 , 2𝑇 .

5.19 Repeat Problem 5.18 for a five-tap zero-forcing
equalizer.

Section 5.5

5.20 In a certain digital data transmission system the
probability of a bit error as a function of timing jitter is
given by

𝑃
𝐸
= 1

4
exp (−𝑧) + 1

4
exp

[
−𝑧

(
1 − 2 |Δ𝑇 |

𝑇

)]

where 𝑧 is the signal-to-noise ratio, |Δ𝑇 |, is the timing jit-
ter, and 𝑇 is the bit period. From observations of an eye di-
agram for the system, it is determined that |Δ𝑇 | ∕𝑇 = 0.05
(5%).

(a) Find the value of signal-to-noise ratio, 𝑧0, that
gives a probability of error of 10−6 for a timing
jitter of 0.

(b) With the jitter of 5%, tell what value of signal-to-
noise ratio, 𝑧1, is necessary to maintain the prob-
ability of error at 10−6. Express the ratio 𝑧1∕𝑧0
in dB, where

[
𝑧1∕𝑧0

]
dB = 10 log10

(
𝑧1∕𝑧0

)
. Call

this the degradation due to jitter.

(c) Recalculate parts (a) and (b) for a probability of
error of 10−4. Is the degradation due to jitter
better or worse than for a probability of error of
10−6?

5.21

(a) Using the superposition and time-invariance
properties of a linear time-invariant system find
the response of a lowpass RC filter to the input

𝑥 (𝑡) = 𝑢 (𝑡) − 2𝑢 (𝑡 − 𝑇 ) + 2𝑢 (𝑡 − 2𝑇 ) − 𝑢 (𝑡 − 3𝑇 )

Plot for 𝑇 ∕𝑅𝐶 = 0.4, 0.6, 1, 2 on separate
axes. Use MATLAB to do so.

(b) Repeat for −𝑥 (𝑡). Plot on the same set of axes as
in part a.

(c) Repeat for 𝑥 (𝑡) = 𝑢 (𝑡).
(d) Repeat for 𝑥 (𝑡) = −𝑢 (𝑡).

Note that you have just constructed a rudimentary eye
diagram.

5.22 It is desired to transmit data ISI free at 10 kbps for
which pulses with a raised-cosine spectrum are used. If
the channel bandwidth is limited to 5 kHz, ideal lowpass,
what is the allowed roll-off factor, 𝛽?

5.23

(a) For ISI-free signaling using pulses with raised-
cosine spectra, give the relation of the roll-off
factor, 𝛽, to data rate, 𝑅 = 1∕𝑇 , and channel
bandwidth, 𝑓max (assumed to be ideal lowpass).

(b) What must be the relationship between 𝑅 and
𝑓max for realizable raised-cosine spectra pulses?

Section 5.6

5.24 Rewrite the MATLAB simulation of Example 5.8
for the case of an absolute-value type of nonlinearity. Is
the spectral line at the bit rate stronger or weaker than for
the square-law type of nonlinearity?

5.25 Assume that the bit period of Example 5.8 is 𝑇 = 1
second. That means that the sampling rate is 𝑓

𝑠
= 10 sps

because nsamp = 10 in the program. Assuming that a
𝑁FFT = 5000 point FFT was used to produce Figure 5.16
and that the 5000th point corresponds to 𝑓

𝑠
justify that

the FFT output at bin 1000 corresponds to the bit rate of
1∕𝑇 = 1 bit per second in this case.

Section 5.7

5.26 Referring to (5.68), it is sometimes desirable to
leave a residual carrier component in a PSK-modulated
waveform for carrier synchronization purposes at the
receiver. Thus, instead of (5.68), we would have

𝑥PSK (𝑡) = 𝐴
𝑐
cos

[
2𝜋𝑓

𝑐
𝑡 + 𝛼

𝜋

2
𝑑 (𝑡)

]
, 0 < 𝛼 < 1

Find 𝛼 so that 10% of the power of 𝑥PSK (𝑡) is in the carrier
(unmodulated) component.
(Hint: Use cos (𝑢 + 𝑣) to write 𝑥PSK (𝑡) as two terms, one
dependent on 𝑑 (𝑡) and the other independent of 𝑑 (𝑡).Make
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use of the facts that 𝑑 (𝑡) = ±1 and cosine is even and sine
is odd.)

5.27 Referring to (5.69) and using the fact that 𝑑 (𝑡) = ±1
in 𝑇 -second intervals, find the value of 𝑘

𝑓
such that the

peak frequency deviation of 𝑥FSK (𝑡) is 10,000 Hz if the bit
rate is 1000 bits per second.

Computer Exercises

5.1 Write a MATLAB program that will produce plots
like those shown in Figure 5.2 assuming a random binary
data sequence. Include as an option a Butterworth channel
filter whose number of poles and bandwidth (in terms of
bit rate) are inputs.

5.2 Write a MATLAB program that will produce plots
like those shown in Figure 5.10. The Butterworth channel
filter poles and 3-dB frequency should be inputs as well as
the roll-off factor, 𝛽.

5.3 Write a MATLAB program that will com-
pute the weights of a transversal-filter zero-

forcing equalizer for a given input pulse sample
sequence.

5.4 A symbol synchronizer uses a fourth-power device
instead of a squarer. Modify the MATLAB program of
Computer Example 5.3 accordingly and show that a use-
ful spectral component is generated at the output of the
fourth-power device. Rewrite the program to be able to
select between square-law, fourth-power law, and delay-
and-multiply with delay of one-half bit period. Compare
the relative strengths of the spectral line at the bit rate to
the line at DC. Which is the best bit sync on this basis?
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CHAPTER6

OVERVIEW OF PROBABILITY AND
RANDOM VARIABLES

The objective of this chapter is to review probability theory in order to provide a background

for the mathematical description of random signals. In the analysis and design of communication

systems it is necessary to develop mathematical models for random signals and noise, or random

processes, which will be accomplished in Chapter 7.

■ 6.1 WHAT IS PROBABILITY?

Two intuitive notions of probability may be referred to as the equally likely outcomes and
relative-frequency approaches.

6.1.1 Equally Likely Outcomes

The equally likely outcomes approach defines probability as follows: if there are N possible
equally likely and mutually exclusive outcomes (that is, the occurrence of a given outcome
precludes the occurrence of any of the others) to a random, or chance, experiment and if
𝑁
𝐴
of these outcomes correspond to an event 𝐴 of interest, then the probability of event 𝐴,

or 𝑃 (𝐴), is

𝑃 (𝐴) =
𝑁
𝐴

𝑁
(6.1)

There are practical difficulties with this definition of probability. One must be able to break
the chance experiment up into two or more equally likely outcomes and this is not always
possible. The most obvious experiments fitting these conditions are card games, dice, and
coin tossing. Philosophically, there is difficulty with this definition in that use of the words
‘‘equally likely’’ really amounts to saying something about being equally probable, which
means we are using probability to define probability.

Although there are difficulties with the equally likely definition of probability, it is
useful in engineering problems when it is reasonable to list 𝑁 equally likely, mutually ex-
clusive outcomes. The following example illustrates its usefulness in a situation where it
applies.

250
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EXAMPLE 6.1

Given a deck of 52 playing cards, (a) What is the probability of drawing the ace of spades? (b) What is
the probability of drawing a spade?

S o l u t i o n

(a) Using the principle of equal likelihood, we have one favorable outcome in 52 possible outcomes.
Therefore, 𝑃 (ace of spades) = 1

52
. (b) Again using the principle of equal likelihood, we have 13 favorable

outcomes in 52, and 𝑃 (spade) = 13
52

= 1
4
.

■

6.1.2 Relative Frequency

Suppose we wish to assess the probability of an unborn child being a boy. Using the classical
definition, we predict a probability of 1

2 , since there are two possible mutually exclusive
outcomes, which from outward appearances appear equally probable. However, yearly birth
statistics for the United States consistently indicate that the ratio of males to total births is
about 0.51. This is an example of the relative-frequency approach to probability.

In the relative-frequency approach, we consider a random experiment, enumerate all
possible outcomes, repeatedly perform the experiment, and take the ratio of the number of
outcomes, 𝑁

𝐴
, favorable to an event of interest, 𝐴, to the total number of trials, 𝑁 . As an

approximation of the probability of 𝐴, 𝑃 (𝐴), we define the limit of𝑁
𝐴
∕𝑁 , called the relative

frequency of 𝐴, as 𝑁 → ∞, as 𝑃 (𝐴):

𝑃 (𝐴)
△
= lim

𝑁→∞

𝑁
𝐴

𝑁
(6.2)

This definition of probability can be used to estimate 𝑃 (𝐴). However, since the infinite
number of experiments implied by (6.2) cannot be performed, only an approximation to
𝑃 (𝐴) is obtained. Thus, the relative-frequency notion of probability is useful for estimating a
probability but is not satisfactory as a mathematical basis for probability.

The following example fixes these ideas and will be referred to later in this chapter.

EXAMPLE 6.2

Consider the simultaneous tossing of two fair coins. Thus, on any given trial, we have the possible
outcomes HH, HT, TH, and TT, where, for example, HT denotes a head on the first coin and a tail on
the second coin. (We imagine that numbers are painted on the coins so we can tell them apart.) What is
the probability of two heads on any given trial?

S o l u t i o n

By distinguishing between the coins, the correct answer, using equal likelihood, is 1
4
. Similarly, it follows

that 𝑃 (HT) = 𝑃 (TH) = 𝑃 (TT) = 1
4
.

■
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Outcome 0
Null
event

Event C

Event B

Event B

Event A

Event A

Sample space Sample

space

TH

HH

HT

TT

(b)(a)

Figure 6.1
Sample spaces. (a) Pictorial
representation of an arbitrary
sample space. Points show
outcomes; circles show
events. (b) Sample-space
representation for the tossing
of two coins.

6.1.3 Sample Spaces and the Axioms of Probability

Because of the difficulties mentioned for the preceding two definitions of probability, mathe-
maticians prefer to approach probability on an axiomatic basis. The axiomatic approach, which
is general enough to encompass both the equally likely and relative-frequency definitions of
probability, will now be briefly described.

A chance experiment can be viewed geometrically by representing its possible outcomes
as elements of a space referred to as a sample space  . An event is defined as a collection of
outcomes. An impossible collection of outcomes is referred to as the null event,𝜙. Figure 6.1(a)
shows a representation of a sample space. Three events of interest, A, B, and C, which do not
encompass the entire sample space, are shown.

A specific example of a chance experiment might consist of measuring the dc voltage at
the output terminals of a power supply. The sample space for this experiment would be the
collection of all possible numerical values for this voltage. On the other hand, if the experiment
is the tossing of two coins, as in Example 6.2, the sample space would consist of the four
outcomes HH, HT, TH, and TT enumerated earlier. A sample-space representation for this
experiment is shown in Figure. 6.1(b). Two events of interest, 𝐴 and 𝐵, are shown. Event
𝐴 denotes at least one head, and event 𝐵 consists of the coins matching. Note that 𝐴 and 𝐵

encompass all possible outcomes for this particular example.
Before proceeding further, it is convenient to summarize some useful notation from set

theory. The event ‘‘𝐴 or 𝐵 or both’’ will be denoted as 𝐴 ∪ 𝐵 or sometimes as 𝐴 + 𝐵. The
event ‘‘both 𝐴 and 𝐵’’ will be denoted either as 𝐴 ∩ 𝐵 or sometimes as (𝐴,𝐵) or 𝐴𝐵 (called
the ‘‘joint event’’ 𝐴 and 𝐵). The event ‘‘not 𝐴’’ will be denoted 𝐴. An event such as 𝐴 ∪ 𝐵,
which is composed of two or more events, will be referred to as a compound event. In set
theory terminology, ‘‘mutually exclusive events’’ are referred to as ‘‘disjoint sets’’; if two
events, 𝐴 and 𝐵, are mutually exclusive, then 𝐴 ∩ 𝐵 = 𝜙.

In the axiomatic approach, a measure, called probability is somehow assigned to the
events of a sample space1 such that this measure possesses the properties of probability. The
properties or axioms of this probability measure are chosen to yield a satisfactory theory
such that results from applying the theory will be consistent with experimentally observed
phenomena. A set of satisfactory axioms is the following:

Axiom 1

𝑃 (𝐴) ≥ 0 for all events 𝐴 in the sample space  .

1For example, by the relative-frequency or the equally likely approaches.
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Axiom 2

The probability of all possible events occurring is unity, 𝑃 () = 1.

Axiom 3

If the occurrence of 𝐴 precludes the occurrence of 𝐵, and vice versa (that is, 𝐴 and 𝐵 are
mutually exclusive), then 𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵).2

It is emphasized that this approach to probability does not give us the number 𝑃 (𝐴); it must
be obtained by some other means.

6.1.4 Venn Diagrams

It is sometimes convenient to visualize the relationships between various events for a chance
experiment in terms of a Venn diagram. In such diagrams, the sample space is indicated as a
rectangle, with the various events indicated by circles or ellipses. Such a diagram looks exactly
as shown in Figure 6.1(a), where it is seen that events𝐵 and𝐶 are not mutually exclusive, as in-
dicated by the overlap between them, whereas event𝐴 is mutually exclusive of events𝐵 and𝐶 .

6.1.5 Some Useful Probability Relationships

Since it is true that 𝐴 ∪ 𝐴 = 𝑆 and that 𝐴 and 𝐴 are mutually exclusive, it follows by Axioms

2 and 3 that 𝑃 (𝐴) + 𝑃

(
𝐴

)
= 𝑃 (𝑆) = 1, or

𝑃

(
𝐴

)
= 1 − 𝑃 (𝐴) (6.3)

A generalization of Axiom 3 to events that are not mutually exclusive is obtained by noting

that 𝐴 ∪ 𝐵 = 𝐴 ∪
(
𝐵 ∩ 𝐴

)
, where 𝐴 and 𝐵 ∩ 𝐴 are disjoint (this is most easily seen by using

a Venn diagram). Therefore, Axiom 3 can be applied to give

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵 ∩ 𝐴) (6.4)

Similarly, we note from a Venn diagram that the events 𝐴 ∩ 𝐵 and 𝐵 ∩ 𝐴 are disjoint and that

(𝐴 ∩ 𝐵) ∪
(
𝐵 ∩ 𝐴

)
= 𝐵 so that

𝑃 (𝐴 ∩ 𝐵) + 𝑃 (𝐵 ∩ 𝐴) = 𝑃 (𝐵) (6.5)

Solving for 𝑃 (𝐵 ∩ 𝐴) from (6.5) and substituting into (6.4) yields the following for 𝑃 (𝐴 ∪ 𝐵):

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) (6.6)

This is the desired generalization of Axiom 3.
Now consider two events 𝐴 and 𝐵, with individual probabilities 𝑃 (𝐴) > 0 and 𝑃 (𝐵) > 0,

respectively, and joint event probability 𝑃 (𝐴 ∩ 𝐵). We define the conditional probability of

2This can be generalized to 𝑃 (𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶) for𝐴,𝐵, and 𝐶 mutually exclusive by consider-
ing𝐵1 = 𝐵 ∪ 𝐶 to be a composite event in Axiom 3 and applyingAxiom 3 twice: i.e.,𝑃

(
𝐴 ∪ 𝐵1

)
= 𝑃 (𝐴) + 𝑃 (𝐵1) =

𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶). Clearly, in this way we can generalize this result to any finite number of mutually exclusive
events.
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event 𝐴 given that event 𝐵 occurred as

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵)

(6.7)

Similarly, the conditional probability of event 𝐵 given that event 𝐴 has occurred is defined as

𝑃 (𝐵|𝐴) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐴)

(6.8)

Putting Equations (6.7) and (6.8) together, we obtain

𝑃 (𝐴|𝐵)𝑃 (𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴) (6.9)

or

𝑃 (𝐵|𝐴) = 𝑃 (𝐵) 𝑃 (𝐴|𝐵)
𝑃 (𝐴)

(6.10)

This is a special case of Bayes’ rule.
Finally, suppose that the occurrence or nonoccurrence of 𝐵 in no way influences the

occurrence or nonoccurrence of 𝐴. If this is true, 𝐴 and 𝐵 are said to be statistically indepen-
dent. Thus, if we are given 𝐵, this tells us nothing about 𝐴 and therefore, 𝑃 (𝐴|𝐵) = 𝑃 (𝐴).
Similarly, 𝑃 (𝐵|𝐴) = 𝑃 (𝐵). From Equation (6.7) or (6.8) it follows that, for such events,

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴)𝑃 (𝐵) (6.11)

Equation (6.11) will be taken as the definition of statistically independent events.

EXAMPLE 6.3

Referring to Example 6.2, suppose𝐴 denotes at least one head and 𝐵 denotes a match. The sample space
is shown in Figure 6.1(b). To find 𝑃 (𝐴) and 𝑃 (𝐵), we may proceed in several different ways.

S o l u t i o n

First, if we use equal likelihood, there are three outcomes favorable to 𝐴 (that is, HH, HT, and TH)
among four possible outcomes, yielding 𝑃 (𝐴) = 3

4
. For 𝐵, there are two favorable outcomes in four

possibilities, giving 𝑃 (𝐵) = 1
2
.

As a second approach, we note that, if the coins do not influence each other when tossed, the
outcomes on separate coins are statistically independent with 𝑃 (𝐻) = 𝑃 (𝑇 ) = 1

2
. Also, event 𝐴 consists

of any of the mutually exclusive outcomes HH, TH, and HT, giving

𝑃 (𝐴) =
(1
2
⋅
1
2

)
+
(1
2
⋅
1
2

)
+
(1
2
⋅
1
2

)
= 3

4
(6.12)
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by (6.11) and Axiom 3, generalized. Similarly, since 𝐵 consists of the mutually exclusive outcomes HH
and TT,

𝑃 (𝐵) =
(1
2
⋅
1
2

)
+
(1
2
⋅
1
2

)
= 1

2
(6.13)

again through the use of (6.11) and Axiom 3. Also, 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (at least one head and a match)
= 𝑃 (HH) = 1

4
.

Next, consider the probability of at least one head given a match, 𝑃 (𝐴|𝐵). Using Bayes’ rule, we
obtain

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵)

=
1
4
1
2

= 1
2

(6.14)

which is reasonable, since given 𝐵, the only outcomes under consideration are HH and TT, only one of
which is favorable to event 𝐴. Next, finding 𝑃 (𝐵|𝐴), the probability of a match given at least one head,
we obtain

𝑃 (𝐵|𝐴) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐴)

=
1
4
3
4

= 1
3

(6.15)

Checking this result using the principle of equal likelihood, we have one favorable event among three
candidate events (HH, TH, and HT), which yields a probability of 1

3
. We note that

𝑃 (𝐴 ∩ 𝐵) ≠ 𝑃 (𝐴)𝑃 (𝐵) (6.16)

Thus, events 𝐴 and 𝐵 are not statistically independent, although the events H and T on either coin are
independent.

Finally, consider the joint probability 𝑃 (𝐴 ∪ 𝐵). Using (6.6), we obtain

𝑃 (𝐴 ∪ 𝐵) = 3
4
+ 1

2
− 1

4
= 1 (6.17)

Remembering that 𝑃 (𝐴 ∪ 𝐵) is the probability of at least one head, or a match, or both, we see that this
includes all possible outcomes, thus confirming the result.

■

EXAMPLE 6.4

This example illustrates the reasoning to be applied when trying to determine if two events are indepen-
dent. A single card is drawn at random from a deck of cards. Which of the following pairs of events are
independent? (a) The card is a club, and the card is black. (b) The card is a king, and the card is black.

S o l u t i o n

We use the relationship 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵) (always valid) and check it against the relation
𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴)𝑃 (𝐵) (valid only for independent events). For part (a), we let 𝐴 be the event that the
card is a club and 𝐵 be the event that it is black. Since there are 26 black cards in an ordinary deck of
cards, 13 of which are clubs, the conditional probability 𝑃 (𝐴 ∣ 𝐵) is 13

26
(given we are considering only

black cards, we have 13 favorable outcomes for the card being a club). The probability that the card
is black is 𝑃 (𝐵) = 26

52
, because half the cards in the 52-card deck are black. The probability of a club

(event 𝐴), on the other hand, is 𝑃 (𝐴) = 13
52

(13 cards in a 52-card deck are clubs). In this case,

𝑃 (𝐴|𝐵)𝑃 (𝐵) = 13
26

26
52

≠ 𝑃 (𝐴)𝑃 (𝐵) = 13
52

26
52

(6.18)

so the events are not independent.
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For part (b), we let 𝐴 be the event that a king is drawn, and event 𝐵 be that it is black. In this
case, the probability of a king given that the card is black is 𝑃 (𝐴|𝐵) = 2

26
(two cards of the 26 black

cards are kings). The probability of a king is simply 𝑃 (𝐴) = 4
52

(four kings in the 52-card deck) and

𝑃 (𝐵) = 𝑃 (black) = 26
52
. Hence,

𝑃 (𝐴|𝐵)𝑃 (𝐵) = 2
26

26
52

= 𝑃 (𝐴)𝑃 (𝐵) = 4
52

26
52

(6.19)

which shows that the events king and black are statistically independent.
■

EXAMPLE 6.5

As an example more closely related to communications, consider the transmission of binary digits
through a channel as might occur, for example, in computer networks. As is customary, we denote the
two possible symbols as 0 and 1. Let the probability of receiving a zero, given a zero was sent, 𝑃 (0𝑟|0𝑠),
and the probability of receiving a 1, given a 1 was sent, 𝑃 (1𝑟|1𝑠), be

𝑃 (0𝑟|0𝑠) = 𝑃 (1𝑟|1𝑠) = 0.9 (6.20)

Thus, the probabilities 𝑃 (1𝑟|0𝑠) and 𝑃 (0𝑟|1𝑠) must be

𝑃 (1𝑟|0𝑠) = 1 − 𝑃 (0𝑟|0𝑠) = 0.1 (6.21)

and

𝑃 (0𝑟|1𝑠) = 1 − 𝑃 (1𝑟|1𝑠) = 0.1 (6.22)

respectively. These probabilities characterize the channel and would be obtained through experimental
measurement or analysis. Techniques for calculating them for particular situations will be discussed in
Chapters 9 and 10.

In addition to these probabilities, suppose that we have determined through measurement that the
probability of sending a 0 is

𝑃 (0𝑠) = 0.8 (6.23)

and therefore the probability of sending a 1 is

𝑃 (1𝑠) = 1 − 𝑃 (0𝑠) = 0.2 (6.24)

Note that once 𝑃 (0𝑟|0𝑠), 𝑃 (1𝑟|1𝑠), and 𝑃 (0𝑠) are specified, the remaining probabilities are calculated
using Axioms 2 and 3.

The next question we ask is, ‘‘If a 1 was received, what is the probability, 𝑃 (1𝑠|1𝑟), that a 1 was
sent?’’ Applying Bayes’ rule, we find that

𝑃 (1𝑠|1𝑟) = 𝑃 (1𝑟|1𝑠)𝑃 (1𝑠)
𝑃 (1𝑟)

(6.25)
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To find 𝑃 (1𝑟), we note that
𝑃 (1𝑟, 1𝑠) = 𝑃 (1𝑟|1𝑠)𝑃 (1𝑠) = 0.18 (6.26)

and

𝑃 (1𝑟, 0𝑠) = 𝑃 (1𝑟|0𝑠)𝑃 (0𝑠) = 0.08 (6.27)

Thus,

𝑃 (1𝑟) = 𝑃 (1𝑟, 1𝑠) + 𝑃 (1𝑟, 0𝑠) = 0.18 + 0.08 = 0.26 (6.28)

and

𝑃 (1𝑠|1𝑟) = (0.9)(0.2)
0.26

= 0.69 (6.29)

Similarly, one can calculate 𝑃 (0𝑠|1𝑟) = 0.31, 𝑃 (0𝑠|0𝑟) = 0.97, and 𝑃 (1𝑠|0𝑟) = 0.03. For practice, you
should go through the necessary calculations.

■

6.1.6 Tree Diagrams

Another handy device for determining probabilities of compound events is a tree diagram,
particularly if the compound event can be visualized as happening in time sequence. This
device is illustrated by the following example.

EXAMPLE 6.6

Suppose five cards are drawn without replacement from a standard 52-card deck. What is the probability
that three of a kind results?

S o l u t i o n

The tree diagram for this chance experiment is shown in Figure 6.2. On the first draw we focus on a
particular card, denoted as 𝑋, which we either draw or do not. The second draw results in four possible
events of interest: a card is drawn that matches the first card with probability 3

51
or a match is not

obtained with probability 48
51
. If some card other than X was drawn on the first draw, then X results with

probability 4
51

on the second draw (lower half of Figure 6.2). At this point, 50 cards are left in the deck.
If we follow the upper branch, which corresponds to a match of the first card, two events of interest are
again possible: another match that will be referred to as a triple with probability of 2

50
on that draw, or

a card that does not match the first two with probability 48
50
. If a card other than 𝑋 was obtained on the

second draw, then 𝑋 occurs with probability 4
50

if 𝑋 was obtained on the first draw, and probability 46
50

if it was not. The remaining branches are filled in similarly. Each path through the tree will either result
in success or failure, and the probability of drawing the cards along a particular path will be the product
of the separate probabilities along each path. Since a particular sequence of draws resulting in success
is mutually exclusive of the sequence of draws resulting in any other success, we simply add up all the
products of probabilities along all paths that result in success. In addition to these sequences involving
card 𝑋, there are 12 others involving other face values that result in three of a kind. Thus, we multiply
the result obtained from Figure 6.2 by 13. The probability of drawing three cards of the same value, in
any order, is then given by

𝑃 (3 of a kind) = 13 (10)(4)(3)(2)(48)(47)
(52)(51)(50)(49)(48)

= 0.02257 (6.30)
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Figure 6.2
A card-drawing problem illustrating the use of a tree diagram.

■

www.it-ebooks.info

http://www.it-ebooks.info/


6.1 What is Probability? 259

EXAMPLE 6.7

Another type of problem very closely related to those amenable to tree-diagram solutions is a reliability
problem. Reliability problems can result from considering the overall failure of a system composed
of several components each of which may fail with a certain probability 𝑝. An example is shown in
Figure 6.3, where a battery is connected to a load through the series-parallel combination of relay
switches, each of which may fail to close with probability 𝑝 (or close with probability 𝑞 = 1 − 𝑝). The
problem is to find the probability that current flows in the load. From the diagram, it is clear that a circuit
is completed if S1 or S2 and S3 are closed. Therefore,

𝑃 (success) = 𝑃 (Sl or S2 and S3 closed)

= 𝑃 (S1 or S2 or both closed)𝑃 (S3 closed)

= [1 − 𝑃 (both switches open)]𝑃 (S3 closed)

=
(
1 − 𝑝

2)
𝑞 (6.31)

where it is assumed that the separate switch actions are statistically independent.

q

E RL

S2

q

q

S3

S1

Figure 6.3
Circuit illustrating the calculation of reliability.

■

6.1.7 Some More General Relationships

Some useful formulas for a somewhat more general case than those considered above will
now be derived. Consider an experiment composed of compound events (𝐴

𝑖
, 𝐵

𝑗
) that are

mutually exclusive. The totality of all these compound events, 𝑖 = 1, 2,… ,𝑀, 𝑗 = 1, 2,… , 𝑁 ,
composes the entire sample space (that is, the events are said to be exhaustive or to form a
partition of the sample space). For example, the experiment might consist of rolling a pair of
dice with (𝐴

𝑖
, 𝐵

𝑗
) = (number of spots showing on die 1, number of spots showing on die 2).

Suppose the probability of the joint event (𝐴
𝑖
, 𝐵

𝑗
) is 𝑃 (𝐴

𝑖
, 𝐵

𝑗
). Each compound event

can be thought of as a simple event, and if the probabilities of all these mutually exclusive,
exhaustive events are summed, a probability of 1 will be obtained, since the probabilities of
all possible outcomes have been included. That is,

𝑀∑

𝑖=1

𝑁∑

𝑗=1
𝑃 (𝐴

𝑖
, 𝐵

𝑗
) = 1 (6.32)

Now consider a particular event𝐵
𝑗
. Associated with this particular event, we have𝑀 possible

mutually exclusive, but not exhaustive outcomes (𝐴1, 𝐵𝑗
), (𝐴2, 𝐵𝑗

),… , (𝐴
𝑀
,𝐵

𝑗
). If we sum

over the corresponding probabilities, we obtain the probability of 𝐵
𝑗
irrespective of the
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outcome on 𝐴. Thus,

𝑃 (𝐵
𝑗
) =

𝑀∑

𝑖=1
𝑃 (𝐴

𝑖
, 𝐵

𝑗
) (6.33)

Similar reasoning leads to the result

𝑃 (𝐴
𝑖
) =

𝑁∑

𝑗=1
𝑃 (𝐴

𝑖
, 𝐵

𝑗
) (6.34)

𝑃 (𝐴
𝑖
) and 𝑃 (𝐵

𝑗
) are referred to as marginal probabilities.

Suppose the conditional probability of 𝐵
𝑚
given 𝐴

𝑛
, 𝑃 (𝐵

𝑚
|𝐴

𝑛
), is desired. In terms of

the joint probabilities 𝑃 (𝐴
𝑖
, 𝐵

𝑗
), we can write this conditional probability as

𝑃 (𝐵
𝑚
|𝐴

𝑛
) =

𝑃 (𝐴
𝑛
, 𝐵

𝑚
)

∑𝑁

𝑗=1 𝑃 (𝐴𝑛
, 𝐵

𝑗
)

(6.35)

which is a more general form of Bayes’ rule than that given by (6.10).

EXAMPLE 6.8

A certain experiment has the joint and marginal probabilities shown in Table 6.1. Find the missing
probabilities.

S o l u t i o n

Using 𝑃 (𝐵1) = 𝑃 (𝐴1, 𝐵1) + 𝑃 (𝐴2, 𝐵1), we obtain 𝑃 (𝐵1) = 0.1 + 0.1 = 0.2. Also, since 𝑃 (𝐵1) +
𝑃 (𝐵2) + 𝑃 (𝐵3) = 1, we have 𝑃 (𝐵3) = 1 − 0.2 − 0.5 = 0.3. Finally, using 𝑃 (𝐴1, 𝐵3) + 𝑃 (𝐴2, 𝐵3) =
𝑃 (𝐵3), we get 𝑃 (𝐴1, 𝐵3) = 0.3 − 0.1 = 0.2, and therefore, 𝑃 (𝐴1) = 0.1 + 0.4 + 0.2 = 0.7

Table 6.1 P(A
𝒊
,B

𝒋
)

𝑩
𝒋

𝑨
𝒊

𝑩1 𝑩2 𝑩3 𝑷 (𝑨
𝒊
)

𝐴1 0.1 0.4 ? ?
𝐴2 0.1 0.1 0.1 0.3

𝑃 (𝐵
𝑗
) ? 0.5 ? 1

■

■ 6.2 RANDOM VARIABLES AND RELATED FUNCTIONS

6.2.1 Random Variables

In the applications of probability it is often more convenient to work in terms of numerical
outcomes (for example, the number of errors in a digital data message) rather than nonnumer-
ical outcomes (for example, failure of a component). Because of this, we introduce the idea of
a random variable, which is defined as a rule that assigns a numerical value to each possible
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Table 6.2 Possible Random Variables

Outcome: 𝑺
𝒊

R.V. No. 1: 𝑿𝟏(𝑺𝒊
) R.V. No. 2: 𝑿𝟐(𝑺𝒊

)

𝑆1 = heads 𝑋1(𝑆1) = 1 𝑋2(𝑆1) = 𝜋

𝑆2 = tails 𝑋1(𝑆2) = −1 𝑋2(𝑆2) =
√
2

outcome of a chance experiment. (The term random variable is a misnomer; a random variable
is really a function, since it is a rule that assigns the members of one set to those of another.)

As an example, consider the tossing of a coin. Possible assignments of random variables
are given in Table 6.2. These are examples of discrete random variables and are illustrated in
Figure 6.4(a).

As an example of a continuous random variable, consider the spinning of a pointer, such
as is typically found in children’s games. A possible assignment of a random variable would
be the angle Θ1 in radians, that the pointer makes with the vertical when it stops. Defined in
this fashion, Θ1 has values that continuously increase with rotation of the pointer. A second
possible random variable, Θ2, would be Θ1 minus integer multiples of 2𝜋 radians, such that

(a)

(b)

Up side is

head

Up side is

tail

Sample space

10 10 3π2–
√2–1

X2 (S2) X2 (S1)X1 (S2) X1 (S1)

0

0

Turn 1

Turn 2

Turn 3

Turn 4

Sample

space

Pointer

up

Pointer

down

Pointer

up

2π

2π 4π 6π 8π

Θ2

Θ1

Figure 6.4
Pictorial representation of sample
spaces and random variables.
(a) Coin-tossing experiment.
(b) Pointer-spinning experiment.
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0 ≤ Θ2 < 2𝜋, which is commonly denoted as Θ1 modulo 2𝜋. These random variables are
illustrated in Figure 6.4(b).

At this point, we introduce a convention that will be adhered to, for the most part,
throughout this book. Capital letters (𝑋, Θ, and so on) denote random variables, and the
corresponding lowercase letters (𝑥, 𝜃, and so on) denote the values that the random variables
take on or running values for them.

6.2.2 Probability (Cumulative) Distribution Functions

We need some way of probabilistically describing random variables that works equally well
for discrete and continuous random variables. One way of accomplishing this is by means of
the cumulative-distribution function (cdf).

Consider a chance experiment with which we have associated a random variable 𝑋. The
cdf 𝐹

𝑋
(𝑥) is defined as

𝐹
𝑋
(𝑥) = probability that 𝑋 ≤ 𝑥 = 𝑃 (𝑋 ≤ 𝑥) (6.36)

We note that 𝐹
𝑋
(𝑥) is a function of 𝑥, not of the random variable 𝑋. But 𝐹

𝑋
(𝑥) also depends

on the assignment of the random variable 𝑋, which accounts for the subscript.
The cdf has the following properties:

Property 1. 0 ≤ 𝐹
𝑋
(𝑥) ≤ 1, with 𝐹

𝑋
(−∞) = 0 and 𝐹

𝑋
(∞) = 1.

Property 2. 𝐹
𝑋
(𝑥) is continuous from the right; that is, lim

𝑥→𝑥0+
𝐹
𝑋
(𝑥) = 𝐹

𝑋
(𝑥0).

Property 3. 𝐹
𝑋
(𝑥) is a nondecreasing function of 𝑥; that is, 𝐹

𝑋
(𝑥1) ≤ 𝐹

𝑋
(𝑥2) if 𝑥1 < 𝑥2.

The reasonableness of the preceding properties is shown by the following considerations.
Since 𝐹

𝑋
(𝑥) is a probability, it must, by the previously stated axioms, lie between 0 and

1, inclusive. Since 𝑋 = −∞ excludes all possible outcomes of the experiment, 𝐹
𝑋
(−∞) = 0,

and since 𝑋 = ∞ includes all possible outcomes, 𝐹
𝑋
(∞) = 1, which verifies Property 1.

For 𝑥1 < 𝑥2, the events 𝑋 ≤ 𝑥1 and 𝑥1 < 𝑋 ≤ 𝑥2 are mutually exclusive; furthermore,
𝑋 ≤ 𝑥2 implies 𝑋 ≤ 𝑥1 or 𝑥1 < 𝑋 ≤ 𝑥2. By Axiom 3, therefore,

𝑃
(
𝑋 ≤ 𝑥2

)
= 𝑃

(
𝑋 ≤ 𝑥1

)
+ 𝑃

(
𝑥1 < 𝑋 ≤ 𝑥2

)

or

𝑃
(
𝑥1 < 𝑋 ≤ 𝑥2

)
= 𝐹

𝑋

(
𝑥2
)
− 𝐹

𝑋
(𝑥1) (6.37)

Since probabilities are nonnegative, the left-hand side of (6.37) is nonnegative. Thus, we see
that Property 3 holds.

The reasonableness of the right-continuity property is shown as follows. Suppose the
random variable 𝑋 takes on the value 𝑥0 with probability 𝑃0. Consider 𝑃 (𝑋 ≤ 𝑥). If 𝑥 < 𝑥0,
the event𝑋 = 𝑥0 is not included, no matter how close 𝑥 is to 𝑥0. When 𝑥 = 𝑥0, we include the
event 𝑋 = 𝑥0, which occurs with probability 𝑃0. Since the events 𝑋 ≤ 𝑥 < 𝑥0 and 𝑋 = 𝑥0
are mutually exclusive, 𝑃 (𝑋 ≤ 𝑥) must jump by an amount 𝑃0 when 𝑥 = 𝑥0, as shown in
Figure 6.5. Thus, 𝐹

𝑋
(𝑥) = 𝑃 (𝑋 ≤ 𝑥) is continuous from the right. This is illustrated in Figure

6.5 by the dot on the curve to the right of the jump. What is more useful for our purposes,
however, is that the magnitude of any jump of 𝐹

𝑋
(𝑥), say at 𝑥0, is equal to the probability

that 𝑋 = 𝑥0.
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0

1

x0

x

Fx (x)

P0 = P(X = x0)

Figure 6.5
Illustration of the jump property of 𝑓

𝑋
(𝑥).

6.2.3 Probability-Density Function

From (6.37) we see that the cdf of a random variable is a complete and useful description for
the computation of probabilities. However, for purposes of computing statistical averages, the
probability-density function (pdf), 𝑓

𝑋
(𝑥), of a random variable, 𝑋, is more convenient. The

pdf of 𝑋 is defined in terms of the cdf of 𝑋 by

𝑓
𝑋
(𝑥) =

𝑑𝑓
𝑋 (𝑥)
𝑑𝑥

(6.38)

Since the cdf of a discrete random variable is discontinuous, its pdf, mathematically speak-
ing, does not exist at the points of discontinuity. By representing the derivative of a jump-
discontinuous function at a point of discontinuity by a delta function of area equal to the
magnitude of the jump, we can define pdfs for discrete random variables. In some books, this
problem is avoided by defining a probability mass function for a discrete random variable,
which consists simply of lines equal in magnitude to the probabilities that the random variable
takes on at its possible values.

Recalling that 𝑓
𝑋
(−∞) = 0, we see from (6.38) that

𝑓
𝑋
(𝑥) =

∫

𝑥

−∞
𝑓
𝑋
(𝜂) 𝑑𝜂 (6.39)

That is, the area under the pdf from −∞ to 𝑥 is the probability that the observed value will be
less than or equal to 𝑥.

From (6.38), (6.39), and the properties of 𝑓
𝑋
(𝑥), we see that the pdf has the following

properties:

𝑓
𝑋
(𝑥) =

𝑑𝐹
𝑋 (𝑥)
𝑑𝑥

≥ 0 (6.40)

∫

∞

−∞
𝑓
𝑋
(𝑥) 𝑑𝑥 = 1 (6.41)

𝑃
(
𝑥1 < 𝑋 ≤ 𝑥2

)
= 𝐹

𝑋
(𝑥2) − 𝐹

𝑋
(𝑥1) =

∫

𝑥2

𝑥1

𝑓
𝑋
(𝑥) 𝑑𝑥 (6.42)

To obtain another enlightening and very useful interpretation of 𝑓
𝑋
(𝑥), we consider (6.42)

with 𝑥1 = 𝑥 − 𝑑𝑥 and 𝑥2 = 𝑥. The integral then becomes 𝑓
𝑋
(𝑥) 𝑑𝑥, so

𝑓
𝑋
(𝑥) 𝑑𝑥 = 𝑃 (𝑥 − 𝑑𝑥 < 𝑋 ≤ 𝑥) (6.43)

www.it-ebooks.info

http://www.it-ebooks.info/


264 Chapter 6 ∙ Overview of Probability and Random Variables

That is, the ordinate at any point 𝑥 on the pdf curve multiplied by 𝑑𝑥 gives the probability of
the random variable 𝑋 lying in an infinitesimal range around the point 𝑥 assuming that 𝑓

𝑋
(𝑥)

is continuous at 𝑥.
The following two examples illustrate cdfs and pdfs for discrete and continuous cases,

respectively.

EXAMPLE 6.9

Suppose two fair coins are tossed and𝑋 denotes the number of heads that turn up. The possible outcomes,
the corresponding values of 𝑋, and the respective probabilities are summarized in Table 6.3. The cdf
and pdf for this experiment and random variable definition are shown in Figure 6.6. The properties of
the cdf and pdf for discrete random variables are demonstrated by this figure, as a careful examination
will reveal. It is emphasized that the cdf and pdf change if the definition of the random variable or the
probability assigned is changed.

Table 6.3 Outcomes and Probabilities

Outcome 𝑿 𝑷 (𝑿 = 𝒙
𝒋
)

𝑇𝑇 𝑥1 = 0 1
4

𝑇𝐻

𝐻𝑇

}
𝑥2 = 1 1

2

𝐻𝐻 𝑥3 = 2 1
4

(b)(a)

0 1

4
4

3
4

2
4

1
4

2 0 1 2

Fx(x) fx(x)

xx

1
4

Area =

1
2

Area =

Figure 6.6
The cdf (a) and pdf (b) for a
coin-tossing experiment.

■

EXAMPLE 6.10

Consider the pointer-spinning experiment described earlier. We assume that any one stopping point is
not favored over any other and that the random variable Θ is defined as the angle that the pointer makes
with the vertical, modulo 2𝜋. Thus, Θ is limited to the range [0, 2𝜋), and for any two angles 𝜃1 and 𝜃2 in
[0, 2𝜋), we have

𝑃 (𝜃1 − Δ𝜃 < Θ ≤ 𝜃1) = 𝑃 (𝜃2 − Δ𝜃 < Θ ≤ 𝜃2) (6.44)

by the assumption that the pointer is equally likely to stop at any angle in [0, 2𝜋). In terms of the pdf
𝑓Θ(𝜃), this can be written, using (6.37), as

𝑓Θ(𝜃1) = 𝑓Θ(𝜃2), 0 ≤ 𝜃1, 𝜃2 < 2𝜋 (6.45)
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0 0

1.0

π
θθ

2π

1

2π

2π

f ( )θ ( )θΘ FΘ Figure 6.7
The pdf (a) and cdf (b) for a
pointer-spinning experiment.

Thus, in the interval [0, 2𝜋), 𝑓Θ(𝜃) is a constant, and outside [0, 2𝜋), 𝑓Θ(𝜃) is zero by the modulo 2𝜋
condition (this means that angles less than or equal to 0 or greater than 2𝜋 are impossible). By (6.35), it
follows that

𝑓Θ(𝜃) =

{ 1
2𝜋
, 0 ≤ 𝜃 < 2𝜋

0, otherwise
(6.46)

The pdf 𝑓Θ(𝜃) is shown graphically in Figure 6.7(a). The cdf 𝐹Θ(𝜃) is easily obtained by performing a
graphical integration of 𝑓Θ(𝜃) and is shown in Figure 6.7(b).

To illustrate the use of these graphs, suppose we wish to find the probability of the pointer landing
anyplace in the interval [ 1

2
𝜋, 𝜋]. The desired probability is given either as the area under the pdf curve

from 1
2
𝜋 to 𝜋, shaded in Figure 6.7(a), or as the value of the ordinate at 𝜃 = 𝜋 minus the value of the

ordinate at 𝜃 = 1
2
𝜋 on the cdf curve. The probability that the pointer lands exactly at 1

2
𝜋, however, is 0.

■

6.2.4 Joint cdfs and pdfs

Some chance experiments must be characterized by two or more random variables. The cdf
or pdf description is readily extended to such cases. For simplicity, we will consider only the
case of two random variables.

To give a specific example, consider the chance experiment in which darts are repeatedly
thrown at a target, as shown schematically in Figure 6.8. The point at which the dart lands on
the target must be described in terms of two numbers. In this example, we denote the impact
point by the two random variables 𝑋 and 𝑌 , whose values are the 𝑥𝑦 coordinates of the point
where the dart sticks, with the origin being fixed at the bull’s eye. The joint cdf of 𝑋 and 𝑌 is
defined as

𝐹
𝑋𝑌

(𝑥, 𝑦) = 𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) (6.47)

0

Target

X

Y

(x, y)

Figure 6.8
The dart-throwing experiment.
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where the comma is interpreted as ‘‘and.’’ The joint pdf of 𝑋 and 𝑌 is defined as

𝑓
𝑋𝑌

(𝑥, 𝑦) =
𝜕
2
𝐹
𝑋𝑌

(𝑥, 𝑦)
𝜕𝑥 𝜕𝑦

(6.48)

Just as we did in the case of single random variables, we can show that

𝑃 (𝑥1 < 𝑋 < 𝑥2, 𝑦1 < 𝑌 ≤ 𝑦2) =
∫

𝑦2

𝑦1
∫

𝑥2

𝑥1

𝑓
𝑋𝑌

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (6.49)

which is the two-dimensional equivalent of (6.42). Letting 𝑥1 = 𝑦1 = −∞ and 𝑥2 = 𝑦2 = ∞,
we include the entire sample space. Thus,

𝐹
𝑋𝑌

(∞,∞) =
∫

∞

−∞ ∫

∞

−∞
𝑓
𝑋𝑌

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1 (6.50)

Letting 𝑥1 = 𝑥 − 𝑑𝑥, 𝑥2 = 𝑥, 𝑦1 = 𝑦 − 𝑑𝑦, and 𝑦2 = 𝑦, we obtain the following enlightening
special case of (6.49):

𝑓
𝑋𝑌

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝑃 (𝑥 − 𝑑𝑥 < 𝑋 ≤ 𝑥, 𝑦 − 𝑑𝑦 < 𝑌 ≤ 𝑦) (6.51)

Thus the probability of finding 𝑋 in an infinitesimal interval around 𝑥 while simultaneously
finding 𝑌 in an infinitesimal interval around 𝑦 is 𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Given a joint cdf or pdf, we can obtain the cdf or pdf of one of the random variables using
the following considerations. The cdf for 𝑋 irrespective of the value 𝑌 takes on is simply

𝐹
𝑋
(𝑥) = 𝑃 (𝑋 ≤ 𝑥,−∞ < 𝑌 < ∞)

= 𝐹
𝑋𝑌

(𝑥,∞) (6.52)

By similar reasoning, the cdf for 𝑌 alone is

𝐹
𝑌
(𝑦) = 𝐹

𝑋𝑌
(∞, 𝑦) (6.53)

𝐹
𝑋
(𝑥) and 𝐹

𝑌
(𝑦) are referred to as marginal cdfs. Using (6.49) and (6.50), we can express

(6.52) and (6.53) as

𝐹
𝑋
(𝑥) =

∫

∞

−∞ ∫

𝑥

−∞
𝑓
𝑋𝑌

(𝑥′, 𝑦′) 𝑑𝑥′ 𝑑𝑦′ (6.54)

and

𝐹
𝑌
(𝑦) =

∫

𝑦

−∞ ∫

∞

−∞
𝑓
𝑋𝑌

(𝑥′, 𝑦′) 𝑑𝑥′ 𝑑𝑦′ (6.55)

respectively. Since

𝑓
𝑋
(𝑥) =

𝑑𝐹
𝑋
(𝑥)

𝑑𝑥
and 𝑓

𝑌
(𝑦) =

𝑑𝐹
𝑌
(𝑦)

𝑑𝑦
(6.56)

we obtain

𝑓
𝑋
(𝑥) =

∫

∞

−∞
𝑓
𝑋𝑌

(𝑥, 𝑦′) 𝑑𝑦′ (6.57)

and

𝑓
𝑌
(𝑦) =

∫

∞

−∞
𝑓
𝑋𝑌

(𝑥′, 𝑦) 𝑑𝑥′ (6.58)
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from (6.54) and (6.55), respectively. Thus, to obtain the marginal pdfs 𝑓
𝑋
(𝑥) and 𝑓

𝑌
(𝑦) from

the joint pdf 𝑓
𝑋𝑌

(𝑥, 𝑦), we simply integrate out the undesired variable (or variables for more
than two random variables). Hence, the joint cdf or pdf contains all the information possible
about the joint random variables 𝑋 and 𝑌 . Similar results hold for more than two random
variables.

Two random variables are statistically independent (or simply independent) if the values
one takes on do not influence the values that the other takes on. Thus, for any 𝑥 and 𝑦, it must
be true that

𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝑃 (𝑋 ≤ 𝑥)𝑃 (𝑌 ≤ 𝑦) (6.59)

or, in terms of cdfs,

𝐹
𝑋𝑌

(𝑥, 𝑦) = 𝐹
𝑋
(𝑥)𝐹

𝑌
(𝑦) (6.60)

That is, the joint cdf of independent random variables factors into the product of the separate
marginal cdfs. Differentiating both sides of (6.59) with respect to first 𝑥 and then 𝑦, and using
the definition of the pdf, we obtain

𝑓
𝑋𝑌

(𝑥, 𝑦) = 𝑓
𝑋
(𝑥)𝑓

𝑌
(𝑦) (6.61)

which shows that the joint pdf of independent random variables also factors. If two random
variables are not independent,we canwrite their joint pdf in terms of conditional pdfs𝑓

𝑋∣𝑌 (𝑥|𝑦)
and 𝑓

𝑌 ∣𝑋(𝑦|𝑥) as

𝑓
𝑋𝑌

(𝑥, 𝑦) = 𝑓
𝑋
(𝑥) 𝑓

𝑌 ∣𝑋(𝑦|𝑥)

= 𝑓
𝑌
(𝑦) 𝑓

𝑋∣𝑌 (𝑥|𝑦) (6.62)

These relations define the conditional pdfs of two random variables. An intuitively satisfying
interpretation of 𝑓

𝑋∣𝑌 (𝑥|𝑦) is

𝑓
𝑋∣𝑌 (𝑥|𝑦)𝑑𝑥 = 𝑃 (𝑥 − 𝑑𝑥 < 𝑋 ≤ 𝑥 given 𝑌 = 𝑦) (6.63)

with a similar interpretation for 𝑓
𝑌 ∣𝑋(𝑦|𝑥). Equation (6.62) is reasonable in that if 𝑋 and 𝑌

are dependent, a given value of 𝑌 should influence the probability distribution for 𝑋. On the
other hand, if 𝑋 and 𝑌 are independent, information about one of the random variables tells
us nothing about the other. Thus, for independent random variables,

𝑓
𝑋∣𝑌 (𝑥|𝑦) = 𝑓

𝑋
(𝑥) and 𝑓

𝑌 ∣𝑋(𝑦|𝑥) = 𝑓
𝑌
(𝑦), independent random variables (6.64)

which could serve as an alternative definition of statistical independence. The following
example illustrates the preceding ideas.

EXAMPLE 6.11

Two random variables 𝑋 and 𝑌 have the joint pdf

𝑓
𝑋𝑌

(𝑥, 𝑦) =

{
𝐴𝑒

−(2𝑥+𝑦),
𝑥, 𝑦 ≥ 0

0, otherwise
(6.65)

where 𝐴 is a constant. We evaluate 𝐴 from

∫

∞

−∞ ∫

∞

−∞
𝑓
𝑋𝑌

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1 (6.66)
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Figure 6.9
Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for 𝑋. (c) Marginal
pdf for 𝑌 .

Since

∫

∞

0 ∫

∞

0
𝑒
−(2𝑥+𝑦)

𝑑𝑥 𝑑𝑦 = 1
2

(6.67)

𝐴 = 2. We find the marginal pdfs from (6.51) and (6.52) as follows:

𝑓
𝑋
(𝑥) =

∫

∞

−∞
𝑓
𝑋𝑌

(𝑥, 𝑦) 𝑑𝑦 =

{
∫

∞
0 2𝑒−(2𝑥+𝑦)𝑑𝑦, 𝑥 ≥ 0
0, 𝑥 < 0

=

{
2𝑒−2𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

(6.68)

𝑓
𝑌
(𝑦) =

{
𝑒
−𝑦,

𝑦 ≥ 0
0, 𝑦 < 0

(6.69)

These joint and marginal pdfs are shown in Figure 6.9. From these results, we note that 𝑋 and 𝑌 are
statistically independent since 𝑓

𝑋𝑌
(𝑥, 𝑦) = 𝑓

𝑋
(𝑥)𝑓

𝑌
(𝑦).

We find the joint cdf by integrating the joint pdf on both variables, using (6.42) and (6.40), which
gives

𝐹
𝑋𝑌

(𝑥, 𝑦) =
∫

𝑦

−∞ ∫

𝑥

−∞
𝑓
𝑋𝑌

(𝑥′
, 𝑦

′) 𝑑𝑥′
, 𝑑𝑦

′ (6.70)

=

{
(1 − 𝑒

−2𝑥) (1 − 𝑒
−𝑦) , 𝑥, 𝑦 ≥ 0

0, otherwise

Dummy variables are used in the integration to avoid confusion. Note that 𝐹
𝑋𝑌

(−∞,−∞) = 0 and
𝐹
𝑋𝑌

(∞,∞) = 1, as they should, since the first case corresponds to the probability of an impossible
event and the latter corresponds to the inclusion of all possible outcomes. We also can use the result for
𝐹
𝑋𝑌

(𝑥, 𝑦) to obtain

𝐹
𝑋
(𝑥) = 𝐹

𝑋𝑌
(𝑥,∞) =

{
(1 − 𝑒

−2𝑥), 𝑥 ≥ 0
0, otherwise

(6.71)
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and

𝐹
𝑌
(𝑦) = 𝐹

𝑋𝑌
(∞, 𝑦) =

{
(1 − 𝑒

−𝑦), 𝑦 ≥ 0
0, otherwise

(6.72)

Also note that the joint cdf factors into the product of the marginal cdfs, as it should, for statistically
independent random variables.

The conditional pdfs are

𝑓
𝑋∣𝑌 (𝑥|𝑦) =

𝑓
𝑋𝑌

(𝑥, 𝑦)
𝑓
𝑌
(𝑦)

=

{
2𝑒−2𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

(6.73)

and

𝑓
𝑌 ∣𝑋(𝑦|𝑥) =

𝑓
𝑋𝑌

(𝑥, 𝑦)
𝑓
𝑋
(𝑥)

=

{
𝑒
−𝑦,

𝑦 ≥ 0
0, 𝑦 < 0

(6.74)

They are equal to the respective marginal pdfs, as they should be for independent random variables.

■

EXAMPLE 6.12

To illustrate the processes of normalization of joint pdfs, finding marginal from joint pdfs, and checking
for statistical independence of the corresponding random variables, we consider the joint pdf

𝑓
𝑋𝑌

(𝑥, 𝑦) =

{
𝛽𝑥𝑦, 0 ≤ 𝑥 ≤ 𝑦, 0 ≤ 𝑦 ≤ 4
0, otherwise

(6.75)

For independence, the joint pdf should be the product of the marginal pdfs.

S o l u t i o n

This example is somewhat tricky because of the limits, so a diagram of the pdf is given in Figure 6.10.
We find the constant 𝛽 by normalizing the volume under the pdf to unity by integrating 𝑓

𝑋𝑌
(𝑥, 𝑦) over

all 𝑥 and 𝑦. This gives

𝛽
∫

4

0
𝑦

[

∫

𝑦

0
𝑥 𝑑𝑥

]
𝑑𝑦 = 𝛽

∫

4

0
𝑦
𝑦
2

2
𝑑𝑦

= 𝛽
𝑦
4

2 × 4

|||||

4

0

= 32𝛽 = 1

so 𝛽 = 1
32
.

We next proceed to find the marginal pdfs. Integrating over 𝑥 first and checking Figure 6.10 to
obtain the proper limits of integration, we obtain

𝑓
𝑌
(𝑦) =

∫

𝑦

0

𝑥𝑦

32
𝑑𝑥, 0 ≤ 𝑦 ≤ 4

=

{
𝑦
3∕64, 0 ≤ 𝑦 ≤ 4
0, otherwise

(6.76)
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fXY (x, y)

(0, 4, 0)

(4, 4, 0)

(4, 4, 0.5)

x = y

x

y

Figure 6.10
Probability-density function for Example 6.12.

The pdf on 𝑋 is similarly obtained as

𝑓
𝑋
(𝑥) =

∫

4

𝑥

𝑥𝑦

32
𝑑𝑦, 0 ≤ 𝑦 ≤ 4

=

{
(𝑥∕4)

[
1 − (𝑥∕4)2

]
0 ≤ 𝑥 ≤ 4

0, otherwise
(6.77)

A little work shows that both marginal pdfs integrate to 1, as they should.
It is clear that the product of the marginal pdfs is not equal to the joint pdf, so the random variables

𝑋 and 𝑌 are not statistically independent.
■

6.2.5 Transformation of Random Variables

Situations are often encountered where the pdf (or cdf) of a random variable 𝑋 is known and
we desire the pdf of a second random variable 𝑌 defined as a function of 𝑋, for example,

𝑌 = 𝑔(𝑋) (6.78)

We initially consider the casewhere 𝑔(𝑋) is amonotonic function of its argument (for example,
it is either nondecreasing or nonincreasing as the independent variable ranges from −∞ to
∞), a restriction that will be relaxed shortly.

A typical function is shown in Figure 6.11. The probability that 𝑋 lies in the range
(𝑥 − 𝑑𝑥, 𝑥) is the same as the probability that 𝑌 lies in the range (𝑦 − 𝑑𝑦, 𝑦), where 𝑦 = 𝑔(𝑥).

Y = g(X )

y − dy
y

x − dx x
X

0

Figure 6.11
A typical monotonic transformation of a random
variable.
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Using (6.43), we obtain

𝑓
𝑋
(𝑥) 𝑑𝑥 = 𝑓

𝑌
(𝑦) 𝑑𝑦 (6.79)

if 𝑔(𝑋) is monotonically increasing, and

𝑓
𝑋
(𝑥) 𝑑𝑥 = −𝑓

𝑌
(𝑦) 𝑑𝑦 (6.80)

if 𝑔(𝑋) is monotonically decreasing, since an increase in 𝑥 results in a decrease in 𝑦. Both
cases are taken into account by writing

𝑓
𝑌
(𝑦) = 𝑓

𝑋
(𝑥)

||||
𝑑𝑥

𝑑𝑦

||||𝑥=𝑔−1(𝑦)
(6.81)

where 𝑥 = 𝑔
−1(𝑦) denotes the inversion of (6.78) for 𝑥 in terms of 𝑦.

EXAMPLE 6.13

To illustrate the use of (6.81), let us consider the pdf of Example 6.10, namely

𝑓Θ(𝜃) =

{ 1
2𝜋

0 ≤ 𝜃 ≤ 2𝜋
0, otherwise

(6.82)

Assume that the random variable Θ is transformed to the random variable 𝑌 according to

𝑌 = −
( 1
𝜋

)
Θ + 1 (6.83)

Since 𝜃 = −𝜋𝑦 + 𝜋, 𝑑𝜃

𝑑𝑦
= −𝜋 and the pdf of 𝑌 , by (6.81), is

𝑓
𝑌
(𝑦) = 𝑓Θ(𝜃 = −𝜋𝑦 + 𝜋) |−𝜋| =

{ 1
2

−1 ≤ 𝑦 ≤ 1
0, otherwise

(6.84)

Note that from (6.83), Θ = 2𝜋 gives 𝑌 = −1 and Θ = 0 gives 𝑌 = 1, so we would expect the pdf
of 𝑌 to be nonzero only in the interval [−1, 1); furthermore, since the transformation is linear, it is not
surprising that the pdf of 𝑌 is uniform as is the pdf of Θ.

■

Consider next the case of 𝑔(𝑥) nonmonotonic as illustrated in Figure 6.12. For the case
shown, the infinitesimal interval (𝑦 − 𝑑𝑦, 𝑦) corresponds to three infinitesimal intervals on the
𝑥-axis: (𝑥1 − 𝑑𝑥1, 𝑥1), (𝑥2 − 𝑑𝑥2, 𝑥2), and (𝑥3 − 𝑑𝑥3, 𝑥3). The probability that 𝑋 lies in any

Y = g(X )

y − dy
y

x3 − dx3x3x1 − dx1x1 x2 − dx2

x2

X
0

Figure 6.12
A nonmonotonic
transformation of a random
variable.
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one of these intervals is equal to the probability that 𝑌 lies in the interval (𝑦 − 𝑑𝑦, 𝑦). This can
be generalized to the case of 𝑁 disjoint intervals where it follows that

𝑃 (𝑦 − 𝑑𝑦, 𝑦) =
𝑁∑

𝑖=1
𝑃
(
𝑥
𝑖
− 𝑑𝑥

𝑖
, 𝑥

𝑖

)
(6.85)

where we have generalized to 𝑁 intervals on the 𝑋 axis corresponding to the interval
(𝑦 − 𝑑𝑦, 𝑦) on the 𝑌 axis. Since

𝑃 (𝑦 − 𝑑𝑦, 𝑦) = 𝑓
𝑌
(𝑦) |𝑑𝑦| (6.86)

and

𝑃
(
𝑥
𝑖
− 𝑑𝑥

𝑖
, 𝑥

𝑖

)
= 𝑓

𝑋
(𝑥

𝑖
) ||𝑑𝑥𝑖|| (6.87)

we have

𝑓
𝑌
(𝑦) =

𝑁∑

𝑖=1
𝑓
𝑋
(𝑥

𝑖
)
||||

𝑑𝑥
𝑖

𝑑𝑦

||||𝑥𝑖=𝑔−1𝑖 (𝑦)
(6.88)

where the absolute value signs are used because a probability must be positive, and 𝑥
𝑖
= 𝑔

−1
𝑖
(𝑦)

is the 𝑖th solution to 𝑔(𝑦) = 𝑥.

EXAMPLE 6.14

Consider the transformation

𝑦 = 𝑥
2 (6.89)

If 𝑓
𝑋
(𝑥) = 0.5 exp(− |𝑥|), find 𝑓

𝑌
(𝑦).

S o l u t i o n

There are two solutions to 𝑥
2 = 𝑦; these are

𝑥1 =
√
𝑦 for 𝑥1 ≥ 0 and 𝑥2 = −

√
𝑦 for 𝑥2 < 0, 𝑦 ≥ 0 (6.90)

Their derivatives are

𝑑𝑥1

𝑑𝑦
= 1

2
√
𝑦

for 𝑥1 ≥ 0 and
𝑑𝑥2

𝑑𝑦
= − 1

2
√
𝑦

for 𝑥2 < 0, 𝑦 > 0 (6.91)

Using these results in (6.88), we obtain 𝑓
𝑌
(𝑦) to be

𝑓
𝑌
(𝑦) = 1

2
𝑒
−
√
𝑦

||||||
− 1
2
√
𝑦

||||||
+ 1

2
𝑒
−
√
𝑦

||||||

1
2
√
𝑦

||||||
= 𝑒

−
√
𝑦

2
√
𝑦

, 𝑦 > 0 (6.92)

Since 𝑌 cannot be negative, 𝑓
𝑌
(𝑦) = 0, 𝑦 < 0.

■

For two or more random variables, we consider only one-to-one transformations and
the probability of the joint occurrence of random variables lying within infinitesimal areas
(or volumes for more than two random variables). Thus, suppose two new random variables
𝑈 and 𝑉 are defined in terms of two original, joint random variables𝑋 and 𝑌 by the relations

𝑈 = 𝑔1(𝑋, 𝑌 ) and 𝑉 = 𝑔2(𝑋, 𝑌 ) (6.93)
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The new pdf 𝑓
𝑈𝑉

(𝑢, 𝑣) is obtained from the old pdf 𝑓
𝑋𝑌

(𝑥, 𝑦) by using (6.51) to write

𝑃 (𝑢 − 𝑑𝑢 < 𝑈 ≤ 𝑢, 𝑣 − 𝑑𝑣 < 𝑉 ≤ 𝑣) = 𝑃 (𝑥 − 𝑑𝑥 < 𝑋 ≤ 𝑥, 𝑦 − 𝑑𝑦 < 𝑌 ≤ 𝑦)

or

𝑓
𝑈𝑉

(𝑢, 𝑣) 𝑑𝐴
𝑈𝑉

= 𝑓
𝑋𝑌

(𝑥, 𝑦)𝑑𝐴
𝑋𝑌

(6.94)

where 𝑑𝐴
𝑈𝑉

is the infinitesimal area in the 𝑢𝑣 plane corresponding to the infinitesimal area
𝑑𝐴

𝑋𝑌
, in the 𝑥𝑦 plane through the transformation (6.93).

The ratio of elementary area 𝑑𝐴
𝑋𝑌

to 𝑑𝐴
𝑈𝑉

is given by the Jacobian

𝜕(𝑥, 𝑦)
𝜕 (𝑢, 𝑣)

=
||||||

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

||||||
(6.95)

so that

𝑓
𝑈𝑉

(𝑢, 𝑣) = 𝑓
𝑋𝑌

(𝑥, 𝑦)
||||
𝜕(𝑥, 𝑦)
𝜕 (𝑢, 𝑣)

||||
𝑥=𝑔−11 (𝑢,𝑣)
𝑦=𝑔−12 (𝑢,𝑣)

(6.96)

where the inverse functions 𝑔−11 (𝑢, 𝑣) and 𝑔
−1
2 (𝑢, 𝑣) exist because the transformations defined

by (6.93) are assumed to be one-to-one. An example will help clarify this discussion.

EXAMPLE 6.15

Consider the dart-throwing game discussed in connection with joint cdfs and pdfs. We assume that the
joint pdf in terms of rectangular coordinates for the impact point is

𝑓
𝑋𝑌

(𝑥, 𝑦) =
exp

[
−
(
𝑥
2 + 𝑦

2
)
∕2𝜎2

]

2𝜋𝜎2 , −∞ < 𝑥, 𝑦 < ∞ (6.97)

where 𝜎2 is a constant. This is a special case of the joint Gaussian pdf, which we will discuss in more
detail shortly.

Instead of cartesian coordinates, we wish to use polar coordinates 𝑅 and Θ, defined by

𝑅 =
√
𝑋2 + 𝑌 2 (6.98)

and

Θ = tan−1
(
𝑌

𝑋

)
(6.99)

so that

𝑋 = 𝑅 cosΘ = 𝑔
−1
1 (𝑅,Θ) (6.100)

and

𝑌 = 𝑅 sinΘ = 𝑔
−1
2 (𝑅,Θ) (6.101)

where

0 ≤ Θ < 2𝜋, 0 ≤ 𝑅 < ∞
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so that the whole plane is covered. Under this transformation, the infinitesimal area 𝑑𝑥 𝑑𝑦 in the 𝑥𝑦 plane
transforms to the area 𝑟 𝑑𝑟 𝑑𝜃 in the 𝑟𝜃 plane, as determined by the Jacobian, which is

𝜕 (𝑥, 𝑦)
𝜕 (𝑟, 𝜃)

=
||||||

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

||||||
=
|||||

cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

|||||
= 𝑟 (6.102)

Thus, the joint pdf of 𝑅 and Θ is

𝑓
𝑅Θ (𝑟, 𝜃) =

𝑟𝑒
−𝑟2∕2𝜎2

2𝜋𝜎2 ,
0 ≤ 𝜃 < 2𝜋
0 ≤ 𝑟 < ∞

(6.103)

which follows from (6.96), which for this case takes the form

𝑓
𝑅Θ (𝑟, 𝜃) = 𝑟𝑓

𝑋𝑌
(𝑥, 𝑦)|| 𝑥=𝑟 cos 𝜃

𝑦=𝑟 sin 𝜃
(6.104)

If we integrate 𝑓
𝑅Θ (𝑟, 𝜃) over 𝜃 to get the pdf for 𝑅 alone, we obtain

𝑓
𝑅
(𝑟) = 𝑟

𝜎2 𝑒
−𝑟2∕2𝜎2

, 0 ≤ 𝑟 < ∞ (6.105)

which is referred to as the Rayleigh pdf. The probability that the dart lands in a ring of radius 𝑟 from the
bull’s-eye and having thickness 𝑑𝑟 is given by 𝑓

𝑅
(𝑟) 𝑑𝑟. From the sketch of the Rayleigh pdf given in

Figure 6.13, we see that the most probable distance for the dart to land from the bull’s-eye is 𝑅 = 𝜎. By
integrating (6.105) over 𝑟, it can be shown that the pdf of Θ is uniform in [0, 2𝜋).

√eσ

1
–

fR (r)

r
σ0

Figure 6.13
The Rayleigh pdf.

■

■ 6.3 STATISTICAL AVERAGES

The probability functions (cdf and pdf) we have just discussed provide us with all the infor-
mation possible about a random variable or a set of random variables. Often, such complete
descriptions as provided by the pdf or cdf are not required, or in many cases, we are not able
to obtain the cdf or pdf. A partial description of a random variable or set of random variables
is then used and is given in terms of various statistical averages or mean values.

6.3.1 Average of a Discrete Random Variable

The statistical average, or expectation, of a discrete random variable 𝑋, which takes on the
possible values 𝑥1, 𝑥2,… , 𝑥

𝑀
with the respective probabilities 𝑃1, 𝑃2,… , 𝑃

𝑀
, is defined as

�̄� = 𝐸[𝑋] =
𝑀∑

𝑗=1
𝑥
𝑗
𝑃
𝑗

(6.106)
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0 x0 xMxi
x

xi − x∆

Figure 6.14
A discrete approximation for a continuous random
variable 𝑋.

To show the reasonableness of this definition, we look at it in terms of relative frequency. If the
underlying chance experiment is repeated a large number of times𝑁, and𝑋 = 𝑥1 is observed
𝑛1 times and𝑋 = 𝑥2 is observed 𝑛2 times, etc., the arithmetical average of the observed values
is

𝑛1𝑥1 + 𝑛2𝑥2 +⋯ + 𝑛
𝑀
𝑥
𝑀

𝑁
=

𝑀∑

𝑗=1
𝑥
𝑗

𝑛
𝑗

𝑁
(6.107)

But, by the relative-frequency interpretation of probability, (6.2), 𝑛𝑗∕𝑁 approaches 𝑃
𝑗
,

𝑗 = 1, 2,… ,𝑀, the probability of the event𝑋 = 𝑥
𝑗
, as𝑁 becomes large. Thus, in the limit as

𝑁 → ∞, (6.107) becomes (6.106).

6.3.2 Average of a Continuous Random Variable

For the case where 𝑋 is a continuous random variable with the pdf 𝑓
𝑋
(𝑥), we consider the

range of values that 𝑋 may take on, say 𝑥0 to 𝑥
𝑀
, to be broken up into a large number of

small subintervals of length Δ𝑥, as shown in Figure 6.14.
For example, consider a discrete approximation for finding the expectation of a continuous

random variable 𝑋. The probability that𝑋 lies between 𝑥
𝑖
− Δ𝑥 and 𝑥

𝑖
is, from (6.43), given

by

𝑃 (𝑥
𝑖
− Δ𝑥 < 𝑋 ≤ 𝑥

𝑖
) ≅ 𝑓

𝑋
(𝑥

𝑖
) Δ𝑥, 𝑖 = 1, 2,… ,𝑀 (6.108)

for Δ𝑥 small. Thus, we have approximated 𝑋 by a discrete random variable that takes on
the values 𝑥0, 𝑥1,… , 𝑥

𝑀
with probabilities 𝑓

𝑋
(𝑥0) Δ𝑥,… , 𝑓

𝑋
(𝑥

𝑀
) Δ𝑥, respectively. Using

(6.106) the expectation of this random variable is

𝐸[𝑋] ≅
𝑀∑

𝑖=0
𝑥
𝑖
𝑓
𝑋
(𝑥

𝑖
) Δ𝑥 (6.109)

As Δ𝑥 → 0, this becomes a better and better approximation for 𝐸[𝑋]. In the limit, as
Δ𝑥 → 𝑑𝑥, the sum becomes an integral, giving

𝐸[𝑋] =
∫

∞

−∞
𝑥𝑓

𝑋
(𝑥) 𝑑𝑥 (6.110)

for the expectation of 𝑋.

6.3.3 Average of a Function of a Random Variable

We are interested not only in 𝐸[𝑋], which is referred to as the mean or first moment of 𝑋,
but also in statistical averages of functions of 𝑋. Letting 𝑌 = 𝑔(𝑋), the statistical average or
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expectation of the new random variable 𝑌 could be obtained as

𝐸[𝑌 ] =
∫

∞

−∞
𝑦𝑓

𝑌
(𝑦) 𝑑𝑦 (6.111)

where 𝑓
𝑌
(𝑦) is the pdf of 𝑌 , which can be found from 𝑓

𝑋
(𝑥) by application of (6.81). However,

it is often more convenient simply to find the expectation of the function 𝑔(𝑋) as given by

𝑔(𝑋)
Δ
= 𝐸[𝑔(𝑋)] =

∫

∞

−∞
𝑔(𝑥)𝑓

𝑋
(𝑥) 𝑑𝑥 (6.112)

which is identical to 𝐸[𝑌 ] as given by (6.111). Two examples follow to illustrate the use of
(6.111) and (6.112).

EXAMPLE 6.16

Suppose the random variable Θ has the pdf

𝑓Θ (𝜃) =

{ 1
2𝜋
, |𝜃| ≤ 𝜋

0, otherwise
(6.113)

Then 𝐸[Θ𝑛] is referred to as the 𝑛th moment of Θ and is given by

𝐸[Θ𝑛] =
∫

∞

−∞
𝜃
𝑛
𝑓Θ (𝜃) 𝑑𝜃 =

∫

𝜋

−𝜋
𝜃
𝑛 𝑑𝜃

2𝜋
(6.114)

Since the integrand is odd if 𝑛 is odd, 𝐸[Θ𝑛] = 0 for 𝑛 odd. For 𝑛 even,

𝐸[Θ𝑛] = 1
𝜋 ∫

𝜋

0
𝜃
𝑛
𝑑𝜃 = 1

𝜋

𝜃
𝑛+1

𝑛 + 1

|||||

𝜋

0

= 𝜋
𝑛

𝑛 + 1
(6.115)

The first moment or mean of Θ, 𝐸[Θ], is a measure of the location of 𝑓Θ (𝜃) (that is, the ‘‘center of
mass’’). Since 𝑓Θ (𝜃) is symmetrically located about 𝜃 = 0, it is not surprising that 𝐸 [Θ] = 0.

■

EXAMPLE 6.17

Later we shall consider certain random waveforms that can be modeled as sinusoids with random phase
angles having uniform pdf in [−𝜋, 𝜋). In this example, we consider a random variable 𝑋 that is defined
in terms of the uniform random variable Θ considered in Example 6.17 by

𝑋 = cosΘ (6.116)

The density function of 𝑋, 𝑓
𝑋
(𝑥), is found as follows. First, −1 ≤ cos 𝜃 ≤ 1, so 𝑓

𝑋
(𝑥) = 0 for |𝑥| > 1.

Second, the transformation is not one-to-one, there being two values of Θ for each value of 𝑋, since
cos 𝜃 = cos(−𝜃). However, we can still apply (6.81) by noting that positive and negative angles have
equal probabilities and writing

𝑓
𝑋
(𝑥) = 2𝑓Θ(𝜃)

||||
𝑑𝜃

𝑑𝑥

||||
, |𝑥| < 1 (6.117)

Now 𝜃 = cos−1 𝑥 and |𝑑𝜃∕𝑑𝑥| =
(
1 − 𝑥

2
)−1∕2

, which yields

𝑓
𝑋
(𝑥) =

{ 1
𝜋

√
1−𝑥2

|𝑥| < 1

0, |𝑥| > 1
(6.118)
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fX (x)

−0.5 0 0.5
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1.5

1.0−1.0
x

Figure 6.15
Probability-density function of a sinusoid with uniform
random phase.

This pdf is illustrated in Figure 6.15. The mean and second moment of 𝑋 can be calculated using either
(6.111) or (6.112). Using (6.111), we obtain

𝑋 =
∫

1

−1

𝑥

𝜋

√
1 − 𝑥2

𝑑𝑥 = 0 (6.119)

because the integrand is odd, and

𝑋2 =
∫

1

−1

𝑥
2
𝑑𝑥

𝜋

√
1 − 𝑥2

𝑑𝑥 = 1
2

(6.120)

by a table of integrals. Using (6.112), we find that

𝑋 =
∫

𝜋

−𝜋
cos 𝜃 𝑑𝜃

2𝜋
= 0 (6.121)

and

𝑋2 =
∫

𝜋

−𝜋
cos2 𝜃 𝑑𝜃

2𝜋
=
∫

𝜋

−𝜋

1
2
(1 + cos 2𝜃) 𝑑𝜃

2𝜋
= 1

2
(6.122)

as obtained by finding 𝐸[𝑋] and 𝐸[𝑋2] directly.
■

6.3.4 Average of a Function of More Than One Random Variable

The expectation of a function 𝑔(𝑋, 𝑌 ) of two random variables𝑋 and 𝑌 is defined in a manner
analogous to the case of a single random variable. If 𝑓

𝑋𝑌
(𝑥, 𝑦) is the joint pdf of𝑋 and 𝑌 , the

expectation of 𝑔(𝑋, 𝑌 ) is

𝐸[𝑔(𝑋, 𝑌 )] =
∫

∞

−∞ ∫

∞

−∞
𝑔(𝑥, 𝑦)𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (6.123)

The generalization to more than two random variables should be obvious.
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Equation (6.123) and its generalization to more than two random variables include the
single-random-variable case, for suppose 𝑔(𝑋, 𝑌 ) is replaced by a function of 𝑋 alone, say
ℎ(𝑋). Then using (6.57) we obtain the following from (6.123):

𝐸[ℎ(𝑋)] =
∫

∞

−∞ ∫

∞

−∞
ℎ(𝑥)𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
∫

∞

−∞
ℎ (𝑥)𝑓𝑋(𝑥) 𝑑𝑥 (6.124)

where the fact that ∫ ∞
−∞ 𝑓

𝑋𝑌 (𝑥, 𝑦) 𝑑𝑦 = 𝑓
𝑋 (𝑥) has been used.

EXAMPLE 6.18

Consider the joint pdf of Example 6.11 and the expectation of 𝑔(𝑋, 𝑌 ) = 𝑋𝑌 . From (6.123), this
expectation is

𝐸[𝑋𝑌 ] =
∫

∞

−∞ ∫

∞

−∞
𝑥𝑦𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
∫

∞

0 ∫

∞

0
2𝑥𝑦𝑒−(2𝑥+𝑦) 𝑑𝑥 𝑑𝑦

= 2
∫

∞

0
𝑥𝑒

−2𝑥
𝑑𝑥

∫

∞

0
𝑦𝑒

−𝑦
𝑑𝑦 = 1

2
(6.125)

■

We recall from Example 6.11 that 𝑋 and 𝑌 are statistically independent. From the last
line of the preceding equation for 𝐸[𝑋𝑌 ], we see that

𝐸[𝑋𝑌 ] = 𝐸[𝑋]𝐸[𝑌 ] (6.126)

a result that holds in general for statistically independent random variables. In fact, for statis-
tically independent random variables, it readily follows that

𝐸[ℎ(𝑋)𝑔(𝑌 )] = 𝐸[ℎ(𝑋)]𝐸[𝑔(𝑌 )], 𝑋 and 𝑌 statistically independent (6.127)

where ℎ(𝑋) and 𝑔(𝑌 ) are two functions of 𝑋 and 𝑌 , respectively.
In the special case where ℎ(𝑋) = 𝑋

𝑚 and 𝑔(𝑌 ) = 𝑌
𝑛
, and 𝑋 and 𝑌 are not statistically

independent in general, the expectations 𝐸[𝑋𝑚
𝑌
𝑛] are referred to as the joint moments of

order 𝑚 + 𝑛 of 𝑋 and 𝑌 . According to (6.127), the joint moments of statistically independent
random variables factor into the products of the corresponding marginal moments.

When finding the expectation of a function of more than one random variable, it may be
easier to use the concept of conditional expectation. Consider, for example, a function 𝑔(𝑋, 𝑌 )
of two random variables𝑋 and 𝑌 , with the joint pdf 𝑓

𝑋𝑌
(𝑥, 𝑦). The expectation of 𝑔(𝑋, 𝑌 ) is

𝐸[𝑔(𝑋, 𝑌 )] =
∫

∞

−∞ ∫

∞

−∞
𝑔(𝑥, 𝑦)𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
∫

∞

−∞

[

∫

∞

−∞
𝑔 (𝑥, 𝑦) 𝑓𝑋∣𝑌 (𝑥|𝑦) 𝑑𝑥

]
𝑓
𝑌
(𝑦) 𝑑𝑦

= 𝐸 {𝐸 [𝑔 (𝑋, 𝑌 ) |𝑌 ]} (6.128)
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where 𝑓
𝑋∣𝑌 (𝑥|𝑦) is the conditional pdf of 𝑋 given 𝑌 , and 𝐸 [𝑔 (𝑋, 𝑌 ) |𝑌 ] =

∫
∞
−∞ 𝑔 (𝑥, 𝑦) 𝑓𝑋∣𝑌 (𝑥|𝑦) 𝑑𝑥 is called the conditional expectation of 𝑔(𝑋, 𝑌 ) given 𝑌 = 𝑦.

EXAMPLE 6.19

As a specific application of conditional expectation, consider the firing of projectiles at a target. Projectiles
are fired until the target is hit for the first time, after which firing ceases. Assume that the probability of
a projectile’s hitting the target is 𝑝 and that the firings are independent of one another. Find the average
number of projectiles fired at the target.

S o l u t i o n

To solve this problem, let𝑁 be a random variable denoting the number of projectiles fired at the target.
Let the random variable𝐻 be 1 if the first projectile hits the target and 0 if it does not. Using the concept
of conditional expectation, we find the average value of𝑁 is given by

𝐸[𝑁] = 𝐸{𝐸[𝑁|𝐻]} = 𝑝𝐸[𝑁|𝐻 = 1] + (1 − 𝑝)𝐸[𝑁|𝐻 = 0]

= 𝑝 × 1 + (1 − 𝑝)(1 + 𝐸[𝑁]) (6.129)

where 𝐸[𝑁|𝐻 = 0] = 1 + 𝐸[𝑁] because 𝑁 ≥ 1 if a miss occurs on the first firing. By solving the last
expression for 𝐸[𝑁], we obtain

𝐸[𝑁] = 1
𝑝

(6.130)

If 𝐸[𝑁] is evaluated directly, it is necessary to sum the series:

𝐸[𝑁] = 1 × 𝑝 + 2 × (1 − 𝑝)𝑝 + 3 × (1 − 𝑝)2𝑝 +… (6.131)

which is not too difficult in this instance.3 However, the conditional-expectation method clearly makes
it easier to keep track of the bookkeeping.

■

6.3.5 Variance of a Random Variable

The statistical average

𝜎
2
𝑥

Δ
= 𝐸

{
[𝑋 − 𝐸(𝑋)]2

}
(6.132)

is called the variance of the random variable 𝑋; 𝜎
𝑥
is called the standard deviation of 𝑋 and

is a measure of the concentration of the pdf of 𝑋, or 𝑓
𝑋
(𝑥), about the mean. The notation

var{𝑋} for 𝜎2
𝑥
is sometimes used. A useful relation for obtaining 𝜎

2
𝑥
is

𝜎
2
𝑥
= 𝐸[𝑋2] − 𝐸

2[𝑋] (6.133)

3Consider 𝐸 [𝑁] = 𝑝
(
1 + 2𝑞 + 3𝑞2 + 4𝑞4 + ...

)
where 𝑞 = 1 − 𝑝. The sum 𝑆 = 1 + 𝑞 + 𝑞

2 + 𝑞
3 + ... = 1

1−𝑞 can be

used to derive the sum of 1 + 2𝑞 + 3𝑞2 + 4𝑞4 + ... by differentiation with respect to 𝑞: 𝑑𝑆

𝑑𝑞
= 1 + 2𝑞 + 3𝑞2 + ... =

𝑑

𝑑𝑞

1
1−𝑞 = 1

(1−𝑞)2
so that 𝐸 [𝑁] = 𝑝

1
(1−𝑞)2

= 1
𝑝
.
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which, in words, says that the variance of 𝑋 is simply its second moment minus its mean,
squared. To prove (6.133), let 𝐸[𝑋] = 𝑚

𝑥
. Then

𝜎
2
𝑥
=
∫

∞

−∞
(𝑥 − 𝑚

𝑥
)2𝑓

𝑋
(𝑥) 𝑑𝑥 =

∫

∞

−∞
(𝑥2 − 2𝑥𝑚

𝑥
+ 𝑚

2
𝑥
)𝑓

𝑋
(𝑥)𝑑𝑥

= 𝐸[𝑋2] − 2𝑚2
𝑥
+ 𝑚

2
𝑥
= 𝐸[𝑋2] − 𝐸

2[𝑋] (6.134)

which follows because ∫ ∞
−∞ 𝑥 𝑓

𝑋
(𝑥) 𝑑𝑥 = 𝑚

𝑥
.

EXAMPLE 6.20

Let 𝑋 have the uniform pdf

𝑓
𝑋
(𝑥) =

{ 1
𝑏−𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise
(6.135)

Then

𝐸[𝑋] =
∫

𝑏

𝑎

𝑥
𝑑𝑥

𝑏 − 𝑎
= 1

2
(𝑎 + 𝑏) (6.136)

and

𝐸[𝑋2] =
∫

𝑏

𝑎

𝑥
2 𝑑𝑥

𝑏 − 𝑎
= 1

3
(
𝑏
2 + 𝑎𝑏 + 𝑎

2) (6.137)

which follows after a little work. Thus,

𝜎
2
𝑥
= 1

3
(
𝑏
2 + 𝑎𝑏 + 𝑎

2) − 1
4
(
𝑎
2 + 2𝑎𝑏 + 𝑏

2) = 1
12

(𝑎 − 𝑏)2 (6.138)

Consider the following special cases:

1. 𝑎 = 1 and 𝑏 = 2, for which 𝜎
2
𝑥
= 1

12
.

2. 𝑎 = 0 and 𝑏 = 1, for which 𝜎
2
𝑥
= 1

12
.

3. 𝑎 = 0 and 𝑏 = 2, for which 𝜎
2
𝑥
= 1

3
.

For cases 1 and 2, the pdf of𝑋 has the same width but is centered about different means; the variance is
the same for both cases. In case 3, the pdf is wider than it is for cases 1 and 2, which is manifested by
the larger variance.

■

6.3.6 Average of a Linear Combination of 𝑁 Random Variables

It is easily shown that the expected value, or average, of an arbitrary linear combination of
random variables is the same as the linear combination of their respective means. That is,

𝐸

[
𝑁∑

𝑖=1
𝑎
𝑖
𝑋

𝑖

]

=
𝑁∑

𝑖=1
𝑎
𝑖
𝐸[𝑋

𝑖
] (6.139)

where 𝑋1, 𝑋2,… , 𝑋
𝑁

are random variables and 𝑎1, 𝑎2,… , 𝑎
𝑁

are arbitrary constants. Equa-
tion (6.139)will be demonstrated for the special case𝑁 = 2; generalization to the case𝑁 > 2
is not difficult, but results in unwieldy notation (proof by induction can also be used).
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Let 𝑓
𝑋1𝑋2

(𝑥1, 𝑥2) be the joint pdf of 𝑋1 and 𝑋2. Then, using the definition of the
expectation of a function of two random variables in (6.123), it follows that

𝐸[𝑎1𝑋1 + 𝑎2𝑋2]
Δ
=

∫

∞

−∞ ∫

∞

−∞
(𝑎1𝑥1 + 𝑎2𝑥2)𝑓𝑋1𝑋2

(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2

= 𝑎1
∫

∞

−∞ ∫

∞

−∞
𝑥1𝑓𝑋1𝑋2

(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2

+𝑎2
∫

∞

−∞ ∫

∞

−∞
𝑥2𝑓𝑋1𝑋2

(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 (6.140)

Considering the first double integral and using (6.57) (with 𝑥1 = 𝑥 and 𝑥2 = 𝑦) and (6.110),
we find that

∫

∞

−∞ ∫

∞

−∞
𝑥1𝑓𝑋1𝑋2

(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2 =
∫

∞

−∞
𝑥1

{

∫

∞

−∞
𝑓
𝑋1𝑋2

(𝑥1, 𝑥2) 𝑑𝑥2
}

𝑑𝑥1

=
∫

∞

−∞
𝑥1𝑓𝑋(𝑥1) 𝑑𝑥1

= 𝐸
{
𝑋1
}

(6.141)

Similarly, it can be shown that the second double integral reduces to𝐸[𝑋2]. Thus, (6.139)
has been proved for the case 𝑁 = 2. Note that (6.139) holds regardless of whether or not the
𝑋

𝑖
terms are independent. Also, it should be noted that a similar result holds for a linear

combination of functions of 𝑁 random variables.

6.3.7 Variance of a Linear Combination of Independent
Random Variables

If 𝑋1, 𝑋2,… , 𝑋
𝑁

are statistically independent random variables, then

var

[
𝑁∑

𝑖=1
𝑎
𝑖
𝑋

𝑖

]

=
𝑁∑

𝑖=1
𝑎
2
𝑖
var

{
𝑋

𝑖

}
(6.142)

where 𝑎1, 𝑎2,… , 𝑎
𝑁

are arbitrary constants and var
[
𝑋

𝑖

] Δ
=𝐸[(𝑋

𝑖
− �̄�

𝑖
)2]. This relation will

be demonstrated for the case 𝑁 = 2. Let 𝑍 = 𝑎1𝑋1 + 𝑎2𝑋2 and let 𝑓
𝑋𝑖
(𝑥

𝑖
) be the marginal

pdf of 𝑋
𝑖
. Then the joint pdf of 𝑋1 and 𝑋2 is 𝑓

𝑋1
(𝑥1)𝑓𝑋2

(𝑥2) by the assumption of sta-

tistical independence. Also, 𝐸 [𝑍] = 𝑎1𝐸
[
𝑋1
]
+ 𝑎2𝐸

[
𝑋2
]
≜ 𝑎1�̄�1 + 𝑎2�̄�2 by (6.139), and

var[𝑍] = 𝐸[(𝑍 − �̄�)2]. But, since 𝑍 = 𝑎1𝑋1 + 𝑎2𝑋2, we may write var[𝑍] as

var [𝑍] = 𝐸

{[
(𝑎1𝑋1 + 𝑎2𝑋2) − (𝑎1�̄�1 + 𝑎2�̄�2)

]2}

= 𝐸

{[
𝑎1(𝑋1 − �̄�1) + 𝑎2(𝑋2 − �̄�2)

]2}

= 𝑎
2
1𝐸

[
(𝑋1 − �̄�1)2

]
+ 2𝑎1𝑎2𝐸

[
(𝑋1 − �̄�1)(𝑋2 − �̄�2)

]

+𝑎22𝐸[(𝑋2 − �̄�2)2] (6.143)
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The first and last terms in the preceding equation are 𝑎21 var
[
𝑋1
]
and 𝑎22 var

[
𝑋2
]
, respectively.

The middle term is zero, since

𝐸
[
(𝑋1 − �̄�1)(𝑋2 − �̄�2)

]

=
∫

∞

−∞ ∫

∞

−∞
(𝑥1 − �̄�1)(𝑥2 − �̄�2)𝑓𝑋1

(𝑥1)𝑓𝑋2
(𝑥2) 𝑑𝑥1 𝑑𝑥2

=
∫

∞

−∞
(𝑥1 − �̄�1)𝑓𝑋1

(𝑥1) 𝑑𝑥1
∫

∞

−∞
(𝑥2 − �̄�2)𝑓𝑋2

(𝑥2) 𝑑𝑥2

=
(
�̄�1 − �̄�1

) (
�̄�2 − �̄�2

)
= 0 (6.144)

Note that the assumption of statistical independence was used to show that the middle term
above is zero (it is a sufficient, but not necessary, condition).

6.3.8 Another Special Average---The Characteristic Function

Letting 𝑔(𝑋) = 𝑒
𝑗𝑣𝑋 in (6.112), we obtain an average known as the characteristic function of

𝑋, or 𝑀
𝑋
(𝑗𝑣), defined as

𝑀
𝑋
(𝑗𝑣)

Δ
= 𝐸[𝑒𝑗𝑣𝑋] =

∫

∞

−∞
𝑓
𝑋
(𝑥)𝑒𝑗𝑣𝑥 𝑑𝑥 (6.145)

It is seen that 𝑀
𝑋
(𝑗𝑣) would be the Fourier transform of 𝑓

𝑋
(𝑥), as we have defined the

Fourier transform in Chapter 2, provided a minus sign has been used in the exponent instead
of a plus sign. Thus, if 𝑗𝜔 is replaced by −𝑗𝑣 in Fourier transform tables, they can be used to
obtain characteristic functions from pdfs (sometimes it is convenient to use the variable 𝑠 in
place of 𝑗𝑣; the resulting function is called the moment generating function).

A pdf is obtained from the corresponding characteristic function by the inverse transform
relationship

𝑓
𝑋
(𝑥) = 1

2𝜋 ∫

∞

−∞
𝑀

𝑋
(𝑗𝑣)𝑒−𝑗𝑣𝑥 𝑑𝑣 (6.146)

This illustrates one possible use of the characteristic function. It is sometimes easier to obtain
the characteristic function than the pdf, and the latter is then obtained by inverse Fourier
transformation, either analytically or numerically.

Another use for the characteristic function is to obtain the moments of a random variable.
Consider the differentiation of (6.145) with respect to 𝑣. This gives

𝜕𝑀
𝑋 (𝑗𝑣)
𝜕𝑣

= 𝑗
∫

∞

−∞
𝑥 𝑓

𝑋
(𝑥)𝑒𝑗𝑣𝑥 𝑑𝑥 (6.147)

Setting 𝑣 = 0 after differentiation and dividing by 𝑗, we obtain

𝐸[𝑋] = (−𝑗)
𝜕𝑀

𝑋 (𝑗𝑣)
𝜕𝑣

||||𝑣=0
(6.148)

For the 𝑛th moment, the relation

𝐸[𝑋𝑛] = (−𝑗)𝑛
𝜕
𝑛
𝑀

𝑋 (𝑗𝑣)
𝜕𝑣𝑛

||||𝑣=0
(6.149)

can be proved by repeated differentiation.
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EXAMPLE 6.21

By use a table of Fourier transforms, the one-sided exponential pdf

𝑓
𝑋
(𝑥) = exp(−𝑥)𝑢(𝑥) (6.150)

is found to have the characteristic function

𝑀
𝑋
(𝑗𝑣) =

∫

∞

0
𝑒
−𝑥
𝑒
𝑗𝑣𝑥

𝑑𝑥 = 1
1 − 𝑗𝑣

(6.151)

By repeated differentiation or expansion of the characteristic function in a power series in 𝑗𝑣, it follows
from (6.149) that 𝐸 {𝑋𝑛} = 𝑛! for this random variable.

■

6.3.9 The pdf of the Sum of Two Independent Random Variables

Given two statistically independent random variables 𝑋 and 𝑌 with known pdfs 𝑓
𝑋
(𝑥) and

𝑓
𝑌
(𝑦), respectively, the pdf of their sum 𝑍 = 𝑋 + 𝑌 is often of interest. The characteristic

function will be used to find the pdf of 𝑍, or 𝑓
𝑍 (𝑧), even though we could find the pdf of

𝑍 directly.
From the definition of the characteristic function of 𝑍, we write

𝑀
𝑍
(𝑗𝑣) = 𝐸

[
𝑒
𝑗𝑣𝑍

]
= 𝐸

[
𝑒
𝑗𝑣(𝑋+𝑌 )]

=
∫

∞

−∞ ∫

∞

−∞
𝑒
𝑗𝑣(𝑥+𝑦)

𝑓
𝑋
(𝑥)𝑓

𝑌
(𝑦) 𝑑𝑥 𝑑𝑦 (6.152)

since the joint pdf of 𝑋 and 𝑌 is 𝑓
𝑋
(𝑥)𝑓

𝑌
(𝑦) by the assumption of statistical independence of

𝑋 and 𝑌 . We can write (6.152) as the product of two integrals, since 𝑒𝑗𝑣(𝑥+𝑦) = 𝑒
𝑗𝑣𝑥

𝑒
𝑗𝑣𝑦. This

results in

𝑀
𝑍
(𝑗𝑣) =

∫

∞

−∞
𝑓
𝑋
(𝑥)𝑒𝑗𝑣𝑥 𝑑𝑥

∫

∞

−∞
𝑓
𝑌
(𝑦)𝑒𝑗𝑣𝑦 𝑑𝑦

= 𝐸[𝑒𝑗𝑣𝑋]𝐸[𝑒𝑗𝑣𝑌 ] (6.153)

From the definition of the characteristic function, given by (6.145), we see that

𝑀
𝑍
(𝑗𝑣) = 𝑀

𝑋
(𝑗𝑣)𝑀

𝑌
(𝑗𝑣) (6.154)

where 𝑀
𝑋
(𝑗𝑣) and 𝑀

𝑌
(𝑗𝑣) are the characteristic functions of 𝑋 and 𝑌 , respectively. Re-

membering that the characteristic function is the Fourier transform of the corresponding pdf
and that a product in the frequency domain corresponds to convolution in the time domain, it
follows that

𝑓
𝑍 (𝑧) = 𝑓

𝑋
(𝑥) ∗ 𝑓

𝑌
(𝑦) =

∫

∞

−∞
𝑓
𝑋
(𝑧 − 𝑢)𝑓

𝑌
(𝑢) 𝑑𝑢 (6.155)

The following example illustrates the use of (6.155).
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EXAMPLE 6.22

Consider the sum of four identically distributed, independent random variables,

𝑍 = 𝑋1 +𝑋2 +𝑋3 +𝑋4 (6.156)

where the pdf of each 𝑋
𝑖
is

𝑓
𝑋𝑖
(𝑥

𝑖
) = Π(𝑥

𝑖
) =

{
1, ||𝑥𝑖

|| ≤
1
2

0, otherwise, 𝑖 = 1, 2, 3, 4
(6.157)

where Π(𝑥
𝑖
) is the unit rectangular pulse function defined in Chapter 2. We find 𝑓

𝑍
(𝑧) by applying

(6.155) twice. Thus, let

𝑍1 = 𝑋1 +𝑋2 and 𝑍2 = 𝑋3 +𝑋4 (6.158)

The pdfs of 𝑍1 and 𝑍2 are identical, both being the convolution of a uniform density with itself.
From Table 2.2, we can immediately write down the result:

𝑓
𝑍𝑖
(𝑧

𝑖
) = Λ(𝑧

𝑖
) =

{
1 − ||𝑧𝑖|| , ||𝑧𝑖|| ≤ 1
0, otherwise

(6.159)

where 𝑓
𝑍𝑖
(𝑧

𝑖
) is the pdf of 𝑍

𝑖
, 𝑖 = 1, 2. To find 𝑓

𝑍
(𝑧), we simply convolve 𝑓

𝑍𝑖
(𝑧

𝑖
) with itself. Thus,

𝑓
𝑍
(𝑧) =

∫

∞

−∞
𝑓
𝑍𝑖
(𝑧 − 𝑢)𝑓

𝑍𝑖
(𝑢) 𝑑𝑢 (6.160)

The factors in the integrand are sketched in Figure 6.16(a). Clearly, 𝑓
𝑍
(𝑧) = 0 for 𝑧 < 2 or 𝑧 > 2. Since

𝑓
𝑍𝑖
(𝑧

𝑖
) is even, 𝑓

𝑍
(𝑧) is also even. Thus, we need not consider 𝑓

𝑍
(𝑧) for 𝑧 < 0. From Figure 6.16(a) it

follows that for 1 ≤ 𝑧 ≤ 2,

𝑓
𝑍
(𝑧) =

∫

1

𝑧−1
(1 − 𝑢)(1 + 𝑢 − 𝑧) 𝑑𝑢 = 1

6
(2 − 𝑧)3 (6.161)

and for 0 ≤ 𝑧 ≤ 1, we obtain

𝑓
𝑍
(𝑧) =

∫

0

𝑧−1
(1 + 𝑢)(1 + 𝑢 − 𝑧) 𝑑𝑢 +

∫

𝑧

0
(1 − 𝑢) (1 + 𝑢 − 𝑧) 𝑑𝑢

+
∫

1

𝑧

(1 − 𝑢) (1 − 𝑢 + 𝑧) 𝑑𝑢

= (1 − 𝑧) − 1
3
(1 − 𝑧)3 + 1

6
𝑧
3 (6.162)

A graph of 𝑓
𝑍
(𝑧) is shown in Figure 6.16(b) along with the graph of the function

exp
(
−3

2
𝑧
2
)

√
2
3
𝜋

(6.163)

which represents a marginal Gaussian pdf of mean 0 and variance 1
3
, the same variance as 𝑍 = 𝑋1 +

𝑋2 +𝑋3 +𝑋4 [the results of Example (6.20) and Equation (6.142) can be used to obtain the variance of
𝑍]. We will describe the Gaussian pdf more fully later.
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Figure 6.16
The pdf for the sum of four independent uniformly distributed random variables. (a) Convolution of
two triangular pdfs. (b) Comparison of actual and Gaussian pdfs.

The reason for the striking similarity of the two pdfs shown in Figure 6.16(b) will become apparent
when the central-limit theorem is discussed in Section 6.4.5.

■

6.3.10 Covariance and the Correlation Coefficient

Two useful joint averages of a pair of random variables 𝑋 and 𝑌 are their covariance 𝜇
𝑋𝑌

,
defined as

𝜇
𝑋𝑌

= 𝐸[(𝑋 − �̄�)(𝑌 − 𝑌 )] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] (6.164)

and their correlation coefficient 𝜌
𝑋𝑌

, which is written in terms of the covariance as

𝜌
𝑋𝑌

=
𝜇
𝑋𝑌

𝜎
𝑋
𝜎
𝑌

(6.165)

From the preceding two expressions we have the relationship

𝐸[𝑋𝑌 ] = 𝜎
𝑋
𝜎
𝑌
𝜌
𝑋𝑌

+ 𝐸[𝑋]𝐸[𝑌 ] (6.166)

Both𝜇
𝑋𝑌

and 𝜌
𝑋𝑌

aremeasures of the interdependence of𝑋 and 𝑌 . The correlation coefficient
is more convenient because it is normalized such that −1 ≤ 𝜌

𝑋𝑌
≤ 1. If 𝜌

𝑋𝑌
= 0, 𝑋 and 𝑌

are said to be uncorrelated.
It is easily shown that 𝜌

𝑋𝑌
= 0 for statistically independent random variables. If𝑋 and 𝑌

are independent, their joint pdf 𝑓
𝑋𝑌

(𝑥, 𝑦) is the product of the respective marginal pdfs; that
is, 𝑓

𝑋𝑌
(𝑥, 𝑦) = 𝑓

𝑋
(𝑥)𝑓

𝑌
(𝑦). Thus,

𝜇
𝑋𝑌

=
∫

∞

−∞ ∫

∞

−∞

(
𝑥 − �̄�

) (
𝑦 − 𝑌

)
𝑓
𝑋
(𝑥)𝑓

𝑌
(𝑦) 𝑑𝑥 𝑑𝑦

=
∫

∞

−∞

(
𝑥 − �̄�

)
𝑓
𝑋
(𝑥) 𝑑𝑥

∫

∞

−∞

(
𝑦 − 𝑌

)
𝑓
𝑌
(𝑦) 𝑑𝑦

=
(
�̄� − �̄�

) (
𝑌 − 𝑌

)
= 0 (6.167)
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Considering next the cases 𝑋 = ±𝛼𝑌 , so that �̄� = ±𝛼𝑌 , where 𝛼 is a positive constant,
we obtain

𝜇
𝑋𝑌

=
∫

∞

−∞ ∫

∞

−∞
(±𝛼𝑦 ∓ 𝛼𝑌 )(𝑦 − 𝑌 )𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ±𝛼
∫

∞

−∞ ∫

∞

−∞
(𝑦 − 𝑌 )2𝑓

𝑋𝑌
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ±𝛼𝜎2
𝑌

(6.168)

Using (6.142)with𝑁 = 1, we can write the variance of𝑋 as 𝜎2
𝑋
= 𝛼

2
𝜎
2
𝑌
. Thus, the correlation

coefficient is

𝜌
𝑋𝑌

= +1 for 𝑋 = +𝛼𝑌 , and 𝜌
𝑋𝑌

= −1 for 𝑋 = −𝛼𝑌

To summarize, the correlation coefficient of two independent random variables is zero.
When two random variables are linearly related, their correlation is +1 or −1 depending on
whether one is a positive or a negative constant times the other.

■ 6.4 SOME USEFUL PDFS

We have already considered several often used probability distributions in the examples.4

These have included the Rayleigh pdf (Example 6.15), the pdf of a sinewave of random phase
(Example 6.17), and the uniform pdf (Example 6.20). Some others, which will be useful in
our future considerations, are given below.

6.4.1 Binomial Distribution

One of the most common discrete distributions in the application of probability to systems
analysis is the binomial distribution. We consider a chance experiment with two mutually
exclusive, exhaustive outcomes 𝐴 and 𝐴, where 𝐴 denotes the compliment of 𝐴, with proba-
bilities 𝑃 (𝐴) = 𝑝 and 𝑃 (𝐴) = 𝑞 = 1 − 𝑝, respectively. Assigning the discrete random variable
𝐾 to be numerically equal to the number of times event 𝐴 occurs in 𝑛 trials of our chance
experiment, we seek the probability that exactly 𝑘 ≤ 𝑛 occurrences of the event 𝐴 occur in
𝑛 repetitions of the experiment. (Thus, our actual chance experiment is the replication of the
basic experiment 𝑛 times.) The resulting distribution is called the binomial distribution.

Specific examples in which the binomial distribution is the result are the following: In
𝑛 tosses of a coin, what is the probability of 𝑘 ≤ 𝑛 heads? In the transmission of 𝑛 messages
through a channel, what is the probability of 𝑘 ≤ 𝑛 errors? Note that in all cases we are
interested in exactly 𝑘 occurrences of the event, not, for example, at least 𝑘 of them, although
we may find the latter probability if we have the former.

Although the problem being considered is very general, we solve it by visualizing the
coin-tossing experiment. We wish to obtain the probability of 𝑘 heads in 𝑛 tosses of the coin
if the probability of a head on a single toss is 𝑝 and the probability of a tail is 1 − 𝑝 = 𝑞. One

4Useful probability distributions are summarized in Table 6.4 at the end of this chapter.
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of the possible sequences of 𝑘 heads in 𝑛 tosses is

𝐻 𝐻 ⋯ 𝐻
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘 heads

𝑇 𝑇 ⋯ 𝑇
⏟⏞⏞⏟⏞⏞⏟

𝑛 − 𝑘 tails

Since the trials are independent, the probability of this particular sequence is

𝑝 ⋅ 𝑝 ⋅ 𝑝 ⋯ 𝑝

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘 factors
⋅
𝑞 ⋅ 𝑞 ⋅ 𝑞 ⋯ 𝑞

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑛 − 𝑘 factors
= 𝑝

𝑘
𝑞
𝑛−𝑘 (6.169)

But the preceding sequence of 𝑘 heads in 𝑛 trials is only one of
(
𝑛

𝑘

)
Δ
= 𝑛!

𝑘! (𝑛 − 𝑘)!
(6.170)

possible sequences, where
(
𝑛

𝑘

)
is the binomial coefficient. To see this, we consider the number

of ways 𝑘 identifiable heads can be arranged in 𝑛 slots. The first head can fall in any of the
𝑛 slots, the second in any of 𝑛 − 1 slots (the first head already occupies one slot), the third in
any of 𝑛 − 2 slots, and so on for a total of

𝑛 (𝑛 − 1) (𝑛 − 2)⋯ (𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!

(6.171)

possible arrangements in which each head is identified. However, we are not concerned about
which head occupies which slot. For each possible identifiable arrangement, there are 𝑘!
arrangements for which the heads can be switched around and with the same slots occupied.
Thus, the total number of arrangements, if we do not identify the particular head occupying
each slot, is

𝑛 (𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)
𝑘!

= 𝑛!
𝑘! (𝑛 − 𝑘)!

=
(
𝑛

𝑘

)
(6.172)

Since the occurrence of any of these
(
𝑛

𝑘

)
possible arrangements precludes the occurrence of

any other [that is, the
(
𝑛

𝑘

)
outcomes of the experiment are mutually exclusive], and since each

occurs with probability 𝑝
𝑘
𝑞
𝑛−𝑘, the probability of exactly 𝑘 heads in 𝑛 trials in any order is

𝑃 (𝐾 = 𝑘)
Δ
= 𝑃

𝑛
(𝑘) =

(
𝑛

𝑘

)
𝑝
𝑘
𝑞
𝑛−𝑘

, 𝑘 = 0, 1,… , 𝑛 (6.173)

Equation (6.173), known as the binomial probability distribution (note that it is not a pdf or a
cdf), is plotted in Figure 6.17(a)--(d) for four different values of 𝑝 and 𝑛.

The mean of a binomially distributed random variable 𝐾 , by Equation (6.109), is given
by

𝐸[𝐾] =
𝑛∑

𝑘=0
𝑘

𝑛!
𝑘! (𝑛 − 𝑘)!

𝑝
𝑘
𝑞
𝑛−𝑘 (6.174)

Noting that the sum can be started at 𝑘 = 1 since the first term is zero, we can write

𝐸[𝐾] =
𝑛∑

𝑘=1

𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)!

𝑝
𝑘
𝑞
𝑛−𝑘 (6.175)
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where the relation 𝑘! = 𝑘 (𝑘 − 1)! has been used. Letting 𝑚 = 𝑘 − 1, we get the sum

𝐸[𝐾] =
𝑛−1∑

𝑚=0

𝑛!
𝑚! (𝑛 − 𝑚 − 1)!

𝑝
𝑚+1

𝑞
𝑛−𝑚−1

= 𝑛𝑝

𝑛−1∑

𝑚=0

(𝑛 − 1)!
𝑚! (𝑛 − 𝑚 − 1)!

𝑝
𝑚
𝑞
𝑛−𝑚−1 (6.176)

Finally, letting 𝓁 = 𝑛 − 1 and recalling that, by the binomial theorem,

(𝑥 + 𝑦)𝓁 =
𝓁∑

𝑚=0

(
𝓁
𝑚

)
𝑥
𝑚
𝑦
𝓁−𝑚 (6.177)

we obtain

𝐾 = 𝐸[𝐾] = 𝑛𝑝(𝑝 + 𝑞)𝓁 = 𝑛𝑝 (6.178)

since 𝑝 + 𝑞 = 1. The result is reasonable; in a long sequence of 𝑛 tosses of a fair coin
(𝑝 = 𝑞 = 1

2 ), we would expect about 𝑛𝑝 = 1
2𝑛 heads.

We can go through a similar series of manipulations to show that 𝐸[𝐾2] = 𝑛𝑝(𝑛𝑝 + 𝑞).
Using this result, it follows that the variance of a binomially distributed random variable is

𝜎
2
𝐾
= 𝐸[𝐾2] − 𝐸

2[𝐾] = 𝑛𝑝𝑞 = 𝐾(1 − 𝑝) (6.179)

EXAMPLE 6.23

The probability of having two girls in a four-child family, assuming single births and equal probabilities
of male and female births, from (6.173), is

𝑃4(2) =
(
4
2

)(1
2

)4
= 3

8
(6.180)

Similarly, it can be shown that the probability of 0, 1, 3, and 4 girls is 1
16
,

1
4
,

1
4
, and 1

16
, respectively.

Note that the sum of the probabilities for 0, 1, 2, 3, and 4 girls (or boys) is 1, as it should be.
■

6.4.2 Laplace Approximation to the Binomial Distribution

When 𝑛 becomes large, computations using (6.173) become unmanageable. In the limit as
𝑛 → ∞, it can be shown that for |𝑘 − 𝑛𝑝| ≤

√
𝑛𝑝𝑞

𝑃
𝑛
(𝑘) ≅ 1

√
2𝜋𝑛𝑝𝑞

exp
[
−(𝑘 − 𝑛𝑝)2

2𝑛𝑝𝑞

]
(6.181)

which is called the Laplace approximation to the binomial distribution. A comparison of the
Laplace approximation with the actual binomial distribution is given in Figure 6.17(e).

www.it-ebooks.info

http://www.it-ebooks.info/


6.4 Some Useful pdfs 289

(f )

0.6
0.5
0.4
0.3
0.2
0.1

0 1 2 3
k

(e)

0.4
0.3
0.2
0.1

0 1 2 3 4 5
k

(d)

0.4
0.3
0.2
0.1

0 1 2 3 4
k

(c)

0.5

0 1 2 3
k

(b)

0.5

0 1 2
k

(a)

0.5

0 1
k

Figure 6.17
The binomial distribution with comparison to Laplace and Poisson approximations. (a) 𝑛 = 1, 𝑝 = 0.5.
(b) 𝑛 = 2, 𝑝 = 0.5. (c) 𝑛 = 3, 𝑝 = 0.5. (d) 𝑛 = 4, 𝑝 = 0.5. (e) 𝑛 = 5, 𝑝 = 0.5. Circles are Laplace
approximations. (f) 𝑛 = 5, 𝑝 = 1

10
. Circles are Poisson approximations.

6.4.3 Poisson Distribution and Poisson Approximation to the
Binomial Distribution

Consider a chance experiment in which an event whose probability of occurrence in a very
small time interval Δ𝑇 is 𝑃 = 𝛼Δ𝑇 , where 𝛼 is a constant of proportionality. If successive
occurrences are statistically independent, then the probability of 𝑘 events in time 𝑇 is

𝑃
𝑇
(𝑘) = (𝛼𝑇 )𝑘

𝑘!
𝑒
−𝛼𝑇 (6.182)

For example, the emission of electrons from a hot metal surface obeys this law, which is called
the Poisson distribution.

The Poisson distribution can be used to approximate the binomial distribution when the
number of trials 𝑛 is large, the probability of each event 𝑝 is small, and the product 𝑛𝑝 ≅ 𝑛𝑝𝑞.
The approximation is

𝑃
𝑛
(𝑘) ≅

(
�̄�
)𝑘

𝑘!
𝑒
−�̄� (6.183)

where, as calculated previously, �̄� = 𝐸[𝐾] = 𝑛𝑝 and 𝜎
2
𝑘
= 𝐸[𝐾]𝑞 = 𝑛𝑝𝑞 ≅ 𝐸[𝐾] for 𝑞 =

1 − 𝑝 ≅ 1. This approximation is compared with the binomial distribution in Figure 6.17(f).

EXAMPLE 6.24

The probability of error on a single transmission in a digital communication system is 𝑃
𝐸
= 10−4. What

is the probability of more than three errors in 1000 transmissions?

S o l u t i o n

We find the probability of three errors or less from (6.183):

𝑃 (𝐾 ≤ 3) =
3∑

𝑘=0

(
�̄�
)𝑘

𝑘!
𝑒
−�̄� (6.184)

www.it-ebooks.info

http://www.it-ebooks.info/


290 Chapter 6 ∙ Overview of Probability and Random Variables

where �̄� = (10−4)(1000) = 0.1. Hence,

𝑃 (𝐾 ≤ 3) = 𝑒
−0.1

[
(0.1)0

0!
+ (0.1)1

1!
+ (0.1)2

2!
+ (0.1)3

3!

]
≅ 0.999996 (6.185)

Therefore, 𝑃 (𝐾 > 3) = 1 − 𝑃 (𝐾 ≤ 3) ≅ 4 × 10−6.
■

COMPUTER EXAMPLE 6.1

TheMATLAB program given below does aMonte Carlo simulation of the digital communication system
described in the above example.

% file: c6ce1
% Simulation of errors in a digital communication system
%
N sim = input(’Enter number of trials ’);
N = input(’Bit block size for simulation ’);
N errors = input(’Simulate the probability of more than errors

occurring ’);
PE = input(’Error probability on each bit ’);
count = 0;
for n = 1:N sim

U = rand(1, N);
Error = (-sign(U-PE)+1)/2; % Error array - elements are 1 where

errors occur
if sum(Error) > N errors

count = count + 1;
end

end
P greater = count/N sim

% End of script file

A typical run follows. To cut down on the simulation time, blocks of 1000 bits are simulated with
a probability of error on each bit of 10−3. Note that the Poisson approximation does not hold in this
case because �̄� = (10−3)(1000) = 1 is not much less than 1. Thus, to check the results analytically,
we must use the binomial distribution. Calculation gives P(0 errors) = 0.3677, P(1 error) = 0.3681,
P(2 errors) = 0.1840, and P(3 errors) = 0.0613 so that P(> 3 errors) = 1 − 0.3677 − 0.3681 − 0.1840 −
0.0613 = 0.0189. This matches with the simulated result if both are rounded to two decimal places.

error sim
Enter number of trials 10000
Bit block size for simulation 1000
Simulate the probability of more than errors occurring 3
Error probability on each bit .001

P greater = 0.0199
■

6.4.4 Geometric Distribution

Suppose we are interested in the probability of the first head in a series of coin tossings, or
the first error in a long string of digital signal transmissions occurring on the 𝑘th trial. The
distribution describing such experiments is called the geometric distribution and is

𝑃 (𝑘) = 𝑝𝑞
𝑘−1

, 1 ≤ 𝑘 < ∞ (6.186)
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where 𝑝 is the probability of the event of interest occurring (i.e., head, error, etc.) and 𝑞 is the
probability of it not occurring.

EXAMPLE 6.25

The probability of the first error occurring at the 1000th transmission in a digital data transmission
system where the probability of error is 𝑝 = 10−6 is

𝑃 (1000) = 10−6(1 − 10−6)999 = 9.99 × 10−7 ≅ 10−6

■

6.4.5 Gaussian Distribution

In our future considerations, the Gaussian pdf will be used repeatedly. There are at least two
reasons for this. One is that the assumption of Gaussian statistics for random phenomena
often makes an intractable problem tractable. The other, and more fundamental reason, is
that because of a remarkable phenomenon summarized by a theorem called the central-limit
theorem, many naturally occurring random quantities, such as noise or measurement errors,
are Gaussianly distributed. The following is a statement of the central-limit theorem.

THE CENTRAL-LIMIT THEOREM

Let 𝑋1, 𝑋2, ... be independent, identically distributed random variables, each with finite
mean 𝑚 and finite variance 𝜎

2. Let 𝑍
𝑛
be a sequence of unit-variance, zero-mean random

variables, defined as

𝑍
𝑛
≜

𝑛∑

𝑖=1
𝑋

𝑖
− 𝑛𝑚

𝜎

√
𝑛

(6.187)

Then

lim
𝑛→∞

𝑃 (𝑍
𝑛
≤ 𝑧) =

∫

𝑧

−∞

𝑒
−𝑡2∕2
√
2𝜋

𝑑𝑡 (6.188)

In other words, the cdf of the normalized sum (6.187) approaches a Gaussian cdf, no matter
what the distribution of the component random variables. The only restriction is that they be
independent and identically distributed and that their means and variances be finite. In some
cases the independence and identically distributed assumptions can be relaxed. It is important,
however, that no one of the component random variables or a finite combination of them
dominate the sum.

We will not prove the central-limit theorem or use it in later work. We state it here simply
to give partial justification for our almost exclusive assumption of Gaussian statistics from
now on. For example, electrical noise is often the result of a superposition of voltages due
to a large number of charge carriers. Turbulent boundary-layer pressure fluctuations on an
aircraft skin are the superposition of minute pressures due to numerous eddies. Random errors
in experimental measurements are due to many irregular fluctuating causes. In all these cases,
the Gaussian approximation for the fluctuating quantity is useful and valid. Example 6.23
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illustrates that surprisingly few terms in the sum are required to give a Gaussian-appearing
pdf, even where the component pdfs are far from Gaussian.

The generalization of the joint Gaussian pdf first introduced in Example 6.15 is

𝑓
𝑋𝑌 (𝑥, 𝑦) = 1

2𝜋𝜎
𝑥
𝜎
𝑦

√
1 − 𝜌2

exp

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−

(
𝑥−𝑚𝑥

𝜎𝑥

)2
− 2𝜌

(
𝑥−𝑚𝑥

𝜎𝑥

)(
𝑦−𝑚𝑦

𝜎𝑦

)
+
(

𝑦−𝑚𝑦

𝜎𝑦

)2

2
(
1 − 𝜌2

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(6.189)

where, through straightforward but tedious integrations, it can be shown that

𝑚
𝑥
= 𝐸[𝑋] and 𝑚

𝑦
= 𝐸[𝑌 ] (6.190)

𝜎
2
𝑥
= var{𝑋} (6.191)

𝜎
2
𝑦
= var{𝑌 } (6.192)

and

𝜌 =
𝐸[(𝑋 − 𝑚

𝑥
)(𝑌 − 𝑚

𝑦
)]

𝜎
𝑥
𝜎
𝑦

(6.193)

The joint pdf for 𝑁 > 2 Gaussian random variables may be written in a compact fashion
through the use of matrix notation. The general form is given in Appendix B.

Figure 6.18 illustrates the bivariate Gaussian density function, and the associated contour
plots, as the five parameters 𝑚

𝑥
, 𝑚

𝑦
, 𝜎2

𝑥
, 𝜎2

𝑦
, and 𝜌 are varied. The contour plots provide

information on the shape and orientation of the pdf that is not always apparent in a three-
dimensional illustration of the pdf from a single viewing point. Figure 6.18(a) illustrates the
bivariate Gaussian pdf for which𝑋 and 𝑌 are zero mean, unit variance and uncorrelated. Since
the variances of 𝑋 and 𝑌 are equal, and since 𝑋 and 𝑌 are uncorrelated, the contour plots are
circles in the 𝑋-𝑌 plane. We can see why two-dimensional Gaussian noise, in which the two
components have equal variance and are uncorrelated, is said to exhibit circular symmetry.
Figure 6.18(b) shows the case in which 𝑋 and 𝑌 are uncorrelated but 𝑚

𝑥
= 1, 𝑚

𝑦
= −2,

𝜎
2
𝑥
= 2, and 𝜎

2
𝑦
= 1. The means are clear from observation of the contour plot. In addition,

the spread of the pdf is greater in the 𝑋 direction than in the 𝑌 direction because 𝜎
2
𝑥
> 𝜎

2
𝑦
.

In Figure 6.18(c) the means of 𝑋 and 𝑌 are both zero but the correllation coefficient is set
equal to 0.9. We see that the contour lines denoting a constant value of the density function
are symmetrical about the line 𝑋 = 𝑌 in the 𝑋-𝑌 plane. This results, of course, because the
correlation coefficient is a measure of the linear relationship between 𝑋 and 𝑌 . In addition,
note that the pdfs described in Figures 5.18(a) and 5.18(b) can be factored into the product of
two marginal pdfs since, for these two cases, 𝑋 and 𝑌 are uncorrelated.

The marginal pdf for𝑋 (or 𝑌 ) can be obtained by integrating (6.189) over 𝑦 (or 𝑥). Again,
the integration is tedious. The marginal pdf for 𝑋 is

𝑛(𝑚
𝑥
, 𝜎

𝑥
) = 1

√
2𝜋𝜎2

𝑥

exp
[
−(𝑥 − 𝑚

𝑥
)2∕2𝜎2

𝑥

]
(6.194)

where the notation 𝑛(𝑚
𝑥
, 𝜎

𝑥
) has been introduced to denote a Gaussian pdf of mean 𝑚

𝑥
and

standard deviation 𝜎
𝑥
. A similar expression holds for the pdf of 𝑌 with appropriate parameter

changes. This function is shown in Figure 6.19.
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Figure 6.18
Bivariate Gaussian pdfs and corresponding contour plots. (a) 𝑚

𝑥
= 0, 𝑚

𝑦
= 0, 𝜎2

𝑥
= 1, 𝜎2

𝑦
= 1, and

𝜌 = 0; (b) 𝑚
𝑥
= 1, 𝑚

𝑦
= −2, 𝜎2

𝑥
= 2, 𝜎2

𝑦
= 1, and 𝜌 = 0; (c) 𝑚

𝑥
= 0, 𝑚

𝑦
= 0, 𝜎2

𝑥
= 1, 𝜎2

𝑦
= 1, and

𝜌 = 0.9.
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The Gaussian pdf with mean 𝑚

𝑥
and

variance 𝜎2
𝑥
.

We will sometimes assume in the discussions to follow that 𝑚
𝑥
= 𝑚

𝑦
= 0 in (6.189) and

(6.194), for if they are not zero, we can consider new random variables 𝑋′ and 𝑌
′ defined

as 𝑋′ = 𝑋 − 𝑚
𝑥
and 𝑌

′ = 𝑌 − 𝑚
𝑦
, which do have zero means. Thus, no generality is lost in

assuming zero means.
For 𝜌 = 0, that is,𝑋 and 𝑌 uncorrelated, the cross term in the exponent of (6.189) is zero,

and 𝑓
𝑋𝑌

(𝑥, 𝑦), with 𝑚
𝑥
= 𝑚

𝑦
= 0, can be written as

𝑓
𝑋𝑌

(𝑥, 𝑦) =
exp

(
−𝑥2∕2𝜎2

𝑥

)

√
2𝜋𝜎2

𝑥

exp
(
−𝑦2∕2𝜎2

𝑦

)

√
2𝜋𝜎2

𝑦

= 𝑓
𝑋
(𝑥)𝑓

𝑌
(𝑦) (6.195)

Thus, uncorrelated Gaussian random variables are also statistically independent. We empha-
size that this does not hold for all pdfs, however.

It can be shown that the sum of any number of Gaussian random variables, independent
or not, is Gaussian. The sum of two independent Gaussian random variables is easily shown
to be Gaussian. Let 𝑍 = 𝑋1 +𝑋2, where the pdf of 𝑋𝑖

is 𝑛(𝑚
𝑖
, 𝜎

𝑖
). Using a table of Fourier

transforms or completing the square and integrating, we find that the characteristic function
of 𝑋

𝑖
is

𝑀
𝑋𝑖
(𝑗𝑣) =

∫

∞

−∞
(2𝜋𝜎2

𝑖
)−1∕2 exp

[
−
(
𝑥
𝑖
− 𝑚

𝑖

)2

2𝜎2
𝑖

]

exp
(
𝑗𝑣𝑥

𝑖

)
𝑑𝑥

𝑖

= exp

(

𝑗𝑚
𝑖
𝑣 −

𝜎
2
𝑖
𝑣
2

2

)

(6.196)

Thus, the characteristic function of 𝑍 is

𝑀
𝑍
(𝑗𝑣) = 𝑀

𝑋1
(𝑖𝑣)𝑀

𝑋2
(𝑗𝑣) = exp

[

𝑗
(
𝑚1 + 𝑚2

)
𝑣 −

(
𝜎
2
1 + 𝜎

2
2
)
𝑣
2

2

]

(6.197)

which is the characteristic function (6.196) of a Gaussian random variable of mean 𝑚1 + 𝑚2
and variance 𝜎21 + 𝜎

2
2 .
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6.4.6 Gaussian Q-Function

As Figure 6.19 shows, 𝑛(𝑚
𝑥
, 𝜎

𝑥
) describes a continuous random variable that may take on any

value in (−∞,∞) but is most likely to be found near𝑋 = 𝑚
𝑥
. The even symmetry of 𝑛(𝑚

𝑥
, 𝜎

𝑥
)

about 𝑥 = 𝑚
𝑥
leads to the conclusion that 𝑃 (𝑋 ≤ 𝑚

𝑥
) = 𝑃 (𝑋 ≥ 𝑚

𝑥
) = 1

2 .
Suppose we wish to find the probability that𝑋 lies in the interval [𝑚

𝑥
− 𝑎, 𝑚

𝑥
+ 𝑎]. Using

(6.42), we can write this probability as

𝑃
[
𝑚
𝑥
− 𝑎 ≤ 𝑋 ≤ 𝑚

𝑥
+ 𝑎

]
=
∫

𝑚𝑥+𝑎

𝑚𝑥−𝑎

exp
[
−
(
𝑥 − 𝑚

𝑥

)2 ∕2𝜎2
𝑥

]

√
2𝜋𝜎2

𝑥

𝑑𝑥 (6.198)

which is the shaded area in Figure 6.19. With the change of variables 𝑦 = (𝑥 − 𝑚
𝑥
)∕𝜎

𝑥
, this

gives

𝑃
[
𝑚
𝑥
− 𝑎 ≤ 𝑋 ≤ 𝑚

𝑥
+ 𝑎

]
=
∫

𝑎∕𝜎𝑥

−𝑎∕𝜎𝑥

𝑒
−𝑦2∕2
√
2𝜋

𝑑𝑦

= 2
∫

𝑎∕𝜎𝑥

0

𝑒
−𝑦2∕2
√
2𝜋

𝑑𝑦 (6.199)

where the last integral follows by virtue of the integrand being even. Unfortunately, this
integral cannot be evaluated in closed form.

The Gaussian 𝑄-function, or simply 𝑄-function, is defined as5

𝑄(𝑢) =
∫

∞

𝑢

𝑒
−𝑦2∕2
√
2𝜋

𝑑𝑦 (6.200)

This function has been evaluated numerically, and rational and asymptotic approximations are
available to evaluate it for moderate and large arguments, respectively.6 Using this transcen-
dental function definition, we may rewrite (6.199) as

𝑃 [𝑚
𝑥
− 𝑎 ≤ 𝑋 ≤ 𝑚

𝑥
+ 𝑎] = 2

[
1
2
−
∫

∞

𝑎∕𝜎𝑥

𝑒
−𝑦2∕2
√
2𝜋

𝑑𝑦

]

= 1 − 2𝑄
(

𝑎

𝜎
𝑥

)
(6.201)

A useful approximation for the 𝑄-function for large arguments is

𝑄(𝑢) ≅ 𝑒
−𝑢2∕2

𝑢

√
2𝜋

, 𝑢 ≫ 1 (6.202)

5An integral representation with finite limits for the 𝑄-function is 𝑄 (𝑥) = 1
𝜋
∫

𝜋∕2
0 exp

(
− 𝑥

2

2 sin2 𝜙

)
𝑑𝜙.

6These are provided in M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series No. 55, Issued June
1964 (pp. 931ff). Also New York: Dover, 1972.
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Numerical comparison of (6.200) and (6.202) shows that less than a 6% error results for 𝑢 ≥ 3
in using this approximation. This, and other results for the𝑄-function, are given in Appendix F
(see Part F.1).

Related integrals are the error function and the complementary error function, defined as

erf (𝑢) = 2
√
𝜋
∫

𝑢

0
𝑒
−𝑦2

𝑑𝑦

erfc (𝑢) = 1 − erf (𝑢) = 2
√
𝜋
∫

∞

𝑢

𝑒
−𝑦2

𝑑𝑦 (6.203)

respectively. They can be shown to be related to the 𝑄-function by

𝑄 (𝑢) = 1
2
erfc

(
𝑢
√
2

)

or erfc (𝑣) = 2𝑄
(√

2𝑣
)

(6.204)

MATLAB includes function programs for erf and erfc, and the inverse error and
complementary error functions, erfinv and erfcinv, respectively.

6.4.7 Chebyshev’s Inequality

The difficulties encountered above in evaluating (6.198) and probabilities like it make an
approximation to such probabilities desirable. Chebyshev’s inequality gives us a lower bound,
regardless of the specific form of the pdf involved, provided its second moment is finite. The
probability of finding a random variable 𝑋 within ±𝑘 standard deviations of its mean is at
least 1 − 1∕𝑘2, according to Chebyshev’s inequality. That is,

𝑃
[||𝑋 − 𝑚

𝑥
|| ≤ 𝑘𝜎

𝑥

]
≥ 1 − 1

𝑘2
, 𝑘 > 0 (6.205)

Considering 𝑘 = 3, we obtain

𝑃
[||𝑋 − 𝑚

𝑥
|| ≤ 3𝜎

𝑥

]
≥

8
9
≅ 0.889 (6.206)

Assuming 𝑋 is Gaussian and using the 𝑄-function, this probability can be computed to be
0.9973. In words, according to Chebyshev’s inequality, the probability that a random variable
deviates from itsmean bymore than±3 standard deviations is not greater than 0.111, regardless
of its pdf. (There is the restriction that its second moment must be finite.) Note that the bound
for this example is not very tight.

6.4.8 Collection of Probability Functions and Their Means and Variances

The probability functions (pdfs and probability distributions) discussed above are collected in
Table 6.4 along with some additional functions that come up from time to time. Also given
are the means and variances of the corresponding random variables.
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Table 6.4 Probability Distributions of Some Random Variables with Means and
Variances

Probability-density or mass function Mean Variance

Uniform:

𝑓
𝑋
(𝑥) =

{ 1
𝑏 − 𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise

}
1
2
(𝑎 + 𝑏) 1

12
(𝑏 − 𝑎)2

Gaussian:

𝑓
𝑋
(𝑥) = 1

√
2𝜋𝜎2

exp
[
− (𝑥 − 𝑚)2 ∕2𝜎2]

𝑚 𝜎
2

Rayleigh:

𝑓
𝑅
(𝑟) = 𝑟

𝜎2 exp
(
−𝑟2∕2𝜎2)

, 𝑟 ≥ 0
√

𝜋

2
𝜎

1
2
(4 − 𝜋) 𝜎2

Laplacian:

𝑓
𝑋
(𝑥) = 𝛼

2
exp (−𝛼|𝑥|) , 𝛼 > 0 0 2∕𝛼2

One-sided exponential:

𝑓
𝑋
(𝑥) = 𝛼 exp (−𝛼𝑥) 𝑢 (𝑥) 1∕𝛼 1∕𝛼2

Hyperbolic:

𝑓
𝑋
(𝑥) = (𝑚 − 1)ℎ𝑚−1

2 (|𝑥| + ℎ)𝑚
, 𝑚 > 3, ℎ > 0 0 2ℎ2

(𝑚 − 3)(𝑚 − 2)
Nakagami-𝑚:

𝑓
𝑋
(𝑥) = 2𝑚𝑚

Γ (𝑚)
𝑥
2𝑚−1 exp

(
−𝑚𝑥2)

, 𝑥 ≥ 0 1 × 3 ×⋯ × (2𝑚 − 1)
2𝑚Γ (𝑚)

Γ (𝑚 + 1)
Γ (𝑚)

√
𝑚

Central Chi-square (𝑛 = degrees of freedom)1:

𝑓
𝑋
(𝑥) = 𝑥

𝑛∕2−1

𝜎𝑛2𝑛∕2Γ (𝑛∕2)
exp

(
−𝑥∕2𝜎2)

𝑛𝜎
2 2𝑛𝜎4

Lognormal2:

𝑓
𝑋
(𝑥) = 1

𝑥

√
2𝜋𝜎2

𝑦

exp
[
−
(
ln 𝑥 − 𝑚

𝑦

)2 ∕2𝜎2
𝑦

]
exp

(
𝑚

𝑦
+ 2𝜎2

𝑦

)
exp

(
2𝑚

𝑦
+ 𝜎

2
𝑦

)

×
[
exp

(
𝜎
2
𝑦

)
− 1

]

Binomial:

𝑃
𝑛
(𝑘) =

(
𝑛

𝑘

)
𝑝
𝑘
𝑞
𝑛−𝑘

, 𝑘 = 0, 1, 2, ⋯ , 𝑛, 𝑝 + 𝑞 = 1 𝑛𝑝 𝑛𝑝𝑞

Poisson:

𝑃 (𝑘) = 𝜆
𝑘

𝑘!
exp (−𝜆) , 𝑘 = 0, 1, 2, ⋯ 𝜆 𝜆

Geometric:

𝑃 (𝑘) = 𝑝𝑞
𝑘−1

, 𝑘 = 1, 2, ⋯ 1∕𝑝 𝑞∕𝑝2

1Γ (𝑚) is the gamma function and equals (𝑚 − 1)! for 𝑚 an integer.
2The lognormal random variable results from the transformation 𝑌 = ln𝑋 where 𝑌 is a Gaussian random variable
with mean 𝑚

𝑦
and variance 𝜎2

𝑦
.
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Further Reading

Several books are available that deal with probability theory for engineers. Among these are Leon-
Garcia (1994), Ross (2002), and Walpole, Meyers, Meyers, and Ye (2007). A good overview with many
examples is Ash (1992). Simon (2002) provides a compendium of relations involving the Gaussian
distribution.

Summary

1. The objective of probability theory is to attach real
numbers between 0 and 1, called probabilities, to the
outcomes of chance experiments---that is, experiments in
which the outcomes are not uniquely determined by the
causes but depend on chance---and to interrelate probabil-
ities of events, which are defined to be combinations of
outcomes.

2. Two events are mutually exclusive if the occurrence
of one of them precludes the occurrence of the other. A set
of events is said to be exhaustive if one of themmust occur
in the performance of a chance experiment. The null event
happens with probability zero, and the certain event hap-
pens with probability one in the performance of a chance
experiment.

3. The equally likely definition of the probability 𝑃 (𝐴)
of an event 𝐴 states that if a chance experiment can result
in a number 𝑁 of mutually exclusive, equally likely out-
comes, then 𝑃 (𝐴) is the ratio of the number of outcomes
favorable to 𝐴, or 𝑁

𝐴
, to the total number. It is a circular

definition in that probability is used to define probability,
but it is nevertheless useful in many situations such as
drawing cards from well-shuffled decks.

4. The relative-frequency definition of the probability
of an event 𝐴 assumes that the chance experiment is repli-
cated a large number of times 𝑁 and

𝑃 (𝐴) = lim
𝑁→∞

𝑁
𝐴

𝑁

where 𝑁
𝐴
is the number of replications resulting in the

occurrence of 𝐴.

5. The axiomatic approach defines the probability
𝑃 (𝐴) of an event 𝐴 as a real number satisfying the fol-
lowing axioms:

(a) 𝑃 (𝐴) ≥ 0.
(b) 𝑃 (certain event) = 1.

(c) If 𝐴 and 𝐵 are mutually exclusive events,
𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵).

The axiomatic approach encompasses the equally
likely and relative-frequency definitions.

6. Given two events 𝐴 and 𝐵, the compound event ‘‘𝐴
or 𝐵 or both,’’ is denoted as 𝐴 ∪ 𝐵, the compound event
‘‘both𝐴 and𝐵’’ is denoted as (𝐴 ∩ 𝐵) or as (𝐴𝐵), and the
event ‘‘not𝐴’’ is denoted as𝐴. If𝐴 and𝐵 are not necessar-
ily mutually exclusive, the axioms of probability may be
used to show that 𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵).
Letting 𝑃 (𝐴|𝐵) denote the probability of 𝐴 occurring
given that 𝐵 occurred and 𝑃 (𝐵|𝐴) denote the probability
of 𝐵 given𝐴, these probabilities are defined, respectively,
as

𝑃 (𝐴|𝐵) = 𝑃 (𝐴𝐵)
𝑃 (𝐵)

and 𝑃 (𝐵|𝐴) = 𝑃 (𝐴𝐵)
𝑃 (𝐴)

A special case of Bayes’ rule results by putting these two
definitions together:

𝑃 (𝐵|𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)
𝑃 (𝐴)

Statistically independent events are events for which
𝑃 (𝐴𝐵) = 𝑃 (𝐴)𝑃 (𝐵).
7. A random variable is a rule that assigns real numbers

to the outcomes of a chance experiment. For example, in
flipping a coin, assigning 𝑋 = +1 to the occurrence of a
head and𝑋 = −1 to the occurrence of a tail constitutes the
assignment of a discrete-valued random variable.

8. The cumulative-distribution function (cdf) 𝐹
𝑋
(𝑥) of

a random variable 𝑋 is defined as the probability that
𝑋 ≤ 𝑥 where 𝑥 is a running variable. 𝐹

𝑋
(𝑥) lies between

0 and 1 with 𝐹
𝑋
(−∞) = 0 and 𝐹

𝑋
(∞) = 1, is continuous

from the right, and is a nondecreasing function of its argu-
ment. Discrete random variables have step-discontinuous
cdfs, and continuous random variables have continuous
cdfs.

9. The probability-density function (pdf) 𝑓
𝑋
(x) of a

random variable 𝑋 is defined to be the derivative of the
cdf. Thus,

𝐹
𝑋
(𝑥) =

∫

𝑥

−∞
𝑓
𝑋
(𝜂) 𝑑𝜂

The pdf is nonnegative and integrates over all 𝑥 to
unity. A useful interpretation of the pdf is that 𝑓

𝑋
(𝑥) 𝑑𝑥
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is the probability of the random variable 𝑋 lying in an
infinitesimal range 𝑑𝑥 about 𝑥.

10. The joint cdf 𝐹
𝑋𝑌

(𝑥, 𝑦) of two random variables 𝑋
and 𝑌 is defined as the probability that 𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦

where 𝑥 and 𝑦 are particular values of𝑋 and 𝑌 . Their joint
pdf 𝑓

𝑋𝑌
(𝑥, 𝑦) is the second partial derivative of the cdf first

with respect to 𝑥 and then with respect to 𝑦. The cdf of
𝑋 (𝑌 ) alone (that is, the marginal cdf) is found by setting
𝑦 (𝑥) to infinity in the argument of 𝐹

𝑋𝑌
. The pdf of𝑋 (𝑌 )

alone (that is, the marginal pdf) is found by integrating
𝑓
𝑋𝑌

over all 𝑦 (𝑥).
11. Two statistically independent random variables have
joint cdfs and pdfs that factor into the respective marginal
cdfs or pdfs.

12. The conditional pdf of 𝑋 given 𝑌 is defined as

𝑓
𝑋∣𝑌 (𝑥|𝑦) =

𝑓
𝑋𝑌

(𝑥, 𝑦)
𝑓
𝑌
(𝑦)

with a similar definition for 𝑓
𝑌 ∣𝑋(𝑦|𝑥). The expression

𝑓
𝑋∣𝑌 (𝑥|𝑦) 𝑑𝑥 can be interpreted as the probability that

𝑥 − 𝑑𝑥 < 𝑋 ≤ 𝑥 given 𝑌 = 𝑦.

13. Given 𝑌 = 𝑔(𝑋) where 𝑔(𝑋) is a monotonic func-
tion,

𝑓
𝑌
(𝑦) = 𝑓

𝑋
(𝑥)

||||
𝑑𝑥

𝑑𝑦

||||𝑥=𝑔−1(𝑦)

where 𝑔−1 (𝑦) is the inverse of 𝑦 = 𝑔(𝑥). Joint pdfs of func-
tions of more than one random variable can be transformed
similarly.

14. Important probability functions defined in Chapter
5 are the Rayleigh pdf [Equation (6.105)], the pdf of a
random-phased sinusoid (Example 6.17), the uniform pdf
[Example 6.20, Equation (6.135)], the binomial probabil-
ity distribution [Equation (6.174)], the Laplace and Pois-
son approximations to the binomial distribution [Equa-
tions (6.181) and (6.183)], and the Gaussian pdf [Equa-
tions (6.189) and (6.192)].
15. The statistical average, or expectation, of a function
𝑔(𝑋) of a random variable 𝑋 with pdf 𝑓

𝑋
(𝑥) is defined as

𝐸[𝑔(𝑋)] = 𝑔(𝑋) =
∫

∞

−∞
𝑔(𝑥)𝑓

𝑋
(𝑥) 𝑑𝑥

The average of 𝑔(𝑋) = 𝑋
𝑛 is called the 𝑛th moment of

𝑋. The first moment is known as the mean of 𝑋. Av-
erages of functions of more than one random variable
are found by integrating the function times the joint pdf
over the ranges of its arguments. The averages 𝑔(𝑋, 𝑌 ) =
𝑋𝑛𝑌 𝑛 ≜ 𝐸 {𝑋𝑛

𝑌
𝑚} are called the joint moments of the

order 𝑚 + 𝑛. The variance of a random variable 𝑋 is the

average
(
𝑋 −𝑋

)2
= 𝑋2 − �̄�

2
.

16. The average 𝐸
[∑

𝑎
𝑖
𝑋

𝑖

]
is
∑

𝑎
𝑖
𝐸
[
𝑋

𝑖

]
; that is, the

operations of summing and averaging can be interchanged.
The variance of a sum of random variables is the sum of
the respective variances if the random variables are sta-
tistically independent.

17. The characteristic function 𝑚
𝑋
(𝑗𝑣) of a random

variable 𝑋 that has the pdf 𝑓
𝑋
(𝑥) is the expectation of

exp(𝑗𝑣𝑋) or, equivalently, the Fourier transform of 𝑓
𝑋
(𝑥)

with a plus sign in the exponential of the Fourier-transform
integral. Thus, the pdf is the inverse Fourier transform
(with the sign in the exponent changed from minus to
plus) of the characteristic function.

18. The 𝑛th moment of𝑋 can be found from𝑀
𝑋
(𝑗𝑣) by

differentiating with respect to 𝑣 for 𝑛 times, multiplying
by (−𝑗)𝑛, and setting 𝑣 = 0. The characteristic function of
𝑍 = 𝑋 + 𝑌 , where𝑋 and 𝑌 are independent, is the prod-
uct of the respective characteristic functions of 𝑋 and 𝑌 .
Thus, by the convolution theorem of Fourier transforms,
the pdf of 𝑍 is the convolution of the pdfs of 𝑋 and 𝑌 .

19. The covariance 𝜇
𝑋𝑌

of two random variables 𝑋 and
𝑌 is the average

𝜇
𝑋𝑌

= 𝐸[(𝑋 − �̄�)(𝑌 − 𝑌 )] = 𝐸 [𝑋𝑌 ] − 𝐸 [𝑋]𝐸 [𝑌 ]

The correlation coefficient 𝜌
𝑋𝑌

is

𝜌
𝑋𝑌

=
𝜇
𝑋𝑌

𝜎
𝑋
𝜎
𝑌

Both give a measure of the linear interdependence of 𝑋
and 𝑌 , but 𝜌

𝑋𝑌
is handier because it is bounded by ±1. If

𝜌
𝑋𝑌

= 0, the random variables are said to be uncorrelated.

20. The central-limit theorem states that, under suitable
restrictions, the sum of a large number 𝑁 of independent
random variables with finite variances (not necessarily
with the same pdfs) tends to a Gaussian pdf as𝑁 becomes
large.

21. The𝑄-function can be used to compute probabilities
of Gaussian random variables being in certain ranges. The
𝑄-function is tabulated in Appendix F.1, and rational and
asymptotic approximations are given for computing it. It
can be related to the error function through (6.204) .
22. Chebyshev’s inequality gives the lower bound of the
probability that a random variable is within 𝑘 standard de-
viations of its mean as 1 − 1

𝑘2
, regardless of the pdf of the

random variable (its second moment must be finite).

23. Table 6.4 summarizes a number of useful probability
distributions with their means and variances.
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Drill Problems

6.1 A fair coin and a fair die (six sides) are tossed
simultaneously with neither affecting the outcome of the
other. Give probabilities for the following events using the
principle of equal likelihood:

(a) A head and a six;

(b) A tail and a one or a two;

(c) A tail or a head and a four;

(d) A head and a number less than a five;

(e) A tail or a head and a number greater than
a four;

(f) A tail and a number greater than a six.

6.2 In tossing a six-sided fair die, we define event
𝐴 = {2 or 4 or 6} and event 𝐵 = {1 or 3 or 5 or 6}. Us-
ing equal likelihood and the axioms of probability, find
the following:

(a) 𝑃 (𝐴);
(b) 𝑃 (𝐵);
(c) 𝑃 (𝐴 ∪ 𝐵);
(d) 𝑃 (𝐴 ∩ 𝐵);
(e) 𝑃 (𝐴|𝐵);
(f) 𝑃 (𝐵|𝐴) .

6.3 In tossing a single six-sided fair die, event
𝐴 = {1 or 3}, event 𝐵 = {2 or 3 or 4}, and event 𝐶 =
{4 or 5 or 6}. Find the following probabilities:

(a) 𝑃 (𝐴);
(b) 𝑃 (𝐵);
(c) 𝑃 (𝐶);
(d) 𝑃 (𝐴 ∪ 𝐵);
(e) 𝑃 (𝐴 ∪ 𝐶);
(f) 𝑃 (𝐵 ∪ 𝐶);
(g) 𝑃 (𝐴 ∩ 𝐵);
(h) 𝑃 (𝐴 ∩ 𝐶);
(i) 𝑃 (𝐵 ∩ 𝐶);
(j) 𝑃 (𝐴 ∩ (𝐵 ∩ 𝐶));
(k) 𝑃 (𝐴 ∪ (𝐵 ∪ 𝐶)).

6.4 Referring to Drill Problem 6.2, find the
following:

(a) 𝑃 (𝐴|𝐵);
(b) 𝑃 (𝐵|𝐴).

6.5 Referring to Drill Problem 6.3, find the following:

(a) 𝑃 (𝐴|𝐵);
(b) 𝑃 (𝐵|𝐴);
(c) 𝑃 (𝐴|𝐶);
(d) 𝑃 (𝐶|𝐴);
(e) 𝑃 (𝐵|𝐶);
(f) 𝑃 (𝐶|𝐵).

6.6

(a) What is the probability drawing an ace from a
52-card deck with a single draw?

(b) What is the probability drawing the ace of spades
from a 52-card deck with a single draw?

(c) What is the probability of drawing the ace of
spades from a 52-card deck with a single draw
given that the card drawn was black?

6.7 Given a pdf of the form 𝑓
𝑋
(𝑥) =

𝐴 exp (−𝛼𝑥) 𝑢 (𝑥 − 1), where 𝑢 (𝑥) is the unit step and
𝐴 and 𝛼 are positive constants, do the following:

(a) Give the relationship between 𝐴 and 𝛼.

(b) Find the cdf.

(c) Find the probability that 2 < 𝑋 ≤ 4.
(d) Find the mean of 𝑋.

(e) Find the mean square of 𝑋.

(f) Find the variance of 𝑋.

6.8 Given a joint pdf defined as

𝑓
𝑋𝑌

(𝑥, 𝑦) =

{
1, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1

0, otherwise

Find the following:

(a) 𝑓
𝑋
(𝑥) ;

(b) 𝑓
𝑌
(𝑦) ;

(c) 𝐸 [𝑋] , 𝐸 [𝑌 ] , 𝐸
[
𝑋

2
]
, 𝐸

[
𝑌

2
]
, 𝜎

2
𝑋
, 𝜎

2
𝑌
;

(d) 𝐸 [𝑋𝑌 ] ;
(e) 𝜇

𝑋𝑌
.

6.9

(a) What is the probability of getting two or fewer
heads in tossing a fair coin 10 times?

(b) What is the probability of getting exactly five
heads in tossing a fair coin 10 times?
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6.10 A random variable 𝑍 is defined as 𝑍 = 𝑋 + 𝑌

where 𝑋 and 𝑌 are Gaussian with the following statis-
tics:

1. 𝐸 [𝑋] = 2, 𝐸 [𝑌 ] = −3
2. 𝜎

𝑋
= 2, 𝜎

𝑌
= 3

3. 𝜇
𝑋𝑌

= 0.5

Find the pdf of 𝑍.

6.11 Let a randomvariable𝑍 be defined in terms of three
independent random variables as 𝑍 = 2𝑋1 + 4𝑋2 + 3𝑋3,
where the means of 𝑋1, 𝑋2, and 𝑋3 are −1, 5, and −2,
respectively, and their respective variances are 4, 7, and 1.
Find the following:

(a) The mean of 𝑍;

(b) The variance of 𝑍;

(c) The standard deviation of 𝑍;

(d) The pdf of 𝑍 if 𝑋1, 𝑋2, and 𝑋3 are Gaussian.

6.12 The characteristic function of a random variable,
𝑋, is 𝑀

𝑋
(𝑗𝑣) =

(
1 + 𝑣

2
)−1

. Find the following:

(a) The mean of 𝑋;

(b) The variance of 𝑋;

(c) The pdf of 𝑋.

6.13 A random variable is defined as the sum of ten
independent random variables, which are all uniformly
distributed in [−0.5, 0.5].

(a) According to the central-limit theorem, write
down an approximate expression for the pdf of
the sum, 𝑍 =

∑10
𝑖=1 𝑋𝑖

(b) What is the value of the approximating pdf for
𝑧 = ±5.1? What is the value of the pdf for the
actual sum random variable for this value of 𝑧?

6.14 A fair coin is tossed 100 times. According to the
Laplace approximation, what is the probability that exactly
(a) 50 heads are obtained? (b) 51 heads? (c) 52 heads? (d)
Is the Laplace approximation valid in these computations?

6.15 The probability of error on a single transmission in
a digital communication system is 𝑃

𝐸
= 10−3. (a) What is

the probability of 0 errors in 100 transmissions? (b) 1 error
in 100? (c) 2 errors in 100? (d) 2 or fewer errors in 100?

Problems

Section 6.1

6.1 A circle is divided into 21 equal parts. A pointer
is spun until it stops on one of the parts, which are num-
bered from 1 through 21. Describe the sample space and,
assuming equally likely outcomes, find

(a) 𝑃 (an even number);

(b) 𝑃 (the number 21);

(c) 𝑃 (the numbers 4, 5, or 9);

(d) 𝑃 (a number greater than 10).

6.2 If five cards are drawn without replacement from
an ordinary deck of cards, what is the probability that

(a) three kings and two aces result;

(b) four of a kind result;

(c) all are of the same suit;

(d) an ace, king, queen, jack, and ten of the same suit
result;

(e) given that an ace, king, jack, and ten have been
drawn, what is the probability that the next card
drawn will be a queen (not all of the same suit)?

6.3 What equations must be satisfied in order for three
events 𝐴, 𝐵, and 𝐶 to be independent? (Hint: They must
be independent by pairs, but this is not sufficient.)

6.4 Two events, 𝐴 and 𝐵, have respective marginal
probabilities 𝑃 (𝐴) = 0.2 and 𝑃 (𝐵) = 0.5, respectively.
Their joint probability is 𝑃 (𝐴 ∩ 𝐵) = 0.4.

(a) Are they statistically independent? Why or why
not?

(b) What is the probability of 𝐴 or 𝐵 or both occur-
ring?

(c) In general, what must be true for two events to
be both statistically independent and mutually
exclusive?

6.5 Figure 6.20 is a graph that represents a communica-
tion network, where the nodes are receiver/repeater boxes
and the edges (or links) represent communication chan-
nels, which, if connected, convey the message perfectly.
However, there is the probability 𝑝 that a link will be bro-
ken and the probability 𝑞 = 1 − 𝑝 that it will be whole.
Hint: Use a tree diagram like Figure 6.2.
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A

B
4

3

2 51

Figure 6.20

Table 6.5 Table of Probabilities for Problem 6.7.

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑷

(
𝑨

𝒊

)

𝐴1 0.05 0.45 0.55
𝐴2 0.15 0.10
𝐴3 0.05 0.05 0.15
𝑃
(
𝐵

𝑗

)
1.0

(a) What is the probability that at least one working
path is available between the nodes labeled𝐴 and
𝐵?

(b) Remove link 4. Now what is the probability that
at least one working path is available between
nodes 𝐴 and 𝐵?

(c) Remove link 2. What is the probability that at
least oneworking path is available between nodes
𝐴 and 𝐵?

(d) Which is the more serious situation, the removal
of link 4 or link 2? Why?

6.6 Given a binary communication channel where𝐴 =
input and 𝐵 = output, let 𝑃 (𝐴) = 0.45, 𝑃 (𝐵 |𝐴) = 0.95,
and 𝑃 (𝐵 |𝐴) = 0.65. Find 𝑃 (𝐴 |𝐵) and 𝑃 (𝐴 |𝐵).
6.7 Given the table of joint probabilities of Table 6.5,

(a) Find the probabilities omitted from Table 6.5,

(b) Find the probabilities 𝑃 (𝐴3|𝐵3), 𝑃 (𝐵2|𝐴1), and
𝑃 (𝐵3|𝐴2).

Section 6.2

6.8 Two dice are tossed.

(a) Let 𝑋1 be a random variable that is numerically
equal to the total number of spots on the up faces
of the dice. Construct a table that defines this
random variable.

(b) Let𝑋2 be a random variable that has the value of
1 if the sum of the number of spots up on both
dice is even and the value zero if it is odd. Repeat
part (a) for this case.

6.9 Three fair coins are tossed simultaneously such
that they don’t interact. Define a random variable 𝑋 = 1
if an even number of heads is up and 𝑋 = 0 other-
wise. Plot the cumulative-distribution function and the
probability-density function corresponding to this random
variable.

6.10 A certain continuous random variable has the
cumulative-distribution function

𝐹
𝑋
(𝑥) =

⎧
⎪
⎨
⎪
⎩

0, 𝑥 < 0
𝐴𝑥

4
, 0 ≤ 𝑥 ≤ 12

𝐵, 𝑥 > 12

(a) Find the proper values for 𝐴 and 𝐵.

(b) Obtain and plot the pdf 𝑓
𝑋
(𝑥).

(c) Compute 𝑃 (𝑋 > 5).
(d) Compute 𝑃 (4 ≤ 𝑋 < 6).

6.11 The following functions can be pdfs if the con-
stants are chosen properly. Find the proper conditions on
the constants so that they are. [𝐴,𝐵, 𝐶,𝐷, 𝛼, 𝛽, 𝛾 , and 𝜏

are positive constants and 𝑢 (𝑥) is the unit step function.]

(a) 𝑓 (𝑥) = 𝐴𝑒
−𝛼𝑥

𝑢(𝑥), where 𝑢(𝑥) is the unit step
(b) 𝑓 (𝑥) = 𝐵𝑒

𝛽𝑥
𝑢(−𝑥)
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(c) 𝑓 (𝑥) = 𝐶𝑒
−𝛾𝑥

𝑢 (𝑥 − 1)
(d) 𝑓 (𝑥) = 𝐶 [𝑢 (𝑥) − 𝑢 (𝑥 − 𝜏)]

6.12 Test 𝑋 and 𝑌 for independence if

(a) 𝑓
𝑋𝑌

(𝑥, 𝑦) = 𝐴𝑒
−|𝑥|−2|𝑦|

(b) 𝑓
𝑋𝑌

(𝑥, 𝑦) = 𝐶(1 − 𝑥 − 𝑦), 0 ≤ 𝑥 ≤ 1− 𝑦 and
0 ≤ 𝑦 ≤ 1

Prove your answers.

6.13 The joint pdf of two random variables is

𝑓
𝑋𝑌

(𝑥, 𝑦) =

{
𝐶(1 + 𝑥𝑦), 0 ≤ 𝑥 ≤ 4, 0 ≤ 𝑦 ≤ 2
0, otherwise

Find the following:

(a) The constant 𝐶

(b) 𝑓
𝑋𝑌

(1, 1.5)
(c) 𝑓

𝑋𝑌
(𝑥, 3)

(d) 𝑓
𝑋∣𝑌 (𝑥 ∣ 3)

6.14 The joint pdf of the random variables 𝑋 and 𝑌 is

𝑓
𝑋𝑌

(𝑥, 𝑦) = 𝐴𝑥𝑦𝑒
−(𝑥+𝑦)

, 𝑥 ≥ 0 and 𝑦 ≥ 0

(a) Find the constant 𝐴.

(b) Find the marginal pdfs of 𝑋 and 𝑌 , 𝑓
𝑋
(𝑥) and

𝑓
𝑌
(𝑦).

(c) Are 𝑋 and 𝑌 statistically independent? Justify
your answer.

6.15

(a) For what value of 𝛼 > 0 is the function

𝑓 (𝑥) = 𝛼𝑥
−2
𝑢 (𝑥 − 𝛼)

a probability-density function? Use a sketch to
illustrate your reasoning and recall that a pdf has
to integrate to one. [𝑢(𝑥) is the unit step function.]

(b) Find the corresponding cumulative-distribution
function.

(c) Compute 𝑃 (𝑋 ≥ 10).

6.16 Given the Gaussian random variable with the pdf

𝑓
𝑋
(𝑥) = 𝑒

−𝑥2∕2𝜎2

√
2𝜋𝜎

where 𝜎 > 0 is the standard deviation. If 𝑌 = 𝑋
2, find the

pdf of 𝑌 . Hint: Note that 𝑌 = 𝑋
2 is symmetrical about

𝑋 = 0 and that it is impossible for 𝑌 to be less than zero.

6.17 A nonlinear system has input 𝑋 and output 𝑌 . The
pdf for the input is Gaussian as given in Problem 6.16.

Determine the pdf of the output, assuming that the nonlin-
ear system has the following input/output relationship:

(a) 𝑌 =

{
𝑎𝑋, 𝑋 ≥ 0
0, 𝑋 < 0

Hint: When 𝑋 < 0, what is 𝑌 ? How is this manifested in
the pdf for 𝑌 ?

(b) 𝑌 = |𝑋|;

(c) 𝑌 = 𝑋 −𝑋
3∕3.

Section 6.3

6.18 Let 𝑓
𝑋
(𝑥) = 𝐴 exp(−𝑏𝑥)𝑢 (𝑥 − 2) for all 𝑥 where 𝐴

and 𝑏 are positive constants.

(a) Find the relationship between 𝐴 and 𝑏 such that
this function is a pdf.

(b) Calculate 𝐸(𝑋) for this random variable.

(c) Calculate 𝐸(𝑋2) for this random variable.

(d) What is the variance of this random variable?

6.19

(a) Consider a randomvariable uniformly distributed
between 0 and 2. Show that 𝐸(𝑋2) > 𝐸

2(𝑋).
(b) Consider a randomvariable uniformly distributed

between 0 and 4. Show that 𝐸(𝑋2) > 𝐸
2(𝑋).

(c) Can you show in general that for any random
variable it is true that 𝐸(𝑋2) > 𝐸

2(𝑋) unless the
random variable is zero almost always? (Hint:
Expand 𝐸

{
[𝑋 − 𝐸 (𝑋)]2 ≥ 0

}
and note that it

is 0 only if 𝑋 = 0 with probability 1.)

6.20 Verify the entries in Table 6.5 for the mean and
variance of the following probability distributions:

(a) Rayleigh;

(b) One-sided exponential;

(c) Hyperbolic;

(d) Poisson;

(e) Geometric.

6.21 A random variable 𝑋 has the pdf

𝑓
𝑋
(𝑥) = 𝐴𝑒

−𝑏𝑥[𝑢(𝑥) − 𝑢(𝑥 − 𝐵)]

where 𝑢(𝑥) is the unit step function and 𝐴, 𝐵, and 𝑏 are
positive constants.
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(a) Find the proper relationship between the con-
stants 𝐴, 𝑏, and 𝐵. Express 𝑏 in terms of 𝐴 and
𝐵.

(b) Determine and plot the cdf.

(c) Compute 𝐸(𝑋).
(d) Determine 𝐸(𝑋2).
(e) What is the variance of 𝑋?

6.22 If

𝑓
𝑋
(𝑥) = (2𝜋𝜎2)−1∕2 exp

(
− 𝑥

2

2𝜎2

)

show that

(a) 𝐸[𝑋2𝑛] = 1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)𝜎2𝑛
, for

𝑛 = 1, 2, ...
(b) 𝐸[𝑋2𝑛−1] = 0 for 𝑛 = 1, 2, ...

6.23 The random variable has pdf

𝑓
𝑋
(𝑥) = 1

2
𝛿(𝑥 − 5) + 1

8
[𝑢(𝑥 − 4) − 𝑢(𝑥 − 8)]

where 𝑢(𝑥) is the unit step. Determine the mean and the
variance of the random variable thus defined.

6.24 Two random variables 𝑋 and 𝑌 have means and
variances given below:

𝑚
𝑥
= 1 𝜎

2
𝑥
= 4 𝑚

𝑦
= 3 𝜎

2
𝑦
= 7

A new random variable 𝑍 is defined as

𝑍 = 3𝑋 − 4𝑌

Determine the mean and variance of 𝑍 for each of
the following cases of correlation between the random
variables 𝑋 and 𝑌 :

(a) 𝜌
𝑋𝑌

= 0
(b) 𝜌

𝑋𝑌
= 0.2

(c) 𝜌
𝑋𝑌

= 0.7
(d) 𝜌

𝑋𝑌
= 1.0

6.25 TwoGaussian random variables𝑋 and 𝑌 , with zero
means and variances 𝜎2, between which there is a correla-
tion coefficient 𝜌, have a joint probability-density function
given by

𝑓 (𝑥, 𝑦) = 1
2𝜋𝜎2

√
1 − 𝜌2

exp

[

−𝑥
2 − 2𝜌𝑥𝑦 + 𝑦

2

2𝜎2
(
1 − 𝜌2

)

]

The marginal pdf of 𝑌 can be shown to be

𝑓
𝑌
(𝑦) =

exp
(
−𝑦2∕

(
2𝜎2

))

√
2𝜋𝜎2

Find the conditional pdf 𝑓
𝑋|𝑌 (𝑥 | 𝑦).

6.26 Using the definition of a conditional pdf given by
Equation (6.62) and the expressions for the marginal and
joint Gaussian pdfs, show that for two jointly Gaussian
random variables 𝑋 and 𝑌 , the conditional density func-
tion of𝑋 given 𝑌 has the form of a Gaussian density with
conditional mean and the conditional variance given by

𝐸(𝑋|𝑌 ) = 𝑚
𝑥
+

𝜌𝜎
𝑥

𝜎
𝑦

(𝑌 − 𝑚
𝑦
)

and

var(𝑋|𝑌 ) = 𝜎
2
𝑥
(1 − 𝜌

2)

respectively.

6.27 The random variable 𝑋 has a probability-density
function uniform in the range 0 ≤ 𝑥 ≤ 2 and zero else-
where. The independent variable 𝑌 has a density uniform
in the range 1 ≤ 𝑦 ≤ 5 and zero elsewhere. Find and plot
the density of 𝑍 = 𝑋 + 𝑌 .

6.28 A random variable 𝑋 is defined by

𝑓
𝑋
(𝑥) = 4𝑒−8|𝑥|

The random variable 𝑌 is related to 𝑋 by 𝑌 = 4 + 5𝑋.

(a) Determine 𝐸[𝑋], 𝐸[𝑋2], and 𝜎
2
𝑥
.

(b) Determine 𝑓
𝑌
(𝑦).

(c) Determine 𝐸[𝑌 ], 𝐸[𝑌 2], and 𝜎
2
𝑦
. (Hint: The re-

sult of part (b) is not necessary to do this part,
although it may be used.)

(d) If you used 𝑓
𝑌
(𝑦) in part (c), repeat that part using

only 𝑓
𝑋
(𝑥).

6.29 A random variable 𝑋 has the probability-density
function

𝑓
𝑋
(𝑥) =

{
𝑎𝑒

−𝑎𝑥
, 𝑥 ≥ 0

0, 𝑥 < 0

where 𝑎 is an arbitrary positive constant.

(a) Determine the characteristic function 𝑀
𝑥
(𝑗𝑣).

(b) Use the characteristic function to determine𝐸[𝑋]
and 𝐸[𝑋2].

(c) Check your results by computing

∫

∞

−∞
𝑥
𝑛
𝑓
𝑋
(𝑥) 𝑑𝑥

for 𝑛 = 1 and 2.

(d) Compute 𝜎2
𝑥
.
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Section 6.4

6.30 Compare the binomial, Laplace, and Poisson distri-
butions for

(a) 𝑛 = 3 and 𝑝 = 1
5

(b) 𝑛 = 3 and 𝑝 = 1
10

(c) 𝑛 = 10 and 𝑝 = 1
5

(d) 𝑛 = 10 and 𝑝 = 1
10

6.31 An honest coin is flipped 10 times.

(a) Determine the probability of the occurrence of
either 5 or 6 heads.

(b) Determine the probability of the first head occur-
ring at toss number 5.

(c) Repeat parts (a) and (b) for flipping 100 times
and the probability of the occurrence of 50 to 60
heads inclusive and the probability of the first
head occurring at toss number 50.

6.32 Passwords in a computer installation take the form
𝑋1𝑋2𝑋3𝑋4, where each character 𝑋

𝑖
is one of the

26 letters of the alphabet. Determine the maximum possi-
ble number of different passwords available for assignment
for each of the two following conditions:

(a) A given letter of the alphabet can be used only
once in a password.

(b) Letters can be repeated if desired, so that each𝑋
𝑖

is completely arbitrary.

(c) If selection of letters for a given password is com-
pletely random, what is the probability that your
competitor could access, on a single try, your
computer in part (a)? part (b)?

6.33 Assume that 20 honest coins are tossed.

(a) By applying the binomial distribution, find the
probability that there will be fewer than 3 heads.

(b) Do the same computation using the Laplace ap-
proximation.

(c) Compare the results of parts (a) and (b) by com-
puting the percent error of the Laplace approxi-
mation.

6.34 A digital data transmission system has an error
probability of 10−5 per digit.

(a) Find the probability of exactly 1 error in 105
digits.

(b) Find the probability of exactly 2 errors in 105
digits.

(c) Find the probability of more than 5 errors in 105
digits.

6.35 Assume that two random variables 𝑋 and 𝑌 are
jointly Gaussian with 𝑚

𝑥
= 𝑚

𝑦
= 1, 𝜎2

𝑥
= 𝜎

2
𝑦
= 4.

(a) Making use of (6.194), write down an expression
for the margininal pdfs of 𝑋 and of 𝑌 .

(b) Write down an expression for the conditional
pdf 𝑓

𝑋 | 𝑌 (𝑥 | 𝑦) by using the result of (a) and
an expression for 𝑓

𝑋𝑌
(𝑥, 𝑦) written down from

(6.189). Deduce that 𝑓
𝑌 | 𝑋 (𝑦 | 𝑥) has the same

form with 𝑦 replacing 𝑥.

(c) Put 𝑓
𝑋 | 𝑌 (𝑥 | 𝑦) into the form of a marginal

Gaussian pdf. What is its mean and variance?
(The mean will be a function of 𝑦.)

6.36 Consider the Cauchy density function

𝑓
𝑋
(𝑥) = 𝐾

1 + 𝑥2 , −∞ ≤ 𝑥 ≤ ∞

(a) Find 𝐾 .

(b) Show that var{𝑋] is not finite.
(c) Show that the characteristic function of a Cauchy

random variable is 𝑀
𝑥
(𝑗𝑣) = 𝜋𝐾𝑒

−|𝑣|.

(d) Nowconsider𝑍 = 𝑋1 +⋯ +𝑋
𝑁
where the𝑋

𝑖
’s

are independent Cauchy random variables. Thus,
their characteristic function is

𝑀
𝑍
(𝑗𝑣) = (𝜋𝐾)𝑁 exp (−𝑁|𝑣|)

Show that 𝑓
𝑍
(𝑧) is Cauchy. (Comment: 𝑓

𝑍
(𝑧)

is not Gaussian as 𝑁 → ∞ because var{𝑋
𝑖
] is

not finite and the conditions of the central-limit
theorem are violated.)

6.37 (Chi-squared pdf) Consider the random variable
𝑌 =

∑𝑁

𝑖=1 𝑋
2
𝑖
where the 𝑋

𝑖
’s are independent Gaussian

random variables with pdfs 𝑛(0, 𝜎).

(a) Show that the characteristic function of 𝑋2
𝑖
is

𝑀
𝑋

2
𝑖

(𝑗𝑣) =
(
1 − 2𝑗𝑣𝜎2)−1∕2

(b) Show that the pdf of 𝑌 is

𝑓
𝑌
(𝑦) =

⎧
⎪
⎨
⎪
⎩

𝑦
𝑁∕2−1

𝑒
−𝑦∕2𝜎2

2𝑁∕2𝜎𝑁Γ(𝑁∕2)
, 𝑦 ≥ 0

0, 𝑦 < 0

where Γ(𝑥) is the gamma function, which, for
𝑥 = 𝑛, an integer is Γ(𝑛) = (𝑛 − 1)!. This pdf is
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known as the 𝜒
2 (chi-squared) pdf with 𝑁 de-

grees of freedom.Hint: Use the Fourier-transform
pair

𝑦
𝑁∕2−1

𝑒
−𝑦∕𝛼

𝛼𝑁∕2Γ (𝑁∕2)
↔ (1 − 𝑗𝛼𝑣)−𝑁∕2

(c) Show that for𝑁 large, the 𝜒2 pdf can be approx-
imated as

𝑓
𝑌
(𝑦) =

exp
[
−1

2

(
𝑦−𝑁𝜎

2
√
4𝑁𝜎4

)2
]

√
4𝑁𝜋𝜎4

, 𝑁 ≫ 1

Hint: Use the central-limit theorem. Since the𝑥
𝑖
’s

are independent,

𝑌 =
𝑁∑

𝑖=1
𝑋

2
𝑖
= 𝑁𝜎

2

and

var(𝑌 ) =
𝑁∑

𝑖=1
var (𝑋2

𝑖
) = 𝑁 var (𝑋2

𝑖
)

(d) Compare the approximation obtained in part (c)
with 𝑓

𝑌
(𝑦) for 𝑁 = 2, 4, 8.

(e) Let 𝑅2 = 𝑌 . Show that the pdf of 𝑅 for𝑁 = 2 is
Rayleigh.

6.38 Compare the 𝑄-function and the approximation to
it for large arguments given by (6.202) by plotting both
expressions on a log-log graph. (Note: MATLAB is handy
for this problem.)

6.39 Determine the cdf for a Gaussian random vari-
able of mean 𝑚 and variance 𝜎

2. Express in terms of the
𝑄-function. Plot the resulting cdf for 𝑚 = 0, and 𝜎 = 0.5,
1, and 2.

6.40 Prove that the 𝑄-function may also be represented

as 𝑄 (𝑥) = 1
𝜋
∫

𝜋∕2
0 exp

(
− 𝑥

2

2 sin2 𝜙

)
𝑑𝜙.

6.41 A random variable 𝑋 has the probability-density
function

𝑓
𝑋
(𝑥) = 𝑒

−(𝑥−10)2∕50
√
50𝜋

Express the following probabilities in terms of the
𝑄-function and calculate numerical answers for each:

(a) 𝑃 (|𝑋| ≤ 15);
(b) 𝑃 (10 < 𝑋 ≤ 20);
(c) 𝑃 (5 < 𝑋 ≤ 25);
(d) 𝑃 (20 < 𝑋 ≤ 30).

6.42

(a) Prove Chebyshev’s inequality. Hint: Let 𝑌 =
(𝑋 − 𝑚

𝑥
)∕𝜎

𝑥
and find a bound for 𝑃 (|𝑌 | < 𝑘)

in terms of 𝑘.

(b) Let𝑋 be uniformly distributed over |𝑥| ≤ 1. Plot
𝑃 (|𝑋| ≤ 𝑘𝜎

𝑥
) versus 𝑘 and the corresponding

bound given by Chebyshev’s inequality.

6.43 If the random variable 𝑋 is Gaussian, with zero
mean and variance 𝜎

2, obtain numerical values for the
following probabilities:

(a) 𝑃 (|𝑋| > 𝜎);
(b) 𝑃 (|𝑋| > 2𝜎);
(c) 𝑃 (|𝑋| > 3𝜎).

6.44 Speech is sometimes idealized as having a
Laplacian-amplitude pdf. That is, the amplitude is dis-
tributed according to

𝑓
𝑋
(𝑥) =

(
𝑎

2

)
exp (−𝑎 |𝑥|)

(a) Express the variance of𝑋, 𝜎2, in terms of 𝑎. Show
your derivation; don’t just simply copy the result
given in Table 6.4.

(b) Compute the following probabilities:
𝑃 (|𝑋| > 𝜎); 𝑃 (|𝑋| > 2𝜎); 𝑃 (|𝑋| > 3𝜎) .

6.45 Two jointly Gaussian zero-mean random variables,
𝑋 and 𝑌 , have respective variances of 3 and 4 and cor-
relation coefficient 𝜌

𝑋𝑌
= −0.4. A new random variable

is defined as 𝑍 = 𝑋 + 2𝑌 . Write down an expression for
the pdf of 𝑍.

6.46 Two jointly Gaussian random variables, 𝑋 and 𝑌 ,
have means of 1 and 2, and variances of 3 and 2, respec-
tively. Their correlation coefficient is 𝜌

𝑋𝑌
= 0.2. A new

random variable is defined as 𝑍 = 3𝑋 + 𝑌 . Write down
an expression for the pdf of 𝑍.

6.47 Two Gaussian random variables, 𝑋 and 𝑌 , are in-
dependent. Their respective means are 5 and 3, and their
respective variances are 1 and 2.

(a) Write down expressions for their marginal pdfs.

(b) Write down an expression for their joint pdf.

(c) What is the mean of𝑍1 = 𝑋 + 𝑌 ?𝑍2 = 𝑋 − 𝑌 ?

(d) What is the variance of 𝑍1 = 𝑋 + 𝑌 ? 𝑍2 = 𝑋 −
𝑌 ?

(e) Write down an expression for the pdf of 𝑍1 =
𝑋 + 𝑌 .

(f) Write down an expression for the pdf of 𝑍2 =
𝑋 − 𝑌 .
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6.48 Two Gaussian random variables, 𝑋 and 𝑌 , are in-
dependent. Their respective means are 4 and 2, and their
respective variances are 3 and 5.

(a) Write down expressions for their marginal pdfs.

(b) Write down an expression for their joint pdf.

(c) What is the mean of 𝑍1 = 3𝑋 + 𝑌 ? 𝑍2 = 3𝑋 −
𝑌 ?

(d) What is the variance of 𝑍1 = 3𝑋 + 𝑌 ? 𝑍2 =
3𝑋 − 𝑌 ?

(e) Write down an expression for the pdf of 𝑍1 =
3𝑋 + 𝑌 .

(f) Write down an expression for the pdf of 𝑍2 =
3𝑋 − 𝑌 .

6.49 Find the probabilities of the following random vari-
ables, with pdfs as given in Table 6.4, exceeding their
means. That is, in each case, find the probability that
𝑋 ≥ 𝑚

𝑋
, where 𝑋 is the respective random variable and

𝑚
𝑋
is its mean.

(a) Uniform;

(b) Rayleigh;

(b) One-sided exponential.

Computer Exercises

6.1 In this exercise we examine a useful technique for
generating a set of samples having a given pdf.

(a) First, prove the following theorem: If𝑋 is a con-
tinuous random variable with cdf 𝐹

𝑋
(𝑥), the ran-

dom variable

𝑌 = 𝐹
𝑋
(𝑋)

is a uniformly distributed random variable in the
interval (0, 1).

(b) Using this theorem, design a randomnumber gen-
erator to generate a sequence of exponentially
distributed random variables having the pdf

𝑓
𝑋
(𝑥) = 𝛼𝑒

−𝛼𝑥
𝑢(𝑥)

where 𝑢(𝑥) is the unit step. Plot histograms of the
random numbers generated to check the validity
of the random number generator you designed.

6.2 An algorithm for generating a Gaussian random
variable from two independent uniform random variables
is easily derived.

(a) Let 𝑈 and 𝑉 be two statistically independent
random numbers uniformly distributed in [0, 1].
Show that the following transformation generates
two statistically independent Gaussian random
numbers with unit variance and zero mean:

𝑋 = 𝑅 cos(2𝜋𝑈 )
𝑌 = 𝑅 sin(2𝜋𝑈 )

where

𝑅 =
√
−2 ln (𝑉 )

Hint: First show that 𝑅 is Rayleigh.

(b) Generate 1000 random variable pairs according
to the above algorithm. Plot histograms for each

set (i.e., 𝑋 and 𝑌 ), and compare with Gaussian
pdfs after properly scaling the histograms (i.e.,
divide each cell by the total number of counts
times the cell width so that the histogram approx-
imates a probability-density function). Hint: Use
the hist function of MATLAB.

6.3 Using the results of Problem 6.26 and the Gaussian
random number generator designed in Computer Exercise
6.2, design a Gaussian random number generator that will
provide a specified correlation between adjacent samples.
Let

𝑃 (𝜏) = 𝑒
−𝛼|𝜏|

and plot sequences of Gaussian random numbers for vari-
ous choices of 𝛼. Show how stronger correlation between
adjacent samples affects the variation from sample to sam-
ple. (Note: To get memory over more than adjacent sam-
ples, a digital filter should be used with independent Gaus-
sian samples at the input.)

6.4 Check the validity of the central-limit theorem by
repeatedly generating 𝑛 independent uniformly distributed
random variables in the interval (−0.5, 0.5), forming the
sum given by (6.187), and plotting the histogram. Do
this for 𝑁 = 5, 10, and 20. Can you say anything qual-
itatively and quantitatively about the approach of the sums
to Gaussian random numbers? Repeat for exponentially
distributed component random variables (do Computer
Exercise 6.1 first). Can you think of a drawback to the
approach of summing uniformly distributed random vari-
ables to generating Gaussian random variables (Hint:Con-
sider the probability of the sum of uniform random vari-
ables being greater than 0.5𝑁 or less than −0.5𝑁 . What
are the same probabilities for a Gaussian random variable?

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER7

RANDOM SIGNALS AND NOISE

The mathematical background reviewed in Chapter 6 on probability theory provides the basis

for developing the statistical description of random waveforms. The importance of considering

such waveforms, as pointed out in Chapter 1, lies in the fact that noise in communication systems

is due to unpredictable phenomena, such as the random motion of charge carriers in conducting

materials and other unwanted sources.

In the relative-frequency approach to probability, we imagined repeating the underlying

chance experiment many times, the implication being that the replication process was carried out

sequentially in time. In the study of random waveforms, however, the outcomes of the underlying

chance experiments are mapped into functions of time, or waveforms, rather than numbers, as

in the case of random variables. The particular waveform is not predictable in advance of the

experiment, just as the particular value of a random variable is not predictable before the chance

experiment is performed. We now address the statistical description of chance experiments that

result in waveforms as outputs. To visualize how this may be accomplished, we again think in

terms of relative frequency.

■ 7.1 A RELATIVE-FREQUENCY DESCRIPTION OF RANDOM PROCESSES

For simplicity, consider a binary digital waveform generator whose output randomly switches
between +1 and −1 in 𝑇0-second intervals as shown in Figure 7.1. Let 𝑋(𝑡, 𝜁

𝑖
) be the random

waveform corresponding to the output of the 𝑖th generator. Suppose relative frequency is used
to estimate 𝑃 (𝑋 = +1) by examining the outputs of all generators at a particular time. Since
the outputs are functions of time, we must specify the time when writing down the relative
frequency. The following table may be constructed from an examination of the generator
outputs in each time interval shown:

Time Interval: (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10)

Relative Frequency: 5
10

6
10

8
10

6
10

7
10

8
10

8
10

8
10

8
10

9
10

From this table it is seen that the relative frequencies change with the time interval.
Although this variation in relative frequency could be the result of statistical irregularity, we

308
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1

2

3

4

5

6

7

8

9

10

t = 0

t

t

t

t

t

t

t

t

t

t

1Gen. No. 2 3 4 5 6 7 8 9 10 Figure 7.1
A statistically identical set of
binary waveform generators
with typical outputs.

highly suspect that some phenomenon is making𝑋 = +1more probable as time increases. To
reduce the possibility that statistical irregularity is the culprit, we might repeat the experiment
with 100 generators or 1000 generators. This is obviously a mental experiment in that it
would be very difficult to obtain a set of identical generators and prepare them all in identical
fashions.
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■ 7.2 SOME TERMINOLOGY OF RANDOM PROCESSES

7.2.1 Sample Functions and Ensembles

In the same fashion as is illustrated in Figure 7.1, we could imagine performing any chance
experiment many times simultaneously. If, for example, the random quantity of interest is
the voltage at the terminals of a noise generator, the random variable 𝑋1 may be assigned
to represent the possible values of this voltage at time 𝑡1 and the random variable 𝑋2 the
values at time 𝑡2. As in the case of the digital waveform generator, we can imagine many
noise generators all constructed in an identical fashion, insofar as we can make them, and
run under identical conditions. Figure 7.2(a) shows typical waveforms generated in such an
experiment. Each waveform 𝑋(𝑡, 𝜁

𝑖
) is referred to as a sample function, where 𝜁

𝑖
is a member

of a sample space  . The totality of all sample functions is called an ensemble. The underlying
chance experiment that gives rise to the ensemble of sample functions is called a random, or
stochastic, process. Thus, to every outcome 𝜁 we assign, according to a certain rule, a time
function𝑋(𝑡, 𝜁 ). For a specific 𝜁 , say 𝜁

𝑖
,𝑋(𝑡, 𝜁

𝑖
) signifies a single time function. For a specific

time 𝑡
𝑗
, 𝑋(𝑡

𝑗
, 𝜁 ) denotes a random variable. For fixed 𝑡 = 𝑡

𝑗
and fixed 𝜁 = 𝜁

𝑖
, 𝑋(𝑡

𝑗
, 𝜁

𝑖
) is a

number. In what follows, we often suppress the 𝜁 .
To summarize, the difference between a random variable and a random process is that for

a random variable, an outcome in the sample space is mapped into a number, whereas for a
random process it is mapped into a function of time.

Noise

Gen. 1

X (t, 1)ζ
x1

x1 − ∆x1

x2

x2 − ∆x2

Noise

Gen. 2

X (t, 2)ζ x1

x1 − ∆x1

x2

x2 − ∆x2 

Noise

Gen. M

X (t, M)ζ
x1

x1 − ∆x1 x2

x2 − ∆x2

t

t

t

t

t1 t2

t1 t2

(a)

(b)

Figure 7.2
Typical sample functions of a
random process and illustration
of the relative-frequency
interpretation of its joint pdf.
(a) Ensemble of sample
functions. (b) Superposition of
the sample functions shown
in (a).
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7.2.2 Description of Random Processes in Terms of Joint pdfs

A complete description of a random process {𝑋(𝑡, 𝜁 )} is given by the 𝑁-fold joint pdf that
probabilistically describes the possible values assumed by a typical sample function at times
𝑡
𝑁

> 𝑡
𝑁−1 > ⋯ > 𝑡1, where 𝑁 is arbitrary. For 𝑁 = 1, we can interpret this joint pdf

𝑓
𝑋1
(𝑥1, 𝑡1) as

𝑓
𝑋1
(𝑥1, 𝑡1)𝑑𝑥1 = 𝑃 (𝑥1 − 𝑑𝑥1 < 𝑋1 ≤ 𝑥1 at time 𝑡1) (7.1)

where𝑋1 = 𝑋(𝑡1, 𝜁 ). Similarly, for𝑁 = 2, we can interpret the joint pdf 𝑓
𝑋1𝑋2

(𝑥1, 𝑡1; 𝑥2, 𝑡2)
as

𝑓
𝑋1𝑋2

(𝑥1, 𝑡1; 𝑥2, 𝑡2)𝑑𝑥1𝑑𝑥2 =
𝑃 (𝑥1 − 𝑑𝑥1 < 𝑋1 ≤ 𝑥1 at time 𝑡1, and 𝑥2 − 𝑑𝑥2 < 𝑋2 ≤ 𝑥2 at time 𝑡2)

(7.2)

where 𝑋2 = 𝑋(𝑡2, 𝜁 ).
To help visualize the interpretation of (7.2), Figure 7.2(b) shows the three sample functions

of Figure 7.2(a) superimposed with barriers placed at 𝑡 = 𝑡1 and 𝑡 = 𝑡2. According to the
relative-frequency interpretation, the joint probability given by (7.2) is the number of sample
functions that pass through the slits in both barriers divided by the total number 𝑀 of sample
functions as 𝑀 becomes large without bound.

7.2.3 Stationarity

We have indicated the possible dependence of 𝑓
𝑋1𝑋2

on 𝑡1 and 𝑡2 by including them in its
argument. If {𝑋(𝑡)} were a Gaussian random process, for example, its values at time 𝑡1 and 𝑡2
would be described by (6.187), where 𝑚

𝑋
,𝑚

𝑌
, 𝜎

2
𝑋
, 𝜎

2
𝑌
, and 𝜌 would, in general, depend on 𝑡1

and 𝑡2.
1 Note that we need a general 𝑁-fold pdf to completely describe the random process

{𝑋(𝑡)}. In general, such a pdf depends on 𝑁 time instants 𝑡1, 𝑡2,… , 𝑡
𝑁
. In some cases, these

joint pdfs depend only on the time differences 𝑡2 − 𝑡1, 𝑡3 − 𝑡1,… , 𝑡
𝑁
− 𝑡1; that is, the choice

of time origin for the random process is immaterial. Such random processes are said to be
statistically stationary in the strict sense, or simply stationary.

For stationary processes, means and variances are independent of time, and the correlation
coefficient (or covariance) depends only on the time difference 𝑡2 − 𝑡1.

2 Figure 7.3 contrasts
sample functions of stationary and nonstationary processes. It may happen that in some cases
the mean and variance of a random process are time-independent and the covariance is a
function only of the time difference, but the𝑁-fold joint pdf depends on the time origin. Such
random processes are called wide-sense stationary processes to distinguish them from strictly
stationary processes (that is, processes whose 𝑁-fold pdf is independent of time origin).
Strict-sense stationarity implies wide-sense stationarity, but the reverse is not necessarily true.
An exception occurs for Gaussian random processes for which wide-sense stationarity does
imply strict-sense stationarity, since the joint Gaussian pdf is completely specified in terms of
the means, variances, and covariances of 𝑋(𝑡1), 𝑋(𝑡2),… , 𝑋(𝑡

𝑁
).

1For a stationary process, all joint moments are independent of time origin. We are interested primarily in the
covariance, however.
2At 𝑁 instants of time, its values would be described by (B.1) of Appendix B.
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(b)

y(t)

0 2 4 6
t

8 10
−10

0

10

(c)

x(t)

0 2 4 6
t

8 10
−10

0

10

(a)

x(t)

0 2 4 6
t

8 10
−10

0

10

Figure 7.3
Sample functions of nonstationary processes contrasted with a sample function of a stationary process.
(a) Time-varying mean. (b) Time-varying variance. (c) Stationary.

7.2.4 Partial Description of Random Processes: Ergodicity

As in the case of randomvariables, wemay not always require a complete statistical description
of a random process, or we may not be able to obtain the 𝑁-fold joint pdf even if desired.
In such cases, we work with various moments, either by choice or by necessity. The most
important averages are the mean,

𝑚
𝑋
(𝑡) = 𝐸[𝑋(𝑡)] = 𝑋(𝑡) (7.3)

the variance,

𝜎
2
𝑋
(𝑡) = 𝐸

{
[𝑋(𝑡) −𝑋(𝑡)]2

}
= 𝑋2 (𝑡) −𝑋(𝑡)

2
(7.4)
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and the covariance,

𝜇
𝑋
(𝑡, 𝑡 + 𝜏) = 𝐸

{
[𝑋(𝑡) −𝑋(𝑡)][𝑋(𝑡 + 𝜏) −𝑋(𝑡 + 𝜏)]

}
(7.5)

= 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝜏)] −𝑋(𝑡) 𝑋(𝑡 + 𝜏)

In (7.5), we let 𝑡 = 𝑡1 and 𝑡 + 𝜏 = 𝑡2. The first term on the right-hand side is the autocor-
relation function computed as a statistical, or ensemble, average (that is, the average is across
the sample functions at times 𝑡 and 𝑡 + 𝜏). In terms of the joint pdf of the random process, the
autocorrelation function is

𝑅
𝑋
(𝑡1, 𝑡2) =

∫

∞

−∞ ∫

∞

−∞
𝑥1𝑥2𝑓𝑋1𝑋2

(𝑥1, 𝑡1; 𝑥2, 𝑡2) 𝑑𝑥1 𝑑𝑥2 (7.6)

where 𝑋1 = 𝑋(𝑡1) and 𝑋2 = 𝑋(𝑡2). If the process is wide-sense stationary, 𝑓
𝑋1𝑋2

does not
depend on 𝑡 but rather on the time difference, 𝜏 = 𝑡2 − 𝑡1 and as a result, 𝑅

𝑋
(𝑡1, 𝑡2) = 𝑅

𝑋
(𝜏)

is a function only of 𝜏. A very important question is: ‘‘If the autocorrelation function using
the definition of a time average as given in Chapter 2 is used, will the result be the same as
the statistical average given by (7.6)?’’ For many processes, referred to as ergodic, the answer
is affirmative. Ergodic processes are processes for which time and ensemble averages are
interchangeable. Thus, if𝑋 (𝑡) is an ergodic process, all time and the corresponding ensemble
averages are interchangeable. In particular,

𝑚
𝑋
= 𝐸[𝑋 (𝑡)] = ⟨𝑋 (𝑡)⟩ (7.7)

𝜎
2
𝑋
= 𝐸

{
[𝑋 (𝑡) −𝑋 (𝑡)]2

}
=
⟨[

𝑋 (𝑡) − ⟨𝑋 (𝑡)⟩
]2⟩

(7.8)

and

𝑅
𝑋
(𝜏) = 𝐸[𝑋 (𝑡) 𝑋(𝑡 + 𝜏)] = ⟨𝑋 (𝑡) 𝑋(𝑡 + 𝜏)⟩ (7.9)

where

⟨𝑣(𝑡)⟩ ≜ lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝑣(𝑡) 𝑑𝑡 (7.10)

as defined in Chapter 2. We emphasize that for ergodic processes all time and ensemble
averages are interchangeable, not just the mean, variance, and autocorrelation function.

EXAMPLE 7.1

Consider the random process with sample functions3

𝑛(𝑡) = 𝐴 cos(2𝜋𝑓0𝑡 + Θ)

where 𝑓0 is a constant and Θ is a random variable with the pdf

𝑓Θ (𝜃) =

{ 1
2𝜋
, |𝜃| ≤ 𝜋

0, otherwise
(7.11)

3In this example we violate our earlier established convention that sample functions are denoted by capital letters.
This is quite often done if confusion will not result.
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Computed as statistical averages, the first and second moments are

𝑛(𝑡) =
∫

∞

−∞
𝐴 cos(2𝜋𝑓0𝑡 + 𝜃)𝑓Θ (𝜃) 𝑑𝜃

=
∫

𝜋

−𝜋
𝐴 cos(2𝜋𝑓0𝑡 + 𝜃) 𝑑𝜃

2𝜋
= 0 (7.12)

and

𝑛2(𝑡) =
∫

𝜋

−𝜋
𝐴

2 cos2(2𝜋𝑓0𝑡 + 𝜃)𝑑𝜃
2𝜋

= 𝐴
2

4𝜋 ∫

𝜋

−𝜋

[
1 + cos

(
4𝜋𝑓0𝑡 + 2𝜃

)]
𝑑𝜃 = 𝐴

2

2
(7.13)

respectively. The variance is equal to the second moment, since the mean is zero.
Computed as time averages, the first and second moments are

⟨𝑛(𝑡)⟩ = lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝐴 cos(2𝜋𝑓0𝑡 + Θ) 𝑑𝑡 = 0 (7.14)

and

⟨𝑛(𝑡)⟩ = lim
𝑇→∞

1
2𝑇 ∫

𝑇

−𝑇
𝐴

2 cos2(2𝜋𝑓0𝑡 + Θ) 𝑑𝑡 = 𝐴
2

2
(7.15)

respectively. In general, the time average of some function of an ensemble member of a random process
is a random variable. In this example, ⟨𝑛(𝑡)⟩ and

⟨
𝑛
2(𝑡)

⟩
are constants! We suspect that this random

process is stationary and ergodic, even though the preceding results do not prove this. It turns out that
this is indeed true.

To continue the example, consider the pdf

𝑓Θ (𝜃) =

{ 2
𝜋
, |𝜃| ≤ 1

4
𝜋

0, otherwise
(7.16)

For this case, the expected value, or mean, of the random process computed at an arbitrary time 𝑡 is

𝑛(𝑡) =
∫

𝜋∕4

−𝜋∕4
𝐴 cos(2𝜋𝑓0𝑡 + 𝜃) 2

𝜋
𝑑𝜃

= 2
𝜋
𝐴 sin(2𝜋𝑓0𝑡 + 𝜃)

||||

𝜋∕4

−𝜋∕4
=

2
√
2𝐴
𝜋

cos𝜔0𝑡 (7.17)

The second moment, computed as a statistical average, is

𝑛2(𝑡) =
∫

𝜋∕4

−𝜋∕4
𝐴

2 cos2(2𝜋𝑓0𝑡 + 𝜃) 2
𝜋
𝑑𝜃

=
∫

𝜋∕4

−𝜋∕4

𝐴
2

𝜋

[
1 + cos(4𝜋𝑓0𝑡 + 2𝜃)

]
𝑑𝜃

= 𝐴
2

2
+ 𝐴

2

𝜋
cos 4𝜋𝑓0𝑡 (7.18)

Since stationarity of a random process implies that all moments are independent of time origin, these
results show that this process is not stationary. In order to comprehend the physical reason for this,
you should sketch some typical sample functions. In addition, this process cannot be ergodic, since
ergodicity requires stationarity. Indeed, the time average first and second moments are still ⟨𝑛(𝑡)⟩ = 0
and

⟨
𝑛
2(𝑡)

⟩
= 1

2
𝐴

2, respectively. Thus, we have exhibited two time averages that are not equal to the
corresponding statistical averages.

■
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7.2.5 Meanings of Various Averages for Ergodic Processes

It is useful to pause at this point and summarize the meanings of various averages for an
ergodic process:

1. The mean 𝑋 (𝑡) = ⟨𝑋 (𝑡)⟩ is the dc component.

2. 𝑋 (𝑡)
2
= ⟨𝑋 (𝑡)⟩2 is the dc power.

3. 𝑋2 (𝑡) =
⟨
𝑋

2 (𝑡)
⟩
is the total power.

4. 𝜎2
𝑋
= 𝑋2 (𝑡) −𝑋 (𝑡)

2
=
⟨
𝑋

2(𝑡)
⟩
− ⟨𝑋 (𝑡)⟩2 is the power in the ac (time-varying)

component.

5. The total power 𝑋2 (𝑡) = 𝜎
2
𝑋
+𝑋 (𝑡)

2
is the ac power plus the dc power.

Thus, in the case of ergodic processes, we see that these moments are measurable quantities
in the sense that they can be replaced by the corresponding time averages and a finite-time
approximation to these time averages can be measured in the laboratory.

EXAMPLE 7.2

To illustrate some of the definitions given above with regard to correlation functions, let us consider
a random telegraph waveform 𝑋 (𝑡), as illustrated in Figure 7.4. The sample functions of this random
process have the following properties:

1. The values taken on at any time instant 𝑡0 are either𝑋
(
𝑡0
)
= 𝐴 or𝑋

(
𝑡0
)
= −𝐴with equal probability.

2. The number 𝑘 of switching instants in any time interval 𝑇 obeys a Poisson distribution, as defined by
(6.182), with the attendant assumptions leading to this distribution. (That is, the probability of more
than one switching instant occurring in an infinitesimal time interval 𝑑𝑡 is zero, with the probability
of exactly one switching instant occurring in 𝑑𝑡 being 𝛼 𝑑𝑡, where 𝛼 is a constant. Furthermore,
successive switching occurrences are independent.)

If 𝜏 is any positive time increment, the autocorrelation function of the random process defined by
the preceding properties can be calculated as

𝑅
𝑋
(𝜏) = 𝐸[𝑋 (𝑡) 𝑋(𝑡 + 𝜏)]

= 𝐴
2
𝑃 [𝑋 (𝑡) and 𝑋(𝑡 + 𝜏) have the same sign]

+(−𝐴2)𝑃 [𝑋 (𝑡) and 𝑋(𝑡 + 𝜏) have different signs]

= 𝐴
2
𝑃 [even number of switching instants in (𝑡, 𝑡 + 𝜏)]

−𝐴2
𝑃 [odd number of switching instants in (𝑡, 𝑡 + 𝜏)]

X(t)

A

−A

t1 t2 t3 t4 t5 t6 t7
t

Figure 7.4
Sample function of a random
telegraph waveform.
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= 𝐴
2

∞∑

𝑘=0
𝑘 even

(𝛼𝜏)𝑘

𝑘!
exp(−𝛼𝜏) − 𝐴

2
∞∑

𝑘=0
𝑘 odd

(𝛼𝜏)𝑘

𝑘!
exp(−𝛼𝜏)

= 𝐴
2 exp(−𝛼𝜏)

∞∑

𝑘=0

(−𝛼𝜏)𝑘

𝑘!

= 𝐴
2 exp(−𝛼𝜏) exp(−𝛼𝜏) = 𝐴

2 exp(−2𝛼𝜏) (7.19)

The preceding development was carried out under the assumption that 𝜏 was positive. It could have
been similarly carried out with 𝜏 negative, such that

𝑅
𝑋
(𝜏) = 𝐸[𝑋 (𝑡)𝑋 (𝑡 − |𝜏|)] = 𝐸[𝑋(𝑡 − |𝜏|)𝑋 (𝑡)] = 𝐴

2 exp (−2𝛼 |𝜏|) (7.20)

This is a result that holds for all 𝜏. That is,𝑅
𝑋
(𝜏) is an even function of 𝜏, which we will show in general

shortly.
■

■ 7.3 CORRELATION AND POWER SPECTRAL DENSITY

The autocorrelation function, computed as a statistical average, has been defined by (7.6).
If a process is ergodic, the autocorrelation function computed as a time average, as first
defined in Chapter 2, is equal to the statistical average of (7.6). In Chapter 2, we defined the
power spectral density 𝑆(𝑓 ) as the Fourier transform of the autocorrelation function𝑅(𝜏). The
Wiener--Khinchine theorem is a formal statement of this result for stationary randomprocesses,
for which𝑅(𝑡1, 𝑡2) = 𝑅(𝑡2 − 𝑡1) = 𝑅(𝜏). For such processes, previously defined as wide-sense
stationary, the power spectral density and autocorrelation function are Fourier-transform pairs.
That is,

𝑆(𝑓 ) ℑ⟷ 𝑅(𝜏) (7.21)

If the process is ergodic, 𝑅(𝜏) can be calculated as either a time or an ensemble average.

Since 𝑅
𝑋
(0) = 𝑋2 (𝑡) is the average power contained in the process, we have from the

inverse Fourier transform of 𝑆
𝑋
(𝑓 ) that

Average power = 𝑅
𝑋
(0) =

∫

∞

−∞
𝑆
𝑋 (𝑓 ) 𝑑𝑓 (7.22)

which is reasonable, since the definition of 𝑆
𝑋 (𝑓 ) is that it is power density with respect to

frequency.

7.3.1 Power Spectral Density

An intuitively satisfying, and in some cases computationally useful, expression for the power
spectral density of a stationary random process can be obtained by the following approach.
Consider a particular sample function, 𝑛(𝑡, 𝜁

𝑖
), of a stationary random process. To obtain a

function giving power density versus frequency using the Fourier transform, we consider a
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truncated version, 𝑛
𝑇
(𝑡, 𝜁

𝑖
), defined as4

𝑛
𝑇
(𝑡, 𝜁

𝑖
) =

{
𝑛(𝑡, 𝜁

𝑖
) |𝑡| < 1

2𝑇

0, otherwise
(7.23)

Since sample functions of stationary randomprocesses are power signals, the Fourier transform
of 𝑛(𝑡, 𝜁

𝑖
) does not exist, which necessitates defining 𝑛

𝑇
(𝑡, 𝜁

𝑖
). The Fourier transform of a

truncated sample function is

𝑁
𝑇
(𝑓, 𝜁

𝑖
) =

∫

𝑇 ∕2

−𝑇 ∕2
𝑛(𝑡, 𝜁

𝑖
)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 (7.24)

and its energy spectral density, according to Equation (2.90), is ||𝑁𝑇
(𝑓, 𝜁

𝑖
)||
2. The time-average

power density over the interval
[
−1

2𝑇 ,
1
2𝑇
]
for this sample function is ||𝑁𝑇

(𝑓, 𝜁
𝑖
)||
2 ∕𝑇 . Since

this time-average power density depends on the particular sample function chosen, we perform
an ensemble average and take the limit as 𝑇 → ∞ to obtain the distribution of power density
with frequency. This is defined as the power spectral density𝑆

𝑛 (𝑓 ), which can be expressed as

𝑆
𝑛 (𝑓 ) = lim

𝑇→∞

||𝑁𝑇
(𝑓, 𝜁

𝑖
)||
2

𝑇
(7.25)

The operations of taking the limit and taking the ensemble average in (7.25) cannot be
interchanged.

EXAMPLE 7.3

Let us find the power spectral density of the random process considered in Example 7.1 using (7.25). In
this case,

𝑛
𝑇
(𝑡,Θ) = 𝐴Π

(
𝑡

𝑇

)
cos

[
2𝜋𝑓0

(
𝑡 + Θ

2𝜋𝑓0

)]
(7.26)

By the time-delay theorem of Fourier transforms and using the transform pair

cos 2𝜋𝑓0𝑡 ⟷
1
2
𝛿
(
𝑓 − 𝑓0

)
+ 1

2
𝛿(𝑓 + 𝑓0) (7.27)

we obtain

ℑ[cos(2𝜋𝑓0𝑡 + Θ)] = 1
2
𝛿
(
𝑓 − 𝑓0

)
𝑒
𝑗Θ + 1

2
𝛿
(
𝑓 + 𝑓0

)
𝑒
−𝑗Θ (7.28)

We also recall from Chapter 2 (Example 2.8) that Π(𝑡∕𝑇 ) ⟷ 𝑇 sinc𝑇𝑓 , so, by the multiplication
theorem of Fourier transforms,

𝑁
𝑇
(𝑓,Θ) = (𝐴𝑇 sinc𝑇𝑓 ) ∗

[1
2
𝛿
(
𝑓 − 𝑓0

)
𝑒
𝑗Θ + 1

2
𝛿
(
𝑓 + 𝑓0

)
𝑒
−𝑗Θ

]

= 1
2
𝐴𝑇

[
𝑒
𝑗Θsinc

(
𝑓 − 𝑓0

)
𝑇 + 𝑒

−𝑗Θsinc
(
𝑓 + 𝑓0

)
𝑇
]

(7.29)

4Again, we use a lowercase letter to denote a random process for the simple reason that we need to denote the Fourier
transform of 𝑛(𝑡) by an uppercase letter.
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Therefore, the energy spectral density of the truncated sample function is

||𝑁𝑇
(𝑓,Θ)||

2 =
(1
2
𝐴𝑇

)2
{sinc2𝑇

(
𝑓 − 𝑓0

)
+ 𝑒

2𝑗Θsinc𝑇
(
𝑓 − 𝑓0

)
sinc𝑇

(
𝑓 + 𝑓0

)

+ 𝑒
−2𝑗Θsinc𝑇

(
𝑓 − 𝑓0

)
sinc𝑇

(
𝑓 + 𝑓0

)
+ sinc2𝑇

(
𝑓 + 𝑓0

)
} (7.30)

In obtaining
[
||𝑁𝑇

(𝑓,Θ)||
2
]
, we note that

exp (±𝑗2Θ) =
∫

𝜋

−𝜋
𝑒
±𝑗2Θ 𝑑𝜃

2𝜋
=
∫

𝜋

−𝜋
(cos 2𝜃 ± 𝑗 sin 2𝜃)𝑑𝜃

2𝜋
= 0 (7.31)

Thus, we obtain

||𝑁𝑇
(𝑓,Θ)||

2 =
(1
2
𝐴𝑇

)2 [
sinc2𝑇

(
𝑓 − 𝑓0

)
+ sinc2𝑇

(
𝑓 + 𝑓0

)]
(7.32)

and the power spectral density is

𝑆
𝑛
(𝑓 ) = lim

𝑇→∞

1
4
𝐴

2 [
𝑇 sinc2𝑇

(
𝑓 − 𝑓0

)
+ 𝑇 sinc2𝑇

(
𝑓 + 𝑓0

)]
(7.33)

However, a representation of the delta function is lim
𝑇→∞ 𝑇 sinc2 𝑇 𝑢 = 𝛿(𝑢). [See Figure 2.4(b).] Thus,

𝑆
𝑛
(𝑓 ) = 1

4
𝐴

2
𝛿
(
𝑓 − 𝑓0

)
+ 1

4
𝐴

2
𝛿
(
𝑓 + 𝑓0

)
(7.34)

The average power is ∫
∞
−∞ 𝑆

𝑛
(𝑓 ) 𝑑𝑓 = 1

2
𝐴

2, the same as obtained in Example 7.1.
■

7.3.2 The Wiener--Khinchine Theorem

The Wiener--Khinchine theorem states that the autocorrelation function and power spectral
density of a stationary random process are Fourier-transform pairs. It is the purpose of this
subsection to provide a formal proof of this statement.

To simplify the notation in the proof of theWiener--Khinchine theorem, we rewrite (7.25)
as

𝑆
𝑛 (𝑓 ) = lim

𝑇→∞

𝐸

{
|||ℑ
[
𝑛2𝑇 (𝑡)

]|||
2
}

2𝑇
(7.35)

where, for convenience, we have truncated over a 2𝑇 -second interval and dropped 𝜁 in the
argument of 𝑛2𝑇 (𝑡). Note that

|||ℑ
[
𝑛2𝑇 (𝑡)

]|||
2
=
|||||∫

𝑇

−𝑇
𝑛 (𝑡) 𝑒−𝑗𝜔𝑡 𝑑𝑡

|||||

2

, 𝜔 = 2𝜋𝑓

=
∫

𝑇

−𝑇 ∫

𝑇

−𝑇
𝑛 (𝑡) 𝑛 (𝜎) 𝑒−𝑗𝜔(𝑡−𝜎) 𝑑𝑡 𝑑𝜎 (7.36)

where the product of two integrals has been written as an iterated integral. Taking the ensemble
average and interchanging the orders of averaging and integration, we obtain

𝐸

{
|||ℑ
[
𝑛2𝑇 (𝑡)

]|||
2
}

=
∫

𝑇

−𝑇 ∫

𝑇

−𝑇
𝐸 {𝑛 (𝑡) 𝑛 (𝜎)} 𝑒−𝑗𝜔(𝑡−𝜎) 𝑑𝑡 𝑑𝜎

=
∫

𝑇

−𝑇 ∫

𝑇

−𝑇
𝑅

𝑛 (𝑡 − 𝜎) 𝑒−𝑗𝜔(𝑡−𝜎) 𝑑𝑡 𝑑𝜎 (7.37)
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2T
−2T

−T

T

−T

T

−T
ut

v

T

σ Figure 7.5
Regions of integration for
Equation (7.37).

by the definition of the autocorrelation function. The change of variables 𝑢 = 𝑡 − 𝜎 and 𝑣 = 𝑡

is now made with the aid of Figure 7.5. In the 𝑢𝑣 plane we integrate over 𝑣 first and then over
𝑢 by breaking the integration over 𝑢 up into two integrals, one for 𝑢 negative and one for 𝑢
positive. Thus,

𝐸

{
|||ℑ
[
𝑛2𝑇 (𝑡)

]|||
2
}

=
∫

0

𝑢=−2𝑇
𝑅

𝑛 (𝑢) 𝑒−𝑗𝜔𝑢
(

∫

𝑢+𝑇

−𝑇
𝑑𝑣

)
𝑑𝑢 +

∫

2𝑇

𝑢=0
𝑅

𝑛 (𝑢) 𝑒−𝑗𝜔𝑢
(

∫

𝑇

𝑢−𝑇
𝑑𝑣

)
𝑑𝑢

=
∫

0

−2𝑇
(2𝑇 + 𝑢)𝑅𝑛 (𝑢) 𝑒−𝑗𝜔𝑢 +

∫

2𝑇

0
(2𝑇 − 𝑢)𝑅𝑛 (𝑢) 𝑒−𝑗𝜔𝑢 𝑑𝑢

= 2𝑇
∫

2𝑇

−2𝑇

(
1 − |𝑢|

2𝑇

)
𝑅

𝑛 (𝑢) 𝑒−𝑗𝜔𝑢 𝑑𝑢 (7.38)

The power spectral density is, by (7.35),

𝑆
𝑛 (𝑓 ) = lim

𝑇→∞∫

2𝑇

−2𝑇

(
1 − |𝑢|

2𝑇

)
𝑅

𝑛 (𝑢) 𝑒−𝑗𝜔𝑢 𝑑𝑢 (7.39)

which is the limit as 𝑇 → ∞ results in (7.21).

EXAMPLE 7.4

Since the power spectral density and the autocorrelation function are Fourier-transform pairs, the auto-
correlation function of the random process defined in Example 7.1 is, from the result of Example 7.3,
given by

𝑅
𝑛
(𝜏) = ℑ−1

[1
4
𝐴

2
𝛿(𝑓 − 𝑓0) +

1
4
𝐴

2
𝛿(𝑓 + 𝑓0)

]

= 1
2
𝐴

2 cos
(
2𝜋𝑓0𝜏

)
(7.40)

Computing 𝑅
𝑛
(𝜏) as an ensemble average, we obtain

𝑅
𝑛
(𝜏) = 𝐸 {𝑛(𝑡)𝑛(𝑡 + 𝜏)}

=
∫

𝜋

−𝜋
𝐴

2 cos(2𝜋𝑓0𝑡 + 𝜃) cos[2𝜋𝑓0(𝑡 + 𝜏) + 𝜃] 𝑑𝜃
2𝜋
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= 𝐴
2

4𝜋 ∫

𝜋

−𝜋

{
cos 2𝜋𝑓0𝜏 + cos[2𝜋𝑓0(2𝑡 + 𝜏) + 2𝜃)]

}
𝑑𝜃

= 1
2
𝐴

2 cos
(
2𝜋𝑓0𝜏

)
(7.41)

which is the same result as that obtained using the Wiener--Khinchine theorem.
■

7.3.3 Properties of the Autocorrelation Function

The properties of the autocorrelation function for a stationary random process 𝑋 (𝑡) were
stated in Chapter 2, at the end of Section 2.6, and all time averages may now be replaced by
statistical averages. These properties are now easily proved.

Property 1 states that |𝑅(𝜏)| ≤ 𝑅(0) for all 𝜏. To show this, consider the nonnegative
quantity

[𝑋 (𝑡) ±𝑋(𝑡 + 𝜏)]2 ≥ 0 (7.42)

where {𝑋 (𝑡)} is a stationary random process. Squaring and averaging term by term, we obtain

𝑋2(𝑡) ± 2𝑋 (𝑡)𝑋 (𝑡 + 𝜏) +𝑋2(𝑡 + 𝜏) ≥ 0 (7.43)

which reduces to

2𝑅 (0) ± 2𝑅(𝜏) ≥ 0 or −𝑅 (0) ≤ 𝑅(𝜏) ≤ 𝑅 (0) (7.44)

because 𝑋2(𝑡) = 𝑋2(𝑡 + 𝜏) = 𝑅 (0) by the stationarity of {𝑋 (𝑡)}.
Property 2 states that 𝑅(−𝜏) = 𝑅(𝜏). This is easily proved by noting that

𝑅(𝜏) ≜ 𝑋 (𝑡)𝑋(𝑡 + 𝜏) = 𝑋 (𝑡′ − 𝜏)𝑋(𝑡′) = 𝑋 (𝑡′)𝑋(𝑡′ − 𝜏) ≜ 𝑅 (−𝜏) (7.45)

where the change of variables 𝑡′ = 𝑡 + 𝜏 has been made.

Property 3 states that lim|𝜏|→∞ 𝑅(𝜏) = 𝑋 (𝑡)
2
if {𝑋 (𝑡)} does not contain a periodic

component. To show this, we note that

lim
|𝜏|→∞

𝑅(𝜏) ≜ lim
|𝜏|→∞

𝑋 (𝑡)𝑋(𝑡 + 𝜏)

≅ 𝑋(𝑡) 𝑋(𝑡 + 𝜏), where |𝜏| is large

= 𝑋(𝑡)
2

(7.46)

where the second step follows intuitively because the interdependence between 𝑋 (𝑡) and
𝑋(𝑡 + 𝜏) becomes smaller as |𝜏| → ∞ (if no periodic components are present), and the last
step results from the stationarity of {𝑋 (𝑡)}.

Property 4, which states that 𝑅(𝜏) is periodic if {𝑋 (𝑡)} is periodic, follows by noting
from the time-average definition of the autocorrelation function given by Equation (2.161)
that periodicity of the integrand implies periodicity of 𝑅(𝜏).

Finally, Property 5, which says that ℑ[𝑅(𝜏)] is nonnegative, is a direct consequence of
the Wiener--Khinchine theorem (7.21) and (7.25) from which it is seen that the power spectral
density is nonnegative.
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EXAMPLE 7.5

Processes for which

𝑆(𝑓 ) =

{ 1
2
𝑁0, |𝑓 | ≤ 𝐵

0, otherwise
(7.47)

where 𝑁0 is constant, are commonly referred to as bandlimited white noise, since, as 𝐵 → ∞, all
frequencies are present, in which case the process is simply called white. 𝑁0 is the single-sided power
spectral density of the nonbandlimited process. For a bandlimited white-noise process,

𝑅(𝜏) =
∫

𝐵

−𝐵

1
2
𝑁0 exp (𝑗2𝜋𝑓𝜏) 𝑑𝑓

=
𝑁0

2
exp (𝑗2𝜋𝑓𝜏)

𝑗2𝜋𝜏
||||

𝐵

−𝐵
= 𝐵𝑁0

sin (2𝜋𝐵𝜏)
2𝜋𝐵𝜏

= 𝐵𝑁0sinc2𝐵𝜏 (7.48)

As 𝐵 → ∞, 𝑅(𝜏) → 1
2
𝑁0𝛿(𝜏). That is, no matter how close together we sample a white-noise

process, the samples have zero correlation. If, in addition, the process is Gaussian, the samples are
independent. A white-noise process has infinite power and is therefore a mathematical idealization, but
it is nevertheless useful in systems analysis.

■

7.3.4 Autocorrelation Functions for Random Pulse Trains

As another example of calculating autocorrelation functions, consider a random process with
sample functions that can be expressed as

𝑋 (𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝑝(𝑡 − 𝑘𝑇 − Δ) (7.49)

where … 𝑎−1, 𝑎0, 𝑎1,… , 𝑎
𝑘
… is a doubly-infinite sequence of random variables with

𝐸[𝑎
𝑘
𝑎
𝑘+𝑚] = 𝑅

𝑚
(7.50)

The function 𝑝(𝑡) is a deterministic pulse-type waveform where 𝑇 is the separation between
pulses; Δ is a random variable that is independent of the value of 𝑎

𝑘
and uniformly distributed

in the interval (−𝑇 ∕2, 𝑇 ∕2).5 The autocorrelation function of this waveform is

𝑅
𝑋
(𝜏) = 𝐸[𝑋 (𝑡)𝑋(𝑡 + 𝜏)]

= 𝐸

{ ∞∑

𝑘=−∞

∞∑

𝑚=−∞
𝑎
𝑘
𝑎
𝑘+𝑚𝑝(𝑡 − 𝑘𝑇 − Δ) 𝑝 [𝑡 + 𝜏 − (𝑘 + 𝑚)𝑇 − Δ]

}

(7.51)

5Including the random variable Δ in the definition of the sample functions for the process guarantees wide-sense
stationarity. If it weren’t included, 𝑋 (𝑡) would be what is referred to as a cyclostationary random process.
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Taking the expectation inside the double sum and making use of the independence of the
sequence {𝑎

𝑘
𝑎
𝑘+𝑚} and the delay variable Δ, we obtain

𝑅
𝑋
(𝜏) =

∞∑

𝑘=−∞

∞∑

𝑚=−∞
𝐸
[
𝑎
𝑘
𝑎
𝑘+𝑚

]
𝐸 {𝑝(𝑡 − 𝑘𝑇 − Δ) 𝑝 [𝑡 + 𝜏 − (𝑘 + 𝑚)𝑇 − Δ]}

=
∞∑

𝑚=−∞
𝑅

𝑚

∞∑

𝑘=−∞
∫

𝑇 ∕2

−𝑇 ∕2
𝑝(𝑡 − 𝑘𝑇 − Δ) 𝑝 [𝑡 + 𝜏 − (𝑘 + 𝑚)𝑇 − Δ] 𝑑Δ

𝑇
(7.52)

The change of variables 𝑢 = 𝑡 − 𝑘𝑇 − Δ inside the integral results in

𝑅
𝑋
(𝜏) =

∞∑

𝑚=−∞
𝑅

𝑚

∞∑

𝑘=−∞
∫

𝑡−(𝑘−1∕2)𝑇

𝑡−(𝑘+1∕2)𝑇
𝑝 (𝑢) 𝑝 (𝑢 + 𝜏 − 𝑚𝑇 ) 𝑑𝑢

𝑇

=
∞∑

𝑚=−∞
𝑅

𝑚

[
1
𝑇 ∫

∞

−∞
𝑝 (𝑢 + 𝜏 − 𝑚𝑇 ) 𝑝 (𝑢) 𝑑𝑢

]
(7.53)

Finally we have

𝑅
𝑋
(𝜏) =

∞∑

𝑚=−∞
𝑅

𝑚
𝑟 (𝜏 − 𝑚𝑇 ) (7.54)

where

𝑟 (𝜏) ≜ 1
𝑇 ∫

∞

−∞
𝑝 (𝑡 + 𝜏) 𝑝 (𝑡) 𝑑𝑡 (7.55)

is the pulse-correlation function. We consider the following example as an illustration.

EXAMPLE 7.6

In this example we consider a situation where the sequence
{
𝑎
𝑘

}
has memory built into it by the

relationship

𝑎
𝑘
= 𝑔0𝐴𝑘

+ 𝑔1𝐴𝑘−1 (7.56)

where 𝑔0 and 𝑔1 are constants and the 𝐴
𝑘
’s are random variables such that 𝐴

𝑘
= ±𝐴 where the sign is

determined by a random coin toss independently from pulse to pulse for all 𝑘 (note that if 𝑔1 = 0, there
is no memory). It can be shown that

𝐸[𝑎
𝑘
𝑎
𝑘+𝑚] =

⎧
⎪
⎨
⎪
⎩

(
𝑔
2
0 + 𝑔

2
1

)
𝐴

2
, 𝑚 = 0

𝑔0𝑔1𝐴
2
, 𝑚 = ±1

0, otherwise

(7.57)

The assumed pulse shape is 𝑝 (𝑡) = Π
(

𝑡

𝑇

)
so that the pulse-correlation function is

𝑟 (𝜏) = 1
𝑇 ∫

∞

−∞
Π
(
𝑡 + 𝜏

𝑇

)
Π
(
𝑡

𝑇

)
𝑑𝑡

= 1
𝑇 ∫

𝑇 ∕2

−𝑇 ∕2
Π
(
𝑡 + 𝜏

𝑇

)
𝑑𝑡 = Λ

(
𝜏

𝑇

)
(7.58)

www.it-ebooks.info

http://www.it-ebooks.info/


7.3 Correlation and Power Spectral Density 323

2

1.5

1

0.5

S X
1
(f

),
 W

/H
z

0

(a)

(b)

(c)

–5 –4 –3 –2 –1 0 1

g0 = 1; g1 = 0

2 3 4 5

2

1.5

1

0.5

S X
2
(f

),
 W

/H
z

0
–5 –4 –3 –2 –1

fT

fT

0 1

g0 = 0.707; g1 = 0.707

2 3 4 5

2

1.5

1

0.5

S X
3
(f

),
 W

/H
z

0
–5 –4 –3 –2 –1 0 1

g0 = 0.707; g1 = –0.707

2 3 4 5

Figure 7.6
Power spectra of binary-valued waveforms. (a) Case in which there is no memory. (b) Case in which
there is reinforcing memory between adjacent pulses. (c) Case where the memory between adjacent
pulses is antipodal.

where, from Chapter 2, Λ
(

𝜏

𝑇

)
is a unit-height triangular pulse symmetrical about 𝑡 = 0 of width 2𝑇 .

Thus, the autocorrelation function (7.58) becomes

𝑅
𝑋
(𝜏) = 𝐴

2
{[

𝑔
2
0 + 𝑔

2
1

]
Λ
(
𝜏

𝑇

)
+ 𝑔0𝑔1

[
Λ
(
𝜏 + 𝑇

𝑇

)
+ Λ

(
𝜏 − 𝑇

𝑇

)]}
(7.59)

Applying the Wiener--Khinchine theorem, the power spectral density of 𝑋(𝑡) is found to be

𝑆
𝑋
(𝑓 ) = ℑ

[
𝑅

𝑋
(𝜏)
]
= 𝐴

2
𝑇 sinc2 (𝑓𝑇 )

[
𝑔
2
0 + 𝑔

2
1 + 2𝑔0𝑔1 cos(2𝜋𝑓𝑇 )

]
(7.60)

Figure 7.6 compares the power spectra for the two cases: (1) 𝑔0 = 1 and 𝑔1 = 0 (i.e., no memory);

(2) 𝑔0 = 𝑔1 = 1∕
√
2 (reinforcing memory between adjacent pulses). For case 1, the resulting power

spectral density is

𝑆
𝑋
(𝑓 ) = 𝐴

2
𝑇 sinc2(𝑓𝑇 ) (7.61)

while for case (2) it is

𝑆
𝑋
(𝑓 ) = 2𝐴2

𝑇 sinc2(𝑓𝑇 ) cos2(𝜋𝑓𝑇 ) (7.62)

In both cases, 𝑔0 and 𝑔1 have been chosen to give a total power of 1 W, which is verified from
the plots by numerical integration. Note that in case 2 memory has confined the power sepectrum more

than without it. Yet a third case is shown in the bottom plot for which (3) 𝑔0 = −𝑔1 = 1∕
√
2. Now the

spectral width is doubled over case 2, but a spectral null appears at 𝑓 = 0.
Other values for 𝑔0 and 𝑔1 can be assumed, and memory between more than just adjacent pulses

also can be assumed.
■
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7.3.5 Cross-Correlation Function and Cross-Power Spectral Density

Suppose we wish to find the power in the sum of two noise voltages𝑋 (𝑡) and 𝑌 (𝑡). We might
ask if we can simply add their separate powers. The answer is, in general, no. To see why,
consider

𝑛(𝑡) = 𝑋 (𝑡) + 𝑌 (𝑡) (7.63)

where 𝑋 (𝑡) and 𝑌 (𝑡) are two stationary random voltages that may be related (that is, that are
not necessarily statistically independent). The power in the sum is

𝐸[𝑛2(𝑡)] = 𝐸
{
[𝑋 (𝑡) + 𝑌 (𝑡)]2

}

= 𝐸[𝑋2(𝑡)] + 2𝐸[𝑋 (𝑡) 𝑌 (𝑡)] + 𝐸[𝑌 2(𝑡)]

= 𝑃
𝑋
+ 2𝑃

𝑋𝑌
+ 𝑃

𝑌
(7.64)

where 𝑃
𝑋
and 𝑃

𝑌
are the powers of 𝑋 (𝑡) and 𝑌 (𝑡), respectively, and 𝑃

𝑋𝑌
is the cross power.

More generally, we define the cross-correlation function as

𝑅
𝑋𝑌

(𝜏) = 𝐸 {𝑋 (𝑡) 𝑌 (𝑡 + 𝜏)} (7.65)

In terms of the cross-correlation function, 𝑃
𝑋𝑌

= 𝑅
𝑋𝑌 (0). A sufficient condition for 𝑃

𝑋𝑌

to be zero, so that we may simply add powers to obtain total power, is that

𝑅
𝑋𝑌 (0) = 0, for all 𝜏 (7.66)

Such processes are said to be orthogonal. If two processes are statistically independent and at
least one of them has zero mean, they are orthogonal. However, orthogonal processes are not
necessarily statistically independent.

Cross-correlation functions can be defined for nonstationary processes also, in which case
we have a function of two independent variables. We will not need to be this general in our
considerations.

A useful symmetry property of the cross-correlation function for jointly stationary pro-
cesses is

𝑅
𝑋𝑌

(𝜏) = 𝑅
𝑌𝑋 (−𝜏) (7.67)

which can be shown as follows. By definition,

𝑅
𝑋𝑌

(𝜏) = 𝐸[𝑋 (𝑡) 𝑌 (𝑡 + 𝜏)] (7.68)

Defining 𝑡
′ = 𝑡 + 𝜏, we obtain

𝑅
𝑋𝑌

(𝜏) = 𝐸[𝑌 (𝑡′)𝑋(𝑡′ − 𝜏)] ≜ 𝑅
𝑌𝑋

(−𝜏) (7.69)

since the choice of time origin is immaterial for stationary processes.
The cross-power spectral density of two stationary random processes is defined as the

Fourier transform of their cross-correlation function:

𝑆
𝑋𝑌

(𝑓 ) = ℑ[𝑅
𝑋𝑌

(𝜏)] (7.70)

It provides, in the frequency domain, the same information about the random processes as
does the cross-correlation function.
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■ 7.4 LINEAR SYSTEMS AND RANDOM PROCESSES

7.4.1 Input-Output Relationships

In the consideration of the transmission of stationary random waveforms through fixed linear
systems, a basic tool is the relationship of the output power spectral density to the input power
spectral density, given as

𝑆
𝑦 (𝑓 ) = |𝐻 (𝑓 )|2 𝑆𝑥

(𝑓 ) (7.71)

The autocorrelation function of the output is the inverse Fourier transform of 𝑆
𝑦 (𝑓 ):6

𝑅
𝑦 (𝜏) = ℑ−1[𝑆

𝑦
(𝑓 )] =

∫

∞

−∞
|𝐻 (𝑓 )| 2𝑆𝑥

(𝑓 )𝑒𝑗2𝜋𝑓𝜏 𝑑𝑓 (7.72)

𝐻(𝑓 ) is the system’s frequency response function; 𝑆
𝑥 (𝑓 ) is the power spectral density of

the input 𝑥(𝑡); 𝑆
𝑦 (𝑓 ) is the power spectral density of the output 𝑦(𝑡); and 𝑅

𝑦
(𝜏) is the

autocorrelation function of the output. The analogous result for energy signals was proved in
Chapter 2 [Equation (2.190)], and the result for power signals was simply stated.

A proof of (7.71) could be carried out by employing (7.25). We will take a somewhat
longer route, however, and obtain several useful intermediate results. In addition, the proof
provides practice in manipulating convolutions and expectations.

We begin by obtaining the cross-correlation function between input and output, 𝑅
𝑥𝑦
(𝜏),

defined as

𝑅
𝑥𝑦
(𝜏) = 𝐸[𝑥(𝑡)𝑦(𝑡 + 𝜏)] (7.73)

Using the superposition integral, we have

𝑦(𝑡) =
∫

∞

−∞
ℎ(𝑢)𝑥(𝑡 − 𝑢) 𝑑𝑢 (7.74)

where ℎ(𝑡) is the system’s impulse response. Equation (7.74) relates each sample function of
the input and output processes, so we can write (7.73) as

𝑅
𝑥𝑦
(𝜏) = 𝐸

{
𝑥(𝑡)

∫

∞

−∞
ℎ(𝑢)𝑥(𝑡 + 𝜏 − 𝑢) 𝑑𝑢

}
(7.75)

Since the integral does not depend on 𝑡, we can take 𝑥(𝑡) inside and interchange the operations
of expectation and convolution. (Both are simply integrals over different variables.) Since
ℎ(𝑢) is not random, (7.75) becomes

𝑅
𝑥𝑦
(𝜏) =

∫

∞

−∞
ℎ(𝑢)𝐸 {𝑥(𝑡)𝑥(𝑡 + 𝜏 − 𝑢) } 𝑑𝑢 (7.76)

By definition of the autocorrelation function of 𝑥(𝑡),

𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏 − 𝑢)] = 𝑅
𝑥
(𝜏 − 𝑢) (7.77)

6For the remainder of this chapter we use lowercase 𝑥 and 𝑦 to denote input and output random-process signals in
keeping with Chapter 2 notation.
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Thus, (7.76) can be written as

𝑅
𝑥𝑦
(𝜏) =

∫

∞

−∞
ℎ(𝑢)𝑅

𝑥
(𝜏 − 𝑢) 𝑑𝑢 ≜ ℎ (𝜏) ∗ 𝑅

𝑥 (𝜏) (7.78)

That is, the cross-correlation function of input with output is the autocorrelation function of
the input convolved with the system’s impulse response, an easily remembered result. Since
(7.78) is a convolution, the Fourier transform of 𝑅

𝑥𝑦
(𝜏), the cross-power spectral density of

𝑥(𝑡) with 𝑦(𝑡) is
𝑆
𝑥𝑦 (𝑓 ) = 𝐻(𝑓 )𝑆

𝑥
(𝑓 ) (7.79)

From the time-reversal theorem of Table F.6, the cross-power spectral density 𝑆
𝑦𝑥 (𝑓 ) is

𝑆
𝑦𝑥 (𝑓 ) = ℑ[𝑅

𝑦𝑥
(𝜏)] = ℑ[𝑅

𝑥𝑦
(−𝜏)] = 𝑆

∗
𝑥𝑦
(𝑓 ) (7.80)

Employing (7.79) and using the relationships 𝐻
∗(𝑓 ) = 𝐻(−𝑓 ) and 𝑆

∗
𝑥
(𝑓 ) = 𝑆

𝑥 (𝑓 ) [where
𝑆
𝑥 (𝑓 ) is real], we obtain

𝑆
𝑦𝑥
(𝑓 ) = 𝐻(−𝑓 )𝑆

𝑥 (𝑓 ) = 𝐻
∗(𝑓 )𝑆

𝑥
(𝑓 ) (7.81)

where the order of the subscripts is important. Taking the inverse Fourier transform of (7.81)
with the aid of the convolution theorem of Fourier transforms in Table F.6, and again using
the time-reversal theorem, we obtain

𝑅
𝑦𝑥
(𝜏) = ℎ(−𝜏) ∗ 𝑅

𝑥
(𝜏) (7.82)

Let us pause to emphasize what we have obtained. By definition, 𝑅
𝑥𝑦
(𝜏) can be written

as

𝑅
𝑥𝑦
(𝜏) ≜ 𝐸{𝑥 (𝑡) [ℎ(𝑡) ∗ 𝑥(𝑡 + 𝜏)]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

} (7.83)

𝑦(𝑡 + 𝜏)

Combining this with (7.78), we have
𝐸{𝑥(𝑡)[ℎ(𝑡) ∗ 𝑥(𝑡 + 𝜏)]} = ℎ(𝜏) ∗ 𝑅

𝑥
(𝜏) ≜ ℎ(𝜏) ∗ 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] (7.84)

Similarly, (7.82) becomes

𝑅
𝑦𝑥 (𝜏) ≜ 𝐸{[ℎ(𝑡) ∗ 𝑥 (𝑡)]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑥(𝑡 + 𝜏)} = ℎ(−𝜏) ∗ 𝑅
𝑥
(𝜏)

≜ ℎ(−𝜏) ∗ 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] (7.85)

𝑦 (𝑡)

Thus, bringing the convolution operation outside the expectation gives a convolution of ℎ(𝜏)
with the autocorrelation function if ℎ(𝑡) ∗ 𝑥(𝑡 + 𝜏) is inside the expectation, or a convolution
of ℎ(−𝜏) with the autocorrelation function if ℎ(𝑡) ∗ 𝑥(𝑡) is inside the expectation.

These results are combined to obtain the autocorrelation function of the output of a linear
system in terms of the input autocorrelation function as follows:

𝑅
𝑦
(𝜏) ≜ 𝐸 {𝑦(𝑡)𝑦(𝑡 + 𝜏)} = 𝐸 {𝑦(𝑡)[ℎ(𝑡) ∗ 𝑥(𝑡 + 𝜏)]} (7.86)

which follows because 𝑦(𝑡 + 𝜏) = ℎ(𝑡) ∗ 𝑥(𝑡 + 𝜏). Using (7.84) with 𝑥(𝑡) replaced by 𝑦(𝑡), we
obtain

𝑅
𝑦
(𝜏) = ℎ(𝜏) ∗ 𝐸[𝑦(𝑡)𝑥(𝑡 + 𝜏)]

= ℎ(𝜏) ∗ 𝑅
𝑦𝑥 (𝜏)

= ℎ(𝜏) ∗ {ℎ(−𝜏) ∗ 𝑅
𝑥
(𝜏)} (7.87)
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where the last line follows by substituting from (7.82). Written in terms of integrals, (7.87) is

𝑅
𝑦
(𝜏) =

∫

∞

−∞ ∫

∞

−∞
ℎ (𝑢)ℎ (𝑣)𝑅𝑥

(𝜏 + 𝑣 − 𝑢) 𝑑𝑣 𝑑𝑢 (7.88)

The Fourier transform of (7.87) is the output power spectral density and is easily obtained as
follows:

𝑆
𝑦 (𝑓 ) ≜ ℑ[𝑅

𝑦
(𝜏)] = ℑ[ℎ(𝜏) ∗ 𝑅

𝑦𝑥 (𝜏)]

= 𝐻(𝑓 )𝑆
𝑦𝑥
(𝑓 )

= |𝐻(𝑓 )|2𝑆
𝑥
(𝑓 ) (7.89)

where (7.81) has been substituted to obtain the last line.

EXAMPLE 7.7

The input to a filter with impulse response ℎ(𝑡) and frequency response function 𝐻(𝑓 ) is a white-noise
process with power spectral density,

𝑆
𝑥
(𝑓 ) = 1

2
𝑁0, −∞ < 𝑓 < ∞ (7.90)

The cross-power spectral density between input and output is

𝑆
𝑥𝑦
(𝑓 ) = 1

2
𝑁0𝐻(𝑓 ) (7.91)

and the cross-correlation function is

𝑅
𝑥𝑦
(𝜏) = 1

2
𝑁0ℎ(𝜏) (7.92)

Hence, we could measure the impulse response of a filter by driving it with white noise and determining
the cross-correlation function of inputwith output. Applications include system identification and channel
measurement.

■

7.4.2 Filtered Gaussian Processes

Suppose the input to a linear system is a stationary random process. What can we say about the
output statistics? For general inputs and systems, this is usually a difficult question to answer.
However, if the input to a linear system is Gaussian, the output is also Gaussian.

A nonrigorous demonstration of this is carried out as follows. The sum of two independent
Gaussian random variables has already been shown to be Gaussian. By repeated application of
this result, we can find that the sum of any number of independent Gaussian random variables
is Gaussian.7 For a fixed linear system, the output 𝑦(𝑡) in terms of the input 𝑥(𝑡) is given by

𝑦(𝑡) =
∫

∞

−∞
𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝑡

= lim
Δ𝜏→0

∞∑

𝑘=−∞
𝑥(𝑘Δ𝜏)ℎ(𝑡 − 𝑘Δ𝜏) Δ𝜏 (7.93)

7This also follows from Appendix B, (B.13).
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h(t)

H( f )
y(t)z(t) x(t)

h1 (t)

H1 ( f )

(White and

Gaussian)

(Nonwhite and

Gaussian)

Figure 7.7
Cascade of two linear systems with
Gaussian input.

where ℎ(𝑡) is the impulse response. By writing the integral as a sum, we have demonstrated
that if 𝑥(𝑡) is a white Gaussian process, the output is also Gaussian (but not white) because,
at any time 𝑡, the right-hand side of (7.93) is simply a linear combination of independent
Gaussian random variables. (Recall Example 7.5, where the autocorrelation function of white
noise was shown to be an impulse. Also recall that uncorrelated Gaussian random variables
are independent.)

If the input is not white, we can still show that the output is Gaussian by considering the
cascade of two linear systems, as shown in Figure 7.7. The system in question is the one with
the impulse response ℎ(𝑡). To show that its output is Gaussian, we note that the cascade of
ℎ1(𝑡) with ℎ(𝑡) is a linear system with the impulse response

ℎ2(𝑡) = ℎ1(𝑡) ∗ ℎ(𝑡) (7.94)

This system’s input, 𝑧(𝑡), is Gaussian and white. Therefore, its output, 𝑦(𝑡), is also Gaussian
by application of the theorem just proved. However, the output of the system with impulse
response ℎ1 (𝑡) is Gaussian by application of the same theorem, but not white. Hence, the
output of a linear system with nonwhite Gaussian input is Gaussian.

EXAMPLE 7.8

The input to the lowpass RC filter shown in Figure 7.8 is white Gaussian noise with the power spectral
density 𝑆

𝑛𝑖
(𝑓 ) = 1

2
𝑁0,−∞ < 𝑓 < ∞. The power spectral density of the output is

𝑆
𝑛0
(𝑓 ) = 𝑆

𝑛𝑖
(𝑓 ) |𝐻(𝑓 )|2 =

1
2
𝑁0

1 +
(
𝑓∕𝑓3

)2 (7.95)

where 𝑓3 = (2𝜋𝑅𝐶)−1 is the filter’s 3-dB cutoff frequency. Inverse Fourier-transforming 𝑆
𝑛0
(𝑓 ), we

obtain 𝑅
𝑛0
(𝜏), the output autocorrelation function, which is

𝑅
𝑛0
(𝜏) =

𝜋𝑓3𝑁0

2
𝑒
−2𝜋𝑓3|𝜏| =

𝑁0

4𝑅𝐶
𝑒
−|𝜏|∕𝑅𝐶

,
1

𝑅𝐶
= 2𝜋𝑓3 (7.96)

The square of the mean of 𝑛0(𝑡) is

𝑛0(𝑡)
2
= lim

|𝜏|→∞
𝑅

𝑛0
(𝜏) = 0 (7.97)

~ ni(t) n0(t)

R

C

Figure 7.8
A lowpass RC filter with a white-noise input.
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and the mean-squared value, which is also equal to the variance since the mean is zero, is

𝑛
2
0(𝑡) = 𝜎

2
𝑛0
= 𝑅

𝑛0
(0) =

𝑁0

4𝑅𝐶
(7.98)

Alternatively, we can find the average power at the filter output by integrating the power spectral density
of 𝑛0(𝑡). The same result is obtained as above:

𝑛
2
0(𝑡) = ∫

∞

−∞

1
2
𝑁0

1 +
(
𝑓∕𝑓3

)2 𝑑𝑓 =
𝑁0

2𝜋𝑅𝐶 ∫

∞

0

𝑑𝑥

1 + 𝑥2 =
𝑁0

4𝑅𝐶
(7.99)

Since the input is Gaussian, the output is Gaussian as well. The first-order pdf is

𝑓
𝑛0
(𝑦, 𝑡) = 𝑓

𝑛0
(𝑦) = 𝑒

−2𝑅𝐶𝑦
2∕𝑁0

√
𝜋𝑁0∕2𝑅𝐶

(7.100)

by employing Equation (6.194). The second-order pdf at time 𝑡 and 𝑡 + 𝜏 is found by substitution into
Equation (6.189). Letting 𝑋 be a random variable that refers to the values the output takes on at time
𝑡 and 𝑌 be a random variable that refers to the values the output takes on at time 𝑡 + 𝜏, we have, from
the preceding results,

𝑚
𝑥
= 𝑚

𝑦
= 0 (7.101)

𝜎
2
𝑥
= 𝜎

2
𝑦
=

𝑁0

4𝑅𝐶
(7.102)

and the correlation coefficient is

𝜌 (𝜏) =
𝑅

𝑛0
(𝜏)

𝑅
𝑛0
(0)

= 𝑒
−|𝜏|∕𝑅𝐶 (7.103)

Referring to Example 7.2, one can see that the random telegraph waveform has the same autocorre-
lation function as that of the output of the lowpass RC filter of Example 7.8 (with constants appropriately
chosen). This demonstrates that processes with drastically different sample functions can have the same
second-order averages.

■

7.4.3 Noise-Equivalent Bandwidth

If we pass white noise through a filter that has the frequency response function 𝐻(𝑓 ), the
average power at the output, by (7.72), is

𝑃
𝑛0

=
∫

∞

−∞

1
2
𝑁0 |𝐻(𝑓 )|2 𝑑𝑓 = 𝑁0

∫

∞

0
|𝐻(𝑓 )|2 𝑑𝑓 (7.104)

where 1
2𝑁0 is the two-sided power spectral density of the input. If the filter were ideal with

bandwidth 𝐵
𝑁

and midband (maximum) gain8 𝐻0, as shown in Figure 7.9, the noise power
at the output would be

𝑃
𝑛0

= 𝐻
2
0

(1
2
𝑁0

) (
2𝐵

𝑁

)
= 𝑁0𝐵𝑁

𝐻
2
0 (7.105)

The question we now ask is the following: What is the bandwidth of an ideal, fictitious filter
that has the same midband gain as𝐻(𝑓 ) and that passes the same noise power? If the midband

8Assumed to be finite.
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H( f ) 2

H0
2

BN

f
0

Figure 7.9
Comparison between |𝐻(𝑓 )|2 and an idealized
approximation.

gain of 𝐻(𝑓 ) is 𝐻0, the answer is obtained by equating the preceding two results. Thus,

𝐵
𝑁

= 1
𝐻

2
0
∫

∞

0
|𝐻(𝑓 )|2 𝑑𝑓 (7.106)

is the single-sided bandwidth of the fictitious filter. 𝐵
𝑁

is called the noise-equivalent band-
width of 𝐻(𝑓 ).

It is sometimes useful to determine the noise-equivalent bandwidth of a system using time-
domain integration. Assume a lowpass system with maximum gain at 𝑓 = 0 for simplicity.
By Rayleigh’s energy theorem [see (2.88)], we have

∫

∞

−∞
|𝐻(𝑓 )|2 𝑑𝑓 =

∫

∞

−∞
|ℎ(𝑡)|2 𝑑𝑡 (7.107)

Thus, (7.106) can be written as

𝐵
𝑁

= 1
2𝐻2

0
∫

∞

−∞
|ℎ(𝑡)|2 𝑑𝑡 =

∫
∞
−∞ |ℎ(𝑡)|2 𝑑𝑡

2
[
∫
∞
−∞ ℎ (𝑡) 𝑑𝑡

]2 (7.108)

where it is noted that

𝐻0 = 𝐻(𝑓 )|
𝑓=0 =

∫

∞

−∞
ℎ (𝑡) 𝑒−𝑗2𝜋𝑓𝑡

||||𝑓=0
=
∫

∞

−∞
ℎ(𝑡) 𝑑𝑡 (7.109)

For some systems, (7.108) is easier to evaluate than (7.106).

EXAMPLE 7.9

Assume that a filter has the amplitude response function illustrated in Figure 7.10(a). Note that assumed
filter is noncausal. The purpose of this problem is to provide an illustration of the computation of 𝐵

𝑁
for

a simple filter. The first step is to square |𝐻(𝑓 )| to give |𝐻(𝑓 )|2 as shown in Figure 7.10(b). By simple
geometry, the area under |𝐻 (𝑓 )|2 for nonnegative frequencies is

𝐴 =
∫

∞

0
|𝐻(𝑓 )|2 𝑑𝑓 = 50 (7.110)

Note also that the maximum gain of the actual filter is 𝐻0 = 2. For the ideal filter with amplitude
response denoted by 𝐻

𝑒
(𝑓 ), which is ideal bandpass centered at 15 Hz of single-sided bandwidth 𝐵

𝑁

and passband gain 𝐻0, we want

∫

∞

0
|𝐻(𝑓 )|2 𝑑𝑓 = 𝐻

2
0𝐵𝑁

(7.111)
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Figure 7.10
Illustrations for Example 7.9.

or

50 = 22𝐵
𝑁

(7.112)

from which

𝐵
𝑁
= 12.5 Hz (7.113)

■

EXAMPLE 7.10

The noise-equivalent bandwidth of an 𝑛th-order Butterworth filter for which

||𝐻𝑛
(𝑓 )||

2 = 1
1 +

(
𝑓∕𝑓3

)2𝑛 (7.114)

is

𝐵
𝑁
(𝑛) =

∫

∞

0

1
1 +

(
𝑓∕𝑓3

)2𝑛 𝑑𝑓 = 𝑓3
∫

∞

0

1
1 + 𝑥2𝑛 𝑑𝑥

=
𝜋𝑓3∕2𝑛

sin (𝜋∕2𝑛)
, 𝑛 = 1, 2,… (7.115)

where 𝑓3 is the 3-dB frequency of the filter. For 𝑛 = 1, (7.115) gives the result for a lowpass RC filter,
namely 𝐵

𝑁
(1) = 𝜋

2
𝑓3. As 𝑛 approaches infinity, 𝐻

𝑛
(𝑓 ) approaches the frequency response function of

an ideal lowpass filter of single-sided bandwidth 𝑓3. The noise-equivalent bandwidth is

lim
𝑛→∞

𝐵
𝑁
(𝑛) = 𝑓3 (7.116)

as it should be by its definition. As the cutoff of a filter becomes sharper, its noise-equivalent bandwidth
approaches its 3-dB bandwidth.

■
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EXAMPLE 7.11

To illustrate the application of (7.108), consider the computation of the noise-equivalent bandwidth of
a first-order Butterworth filter in the time domain. Its impulse response is

ℎ(𝑡) = ℑ−1
[

1
1 + 𝑗𝑓∕𝑓3

]
= 2𝜋𝑓3𝑒

−2𝜋𝑓3𝑡 𝑢(𝑡) (7.117)

According to (7.108), the noise-equivalent bandwidth of this filter is

𝐵
𝑁
=

∫
∞
0

(
2𝜋𝑓3

)2
𝑒
−4𝜋𝑓3𝑡 𝑑𝑡

2
[
∫

∞
0 2𝜋𝑓3𝑒

−2𝜋𝑓3𝑡 𝑑𝑡
]2 =

2𝜋𝑓3

2
∫

∞
0 𝑒

−𝑣
𝑑𝑣

2
(
∫

∞
0 𝑒−𝑢𝑑𝑢

)2 =
𝜋𝑓3

2
(7.118)

which checks with (7.115) if 𝑛 = 1 is substituted.
■

COMPUTER EXAMPLE 7.1

Equation (7.106) gives a fixed number for the noise-equivalent bandwidth. However, if the filter transfer
function is unknown or cannot be easily integrated, it follows that the noise-equivalent bandwidth can
be estimated by placing a finite-length segment of white noise on the input of the filter and measuring
the input and output variances. The estimate of the noise-equivalent bandwidth is then the ratio of the
output variance to the input variance. The following MATLAB program simulates the process. Note that
unlike (7.106), the noise-equivalent bandwidth is now a random variable. The variance of the estimate
can be reduced by increasing the length of the noise segment.

% File: c7ce1.m
clear all
npts = 500000; % number of points generated
fs = 2000; % sampling frequency
f3 = 20; % 3-dB break frequency
N = 4; % filter order
Wn = f3/(fs/2); % scaled 3-dB frequency
in = randn(1,npts); % vector of noise samples
[B,A] = butter(N,Wn); % filter parameters
out=filter(B,A,in); % filtered noise samples
vin=var(in); % variance of input noise samples
vout=var(out); % input noise samples
Bnexp=(vout/vin)*(fs/2); % estimated noise-equivalent bandwidth
Bntheor=(pi*f3/2/N)/sin(pi/2/N); % true noise-equivalent bandwidth
a = [’The experimental estimate of Bn is ’,num2str(Bnexp),’ Hz.’];
b = [’The theoretical value of Bn is ’,num2str(Bntheor),’ Hz.’];
disp(a)
disp(b)
% End of script file.

Executing the program gives
≫ c6ce1
The experimental estimate of Bn is 20.5449 Hz.

The theoretical value of Bn is 20.5234 Hz.

■
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■ 7.5 NARROWBAND NOISE

7.5.1 Quadrature-Component and Envelope-Phase Representation

In most communication systems operating at a carrier frequency 𝑓0, the bandwidth of the
channel, 𝐵, is small compared with 𝑓0. In such situations, it is convenient to represent the
noise in terms of quadrature components as

𝑛(𝑡) = 𝑛
𝑐
(𝑡) cos(2𝜋𝑓0𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓0𝑡 + 𝜃) (7.119)

where𝜔0 = 2𝜋𝑓0 and 𝜃 is an arbitrary phase angle. In terms of envelope and phase components,
𝑛(𝑡) can be written as

𝑛(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓0𝑡 + 𝜙 (𝑡) + 𝜃] (7.120)

where

𝑅 (𝑡) =
√

𝑛2
𝑐
+ 𝑛2

𝑠
(7.121)

and

𝜙 (𝑡) = tan−1
[
𝑛
𝑠 (𝑡)

𝑛
𝑐 (𝑡)

]
(7.122)

Actually, any random process can be represented in either of these forms, but if a process
is narrowband, 𝑅(𝑡) and 𝜙 (𝑡) can be interpreted as the slowly varying envelope and phase,
respectively, as sketched in Figure 7.11.

Figure 7.12 shows the block diagram of a system for producing 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡) where 𝜃

is, as yet, an arbitrary phase angle. Note that the composite operations used in producing 𝑛
𝑐 (𝑡)

and 𝑛
𝑠 (𝑡) constitute linear systems (superposition holds from input to output). Thus, if 𝑛(𝑡) is

a Gaussian process, so are 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡). (The system of Figure 7.12 is to be interpreted as
relating input and output processes sample function by sample function.)

We will prove several properties of 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡). Most important, of course, is whether
equality really holds in (7.119) and in what sense. It is shown in Appendix C that

𝐸

{[
𝑛(𝑡) − [𝑛

𝑐 (𝑡) cos(2𝜋𝑓0𝑡 + 𝜃) − 𝑛
𝑠 (𝑡) sin(2𝜋𝑓0𝑡 + 𝜃)]

]2} = 0 (7.123)

That is, the mean-squared error between a sample function of the actual noise process and the
right-hand side of (7.119) is zero (averaged over the ensemble of sample functions).

More useful when using the representation in (7.119), however, are the following
properties:

n(t)

R(t)

≅1/B

≅1/f0

t

Figure 7.11
A typical narrowband noise
waveform.
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nc(t)f

n(t)

H( f )

01
2

−    B 1
2

    B

LPF:

2 cos ( 0t + )ω θ

−2 sin ( 0t + )ω θ

ns(t)f

H( f )

01
2

−    B 1
2

    B

LPF:

z1

z2

×

×

Figure 7.12
The operations involved in
producing 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡).

MEANS

𝑛(𝑡) = 𝑛
𝑐 (𝑡) = 𝑛

𝑠 (𝑡) = 0 (7.124)

VARIANCES

𝑛2(𝑡) = 𝑛2
𝑐
(𝑡) = 𝑛2

𝑠
(𝑡) ≜ 𝑁 (7.125)

POWER SPECTRAL DENSITIES

𝑆
𝑛𝑐
(𝑓 ) = 𝑆

𝑛𝑠
(𝑓 ) = Lp

[
𝑆
𝑛

(
𝑓 − 𝑓0

)
+ 𝑆

𝑛

(
𝑓 + 𝑓0

)]
(7.126)

CROSS-POWER SPECTRAL DENSITY

𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) = 𝑗Lp
[
𝑆
𝑛

(
𝑓 − 𝑓0

)
− 𝑆

𝑛

(
𝑓 + 𝑓0

)]
(7.127)

where Lp[ ] denotes the lowpass part of the quantity in brackets; 𝑆
𝑛 (𝑓 ), 𝑆𝑛𝑐

(𝑓 ), and 𝑆
𝑛𝑠
(𝑓 )

are the power spectral densities of 𝑛(𝑡), 𝑛
𝑐 (𝑡), and 𝑛

𝑠 (𝑡), respectively; 𝑆𝑛𝑐𝑛𝑠
(𝑓 ) is the cross-

power spectral density of 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡). From (7.127), we see that

𝑅
𝑛𝑐𝑛𝑠

(𝜏) ≡ 0 for all 𝜏, if Lp[𝑆
𝑛
(𝑓 − 𝑓0) − 𝑆

𝑛

(
𝑓 + 𝑓0

)
] = 0 (7.128)

This is an especially useful property in that it tells us that 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡) are uncorrelated if
the power spectral density of 𝑛(𝑡) is symmetrical about 𝑓 = 𝑓0 where 𝑓 > 0. If, in addition,
𝑛(𝑡) is Gaussian, 𝑛

𝑐 (𝑡) and 𝑛
𝑠 (𝑡) will be independent Gaussian processes because they are

uncorrelated, and the joint pdf of 𝑛
𝑐 (𝑡) and 𝑛

𝑠
(𝑡 + 𝜏) for any delay 𝜏, will simply be of the

form

𝑓
(
𝑛
𝑐
, 𝑡; 𝑛

𝑠
, 𝑡 + 𝜏

)
= 1

2𝜋𝑁
𝑒
−(𝑛2

𝑐
+𝑛2

𝑠
)∕2𝑁 (7.129)

If 𝑆
𝑛 (𝑓 ) is not symmetrical about 𝑓 = 𝑓0, where 𝑓 > 0, then (7.129) holds only for 𝜏 = 0 or

those values of 𝜏 for which 𝑅
𝑛𝑐𝑛𝑠

(𝜏) = 0.
Using the results of Example 6.15, the envelope and phase functions of (7.120) have the

joint pdf

𝑓 (𝑟, 𝜙) = 𝑟

2𝜋𝑁
𝑒
−𝑟2∕2𝑁

, for 𝑟 > 0 and |𝜙| ≤ 𝜋 (7.130)

which holds for the same conditions as for (7.129).
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7.5.2 The Power Spectral Density Function of 𝒏
𝒄
(𝒕) and 𝒏

𝒔
(𝒕)

To prove (7.126), we first find the power spectral density of 𝑧1 (𝑡), as defined in Figure 7.12,
by computing its autocorrelation function and Fourier-transforming the result. To simplify the
derivation, it is assumed that 𝜃 is a uniformly distributed random variable in [0, 2𝜋) and is
statistically independent of 𝑛(𝑡).9

The autocorrelation function of 𝑧1 (𝑡) = 2𝑛(𝑡) cos(𝜔0𝑡 + 𝜃) is

𝑅
𝑧1
(𝜏) = 𝐸{4𝑛(𝑡)𝑛(𝑡 + 𝜏) cos(2𝜋𝑓0𝑡 + 𝜃) cos[2𝜋𝑓0(𝑡 + 𝜏) + 𝜃]}

= 2𝐸[𝑛(𝑡)𝑛(𝑡 + 𝜏)] cos 2𝜋𝑓0𝜏

+2𝐸[𝑛(𝑡)𝑛(𝑡 + 𝜏) cos(4𝜋𝑓0𝑡 + 2𝜋𝑓0𝜏 + 2𝜃)}

= 2𝑅
𝑛
(𝜏) cos 2𝜋𝑓0𝜏 (7.131)

where𝑅
𝑛
(𝜏) is the autocorrelation function of 𝑛(𝑡) and 𝜔0 = 2𝜋𝑓0 in Figure 6.12. In obtaining

(7.131), we used appropriate trigonometric identities in addition to the independence of 𝑛 (𝑡)
and 𝜃. Thus, by the multiplication theorem of Fourier transforms, the power spectral density
of 𝑧1 (𝑡) is

𝑆
𝑧1
(𝑓 ) = 𝑆

𝑛 (𝑓 ) ∗
[
𝛿(𝑓 − 𝑓0) + 𝛿(𝑓 + 𝑓0)

]

= 𝑆
𝑛

(
𝑓 − 𝑓0

)
+ 𝑆

𝑛

(
𝑓 + 𝑓0

)
(7.132)

of which only the lowpass part is passed by 𝐻(𝑓 ). Thus, the result for 𝑆
𝑛𝑐
(𝑓 ) expressed by

(7.126) follows. A similar proof can be carried out for 𝑆
𝑛𝑠
(𝑓 ). Equation (7.125) follows by

integrating (7.126) over all 𝑓 .
Next, let us consider (7.127). To prove it, we need an expression for 𝑅

𝑧1𝑧2
(𝜏), the cross-

correlation function of 𝑧1 (𝑡) and 𝑧2 (𝑡). (See Figure 7.12.) By definition, and from Figure 7.12,

𝑅
𝑧1𝑧2

(𝜏) = 𝐸
{
𝑧1(𝑡)𝑧2(𝑡 + 𝜏)

}

= 𝐸{4𝑛 (𝑡) 𝑛(𝑡 + 𝜏) cos(2𝜋𝑓0𝑡 + 𝜃) sin[2𝜋𝑓0(𝑡 + 𝜏) + 𝜃]}

= 2𝑅
𝑛
(𝜏) sin 2𝜋𝑓0𝑡 (7.133)

where we again used appropriate trigonometric identities and the independence of 𝑛 (𝑡) and
𝜃. Letting ℎ(𝑡) be the impulse response of the lowpass filters in Figure 7.12 and employing
(7.84) and (7.85), the cross-correlation function of 𝑛

𝑐 (𝑡) and 𝑛
𝑠 (𝑡) can be written as

𝑅
𝑛𝑐𝑛𝑠

(𝜏) ≜ 𝐸[𝑛
𝑐 (𝑡) 𝑛𝑠(𝑡 + 𝜏)] = 𝐸{[ℎ(𝑡) ∗ 𝑧1 (𝑡)]𝑛𝑠(𝑡 + 𝜏)}

= ℎ(−𝜏) ∗ 𝐸
{
𝑧1(𝑡)𝑛𝑠(𝑡 + 𝜏)

}

= ℎ(−𝜏) ∗ 𝐸{𝑧1 (𝑡) [ℎ(𝑡) ∗ 𝑧2(𝑡 + 𝜏)]}

= ℎ(−𝜏) ∗ ℎ(𝜏) ∗ 𝐸[𝑧1 (𝑡) 𝑧2(𝑡 + 𝜏)]

= ℎ(−𝜏) ∗ [ℎ(𝜏) ∗ 𝑅
𝑧1𝑧2

(𝜏)] (7.134)

9This might be satisfactory for modeling noise where the phase can be viewed as completely random. In other
situations, where knowledge of the phase makes this an inappropriate assumption, a cyclostationary model may be
more appropriate.
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The Fourier transform of 𝑅
𝑛𝑐𝑛𝑠

(𝜏) is the cross-power spectral density, 𝑆
𝑛𝑐𝑛𝑠

(𝑓 ), which,
from the convolution theorem, is given by

𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) = 𝐻(𝑓 )ℑ[ℎ(−𝜏) ∗ 𝑅
𝑧1𝑧2

(𝜏)]

= 𝐻(𝑓 )𝐻∗(𝑓 )𝑆
𝑧1𝑧2

(𝑓 )

= |𝐻(𝑓 )|2 𝑆
𝑧1𝑧2

(𝑓 ) (7.135)

From (7.133) and the frequency translation theorem, it follows that

𝑆
𝑧1𝑧2

(𝑓 ) = ℑ
[
𝑗𝑅

𝑛
(𝜏)

(
𝑒
𝑗2𝜋𝑓0𝜏 − 𝑒

−𝑗2𝜋𝑓0𝜏
)]

= 𝑗
[
𝑆
𝑛

(
𝑓 − 𝑓0

)
− 𝑆

𝑛

(
𝑓 + 𝑓0

)]
(7.136)

Thus, from (7.135),

𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) = 𝑗 |𝐻(𝑓 )|2
[
𝑆
𝑛

(
𝑓 − 𝑓0

)
− 𝑆

𝑛

(
𝑓 + 𝑓0

)]

= 𝑗Lp
[
𝑆
𝑛

(
𝑓 − 𝑓0

)
− 𝑆

𝑛

(
𝑓 + 𝑓0

)]
(7.137)

which proves (7.127). Note that since the cross-power spectral density 𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) is imaginary,
the cross-correlation function 𝑅

𝑛𝑐𝑛𝑠
(𝜏) is odd. Thus, 𝑅

𝑛𝑐𝑛𝑠
(0) is zero if the cross-correlation

function is continuous at 𝜏 = 0, which is the case for bandlimited signals.

EXAMPLE 7.12

Let us consider a bandpass random process with the power spectral density shown in Figure 7.13(a).
Choosing the center frequency of 𝑓0 = 7 Hz results in 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡) being uncorrelated. Figure 7.13(b)

shows 𝑆
𝑧1
(𝑓 ) [or 𝑆

𝑧2
(𝑓 )] for 𝑓0 = 7 Hz with 𝑆

𝑛𝑐
(𝑓 ) [or 𝑆

𝑛𝑠
(𝑓 )], that is, the lowpass part of 𝑆

𝑧1
(𝑓 ),

shaded. The integral of 𝑆
𝑛
(𝑓 ) is 2(6)(2) = 24W, which is the same result obtained from integrating the

shaded portion of Figure 7.13(b).
Now suppose 𝑓0 is chosen as 5 Hz. Then 𝑆

𝑧1
(𝑓 ) and 𝑆

𝑧2
(𝑡) are as shown in Figure 7.12(c),

with 𝑆
𝑛𝑐
(𝑓 ) shown shaded. From Equation (7.127), it follows that −𝑗𝑆

𝑛𝑐𝑛𝑠
(𝑓 ) is the shaded portion of

Figure 7.12(d). Because of the asymmetry that results from the choice of 𝑓0, 𝑛𝑐 (𝑡) and 𝑛
𝑠
(𝑡) are not

uncorrelated. As a matter of interest, we can calculate 𝑅
𝑛𝑐𝑛𝑠

(𝜏) easily by using the transform pair

2𝐴𝑊 sinc2𝑊 𝜏 ⟷ 𝐴Π
(

𝑓

2𝑊

)
(7.138)

and the frequency-translation theorem. From Figure 7.12(d), it follows that

𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) = 2𝑗
{
−Π

[1
4
(𝑓 − 3)

]
+ Π

[1
4
(𝑓 + 3)

]}
(7.139)

which results in the cross-correlation function

𝑅
𝑛𝑐𝑛𝑠

(𝜏) = 2𝑗
(
−4sinc4𝜏𝑒𝑗6𝜋𝜏 + 4sinc4𝜏𝑒−𝑗6𝜋𝜏

)

= 16 sinc (4𝜏) sin (6𝜋𝜏) (7.140)

www.it-ebooks.info

http://www.it-ebooks.info/


7.5 Narrowband Noise 337
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Figure 7.13
Spectra for Example 7.11. (a) Bandpass spectrum. (b) Lowpass spectra for 𝑓0 = 7 Hz. (c) Lowpass
spectra for 𝑓0 = 5 Hz. (d) Cross spectra for 𝑓0 = 5 Hz.

τ
−0.4

−0.3

−0.2 −0.1

10

−10

0.1

0.2
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0.4

Rncns
( )τ Figure 7.14

Cross-correlation function of 𝑛
𝑐
(𝑡)

and 𝑛
𝑠
(𝑡) for Example 7.11.

This cross-correlation function is shown in Figure 7.14. Although 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are not uncorrelated, we

see that 𝜏 may be chosen such that 𝑅
𝑛𝑐𝑛𝑠

(𝜏) = 0 for particular values of 𝜏 (𝜏 = 0, ± 1∕6, ± 1∕3, …).
■
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7.5.3 Ricean Probability Density Function

A useful random-process model for many applications, for example, signal fading, is the sum
of a random phased sinusoid and bandlimited Gaussian random noise. Thus, consider a sample
function of this process expressed as

𝑧 (𝑡) = 𝐴 cos
(
𝜔0𝑡 + 𝜃

)
+ 𝑛

𝑐 (𝑡) cos
(
𝜔0𝑡

)
− 𝑛

𝑠 (𝑡) sin
(
𝜔0𝑡

)
(7.141)

where 𝑛
𝑐 (𝑡) and 𝑛

𝑠 (𝑡) are Gaussian quadrature components of the bandlimited, stationary,
Gaussian random process 𝑛

𝑐 (𝑡) cos
(
𝜔0𝑡

)
− 𝑛

𝑠 (𝑡) sin
(
𝜔0𝑡

)
, 𝐴 is a constant amplitude, and

𝜃 is a random variable uniformly distributed in [0, 2𝜋). The pdf of the envelope of this sta-
tionary random process at any time 𝑡 is said to be Ricean after its originator, S. O. Rice. The
first term is often referred to as the specular component and the latter two terms make up the
diffuse component. This is in keeping with the idea that (7.141) results from transmitting an
unmodulated sinusoidal signal through a dispersive channel, with the specular component be-
ing a direct-ray reception of that signal while the diffuse component is the resultant of multiple
independent reflections of the transmitted signal (the central-limit theorem of probability can
be invoked to justify that the quadrature components of this diffuse part are Gaussian random
processes). Note that if 𝐴 = 0, the pdf of the envelope of (7.141) is Rayleigh.

The derivation of the Ricean pdf proceeds by expanding the first term of (7.141) using
the trigonometric identity for the cosine of the sum of two angles to rewrite it as

𝑧 (𝑡) = 𝐴 cos 𝜃 cos
(
2𝜋𝑓0𝑡

)
− 𝐴 sin 𝜃 sin

(
2𝜋𝑓0𝑡

)
+ 𝑛

𝑐 (𝑡) cos
(
2𝜋𝑓0𝑡

)
− 𝑛

𝑠 (𝑡) sin
(
2𝜋𝑓0𝑡

)

=
[
𝐴 cos 𝜃 + 𝑛

𝑐 (𝑡)
]
cos

(
2𝜋𝑓0𝑡

)
−
[
𝐴 sin 𝜃 + 𝑛

𝑠 (𝑡)
]
sin

(
2𝜋𝑓0𝑡

)

= 𝑋 (𝑡) cos
(
2𝜋𝑓0𝑡

)
− 𝑌 (𝑡) sin

(
2𝜋𝑓0𝑡

)
(7.142)

where

𝑋 (𝑡) = 𝐴 cos 𝜃 + 𝑛
𝑐 (𝑡) and 𝑌 (𝑡) = 𝐴 sin 𝜃 + 𝑛

𝑠 (𝑡) (7.143)

These random processes, given 𝜃, are independent Gaussian random processes with variance
𝜎
2. Their means are 𝐸[𝑋(𝑡)] = 𝐴 cos 𝜃 and 𝐸[𝑌 (𝑡)] = 𝐴 sin 𝜃, respectively. The goal is to

find the pdf of

𝑅 (𝑡) =
√

𝑋2 (𝑡) + 𝑌 2 (𝑡) (7.144)

Given 𝜃, the joint pdf of 𝑋(𝑡) and 𝑌 (𝑡) is the product of their respective marginal pdfs since
they are independent. Using the means and variance given above, this becomes

𝑓
𝑋𝑌 (𝑥, 𝑦) =

exp
[
− (𝑥 − 𝐴 cos 𝜃)2 ∕2𝜎2]

√
2𝜋𝜎2

exp
[
− (𝑦 − 𝐴 sin 𝜃)2 ∕2𝜎2]

√
2𝜋𝜎2

=
exp

{
−
[
𝑥
2 + 𝑦

2 − 2𝐴 (cos 𝜃 + sin 𝜃) + 𝐴
2] ∕2𝜎2}

2𝜋𝜎2 (7.145)

Now make the change of variables

𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙

}
, 𝑟 ≥ 0 and 0 ≤ 𝜙 < 2𝜋 (7.146)

www.it-ebooks.info

http://www.it-ebooks.info/


7.5 Narrowband Noise 339

Recall that transformation of a joint pdf requires multiplication by the Jacobian of the trans-
formation, which in this case is just 𝑟. Thus, the joint pdf of the random variables 𝑅 and Φ is

𝑓
𝑅Φ (𝑟, 𝜙) =

𝑟 exp
{
−
[
𝑟
2 + 𝐴

2 − 2𝑟𝐴 (cos 𝜃 cos𝜙 + sin 𝜃 sin𝜙)
]
∕2𝜎2}

2𝜋𝜎2

= 𝑟

2𝜋𝜎2 exp
{
−
[
𝑟
2 + 𝐴

2 − 2𝑟𝐴 cos (𝜃 − 𝜙)
]
∕2𝜎2} (7.147)

The pdf over 𝑅 alone may be obtained by integrating over 𝜙 with the aid of the definition

𝐼0 (𝑢) =
1
2𝜋 ∫

2𝜋

0
exp (𝑢 cos 𝛼) 𝑑𝛼 (7.148)

where 𝐼0(𝑢) is referred to as the modified Bessel function of order zero. Since the integrand
of (7.148) is periodic with period 2𝜋, the integral can be over any 2𝜋 range. The result of the
integration of (7.147) over 𝜙 produces

𝑓
𝑅 (𝑟) = 𝑟

𝜎2 exp
{
−
[
𝑟
2 + 𝐴

2] ∕2𝜎2}
𝐼0

(
𝐴𝑟

𝜎2

)
, 𝑟 ≥ 0 (7.149)

Since the result is independent of 𝜃, this is the marginal pdf of 𝑅 alone. From (7.148), it
follows that 𝐼0(0) = 1 so that with 𝐴 = 0 (7.149) reduces to the Rayleigh pdf, as it should.

Often, (7.149) is expressed in terms of the parameter 𝐾 = 𝐴
2

2𝜎2 , which is the ratio of the
powers in the steady component [first term of (7.141)] to the random Gaussian component
[second and third terms of (7.141)] . When this is done, (7.149) becomes

𝑓
𝑅 (𝑟) = 𝑟

𝜎2 exp
{
−
[

𝑟
2

2𝜎2 +𝐾

]}
𝐼0

(√
2𝐾 𝑟

𝜎

)
, 𝑟 ≥ 0 (7.150)

As 𝐾 becomes large, (7.150) approaches a Gaussan pdf. The parameter 𝐾 is often referred to
as the Ricean 𝐾-factor.

From (7.144) it follows that

𝐸
[
𝑅
2] = 𝐸

[
𝑋

2] + 𝐸
[
𝑌
2]

= 𝐸

{[
𝐴 cos 𝜃 + 𝑛

𝑐 (𝑡)
]2 +

[
𝐴 sin 𝜃 + 𝑛

𝑠 (𝑡)
]2}

= 𝐸
[
𝐴
2 cos2 𝜃 + 𝐴

2 sin2 𝜃
]
+ 2𝐴𝐸

[
𝑛
𝑐 (𝑡) cos 𝜃 + 𝑛

𝑠 (𝑡) sin 𝜃
]
+ 𝐸

[
𝑛
2
𝑐
(𝑡)
]

+𝐸
[
𝑛
2
𝑠
(𝑡)
]

= 𝐴
2 + 2𝜎2

= 2𝜎2 (1 +𝐾) (7.151)

Other moments for a Ricean random variable must be expressed in terms of confluent hyper-
geometric functions.10

10See, for example, J. Proakis, Digital Communications, 4th ed., New York: McGraw Hill, 2001.
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Further Reading

Papoulis (1991) is a recommended book for random processes. The references given in Chapter 6 also
provide further reading on the subject matter of this chapter.

Summary

1. A random process is completely described by the
𝑁-fold joint pdf of its amplitudes at the arbitrary times
𝑡1, 𝑡2,… , 𝑡

𝑁
. If this pdf is invariant under a shift of the

time origin, the process is said to be statistically station-
ary in the strict sense.

2. The autocorrelation function of a random process,
computed as a statistical average, is defined as

𝑅
(
𝑡1, 𝑡2

)
=
∫

∞

−∞ ∫

∞

−∞
𝑥1𝑥2𝑓𝑋1𝑋2

(𝑥1, 𝑡1; 𝑥2, 𝑡2) 𝑑𝑥1 𝑑𝑥2

where 𝑓
𝑋1𝑋2

(𝑥1, 𝑡1; 𝑥2, 𝑡2) is the joint amplitude pdf of the
process at times 𝑡1 and 𝑡2. If the process is stationary,

𝑅(𝑡1, 𝑡2) = 𝑅(𝑡2 − 𝑡1) = 𝑅(𝜏)

where 𝜏 ≜ 𝑡2 − 𝑡1.

3. A process whose statistical average mean and vari-
ance are time-independent and whose autocorrelation
function is a function only of 𝑡2 − 𝑡1 = 𝜏 is termed wide-
sense stationary. Strict-sense stationary processes are also
wide-sense stationary. The converse is true only for special
cases; for example, wide-sense stationarity for a Gaussian
process guarantees strict-sense stationarity.

4. A process for which statistical averages and time
averages are equal is called ergodic. Ergodicity implies
stationarity, but the reverse is not necessarily true.

5. The Wiener--Khinchine theorem states that the au-
tocorrelation function and the power spectral density of
a stationary random process are a Fourier-transform pair.
An expression for the power spectral density of a random
process that is often useful is

𝑆
𝑛
(𝑓 ) = lim

𝑇→∞

1
𝑇
𝐸

{
|||ℑ
[
𝑛
𝑇
(𝑡)
]|||

2
}

where 𝑛
𝑇
(𝑡) is a sample function truncated to 𝑇 seconds,

centered about 𝑡 = 0.
6. The autocorrelation function of a random process is

a real, even function of the delay variable 𝜏 with an abso-
lute maximum at 𝜏 = 0. It is periodic for periodic random
processes, and its Fourier transform is nonnegative for
all frequencies. As 𝜏 → ±∞, the autocorrelation function

approaches the square of the mean of the random process
unless the random process is periodic.𝑅 (0) gives the total
average power in a process.

7. White noise has a constant power spectral density
1
2
𝑁0 for all 𝑓 . Its autocorrelation function is

1
2
𝑁0𝛿(𝜏). For

this reason, it is sometimes called delta-correlated noise. It
has infinite power and is therefore amathematical idealiza-
tion. However, it is, nevertheless, a useful approximation
in many cases.

8. The cross-correlation function of two stationary ran-
dom processes 𝑋 (𝑡) and 𝑌 (𝑡) is defined as

𝑅
𝑋𝑌

(𝜏) = 𝐸[𝑋 (𝑡) 𝑌 (𝑡 + 𝜏)]

Their cross-power spectral density is

𝑆
𝑋𝑌

(𝑓 ) = ℑ[𝑅
𝑋𝑌

(𝜏)]

They are said to be orthogonal if 𝑅
𝑋𝑌

(𝜏) = 0 for all 𝜏.
9. Consider a linear system with the impulse response

ℎ(𝑡) and the frequency response function 𝐻(𝑓 ) with ran-
dom input 𝑥(𝑡) and output 𝑦(𝑡). Then

𝑆
𝑌
(𝑓 ) = |𝐻(𝑓 )|2 𝑆

𝑋
(𝑓 )

𝑅
𝑌
(𝜏) = ℑ−1 [

𝑆
𝑌
(𝑓 )

]
=
∫

∞

−∞
|𝐻(𝑓 )|2 𝑆

𝑋
(𝑓 ) 𝑒𝑗2𝜋𝑓𝜏 𝑑𝑓

𝑅
𝑋𝑌

(𝜏) = ℎ (𝜏) ∗ 𝑅
𝑋
(𝜏)

𝑆
𝑋𝑌

(𝑓 ) = 𝐻(𝑓 )𝑆
𝑋
(𝑓 )

𝑅
𝑌𝑋

(𝜏) = ℎ (−𝜏) ∗ 𝑅
𝑋
(𝜏)

𝑆
𝑌𝑋

(𝑓 ) = 𝐻
∗(𝑓 )𝑆

𝑋
(𝑓 )

where 𝑆(𝑓 ) denotes the spectral density, 𝑅(𝜏) denotes
the autocorrelation function, and the asterisk denotes
convolution.

10. The output of a linear system with Gaussian input is
Gaussian.

11. The noise-equivalent bandwidth of a linear system
with a frequency response function 𝐻(𝑓 ) is defined as

𝐵
𝑁
= 1

𝐻
2
0
∫

∞

0
|𝐻(𝑓 )|2 𝑑𝑓
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where𝐻0 represents the maximum value of |𝐻(𝑓 )|. If the
input is white noise with the single-sided power spectral
density 𝑁0, the output power is

𝑃0 = 𝐻
2
0𝑁0𝐵𝑁

An equivalent expression for the noise-equivalent band-
width written in terms of the impulse response of the
filter is

𝐵
𝑁
=

∫
∞
−∞ |ℎ(𝑡)|

2
𝑑𝑡

2
[
∫

∞
−∞ ℎ (𝑡) 𝑑𝑡

]2

12. The quadrature-component representation of a ban-
dlimited random process 𝑛 (𝑡) is

𝑛 (𝑡) = 𝑛
𝑐
(𝑡) cos(2𝜋𝑓0𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓0𝑡 + 𝜃)

where 𝜃 is an arbitrary phase angle. The envelope-phase
representation is

𝑛 (𝑡) = 𝑅(𝑡) cos(2𝜋𝑓0𝑡 + 𝜙(𝑡) + 𝜃)

where 𝑅
2(𝑡) = 𝑛

2
𝑐
(𝑡) + 𝑛

2
𝑠
(𝑡) and tan[𝜙(𝑡)] = 𝑛

𝑠
(𝑡) ∕𝑛

𝑐
(𝑡).

If the process is narrowband, 𝑛
𝑐
, 𝑛

𝑠
, 𝑅, and 𝜙 vary slowly

with respect to cos 2𝜋𝑓0𝑡 and sin 2𝜋𝑓0𝑡. If the power spec-
tral density of 𝑛 (𝑡) is 𝑆

𝑛
(𝑓 ), the power spectral densities

of 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are

𝑆
𝑛𝑐
(𝑓 ) = 𝑆

𝑛𝑠
(𝑓 ) = Lp[𝑆

𝑛
(𝑓 − 𝑓0) + 𝑆

𝑛
(𝑓 + 𝑓0)]

where Lp[ ] denotes the low-frequency part of the quan-
tity in the brackets. If Lp[𝑆

𝑛

(
𝑓 + 𝑓0

)
− 𝑆

𝑛

(
𝑓 − 𝑓0

)
] = 0,

then 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are orthogonal. The average powers

of 𝑛
𝑐
(𝑡), 𝑛

𝑠
(𝑡), and 𝑛 (𝑡) are equal. The processes 𝑛

𝑐
(𝑡) and

𝑛
𝑠
(𝑡) are given by

𝑛
𝑐
(𝑡) = Lp[2𝑛 (𝑡) cos(2𝜋𝑓0𝑡 + 𝜃)]

and

𝑛
𝑠
(𝑡) = −Lp[2𝑛 (𝑡) sin(2𝜋𝑓0𝑡 + 𝜃)]

Since these operations are linear, 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) will be

Gaussian if 𝑛 (𝑡) is Gaussian. Thus, 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are inde-

pendent if 𝑛 (𝑡) is zero-mean Gaussian with a power spec-
tral density that is symmetrical about 𝑓 = 𝑓0 for 𝑓 > 0.
13. The Ricean pdf gives the distribution of envelope
values assumed by the sum of a sinusoid with phase uni-
formly distributed in [0, 2𝜋) plus bandlimited Gaussian
noise. It is convenient in various applications including
modeling of fading channels.

Drill Problems

7.1 A random process is defined by the sample functions
𝑋

𝑖
(𝑡) = 𝐴

𝑖
𝑡 + 𝐵

𝑖
, where 𝑡 is time in seconds, the𝐴

𝑖
s are in-

dependent random variables for each 𝑖, which are Gaussian
with 0 means and unit variances, and the 𝐵

𝑖
s are indepen-

dent random variables for each 𝑖 uniformly distributed in
[−0.5, 0.5].

(a) Sketch several typical sample functions.

(b) Is the random process stationary?

(c) Is the random process ergodic?

(d) Write down an expression for its mean at an
arbitrary time 𝑡.

(e) Write down an expression for its mean-squared
value at an arbitrary time 𝑡.

(f) Write down an expression for its variance at an
arbitrary time 𝑡.

7.2 WhiteGaussian noise of double-sided power spectral
density 1 W/Hz is passed through a filter with frequency
response function 𝐻 (𝑓 ) = (1 + 𝑗2𝜋𝑓 )−1.

(a) What is the power spectral density, 𝑆
𝑌
(𝑓 ), of the

output process?;

(b) What is the autocorrelation function, 𝑅
𝑌
(𝜏), of

the output process?

(c) What is the mean of the output process?

(d) What is the variance of the output process?

(e) Is the output process stationary?

(f) What is the first-order pdf of the output process?

(g) Comment on the similarities and disimilarities of
the output process and the random process con-
sidered in Example 7.2.

7.3 For each case given below, tell whether the given
function can be a satisfactory autocorrelation function. If
it is not satisfactory, give the reason(s).

(a) 𝑅
𝑎
(𝜏) = Π

(
𝜏∕𝜏0

)
where 𝜏0 is a constant;

(b) 𝑅
𝑏
(𝜏) = Λ

(
𝜏∕𝜏0

)
where 𝜏0 is a constant;

(c) 𝑅
𝑐
(𝜏) = 𝐴 cos

(
2𝜋𝑓0𝜏

)
where 𝐴 and 𝑓0 are

constants;

(d) 𝑅
𝑑
(𝜏) = 𝐴 + 𝐵 cos

(
2𝜋𝑓0𝜏

)
where 𝐴, 𝐵, and

𝑓0 are constants;

(e) 𝑅
𝑒
(𝜏) = 𝐴 sin

(
2𝜋𝑓0𝜏

)
where 𝐴 and 𝑓0 are

constants;
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(f) 𝑅
𝑓
(𝜏) = 𝐴 sin2

(
2𝜋𝑓0𝜏

)
where 𝐴 and 𝑓0 are

constants.

7.4 A filter with frequency response function 𝐻 (𝑓 ) =
(1 + 𝑗2𝜋𝑓 )−1 is driven by a white-noise process with
double-sided power spectral density of 1 W/Hz.

(a) What is the cross-power spectral density of input
with output?

(b) What is the cross-correlation function of input
with output?

(c) What is the power spectral density of the output?

(d) What is the autocorrelation function of the
output?

7.5 A bandpass random process has power spectral den-

sity 𝑆 (𝑓 ) = Π
(

𝑓−10
4

)
+ Π

(
𝑓+10
4

)
.

(a) Find its autocorrelation function.

(b) It is to be represented in inphase-quadrature
form; that is, 𝑥 (𝑡) = 𝑛

𝑐
(𝑡) cos

(
2𝜋𝑓0𝑡 + 𝜃

)
−

𝑛
𝑠
(𝑡) sin

(
2𝜋𝑓0𝑡 + 𝜃

)
. If 𝑓0 is chosen as 10 Hz,

what is the cross-spectral density, 𝑆
𝑛𝑐𝑛𝑠

(𝑓 )?

(c) If 𝑓0 is chosen as 8 Hz, what is the cross-spectral
density, 𝑆

𝑛𝑐𝑛𝑠
(𝑓 )?

(d) If 𝑓0 is chosen as 12 Hz, what is the cross-spectral
density, 𝑆

𝑛𝑐𝑛𝑠
(𝑓 )?

(e) What is the cross-correlation function corre-
sponding to part (c)?

(f) What is the cross-correlation function corre-
sponding to part (d)?

7.6 A filter has frequency response function 𝐻 (𝑓 ) =
Λ (𝑓∕2). What is its noise-equivalent bandwidth?

7.7 A bandlimited signal consists of a steady sinusoidal
component of power 10 W and a narrowband Gaussian
component centered on the steady component of power
5 W. Find the following:

(a) The steady to random power ratio, 𝐾 .

(b) The total received power.

(c) The pdf of the envelope process.

(d) The probability that the envelope will exceed
10 V (requires numerical integration).

Problems

Section 7.1

7.1 A fair die is thrown. Depending on the number of
spots on the up face, the following random processes are
generated. Sketch several examples of sample functions
for each case.

(a) 𝑋 (𝑡, 𝜁 ) =
⎧
⎪
⎨
⎪
⎩

2𝐴, 1 or 2 spots up
0, 3 or 4 spots up
−2𝐴, 5 or 6 spots up

(b) 𝑋 (𝑡, 𝜁 ) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

3𝐴, 1 spot up
2𝐴, 2 spots up
𝐴, 3 spots up
−𝐴, 4 spots up
−2𝐴, 5 spots up
−3𝐴, 6 spots up

(c) 𝑋 (𝑡, 𝜁 ) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

4𝐴, 1 spot up
2𝐴, 2 spots up
𝐴𝑡, 3 spots up
−𝐴𝑡, 4 spots up
−2𝐴, 5 spots up
−4𝐴, 6 spots up

Section 7.2

7.2 Referring to Problem 7.1, what are the following
probabilities for each case?

(a) 𝐹
𝑋
(𝑋 ≤ 2𝐴, 𝑡 = 4)

(b) 𝐹
𝑋
(𝑋 ≤ 0, 𝑡 = 4)

(c) 𝐹
𝑋
(𝑋 ≤ 2𝐴, 𝑡 = 2)

7.3 A random process is composed of sample functions
that are square waves, each with constant amplitude𝐴, pe-
riod 𝑇0, and random delay 𝜏 as sketched in Figure 7.15.
The pdf of 𝜏 is

𝑓 (𝜏) =

{
1∕𝑇0, |𝜏| ≤ 𝑇0∕2
0, otherwise

(a) Sketch several typical sample functions.

(b) Write the first-order pdf for this random process
at some arbitrary time 𝑡0. (Hint: Because of the
random delay 𝜏, the pdf is independent of 𝑡0.
Also, it might be easier to deduce the cdf and
differentiate it to get the pdf.)
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X(t)

t

T0

A

−A

τ

Figure 7.15

7.4 Let the sample functions of a random process be
given by

𝑋 (𝑡) = 𝐴 cos 2𝜋𝑓0𝑡

where 𝜔0 is fixed and 𝐴 has the pdf

𝑓
𝐴
(𝑎) = 𝑒

−𝛼2∕2𝜎2
𝑎

√
2𝜋𝜎

𝑎

This random process is passed through an ideal inte-
grator to give a random process 𝑌 (𝑡).

(a) Find an expression for the sample functions of
the output process 𝑌 (𝑡).

(b) Write down an expression for the pdf of 𝑌 (𝑡)
at time 𝑡0. Hint: Note that sin 2𝜋𝑓0𝑡0 is just a
constant.

(c) Is 𝑌 (𝑡) stationary? Is it ergodic?

7.5 Consider the random process of Problem 7.3.

(a) Find the time-average mean and the autocorrela-
tion function.

(b) Find the ensemble-average mean and the auto-
correlation function.

(c) Is this process wide-sense stationary? Why or
why not?

7.6 Consider the random process of Example 7.1 with
the pdf of 𝜃 given by

𝑝 (𝜃) =

{
2∕𝜋, 𝜋∕2 ≤ 𝜃 ≤ 𝜋

0, otherwise

(a) Find the statistical-average and time-average
mean and variance.

(b) Find the statistical-average and time-average
autocorrelation functions.

(c) Is this process ergodic?

7.7 Consider the random process of Problem 7.4.

(a) Find the time-average mean and the autocorrela-
tion function.

(b) Find the ensemble-average mean and the auto-
correlation function.

(c) Is this process wide-sense stationary? Why or
why not?

7.8 The voltage of the output of a noise generator
whose statistics are known to be closely Gaussian and
stationary is measured with a dc voltmeter and a true root-
mean-square (rms) voltmeter that is ac coupled. The dc
meter reads 6 V, and the true rms meter reads 7 V. Write
down an expression for the first-order pdf of the voltage
at any time 𝑡 = 𝑡0. Sketch and dimension the pdf.

Section 7.3

7.9 Which of the following functions are suitable au-
tocorrelation functions? Tell why or why not. (𝜔0, 𝜏0, 𝜏1,
𝐴, 𝐵, 𝐶 , and 𝑓0 are positive constants.)

(a) 𝐴 cos𝜔0𝜏

(b) 𝐴Λ
(
𝜏∕𝜏0

)
, whereΛ(𝑥) is the unit-area triangular

function defined in Chapter 2

(c) 𝐴Π
(
𝜏∕𝜏0

)
, where Π(𝑥) is the unit-area pulse

function defined in Chapter 2

(d) 𝐴 exp
(
−𝜏∕𝜏0

)
𝑢 (𝜏) where 𝑢 (𝑥) is the unit-step

function

(e) 𝐴 exp
(
− |𝜏| ∕𝜏0

)

(f) 𝐴 sinc
(
𝑓0𝜏

)
= sin(𝜋𝑓0𝜏)

𝜋𝑓0𝜏

7.10 A bandlimited white-noise process has a double-
sided power spectral density of 2 × 10−5 W/Hz in the fre-
quency range |𝑓 | ≤ 1 kHz. Find the autocorrelation func-
tion of the noise process. Sketch and fully dimension the
resulting autocorrelation function.
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7.11 Consider a random binary pulse waveform as an-
alyzed in Example 7.6, but with half-cosine pulses given
by 𝑝(𝑡) = cos(2𝜋𝑡∕2𝑇 )Π(𝑡∕𝑇 ). Obtain and sketch the au-
tocorrelation function for the two cases considered in
Example 7.6, namely,

(a) 𝑎
𝑘
= ±𝐴 for all 𝑘, where 𝐴 is a constant, with

𝑅
𝑚
= 𝐴

2, 𝑚 = 0, and 𝑅
𝑚
= 0 otherwise.

(b) 𝑎
𝑘
= 𝐴

𝑘
+ 𝐴

𝑘−1 with 𝐴
𝑘
= ±𝐴 and

𝐸[𝐴
𝑘
𝐴

𝑘+𝑚] = 𝐴
2
, 𝑚 = 0, and zero otherwise.

(c) Find and sketch the power spectral density for
each preceding case.

7.12 Two random processes are given by

𝑋 (𝑡) = 𝑛 (𝑡) + 𝐴 cos(2𝜋𝑓0𝑡 + 𝜃)

and

𝑌 (𝑡) = 𝑛 (𝑡) + 𝐴 sin(2𝜋𝑓0𝑡 + 𝜃)

where 𝐴 and 𝑓0 are constants and 𝜃 is a random vari-
able uniformly distributed in the interval [−𝜋, 𝜋). The first
term, 𝑛 (𝑡), represents a stationary random noise process
with autocorrelation function 𝑅

𝑛
(𝜏) = 𝐵Λ(𝜏∕𝜏0), where

𝐵 and 𝜏0 are nonnegative constants.

(a) Find and sketch their autocorrelation functions.
Assume values for the various constants involved.

(b) Find and sketch the cross-correlation function of
these two random processes.

7.13 Given two independent, wide-sense stationary ran-
dom processes 𝑋 (𝑡) and 𝑌 (𝑡) with autocorrelation func-
tions 𝑅

𝑋
(𝜏) and 𝑅

𝑌
(𝜏), respectively.

(a) Show that the autocorrelation function 𝑅
𝑍
(𝜏) of

their product 𝑍(𝑡) = 𝑋 (𝑡) 𝑌 (𝑡) is given by

𝑅
𝑍
(𝜏) = 𝑅

𝑋
(𝜏)𝑅

𝑌
(𝜏)

(b) Express the power spectral density of 𝑍(𝑡) in
terms of the power spectral densities of𝑋 (𝑡) and
𝑌 (𝑡), denoted as 𝑆

𝑋
(𝑓 ) and 𝑆

𝑌
(𝑓 ), respectively.

(c) Let 𝑋 (𝑡) be a bandlimited stationary noise
process with power spectral density 𝑆

𝑥
(𝑓 ) =

10Π(𝑓∕200), and let 𝑌 (𝑡) be the process defined
by sample functions of the form

𝑌 (𝑡) = 5 cos(50𝜋𝑡 + 𝜃)

where 𝜃 is a uniformly distributed random vari-
able in the interval (0, 2𝜋). Using the results de-
rived in parts (a) and (b), obtain the autocor-
relation function and power spectral density of
𝑍(𝑡) = 𝑋 (𝑡) 𝑌 (𝑡).

7.14 A random signal has the autocorrelation function

𝑅(𝜏) = 9 + 3Λ(𝜏∕5)

where Λ(𝑥) is the unit-area triangular function defined in
Chapter 2. Determine the following:

(a) The ac power.

(b) The dc power.

(c) The total power.

(d) The power spectral density. Sketch it and label
carefully.

7.15 A random process is defined as 𝑌 (𝑡) = 𝑋 (𝑡) +
𝑋(𝑡 − 𝑇 ), where 𝑋 (𝑡) is a wide-sense stationary random
process with autocorrelation function 𝑅

𝑋
(𝑇 ) and power

spectral density 𝑆
𝑥
(𝑓 ) .

(a) Show that 𝑅
𝑌
(𝜏) = 2𝑅

𝑋
(𝜏) + 𝑅

𝑋
(𝜏 + 𝑇 ) +

𝑅
𝑋
(𝜏 − 𝑇 ).

(b) Show that 𝑆
𝑌
(𝑓 ) = 4𝑆

𝑋
(𝑓 ) cos2(𝜋𝑓𝑇 ).

(c) If 𝑋 (𝑡) has autocorrelation function 𝑅
𝑋
(𝜏) =

5Λ(𝜏), whereΛ(𝜏) is the unit-area triangular func-
tion, and𝑇 = 0.5, find and sketch the power spec-
tral density of 𝑌 (𝑡) as defined in the problem
statement.

7.16 The power spectral density of a wide-sense station-
ary random process is given by

𝑆
𝑋
(𝑓 ) = 10𝛿(𝑓 ) + 25sinc2(5𝑓 ) + 5𝛿(𝑓 − 10)

+5𝛿(𝑓 + 10)

(a) Sketch and fully dimension this power spectral
density function.

(b) Find the power in the dc component of the ran-
dom process.

(c) Find the total power.

(d) Given that the area under the main lobe of the
sinc-squared function is approximately 0.9 of the
total area, which is unity if it has unity amplitude,
find the fraction of the total power contained in
this process for frequencies between 0 and 0.2
Hz.

7.17 Given the following functions of 𝜏:

𝑅
𝑋1
(𝜏) = 4 exp(−𝛼|𝜏|) cos 2𝜋𝜏

𝑅
𝑋2
(𝜏) = 2 exp(−𝛼|𝜏|) + 4 cos 2𝜋𝑏𝜏

𝑅
𝑋3

(𝑓 ) = 5 exp(−4𝜏2)
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(a) Sketch each function and fully dimension.

(b) Find the Fourier transforms of each and sketch.
With the information of part (a) and the Fourier
transforms justify that each is suitable for an au-
tocorrelation function.

(c) Determine the value of the dc power, if any, for
each one.

(d) Determine the total power for each.

(e) Determine the frequency of the periodic compo-
nent, if any, for each.

Section 7.4

7.18 A stationary random process 𝑛(𝑡) has a power spec-
tral density of 10−6 W/Hz, −∞ < 𝑓 < ∞. It is passed
through an ideal lowpass filter with frequency response
function 𝐻(𝑓 ) = Π(𝑓∕500 kHz), where Π(𝑥) is the unit-
area pulse function defined in Chapter 2.

(a) Find and sketch the power spectral density of the
output?

(b) Obtain and sketch the autocorrelation function of
the output.

(c) What is the power of the output process? Find it
two different ways.

7.19 An ideal finite-time integrator is characterized by
the input-output relationship

𝑌 (𝑡) = 1
𝑇 ∫

𝑡

𝑡−𝑇
𝑋(𝛼) 𝑑𝛼

(a) Justify that its impulse response is ℎ (𝑡) =
1
𝑇
[𝑢 (𝑡) − 𝑢 (𝑡 − 𝑇 )].

(b) Obtain its frequency response function. Sketch it.

(c) The input is white noise with two-sided power
spectral density 𝑁0∕2. Find the power spectral
density of the output of the filter.

(d) Show that the autocorrelation function of the
output is

𝑅0(𝜏) =
𝑁0

2𝑇
Λ(𝜏∕𝑇 )

where Λ(𝑥) is the unit-area triangular function
defined in Chapter 2.

(e) What is the equivalent noise bandwidth of the
integrator?

(f) Show that the result for the output noise power
obtained using the equivalent noise bandwidth
found in part (e) coincides with the result found

from the autocorrelation function of the output
found in part (d).

7.20 White noise with two-sided power spectral density
𝑁0∕2 drives a second-order Butterworth filter with fre-
quency response function magnitude

||𝐻2bu(𝑓 )|| =
1

√
1 +

(
𝑓∕𝑓3

)4

where 𝑓3 is its 3-dB cutoff frequency.

(a) What is the power spectral density of the filter’s
output?

(b) Show that the autocorrelation function of the out-
put is

𝑅0(𝑟) =
𝜋𝑓3𝑁0

2
exp

(
−
√
2𝜋𝑓3|𝜏|

)

cos
[√

2𝜋𝑓3|𝜏| − 𝜋∕4
]

Plot as a function of 𝑓3𝜏.Hint: Use the integral
given below:

∫

∞

0

cos(𝑎𝑥)
𝑏4 + 𝑥4 𝑑𝑥 =

√
2𝜋

4𝑏3
exp

(
−𝑎𝑏∕

√
2
)

[
cos

(
𝑎𝑏∕

√
2
)
+ sin

(
𝑎𝑏∕

√
2
)
, 𝑎, 𝑏 > 0

]

(c) Does the output power obtained by taking lim
𝜏→0

𝑅0(𝜏) check with that calculated using the equiv-
alent noise bandwidth for a Butterworth filter as
given by (7.115)?

7.21 A power spectral density given by

𝑆
𝑌
(𝑓 ) = 𝑓

2

𝑓 4 + 100
is desired. A white-noise source of two-sided power spec-
tral density 1 W/Hz is available. What is the frequency re-
sponse function of the filter to be placed at the noise-source
output to produce the desired power spectral density?

7.22 Obtain the autocorrelation functions and power
spectral densities of the outputs of the following systems
with the input autocorrelation functions or power spectral
densities given.

(a) Transfer function:

𝐻(𝑓 ) = Π(𝑓∕2𝐵)

Autocorrelation function of input:

𝑅
𝑋
(𝜏) =

𝑁0

2
𝛿(𝜏)

𝑁0 and 𝐵 are positive constants.
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(b) Impulse response:

ℎ(𝑡) = 𝐴 exp(−𝛼𝑡) 𝑢(𝑡)

Power spectral density of input:

𝑆
𝑋
(𝑓 ) = 𝐵

1 + (2𝜋𝛽𝑓 )2

𝐴, 𝛼, 𝐵, and 𝛽 are positive constants.

7.23 The input to a lowpass filter with impulse response

ℎ(𝑡) = exp(−10𝑡) 𝑢(𝑡)

is white, Gaussian noise with single-sided power spectral
density of 2 W/Hz. Obtain the following:

(a) The mean of the output.

(b) The power spectral density of the output.

(c) The autocorrelation function of the output.

(d) The probability density function of the output at
an arbitrary time 𝑡1.

(e) The joint probability density function of the out-
put at times 𝑡1 and 𝑡1 + 0.03 s.

7.24 Find the noise-equivalent bandwidths for the fol-
lowing first- and second-order lowpass filters in terms of
their 3-dB bandwidths. Refer to Chapter 2 to determine
the magnitudes of their transfer functions.

(a) Chebyshev

(b) Bessel

7.25 A second-order Butterworth filter has 3-dB band-
width of 500 Hz. Determine the unit impulse response
of the filter and use it to compute the noise-equivalent
bandwidth of the filter. Check your result against the ap-
propriate special case of Example 7.9.

7.26 Determine the noise-equivalent bandwidths for the
four filters having transfer functions given below:

(a) 𝐻
𝑎
(𝑓 ) = Π(𝑓∕4) + Π(𝑓∕2)

(b) 𝐻
𝑏
(𝑓 ) = 2Λ(𝑓∕50)

(c) 𝐻
𝑐
(𝑓 ) = 10

10+𝑗2𝜋𝑓

(d) 𝐻
𝑑
(𝑓 ) = Π(𝑓∕10) + Λ(𝑓∕5)

7.27 A filter has frequency response function

𝐻(𝑓 ) = 𝐻0(𝑓 − 500) +𝐻0(𝑓 + 500)

where

𝐻0(𝑓 ) = 2Λ(𝑓∕100)

Find the noise-equivalent bandwidth of the filter.

7.28 Determine the noise-equivalent bandwidths of the
systems having the following transfer functions.Hint: Use
the time-domain approach.

(a) 𝐻
𝑎
(𝑓 ) = 10

(𝑗2𝜋𝑓 + 2)(𝑗2𝜋𝑓 + 25)

(b) 𝐻
𝑏
(𝑓 ) = 100

(𝑗2𝜋𝑓 + 10)2

Section 7.5

7.29 Noise 𝑛 (𝑡) has the power spectral density shown in
Figure 7.16. We write

𝑛 (𝑡) = 𝑛
𝑐
(𝑡) cos(2𝜋𝑓0𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓0𝑡 + 𝜃)

Make plots of the power spectral densities of 𝑛
𝑐
(𝑡)

and 𝑛
𝑠
(𝑡) for the following cases:

(a) 𝑓0 = 𝑓1

(b) 𝑓0 = 𝑓2

(c) 𝑓0 =
1
2
(𝑓2 + 𝑓1)

(d) For which of these cases are 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡)

uncorrelated?

f
f1 f2−f2 −f1

Sn( f )

N0
1
2

0

Figure 7.16

7.30

(a) If 𝑆
𝑛
(𝑓 ) = 𝛼

2∕(𝛼2 + 4𝜋2
𝑓

2) show that 𝑅
𝑛
(𝜏) =

𝐾𝑒
−𝛼|𝜏|. Find 𝐾 .

(b) Find 𝑅
𝑛
(𝜏) if

𝑆
𝑛
(𝑓 ) =

1
2
𝛼
2

𝛼2 + 4𝜋2
(
𝑓 − 𝑓0

)2 +
1
2
𝛼
2

𝛼2 + 4𝜋2
(
𝑓 + 𝑓0

)2

(c) If 𝑛 (𝑡) = 𝑛
𝑐
(𝑡) cos(2𝜋𝑓0𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓0𝑡 +

𝜃), find 𝑆
𝑛𝑐
(𝑓 ), and 𝑆

𝑛𝑐𝑛𝑠
(𝑓 ), where 𝑆

𝑛
(𝑓 ) is as

given in part (b). Sketch each spectral density.

7.31 The double-sided power spectral density of noise
𝑛 (𝑡) is shown in Figure 7.17. If 𝑛 (𝑡) = 𝑛

𝑐
(𝑡) cos(2𝜋𝑓0𝑡 +

𝜃) − 𝑛
𝑠
(𝑡) sin(2𝜋𝑓0𝑡 + 𝜃), find and plot 𝑆

𝑛𝑐
(𝑓 ), 𝑆

𝑛𝑠
(𝑓 ),

and 𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) for the following cases:

(a) 𝑓0 =
1
2
(𝑓1 + 𝑓2)

(b) 𝑓0 = 𝑓1

(c) 𝑓0 = 𝑓2
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(d) Find 𝑅
𝑛𝑐𝑛𝑠

(𝜏) for each case for where 𝑆
𝑛𝑐𝑛𝑠

(𝑓 ) is
not zero. Plot.

f
f1 f2−f2 −f1

N0
1
2

0

Sn2 ( f ) Figure 7.17

7.32 A noise waveform 𝑛1(𝑡) has the bandlimited power
spectral density shown in Figure 7.18. Find and plot
the power spectral density of 𝑛2(𝑡) = 𝑛1(𝑡) cos(𝜔0𝑡 + 𝜃) −
𝑛1(𝑡) sin(𝜔0𝑡 + 𝜃), where 𝜃 is a uniformly distributed ran-
dom variable in (0, 2𝜋).

f
fM−fM 0

a

Sn1 ( f ) Figure 7.18

Section 7.6

7.33 Consider a signal-plus-noise process of the form

𝑧(𝑡) = 𝐴 cos 2𝜋(𝑓0 + 𝑓
𝑑
)𝑡 + 𝑛 (𝑡)

where 𝜔0 = 2𝜋𝑓0, with

𝑛 (𝑡) = 𝑛
𝑐
(𝑡) cos𝜔0𝑡 − 𝑛

𝑠
(𝑡) sin𝜔0𝑡

an ideal bandlimited white-noise process with double-
sided power spectral density equal to 1

2
𝑁0, for 𝑓0 −

𝐵

2
≤

|𝑓 | ≤ 𝑓0 +
𝐵

2
, and zero otherwise. Write 𝑧(𝑡) as

𝑧(𝑡) = 𝐴 cos[2𝜋(𝑓0 + 𝑓
𝑑
)𝑡] + 𝑛

′
𝑐
(𝑡) cos[2𝜋(𝑓0 + 𝑓

𝑑
)𝑡] −

𝑛
′
𝑠
(𝑡) sin[2𝜋(𝑓0 + 𝑓

𝑑
)𝑡]

(a) Express 𝑛′
𝑐
(𝑡) and 𝑛′

𝑠
(𝑡) in terms of 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡).

Using the techniques developed in Section 7.5,
find the power spectral densities of 𝑛′

𝑐
(𝑡) and 𝑛′

𝑠
(𝑡),

𝑆
𝑛
′
𝑐
(𝑓 ) and 𝑆

𝑛
′
𝑠
(𝑓 ).

(b) Find the cross-spectral density of 𝑛
′
𝑐
(𝑡) and

𝑛
′
𝑠
(𝑡), 𝑆

𝑛
′
𝑐
𝑛
′
𝑠
(𝑓 ), and the cross-correlation func-

tion, 𝑅
𝑛
′
𝑐
𝑛
′
𝑠
(𝜏). Are 𝑛

′
𝑐
(𝑡) and 𝑛

′
𝑠
(𝑡) correlated?

Are 𝑛
′
𝑐
(𝑡) and 𝑛

′
𝑠
(𝑡), sampled at the same instant

independent?

Problems Extending Text Material
7.34 A random process is composed of sample functions
of the form

𝑥(𝑡) = 𝑛 (𝑡)
∞∑

𝑘=−∞
𝛿(𝑡 − 𝑘𝑇

𝑠
) =

∞∑

𝑘=−∞
𝑛
𝑘
𝛿(𝑡 − 𝑘𝑇

𝑠
)

where 𝑛 (𝑡) is a wide-sense stationary random process with
the auto correlation function 𝑅

𝑛
(𝜏), and 𝑛

𝑘
= 𝑛(𝑘𝑇

𝑠
).

(a) If 𝑇
𝑠
is chosen to satisfy

𝑅
𝑛
(𝑘𝑇

𝑠
) = 0, 𝑘 = 1, 2,…

so that the samples 𝑛
𝑘
= 𝑛(𝑘𝑇

𝑠
) are orthogonal,

use Equation (7.35) to show that the power spec-
tral density of 𝑥(𝑡) is

𝑆
𝑥
(𝑓 ) =

𝑅
𝑛
(0)

𝑇
𝑠

= 𝑓
𝑠
𝑅

𝑛
(0) = 𝑓

𝑠
𝑛2(𝑡), −∞ < 𝑓 < ∞

(b) If 𝑥 (𝑡) is passed through a filter with impulse
response ℎ (𝑡) and frequency response function
𝐻 (𝑓 ), show that the power spectral density of
the output random process, 𝑦 (𝑡), is

𝑆
𝑦
(𝑓 ) = 𝑓

𝑠
𝑛2(𝑡) |𝐻 (𝑓 )|2 , −∞ < 𝑓 < ∞ (7.152)

7.35 Consider the system shown in Figure 7.19 as a
means of approximately measuring 𝑅

𝑥
(𝜏) where 𝑥(𝑡) is

stationary.

(a) Show that 𝐸[𝑦] = 𝑅
𝑥
(𝜏).

(b) Find an expression for 𝜎2
𝑦
if 𝑥(𝑡) is Gaussian and

has zero mean. Hint: If 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are
Gaussian with zero mean, it can be shown that

𝐸[𝑥1𝑥2𝑥3𝑥4] = 𝐸[𝑥1𝑥2]𝐸[𝑥3𝑥4] + 𝐸[𝑥1𝑥3]𝐸(𝑥2𝑥4]

+𝐸[𝑥1𝑥4]𝐸[𝑥2𝑥3]

7.36 A useful average in the consideration of noise in
FM demodulation is the cross-correlation

𝑅
𝑦�̇�
(𝜏) ≜ 𝐸

{
𝑦 (𝑡) 𝑑𝑦 (𝑡 + 𝜏)

𝑑𝑡

}

where 𝑦(𝑡) is assumed stationary.

(a) Show that

𝑅
𝑦�̇�
(𝜏) =

𝑑𝑅
𝑦
(𝜏)

𝑑𝜏

Delay

(variable)

τ

yx(t) t0 +T

t0
( )dt1

T∫×
Figure 7.19
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where 𝑅
𝑦
(𝜏) is the autocorrelation function of

𝑦(𝑡). (Hint: The frequency response function of a
differentiator is 𝐻(𝑓 ) = 𝑗2𝜋𝑓 .)

(b) If 𝑦(𝑡) is Gaussian, write down the joint
pdf of

𝑌 ≜ 𝑦(𝑡) and 𝑍 ≜
𝑑𝑦 (𝑡)
𝑑𝑡

at any time 𝑡, assuming the ideal lowpass power
spectral density

𝑆
𝑦
(𝑓 ) = 1

2
𝑁0Π

(
𝑓

2𝐵

)

Express your answer in terms of 𝑁0 and 𝐵.

(c) Can one obtain a result for the joint pdf of 𝑦 and
𝑑𝑦(𝑡)
𝑑𝑡

if 𝑦(𝑡) is obtained by passing white noise
through a lowpass RC filter? Why or why not?

Computer Exercises

7.1 In this computer exercise we reexamine
Example 7.1. A random process is defined by

𝑋(𝑡) = 𝐴 cos(2𝜋𝑓0𝑡 + 𝜃)

Using a random number generator program generate 20
values of 𝜃 uniformly distributed in the range 0 ≤ 𝜃 < 2𝜋.
Using these 20 values of 𝜃 generate 20 sample functions
of the process 𝑋(𝑡). Using these 20 sample functions do
the following:

(a) Plot the sample functions on a single set of axes.

(b) Determine 𝐸 {𝑋(𝑡)} and 𝐸
{
𝑋

2(𝑡)
}

as time
averages.

(c) Determine 𝐸 {𝑋(𝑡)} and 𝐸
{
𝑋

2(𝑡)
}
as ensemble

averages.

(d) Compare the results with those obtained in
Example 7.1.

7.2 Repeat the previous computer exercise with
20 values of 𝜃 uniformly distributed in the range − 𝜋

4
≤

𝜃 <
𝜋

4
.

7.3 Check the correlation between the random vari-
ables 𝑋 and 𝑌 generated by the random number gener-
ator of Computer Exercise 6.2 by computing the sample

correlation coefficient of 1000 pairs according to the
definition

𝜌 (𝑋, 𝑌 ) = 1
(𝑁 − 1) �̂�1�̂�2

𝑁∑

𝑛=1

(
𝑋

𝑛
− �̂�

𝑋

) (
𝑌
𝑛
− �̂�

𝑌

)

where

�̂�
𝑋
= 1

𝑁

𝑁∑

𝑛=1
𝑋

𝑛

�̂�
𝑌
= 1

𝑁

𝑁∑

𝑛=1
𝑌
𝑛

�̂�
2
𝑋
= 1

𝑁 − 1

𝑁∑

𝑛=1

(
𝑋

𝑛
− �̂�

𝑋

)2

and

�̂�
2
𝑌
= 1

𝑁 − 1

𝑁∑

𝑛=1

(
𝑌
𝑛
− �̂�

𝑋

)2

7.4 Write a MATLAB program to plot the Ricean pdf.
Use the form (7.150) and plot for 𝐾 = 1, 10, 100 on the
same axes. Use 𝑟∕𝜎 as the independent variable and plot
𝜎
2
𝑓 (𝑟) .
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CHAPTER8

NOISE IN MODULATION SYSTEMS

InChapters 6 and 7 the subjects of probability and randomprocesses were studied. These concepts

led to a representation for bandlimited noise, whichwill now be used for the analysis of basic analog

communication systems and for introductory considerations of digital communication systems

operating in the presence of noise. The remaining chapters of this book will focus on digital

communication systems in more detail. This chapter is essentially a large number of example

problems, most of which focus on different systems and modulation techniques.

Noise is present in varying degrees in all electrical systems. This noise is often low level and

can often be neglected in those portions of a system where the signal level is high. However, in

many communications applications the receiver input signal level is very small, and the effects of

noise significantly degrade system performance. Noise can take several different forms, depending

upon the source, but the most common form is due to the random motion of charge carriers. As

discussed in more detail in Appendix A, whenever the temperature of a conductor is above 0 K,

the random motion of charge carriers results in thermal noise. The variance of thermal noise,

generated by a resistive element, such as a cable, and measured in a bandwidth 𝐵, is given by

𝝈
𝟐
𝒏
= 𝟒𝒌𝑻𝑹𝑩 (8.1)

where 𝒌 is Boltzman’s constant (𝟏.𝟑𝟖 × 𝟏𝟎−𝟐𝟑 J/K), 𝑻 is the temperature of the element in degrees

kelvin, and 𝑅 is the resistance in ohms. Note that the noise variance is directly proportional to tem-

perature, which illustrates the reason for using supercooled amplifiers in low-signal environments,

such as for radio astronomy. Note also that the noise variance is independent of frequency, which

implies that the noise power spectral density is assumed constant or white. The range of 𝑩 over

which the thermal noise can be assumed white is a function of temperature. However, for temper-

atures greater than approximately 3 K, the white-noise assumption holds for bandwidths less than

approximately 10 GHz. As the temperature increases, the bandwidth over which the white-noise

assumption is valid increases. At standard temperature (290 K) the white-noise assumption is

valid to bandwidths exceeding 1000 GHz. At very high frequencies other noise sources, such as

quantum noise, become significant, and the white-noise assumption is no longer valid. These ideas

are discussed in more detail in Appendix A.

We also assume that thermal noise is Gaussian (has a Gaussian amplitude pdf). Since thermal

noise results from the random motion of a large number of charge carriers, with each charge

carrier making a small contribution to the total noise, the Gaussian assumption is justified through

the central-limit theorem. Thus, if we assume that the noise of interest is thermal noise, and the
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bandwidth is smaller than 10 to 1000GHz (depending on temperature), the additivewhiteGaussian

noise (AWGN) model is a valid and useful noise model. We will make this assumption throughout

this chapter.

As pointed out in Chapter 1, system noise results from sources external to the system as

well as from sources internal to the system. Since noise is unavoidable in any practical system,

techniques for minimizing the impact of noise on system performance must often be used if

high-performance communications are desired. In the present chapter, appropriate performance

criteria for system performance evaluation will be developed. After this, a number of systems will

be analyzed to determine the impact of noise on system operation. It is especially important to

note the differences between linear and nonlinear systems. We will find that the use of nonlinear

modulation, such as FM, allows improved performance to be obtained at the expense of increased

transmission bandwidth. Such trade-offs do not exist when linear modulation is used.

■ 8.1 SIGNAL-TO-NOISE RATIOS

In Chapter 3, systems that involve the operations of modulation and demodulation were
studied. In this section we extend that study to the performance of linear demodulators in
the presence of noise. We concentrate our efforts on the calculation of signal-to-noise ratios
since the signal-to-noise ratio is often a useful and easily determined figure of merit of system
performance.

8.1.1 Baseband Systems

In order to have a basis for comparing system performance, we determine the signal-to-
noise ratio at the output of a baseband system. Recall that a baseband system involves no
modulation or demodulation. Consider Figure 8.1(a). Assume that the signal power is finite
at 𝑃

𝑇
W and that the additive noise has the double-sided power spectral density 1

2𝑁0 W/Hz

(b)

(a)

∑

Signal Noise

Noise

Lowpass

f ilter

bandwidth =W

0

1
2
N0

−W W B−B
f

(c)

Signal

Noise

0−W W
f

Message signal =m(t)

Message bandwidth =W
yD(t)

Figure 8.1
Baseband system. (a) Block diagram. (b) Spectra at filter input. (c) Spectra at filter output.
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over a bandwidth 𝐵, which is assumed to exceed 𝑊 , as illustrated in Figure 8.1(b). The total
noise power in the bandwidth 𝐵 is

∫

𝐵

−𝐵

1
2
𝑁0𝑑𝑓 = 𝑁0𝐵 (8.2)

and, therefore, the signal-to-noise ratio (SNR) at the filter input is

(SNR)
𝑖
=

𝑃
𝑇

𝑁0𝐵
(8.3)

Since the message signal 𝑚(𝑡) is assumed to be bandlimited with bandwidth 𝑊 , a simple
lowpass filter can be used to enhance the SNR. This filter is assumed to pass the signal
component without distortion but removes the out-of-band noise as illustrated in Figure 7.1(c).
Assuming an ideal filter with bandwidth 𝑊 , the signal is passed without distortion. Thus, the
signal power at the lowpass filter output is 𝑃

𝑇
, which is the signal power at the filter input.

The noise at the filter output is

∫

𝑊

−𝑊

1
2
𝑁0𝑑𝑓 = 𝑁0𝑊 (8.4)

which is less than 𝑁0𝐵 since 𝑊 < 𝐵. Thus, the SNR at the filter output is

(SNR)
𝑜
=

𝑃
𝑇

𝑁0𝑊
(8.5)

The filter therefore enhances the SNR by the factor

(SNR)
𝑜

(SNR)
𝑖

=
𝑃

𝑇

𝑁0𝑊

𝑁0𝐵

𝑃
𝑇

= 𝐵

𝑊
(8.6)

Since (8.5) describes the SNR achieved with a simple baseband system in which all out-
of-band noise is removed by filtering, it is a reasonable standard for making comparisons
of system performance. This reference, 𝑃

𝑇
∕𝑁0𝑊 , will be used extensively in the work to

follow, in which the output SNR is determined for a variety of basic systems.

8.1.2 Double-Sideband Systems

As a first example, we compute the noise performance of the coherent DSB demodulator first
considered in Chapter 3. Consider the block diagram in Figure 8.2, which illustrates a coherent
demodulator preceded by a predetection filter. Typically, the predetection filter is the IF filter
as discussed in Chapter 3. The input to this filter is the modulated signal plus white Gaussian
noise of double-sided power spectral density 1

2𝑁0 W/Hz. Since the transmitted signal 𝑥
𝑐
(𝑡) is

Postdetection

lowpass

f ilter

Predetection

(IF)

f ilter

yD(t)
e3(t)e2(t)xr(t) = xc(t) + n(t)

2 cos ( c t + )ω θ

×

Figure 8.2
Double-sideband demoulator.
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assumed to be a DSB signal, the received signal 𝑥
𝑟
(𝑡) can be written as

𝑥
𝑟
(𝑡) = 𝐴

𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) + 𝑛(𝑡) (8.7)

where 𝑚(𝑡) is the message and 𝜃 is used to denote our uncertainty of the carrier phase
or, equivalently, the time origin. Note that, using this model, the SNR at the input to the
predetection filter is zero since the power in white noise is infinite. If the predetection filter
bandwidth is (ideally) 2𝑊 , the DSB signal is completely passed by the filter. Using the
technique developed in Chapter 7, the noise at the predetection filter output can be expanded
into its direct and quadrature components. This gives

𝑒2(𝑡) = 𝐴
𝑐
𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.8)

where the total noise power is 𝑛
2
0(𝑡) =

1
2𝑛2

𝑐
(𝑡) = 1

2𝑛2
𝑠
(𝑡) and is equal to 2𝑁0𝑊 .

The predetection SNR, measured at the input to the multiplier, is easily determined. The

signal power is 1
2𝐴

2
𝑐
𝑚2, where 𝑚 is understood to be a function of 𝑡 and the noise power is

2𝑁0𝑊 as shown in Figure 8.3(a). This yields the predetection SNR,

(SNR)
𝑇
=

𝐴
2
𝑐
𝑚2

4𝑊 𝑁0
(8.9)

In order to compute the postdetection SNR, 𝑒3(𝑡) is first computed. This gives

𝑒3(𝑡) = 𝐴
𝑐
𝑚(𝑡) + 𝑛

𝑐
(𝑡) + 𝐴

𝑐
𝑚(𝑡) cos[2(2𝜋𝑓

𝑐
𝑡 + 𝜃)]

+𝑛
𝑐
(𝑡) cos[2(2𝜋𝑓

𝑐
𝑡 + 𝜃)] − 𝑛

𝑠
(𝑡) sin[2(2𝜋𝑓

𝑐
𝑡 + 𝜃)] (8.10)

The double-frequency terms about 2𝑓
𝑐
are removed by the postdetection filter to produce the

baseband (demodulated) signal

𝑦
𝐷
(𝑡) = 𝐴

𝑐
𝑚(𝑡) + 𝑛

𝑐
(𝑡) (8.11)

Note that additive noise on the demodulator input gives rise to additive noise at the demodulator
output. This is a property of linearity.

The postdetection signal power is 𝐴
2
𝑐
𝑚2, and the postdetection noise power is 𝑛2

𝑐
or

2𝑁0𝑊 , as shown on Figure 8.3(b). This gives the postdetection SNR as

(SNR)
𝐷
=

𝐴
2
𝑐
𝑚2

2𝑁0𝑊
(8.12)

(a)

0

1
2
N0

f

(b)

0−W W−fc − W −fc −fc + W fc − W fc fc + W
f

N0

Sn0
( f ) Snc( f )

Figure 8.3
(a) Predetection and (b) postdetection filter output noise spectra for DSB demodulation.
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Since the signal power is 1
2𝐴

2
𝑐
𝑚2 = 𝑃

𝑇
, we can write the postdetection SNR as

(SNR)
𝐷
=

𝑃
𝑇

𝑁0𝑊
(8.13)

which is equivalent to the ideal baseband system.
The ratio of (SNR)

𝐷
to (SNR)

𝑇
is referred to as detection gain and is often used as a figure

of merit for a demodulator. Thus, for the coherent DSB demodulator, the detection gain is

(SNR)
𝐷

(SNR)
𝑇

=
𝐴
2
𝑐
𝑚2

2𝑁0𝑊

4𝑁0𝑊

𝐴2
𝑐
𝑚2

= 2 (8.14)

At first sight, this result is somewhat misleading, for it appears that we have gained 3 dB.
This is true for the demodulator because it suppresses the quadrature noise component.
However, a comparison with the baseband system reveals that nothing is gained, insofar as
the SNR at the system output is concerned. The predetection filter bandwidth must be 2𝑊
if DSB modulation is used. This results in double the noise bandwidth at the output of the
predetection filter and, consequently, double the noise power. The 3-dB detection gain is
exactly sufficient to overcome this effect and give an overall performance equivalent to the
baseband reference given by (8.5). Note that this ideal performance is only achieved if all
out-of-band noise is removed and if the demodulation carrier is perfectly phase coherent with
the original carrier used for modulation.

In practice, PLLs, as we studied in Chapter 4, are used to establish carrier recovery at the
demodulator. If noise is present in the loop bandwidth, phase jitter will result. Wewill consider
the effect on performance resulting from a combination of additive noise and demodulation
phase errors in a later section.

8.1.3 Single-Sideband Systems

Similar calculations are easily carried out for SSB systems. For SSB, the predetection filter
input can be written as

𝑥
𝑟
(𝑡) = 𝐴

𝑐
[𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) ± �̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)] + 𝑛(𝑡) (8.15)

where �̂�(𝑡) denotes the Hilbert transform of 𝑚(𝑡). Recall from Chapter 3 that the plus sign is
used for LSB SSB and the minus sign is used for USB SSB. Since the minimum bandwidth of
the predetection bandpass filter is 𝑊 for SSB, the center frequency of the predetection filter
is 𝑓

𝑥
= 𝑓

𝑐
± 1

2𝑊 , where the sign depends on the choice of sideband.

We could expand the noise about the center frequency 𝑓
𝑥
= 𝑓

𝑐
± 1

2𝑊 , since, as we saw
in Chapter 7, we are free to expand the noise about any frequency we choose. It is slightly
more convenient, however, to expand the noise about the carrier frequency 𝑓

𝑐
. For this case,

the predetection filter output can be written as

𝑒2(𝑡) = 𝐴
𝑐
[𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) ± �̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)]

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.16)

where, as can be seen from Figure 8.4(a),

𝑁
𝑇
= 𝑛2 = 𝑛2

𝑐
= 𝑛2

𝑠
= 𝑁0𝑊 (8.17)
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(a)

0

1
2
N0 1

2
N0

f

(b)

0−W W−fc −fc + W fc − W fc
f

Sn0
( f ) Snc( f )

++− −

Figure 8.4
(a) Predetection and (b) postdection filter output spectra for lower-sideband SSB (+) and (−) signs
denote spectral translation of positive and negative portions of 𝑆

𝑛0
(𝑓 ) due to demodulation,

respectively.

Equation (8.16) can be written

𝑒2(𝑡) = [𝐴
𝑐
𝑚(𝑡) + 𝑛

𝑐
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+[𝐴
𝑐
�̂�(𝑡) ∓ 𝑛

𝑠
(𝑡)] sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.18)

As discussed in Chapter 3, demodulation is accomplished by multiplying 𝑒2(𝑡) by the de-
modulation carrier 2 cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) and lowpass filtering. Thus, the coherent demodulator

illustrated in Figure 8.2 also accomplishes demodulation of SSB. It follows that

𝑦
𝐷
(𝑡) = 𝐴

𝑐
𝑚(𝑡) + 𝑛

𝑐
(𝑡) (8.19)

We see that coherent demodulation removes �̂�(𝑡) as well as the quadrature noise component
𝑛

𝑠
(𝑡). The power spectral density of 𝑛

𝑐
(𝑡) is illustrated in Figure 8.4(b) for the case of LSB

SSB. Since the postdetection filter passes only 𝑛
𝑐
(𝑡), the postdetection noise power is

𝑁
𝐷
= 𝑛2

𝑐
= 𝑁0𝑊 (8.20)

From (8.19) it follows that the postdetection signal power is

𝑆
𝐷
= 𝐴

2
𝑐
𝑚2 (8.21)

We now turn our attention to the predetection terms.
The predetection signal power is

𝑆
𝑇
= {𝐴

𝑐
[𝑚(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) ± �̂�(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)]}2 (8.22)

In Chapter 2we pointed out that a function and its Hilbert transform are orthogonal. If𝑚(𝑡) = 0,
it follows that 𝑚(𝑡)�̂�(𝑡) = 𝐸{𝑚(𝑡)}𝐸{�̂�(𝑡)} = 0. Thus, the preceding expression becomes

𝑆
𝑇
= 𝐴

2
𝑐

[1
2
𝑚2(𝑡) + 1

2
�̂�2(𝑡)

]
(8.23)

It was also shown in Chapter 2 that a function and its Hilbert transform have equal power.
Applying this to (8.23) yields

𝑆
𝑇
= 𝐴

2
𝑐
𝑚2 (8.24)

Since both the predetection and postdetection bandwidths are 𝑊 , it follows that they have
equal power. Therefore,

𝑁
𝑇
= 𝑁

𝐷
= 𝑁0𝑊 (8.25)
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and the detection gain is

(SNR)
𝐷

(SNR)
𝑇

=
𝐴
2
𝑐
𝑚2

𝑁0𝑊

𝑁0𝑊

𝐴2
𝑐
𝑚2

= 1 (8.26)

The SSB system lacks the 3-dB detection gain of the DSB system. However, the pre-
detection noise power of the SSB system is 3 dB less than that for the DSB system if the
predetection filters have minimum bandwidth. This results in equal performance, given by

(SNR)
𝐷
=

𝐴
2
𝑐
𝑚2

𝑁0𝑊
=

𝑃
𝑇

𝑁0𝑊
(8.27)

Thus, coherent demodulation of both DSB and SSB results in performance equivalent to
baseband.

8.1.4 Amplitude Modulation Systems

The main reason for using AM is that simple envelope demodulation (or detection) can be
used at the receiver. In many applications the receiver simplicity more than makes up for the
loss in efficiency that we observed in Chapter 3. Therefore, coherent demodulation is not often
used in AM. Despite this fact, we consider coherent demodulation briefly since it provides a
useful insight into performance in the presence of noise.

Coherent Demodulation of AM Signals

We saw in Chapter 3 that an AM signal is defined by

𝑥
𝑐
(𝑡) = 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.28)

where 𝑚
𝑛
(𝑡) is the modulation signal normalized so that the maximum value of |𝑚

𝑛
(𝑡)| is unity

[assuming 𝑚(𝑡) has a symmetrical pdf about zero] and 𝑎 is the modulation index. Assuming
coherent demodulation, it is easily shown, by using a development parallel to that used for
DSB systems, that the demodulated output in the presence of noise is

𝑦
𝐷
(𝑡) = 𝐴

𝑐
𝑎𝑚

𝑛
(𝑡) + 𝑛

𝑐
(𝑡) (8.29)

The DC term resulting frommultiplication of 𝑥
𝑐
(𝑡) by the demodulation carrier is not included

in (8.29) for two reasons. First, this term is not considered part of the signal since it contains no
information. [Recall thatwe have assumed𝑚(𝑡) = 0.] Second,most practicalAMdemodulators
are not DC-coupled, so a DC term does not appear on the output of a practical system. In
addition, the DC term is frequently used for automatic gain control (AGC) and is therefore
held constant at the transmitter.

From (8.29) it follows that the signal power in 𝑦
𝐷
(𝑡) is

𝑆
𝐷
= 𝐴

2
𝑐
𝑎
2
𝑚2

𝑛
(8.30)

and, since the bandwidth of the transmitted signal is 2𝑊 , the noise power is

𝑁
𝐷
= 𝑛2

𝑐
= 2𝑁0𝑊 (8.31)

For the predetection case, the signal power is

𝑆
𝑇
= 𝑃

𝑇
= 1

2
𝐴
2
𝑐
(1 + 𝑎

2
𝑚2

𝑛
) (8.32)
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and the predetection noise power is

𝑁
𝑇
= 2𝑁0𝑊 (8.33)

Thus, the detection gain is

(SNR)
𝐷

(SNR)
𝑇

=
𝐴
2
𝑐
𝑎
2
𝑚2

𝑛
∕2𝑁0𝑊

(𝐴2
𝑐
+ 𝐴2

𝑐
𝑎2𝑚2

𝑛
)∕4𝑁0𝑊

=
2𝑎2𝑚2

𝑛

1 + 𝑎2𝑚2
𝑛

(8.34)

which is dependent on the modulation index.
Recall that when we studied AM in Chapter 3 the efficiency of an AM transmission

system was defined as the ratio of sideband power to total power in the transmitted signal
𝑥

𝑐
(𝑡). This resulted in the efficiency 𝐸

𝑓𝑓
being expressed as

𝐸
𝑓𝑓

=
𝑎
2
𝑚2

𝑛

1 + 𝑎2𝑚2
𝑛

(8.35)

where the overbar, denoting a statistical average, has been substituted for the time-average
notation ⟨⋅⟩ used in Chapter 3. It follows from (8.34) and (8.35) that the detection gain can be
expressed as

(SNR)
𝐷

(SNR)
𝑇

= 2𝐸
𝑓𝑓

(8.36)

Since the predetection SNR can be written as

(SNR)
𝑇
=

𝑆
𝑇

2𝑁0𝑊
=

𝑃
𝑇

2𝑁0𝑊
(8.37)

it follows that the SNR at the demodulator output can be written as

(SNR)
𝐷
= 𝐸

𝑓𝑓

𝑃
𝑇

𝑁0𝑊
(8.38)

Recall that in Chapter 3 we defined the efficiency of an AM system as the ratio of sideband
power to the total power in an AM signal. The preceding expression gives another, and perhaps
better, way to view efficiency.

If the efficiency could be 1, AM would have the same postdetection SNR as the ideal
DSB and SSB systems. Of course, as we saw in Chapter 3, the efficiency of AM is typically
much less than 1 and the postdetection SNR is correspondingly lower. Note that an efficiency
of 1 requires that the modulation index 𝑎 → ∞ so that the power in the unmodulated carrier is
negligible compared to the total transmitted power. However, for 𝑎 > 1 envelope demodulation
cannot be used and AM loses its advantage.

EXAMPLE 8.1

An AM system operates with a modulation index of 0.5, and the power in the normalized message signal
is 0.1 W. The efficiency is

𝐸
𝑓𝑓

= (0.5)2(0.1)
1 + (0.5)2(0.1)

= 0.0244 (8.39)
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and the postdetection SNR is

(SNR)
𝐷
= 0.0244

𝑃
𝑇

𝑁0𝑊
(8.40)

The detection gain is

(SNR)
𝐷

(SNR)
𝑇

= 2𝐸
𝑓𝑓

= 0.0488 (8.41)

This is more than 16 dB inferior to the ideal system requiring the same bandwidth. It should be
remembered, however, that the motivation for using AM is not noise performance but rather that AM
allows the use of simple envelope detectors for demodulation. The reason, of course, for the poor
efficiency of AM is that a large fraction of the total transmitted power lies in the carrier component,
which conveys no information since it is not a function of the message signal.

■

Envelope Demodulation of AM Signals

Since envelope detection is the usual method of demodulating an AM signal, it is important to
understand how envelope demodulation differs from coherent demodulation in the presence
of noise. The received signal at the input to the envelope demodulator is assumed to be 𝑥

𝑐
(𝑡)

plus narrowband noise. Thus,

𝑥
𝑟
(𝑡) = 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.42)

where, as before, 𝑛2
𝑐
= 𝑛2

𝑠
= 2𝑁0𝑊 . The signal 𝑥

𝑟
(𝑡) can be written in terms of envelope and

phase as

𝑥
𝑟
(𝑡) = 𝑟(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] (8.43)

where

𝑟(𝑡) =
√

{𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] + 𝑛

𝑐
(𝑡)}2 + 𝑛2

𝑠
(𝑡) (8.44)

and

𝜙(𝑡) = tan−1
(

𝑛
𝑠
(𝑡)

𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] + 𝑛

𝑐
(𝑡)

)
(8.45)

Since the output of an ideal envelope detector is independent of phase variations of the input,
the expression for 𝜙(𝑡) is of no interest, and we will concentrate on 𝑟(𝑡). The envelope detector
is assumed to be AC coupled so that

𝑦
𝐷
(𝑡) = 𝑟(𝑡) − 𝑟(𝑡) (8.46)

where 𝑟(𝑡) is the average value of the envelope amplitude. Equation (8.46) will be evaluated for
two cases. First, we consider the case in which (SNR)

𝑇
is large, and then we briefly consider

the case in which the (SNR)
𝑇
is small.

Envelope Demodulation: Large (SNR)
𝑇

For (SNR)
𝑇

sufficiently large, the solution is
simple. From (8.44), we see that if

|𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] + 𝑛

𝑐
(𝑡)| ≫ |𝑛

𝑠
(𝑡)| (8.47)
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then most of the time

𝑟(𝑡) ≅ 𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] + 𝑛

𝑐
(𝑡) (8.48)

yielding, after removal of the DC component,

𝑦
𝐷
(𝑡) ≅ 𝐴

𝑐
𝑎𝑚

𝑛
(𝑡) + 𝑛

𝑐
(𝑡) (8.49)

This is the final result for the case in which the SNR is large.
Comparing (8.49) and (8.29) illustrates that the output of the envelope detector is equiv-

alent to the output of the coherent detector if (SNR)
𝑇
is large. The detection gain for this case

is therefore given by (8.34).

Envelope Demodulation: Small (SNR)
𝑇

For the case in which (SNR)
𝑇
is small, the analysis

is somewhat more complex. In order to analyze this case, we recall from Chapter 7 that
𝑛

𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) can be written in terms of envelope and phase, so

that the envelope detector input can be written as

𝑒(𝑡) = 𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+𝑟
𝑛
(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙

𝑛
(𝑡)] (8.50)

For (SNR)
𝑇

≪ 1, the amplitude of 𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] will usually be much smaller than 𝑟

𝑛
(𝑡).

Consider the phasor diagram illustrated in Figure 8.5, which is drawn for 𝑟
𝑛
(𝑡) greater than

𝐴
𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)]. It can be seen that 𝑟(𝑡) is approximated by

𝑟(𝑡) ≅ 𝑟
𝑛
(𝑡) + 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos[𝜙

𝑛
(𝑡)] (8.51)

yielding

𝑦
𝐷
(𝑡) ≅ 𝑟

𝑛
(𝑡) + 𝐴

𝑐
[1 + 𝑎𝑚

𝑛
(𝑡)] cos[𝜙

𝑛
(𝑡)] − 𝑟(𝑡) (8.52)

The principal component of 𝑦
𝐷
(𝑡) is the Rayleigh-distributed noise envelope, and no

component of 𝑦
𝐷
(𝑡) is proportional to the signal. Note that since 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are random,

cos[𝜙
𝑛
(𝑡)] is also random. Thus, the signal 𝑚

𝑛
(𝑡) is multiplied by a random quantity. This

multiplication of the signal by a function of the noise has a significantly worse degrading
effect than does additive noise.

This severe loss of signal at low-input SNR is known as the threshold effect and results
from the nonlinear action of the envelope detector. In coherent detectors, which are linear, the
signal and noise are additive at the detector output if they are additive at the detector input.
The result is that the signal retains its identity even when the input SNR is low. We have seen

rn(t)

Ac [1 +amn(t)]

n(t)ϕr (t
) ≅r n

(t)
+A

c
[1

+a
m n

(t)]
 co

s n
(t)ϕ

n(t)ϕ

Figure 8.5
Phasor diagram for AM with (SNR)

𝑇
≪ 1 (drawn for 𝜃 = 0).
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that this is not true for nonlinear demodulators. For this reason, coherent detection is often
desirable when the noise is large.

Square-Law Demodulation of AM Signals

The determination of the SNR at the output of a nonlinear system is often a very difficult
task. The square-law detector, however, is one system for which this is not the case. In this
section, we conduct a simplified analysis to illustrate the phenomenon of thresholding, which
is characteristic of nonlinear systems.

In the analysis to follow, the postdetection bandwidth will be assumed twice the message
bandwidth 𝑊 . This is not a necessary assumption, but it does result in a simplification of
the analysis without impacting the threshold effect. We will also see that harmonic and/or
intermodulation distortion is a problem with square-law detectors, an effect that may preclude
their use.

Square-law demodulators are implemented as a squaring device followed by a lowpass
filter. The response of a square-law demodulator to an AM signal is 𝑟

2(𝑡), where 𝑟(𝑡) is defined
by (8.44). Thus, the output of the square-law device can be written as

𝑟
2(𝑡) = {𝐴

𝑐
[𝑙 + 𝑎𝑚

𝑛
(𝑡)] + 𝑛

𝑐
(𝑡)}2 + 𝑛

2
𝑠
(𝑡) (8.53)

We now determine the output SNR. Carrying out the indicated squaring operation gives

𝑟
2(𝑡) = 𝐴

2
𝑐
+ 2𝐴2

𝑐
𝑎𝑚

𝑛
(𝑡) + 𝐴

2
𝑐
𝑎
2
𝑚
2
𝑛
(𝑡)

+2𝐴
𝑐
𝑛

𝑐
(𝑡) + 2𝐴

𝑐
𝑎𝑛

𝑐
(𝑡)𝑚

𝑛
(𝑡) + 𝑛

2
𝑐
(𝑡) + 𝑛

2
𝑠
(𝑡) (8.54)

First, consider the first line of the preceding equation. The first term, 𝐴2
𝑐
, is a DC term and is

neglected. It is not a function of the signal and is not a function of noise. In addition, in most
practical cases, the detector output is assumed AC coupled, so that DC terms are blocked.
The second term is proportional to the message signal and represents the desired output. The
third term is signal-induced distortion (harmonic and intermodulation) and will be considered
separately. All four terms on the second line of (8.54) represent noise. We now consider the
calculation of (SNR)

𝐷
.

The signal and noise components of the output are written as

𝑠
𝐷
(𝑡) = 2𝐴2

𝑐
𝑎𝑚

𝑛
(𝑡) (8.55)

and

𝑛
𝐷
(𝑡) = 2𝐴

𝑐
𝑛

𝑐
(𝑡) + 2𝐴

𝑐
𝑎𝑛

𝑐
(𝑡)𝑚

𝑛
(𝑡) + 𝑛

2
𝑐
(𝑡) + 𝑛

2
𝑠
(𝑡) (8.56)

respectively. The power in the signal component is

𝑆
𝐷
= 4𝐴4

𝑐
𝑎
2
𝑚2

𝑛
(8.57)

and the noise power is

𝑁
𝐷
= 4𝐴2

𝑐
𝑛2

𝑐
+ 4𝐴2

𝑐
𝑎
2
𝑛2

𝑐
𝑚2

𝑛
+ 𝜎

2
𝑛2
𝑐
+𝑛2

𝑠

(8.58)

The last term is given by

𝜎
2
𝑛2
𝑐
+𝑛2

𝑠

= 𝐸
{
[𝑛2

𝑐
(𝑡) + 𝑛

2
𝑠
(𝑡)]2

}
− 𝐸

2[𝑛2
𝑐
(𝑡) + 𝑛

2
𝑠
(𝑡)] = 4𝜎2

𝑛
(8.59)
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where, as always, 𝜎2
𝑛
= 𝑛2

𝑐
= 𝑛2

𝑠
. Thus,

𝑁
𝐷
= 4𝐴2

𝑐
𝜎
2
𝑛
+ 4𝐴2

𝑐
𝑎
2
𝑚2

𝑛
(𝑡)𝜎2

𝑛
+ 4𝜎4

𝑛
(8.60)

This gives

(SNR)
𝐷
=

𝑎
2
𝑚2

𝑛
(𝐴2

𝑐
∕𝜎

2
𝑛
)

(
1 + 𝑎2𝑚2

𝑛

)
+ (𝜎2

𝑛
∕𝐴2

𝑐
)

(8.61)

Recognizing that 𝑃
𝑇
= 1

2𝐴
2
𝑐
(1 + 𝑎

2
𝑚2

𝑛
) and 𝜎

2
𝑛
= 2𝑁0𝑊 , 𝐴

2
𝑐
∕𝜎

2
𝑛
can be written

𝐴
2
𝑐

𝜎2
𝑛

=
𝑃

𝑇[
1 + 𝑎2𝑚2

𝑛
(𝑡)
]
𝑁0𝑊

(8.62)

Substitution into (8.61) gives

(SNR)
𝐷
=

𝑎
2
𝑚2

𝑛

(
1 + 𝑎2𝑚2

𝑛

)2
𝑃

𝑇
∕𝑁0𝑊

1 + 𝑁0𝑊 ∕𝑃
𝑇

(8.63)

For high SNR operation 𝑃
𝑇

≫ 𝑁0𝑊 and the second term in the denominator is negligible.
For this case,

(SNR)
𝐷
=

𝑎
2
𝑚2

𝑛

(
1 + 𝑎2𝑚2

𝑛

)2
𝑃

𝑇

𝑁0𝑊
, 𝑃

𝑇
≫ 𝑁0𝑊 (8.64)

while for low SNR operation 𝑁0𝑊 ≫ 𝑃
𝑇
and

(SNR)
𝐷
=

𝑎
2
𝑚2

𝑛

(
1 + 𝑎2𝑚2

𝑛

)2

(
𝑃

𝑇

𝑁0𝑊

)2
, 𝑁0𝑊 ≫ 𝑃

𝑇
(8.65)

Figure 8.6 illustrates (8.63) for several values of the modulation index 𝑎 assuming sinusoidal
modulation. We see that, on a log (decibel) scale, the slope of the detection gain characteristic
below threshold is double the slope above threshold. The threshold effect is therefore obvious.

Recall that in deriving (8.63), from which (8.64) and (8.65) followed, we neglected the
third term in (8.54), which represents signal-induced distortion. From (8.54) and (8.57) the
distortion-to-signal-power ratio, denoted 𝐷

𝐷
∕𝑆

𝐷
, is

𝐷
𝐷

𝑆
𝐷

=
𝐴
4
𝑐
𝑎
4
𝑚4

𝑛

4𝐴4
𝑐
𝑎2𝑚2

𝑛

= 𝑎
2

4
𝑚4

𝑛

𝑚2
𝑛

(8.66)

If the message signal is Gaussian with variance 𝜎
2
𝑚
, the preceding becomes

𝐷
𝐷

𝑆
𝐷

= 3
4
𝑎
2
𝜎
2
𝑚

(8.67)

We see that signal-induced distortion can be reduced by decreasing the modulation index.
However, as illustrated in Figure 8.6, a reduction of the modulation index also results in a
decrease in the output SNR. Is the distortion signal or noise? This question will be discussed
in the following section.
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Figure 8.6
Performance of a square-law detector
(sinusoidal modulation assumed).

The linear envelope detector defined by (8.44) is much more difficult to analyze over
a wide range of SNRs because of the square root. However, to a first approximation, the
performance of a linear envelope detector and a square-law envelope detector are the same.
Harmonic distortion is also present in linear envelope detectors, but the amplitude of the
distortion component is significantly less than that observed for square-law detectors. In
addition, it can be shown that for high SNRs and a modulation index of unity, the performance
of a linear envelope detector is better by approximately 1.8 dB than the performance of a
square-law detector. (See Problem 8.13.)

8.1.5 An Estimator for Signal-to-Noise Ratios

Note that in the preceding section, the output consisted of a signal term, a noise term, and
a distortion term. An important question arises. Is the distortion term part of the signal or is
it part of the noise? It is clearly signal-generated distortion. The answer lies in the nature of
the distortion term. A reasonable way of viewing this issue is to decompose the distortion
term into a component orthogonal to the signal. This component is treated as noise. The other
component, in phase with the signal, is treated as signal.

Assume that a signal, 𝑥(𝑡) is the input to a system and that 𝑥(𝑡) gives rise to an output,
𝑦(𝑡). We say that 𝑦(𝑡) is a ‘‘perfect’’ version of 𝑥(𝑡) if the waveform for 𝑦(𝑡) only differs from
𝑥(𝑡) by an amplitude scaling and a time delay. In Chapter 2 we defined a system having this
property as a distortionless system We also require that 𝑦(𝑡) is noiseless. For such a system

𝑦(𝑡) = 𝐴𝑥(𝑡 − 𝜏) (8.68)

where 𝐴 is the system gain and 𝜏 is the system time delay. The SNR of 𝑦(𝑡), referred to 𝑥(𝑡),
is infinite. Now let’s assume that 𝑦(𝑡) contains both noise and distortion. Now

𝑦(𝑡) ≠ 𝐴𝑥(𝑡 − 𝜏) (8.69)
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It is reasonable to assume that the noise power is the mean-square error

𝜖2(𝐴, 𝜏) = 𝐸
{
[𝑦(𝑡) − 𝐴𝑥(𝑡 − 𝜏)]2

}
(8.70)

where 𝐸 {∙} denotes statistical expection. Carrying out the obvious multipication, the preced-
ing equation can be written

𝜖2(𝐴, 𝜏) = 𝐸
{
𝑦
2(𝑡)

}
+ 𝐴

2
𝐸
{
𝑥
2(𝑡 − 𝜏)

}
− 2𝐴𝐸 {𝑦(𝑡)𝑥(𝑡 − 𝜏)} (8.71)

The first term in the preceding expression is, by definition, the power in the observed (mea-
surement) signal 𝑦(𝑡), which we denote 𝑃

𝑦
. Since 𝐴 is a constant system parameter, the second

term is 𝐴
2
𝑃

𝑥
, where 𝑃

𝑥
is the power in 𝑥(𝑡). We note that shifting a signal in time does not

change the signal power. The last term is

2𝐴𝐸 {𝑦(𝑡)𝑥(𝑡 − 𝜏)} = 2𝐴𝐸 {𝑥(𝑡)𝑦(𝑡 + 𝜏)} = 2𝐴𝑅
𝑋𝑌

(𝜏) (8.72)

Note that we have assumed stationarity. The final expression for the mean-square error is

𝜖2(𝐴, 𝜏) = 𝑃
𝑦
+ 𝐴

2
𝑃

𝑥
− 2𝐴𝑅

𝑋𝑌
(𝜏) (8.73)

We now find the values of 𝐴 and 𝜏 that minimize the mean-square error.
Since 𝐴, the system gain, is a fixed but yet unknown positive constant, we wish to find

the value of 𝜏 that maximizes the cross-correlation 𝑅
𝑋𝑌 (𝜏). This is denoted 𝑅

𝑋𝑌

(
𝜏
𝑚

)
. Note

that 𝑅
𝑋𝑌

(
𝜏
𝑚

)
is the standard definition of system delay.

The value of 𝐴 that minimizes the mean-square error, denoted 𝐴
𝑚
, is determined from

𝑑

𝑑𝐴

{
𝑃

𝑦
+ 𝐴

2
𝑃

𝑥
− 2𝐴𝑅

𝑋𝑌
(𝜏

𝑚
)
}
= 0 (8.74)

which gives

𝐴
𝑚
=

𝑅
𝑋𝑌

(𝜏
𝑚
)

𝑃
𝑥

(8.75)

Substitution into (8.73) gives

𝜖2(𝐴
𝑚
, 𝜏

𝑚
) = 𝑃

𝑦
−

𝑅
2
𝑋𝑌

(𝜏
𝑚
)

𝑃
𝑥

(8.76)

which is the noise power. The signal power is 𝐴
2
𝑃

𝑥
. Therefore, the SNR is

SNR =

[
𝑅𝑋𝑌 (𝜏𝑚)

𝑃𝑥

]2
𝑃

𝑥

𝑃
𝑦
−

𝑅
2
𝑋𝑌

(𝜏𝑚)
𝑃𝑥

(8.77)

Multiplying by 𝑃
𝑥
gives the SNR

SNR =
𝑅
2
𝑋𝑌

(𝜏
𝑚
)

𝑃
𝑥
𝑃

𝑦
− 𝑅

2
𝑋𝑌

(𝜏
𝑚
)

(8.78)

The MATLAB code for the signal-to-noise ratio, along with other important parameters
such as gain (𝐴), delay (𝜏

𝑚
), 𝑃

𝑥
, 𝑃

𝑦
and 𝑅

𝑋𝑌

(
𝜏
𝑚

)
, is as follows:

% File: snrest.m
function [gain,delay,px,py,rxy,rho,snrdb] = snrest(x,y)
ln = length(x); % Set length of the reference (x) vector
fx = fft(x,ln); % FFT the reference (x) vector
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fy = fft(y,ln); % FFT the measurement (y) vector
fxconj = conj(fx); % Conjugate the FFT of the reference vector
sxy = fy .* fxconj; % Determine the cross PSD
rxy = ifft(sxy,ln); % Determine the cross-correlation function
rxy = real(rxy)/ln; % Take the real part and scale
px = x*x’/ln; % Determine power in reference vector
py = y*y’/ln; % Determine power in measurement vector
[rxymax,j] = max(rxy); % Find the max of the cross correlation
gain = rxymax/px; % Estimate of the Gain
delay = j-1; % Estimate of the Delay
rxy2 = rxymax*rxymax; % Square rxymax for later use
rho = rxymax/sqrt(px*py); % Estimate of the correlation coefficient
snr = rxy2/(px*py-rxy2); % Estimate of the SNR
snrdb = 10*log10(snr); % SNR estimate in db

% End of script file.

The following three examples illustrate the technique.

COMPUTER EXAMPLE 8.1

In this example we consider a simple interference problem. The signal is assumed to be

𝑥(𝑡) = 2 sin(2𝜋𝑓𝑡) (8.79)

and the measurement signal is

𝑦(𝑡) = 10 sin(2𝜋𝑓𝑡 + 𝜋) + 0.1 sin(20𝜋𝑓𝑡) (8.80)

In order to determine the gain, delay, signal powers, and the SNR, we execute the following program:

% File: c8ce1.m
t = 1:6400;
fs = 1/32;
x = 2*sin(2*pi*fs*t);
y = 10*sin(2*pi*fs*t+pi)+0.1*sin(2*pi*fs*10*t);
[gain,delay,px,py,rxymax,rho,snr,snrdb] = snrest(x,y);
format long e
a = [’The gain estimate is ’,num2str(gain),’.’];
b = [’The delay estimate is ’,num2str(delay),’ samples.’];
c = [’The estimate of px is ’,num2str(px),’.’];
d = [’The estimate of py is ’,num2str(py),’.’];
e = [’The snr estimate is ’,num2str(snr),’.’];
f = [’The snr estimate is ’,num2str(snrdb),’ db.’];
disp(a); disp(b); disp(c); disp(d); disp(e); disp(f)

% End of script file.

Executing the program gives the following results:

The gain estimate is 5.
The delay estimate is 16 samples.
The estimate of px is 2.
The estimate of py is 50.005.
The snr estimate is 10000.

The snr estimate is 40 db.

Are these results reasonable? Examining 𝑥(𝑡) and 𝑦(𝑡), we see that the signal gain is 10
2
= 5. Note

that there are 32 samples per period of the signal. Since the delay is 𝜋, or one-half period, it follows
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that the signal delay is 16 sample periods. The power in the signal 𝑥(𝑡) is clearly 2. The power in the
measurement signal is

𝑃
𝑦
= 1

2
[
(10)2 + (0.1)2

]
= 50.005

and so 𝑃
𝑦
is correct. The SNR is

SNR =
(10)2∕2
(0.1)2∕2

= 10000 (8.81)

and we see that all parameters have been correctly estimated.
■

COMPUTER EXAMPLE 8.2

In this example, we consider a combination of interference and noise. The signal is assumed to be

𝑥(𝑡) = 2 sin(2𝜋𝑓𝑡) (8.82)

and the measurement signal is

𝑦(𝑡) = 10 sin(2𝜋𝑓𝑡 + 𝜋) + 0.1 sin(20𝜋𝑓𝑡) + 𝑛(𝑡) (8.83)

In order to determine the gain, delay, signal powers, and the SNR, the following MATLAB script is
written:

% File: c8ce2.m
t = 1:6400;
fs = 1/32;
x = 2*sin(2*pi*fs*t);
y = 10*sin(2*pi*fs*t+pi)+0.1*sin(2*pi*fs*10*t);
A = 0.1/sqrt(2);
y = y+A*randn(1,6400);
[gain,delay,px,py,rxymax,rho,snr,snrdb] = snrest(x,y);
format long e
a = [’The gain estimate is ’,num2str(gain),’.’];
b = [’The delay estimate is ’,num2str(delay),’ samples.’];
c = [’The estimate of px is ’,num2str(px),’.’];
d = [’The estimate of py is ’,num2str(py),’.’];
e = [’The snr estimate is ’,num2str(snr),’.’];
f = [’The snr estimate is ’,num2str(snrdb),’ db.’];
disp(a); disp(b); disp(c); disp(d); disp(e); disp(f)

%End of script file.

Executing this program gives:

The gain estimate is 5.0001.
The delay estimate is 16 samples.
The estimate of px is 2.
The estimate of py is 50.0113.
The snr estimate is 5063.4892.

The snr estimate is 37.0445 db.

Are these correct? Comparing this result to the previous computer example we see that the SNR
has been reduced by approximately a factor of two. That this is reasonable follows from the fact that the
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parameter 𝐴 is the standard deviation of the noise. The noise variance is therefore given by

𝜎
2
𝑛
= 𝐴

2 =

(
0.1
√
2

)2

= (0.1)2

2
(8.84)

We note from the previous computer example that the ‘‘programmed’’ noise variance is exactly
equal to the interference power. The SNR should therefore be reduced by 3 dB since the power of the
interference plus noise is twice the power of the interference acting alone. Comparing this to the previous
computer example, we note, however, that the SNR is reduced by slightly less than 3 dB. The reason
for this should be clear from Chapter 7. When the program is run, the noise generated is a finite-length
sample function from the noise process. Therefore, the variance of the finite-length sample function is a
random variable. The noise is assumed ergodic so that the estimate of the noise variance is consistent,
which means that as the number of noise samples 𝑁 increases, the variance of the estimate decreases.

■

COMPUTER EXAMPLE 8.3

In this example we consider the effect of a nonlinearity on the SNR, which will provide insight into the
allocation of the distortion term in the previous section to signal and noise. For this example we define
the signal as

𝑥(𝑡) = 2 cos(2𝜋𝑓𝑡) (8.85)

and assume the measurement signal

𝑦(𝑡) = 1 − cos3(2𝜋𝑓𝑡 + 𝜋) (8.86)

In order to determine the SNR we execute the following MATLAB script:

% File: c8ce3.m
t = 1:6400;
fs = 1/32;
x = 2*cos(2*pi*fs*t);
y = 10*((cos(2*pi*fs*t+pi)).ˆ3);
[gain,delay,px,py,rxymax,rho,snr,snrdb] = snrest(x,y);
format long e
a = [’The gain estimate is ’,num2str(gain),’.’];
b = [’The delay estimate is ’,num2str(delay),’ samples.’];
c = [’The estimate of px is ’,num2str(px),’.’];
d = [’The estimate of py is ’,num2str(py),’.’];
e = [’The snr estimate is ’,num2str(snr),’.’];
f = [’The snr estimate is ’,num2str(snrdb),’ db.’];
disp(a); disp(b); disp(c); disp(d); disp(e); disp(f)

%End of script file.

Executing the program gives the following results:

The gain estimate is 3.75.
The delay estimate is 16 samples.
The estimate of px is 2.
The estimate of py is 31.25.
The snr estimate is 9.

The snr estimate is 9.5424 db.

Since we take 32 samples per period and the delay is one-half of a period, the delay estimate of 16
samples is clearly correct as is the power in the reference signal 𝑃

𝑥
. Verifying the other results is not so
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obvious. Note that the measurement signal can be written

𝑦(𝑡) = 10
(1
2

)
[1 + cos(4𝜋𝑓𝑡)] [cos(2𝜋𝑓𝑡)] (8.87)

which becomes

𝑦(𝑡) = 7.5 cos(2𝜋𝑓𝑡) + 2.5 cos(6𝜋𝑓𝑡) (8.88)

Therefore, the power in the measurement signal is

𝑃
𝑦
= 1

2
[
(7.5)2 + (2.5)2

]
= 31.25 (8.89)

The SNR is

SNR =
(7.5)2∕2
(2.5)2∕2

= 9 (8.90)

This result provides insight into the allocation of the distortion power in the preceding section into signal
and noise powers. That portion of the noise power that is orthogonal to the signal is classified as noise.
The portion of the distortion that is correlated or ‘‘in phase’’ with the signal is classified as signal.

■

■ 8.2 NOISE AND PHASE ERRORS IN COHERENT SYSTEMS

In the preceding section we investigated the performance of various types of demodulators.
Our main interests were detection gain and calculation of the demodulated output SNR.Where
coherent demodulation was used, the demodulation carrier was assumed to have perfect phase
coherence with the carrier used for modulation. In a practical system, as we briefly discussed,
the presence of noise in the carrier recovery system prevents perfect estimation of the carrier
phase. Thus, system performance in the presence of both additive noise and demodulation
phase errors is of interest.

The demodulator model is illustrated in Figure 8.7. The signal portion of 𝑒(𝑡) is assumed
to be the quadrature double-sideband (QDSB) signal

𝑚1(𝑡) cos(2𝜋𝑓
𝑐
𝑡 + 𝜃) + 𝑚2(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)

where any constant 𝐴
𝑐
is absorbed into 𝑚1(𝑡) and 𝑚2(𝑡) for notational simplicity. Using this

model, a general representation for the error in the demodulated signal 𝑦
𝐷
(𝑡) is obtained. After

the analysis is complete, the DSB result is obtained by letting 𝑚1(𝑡) = 𝑚(𝑡) and 𝑚2(𝑡) = 0.
The SSB result is obtained by letting 𝑚1(𝑡) = 𝑚(𝑡) and 𝑚2(𝑡) = ±�̂�(𝑡), depending upon the

Postdetection

lowpass f ilter

bandwidth =W

Demodulation

carrier

Predetection

f ilter

bandwidth =BT

yD(t)
e(t)xr(t) = xc(t) + n(t)

2 cos [ ct + +  (t)]ω θ     ϕ

×

Figure 8.7
Coherent demodulation with phase error.
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sideband of interest. For the QDSB system, 𝑦
𝐷
(𝑡) is the demodulated output for the direct

channel. The quadrature channel can be demodulated using a demodulation carrier of the form
2 sin[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)].

The noise portion of 𝑒(𝑡) is represented using the narrowband model

𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)

in which

𝑛2
𝑐
= 𝑛2

𝑠
= 𝑁0𝐵𝑇

= 𝑛2 = 𝜎
2
𝑛

(8.91)

where 𝐵
𝑇
is the bandwidth of the predetection filter, 1

2𝑁0 is the double-sided power spectral

density of the noise at the filter input, and 𝜎
2
𝑛
is the noise variance (power) at the output of

the predetection filter. The phase error of the demodulation carrier is assumed to be a sample
function of a zero-mean Gaussian process of known variance 𝜎

2
𝜙
. As before, the message

signals are assumed to have zero mean.
With the preliminaries of defining the model and stating the assumptions disposed of, we

now proceed with the analysis. The assumed performance criterion is mean-square error in
the demodulated output 𝑦

𝐷
(𝑡). Therefore, we will compute

𝜖2 = {𝑚1(𝑡) − 𝑦
𝐷
(𝑡)}2 (8.92)

for DSB, SSB, and QDSB. The multiplier input signal 𝑒(𝑡) in Figure 8.7 is

𝑒(𝑡) = 𝑚1(𝑡) cos(2𝜋𝑓
𝑐
𝑡 + 𝜃) + 𝑚2(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.93)

Multiplying by 2 cos(2𝜋𝑓
𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] and lowpass filtering gives us the output

𝑦
𝐷
(𝑡) = [𝑚1(𝑡) + 𝑛

𝑐
(𝑡)] cos𝜙(𝑡) − [𝑚2(𝑡) − 𝑛

𝑠
(𝑡)] sin𝜙(𝑡) (8.94)

The error 𝑚1(𝑡) − 𝑦
𝐷
(𝑡) can be written as

𝜖 = 𝑚1 − (𝑚1 + 𝑛
𝑐
) cos𝜙 + (𝑚2 − 𝑛

𝑠
) sin𝜙 (8.95)

where it is understood that 𝜖, 𝑚1, 𝑚2, 𝑛𝑐
, 𝑛

𝑠
, and 𝜙 are all functions of time. The mean-square

error can be written as

𝜖2 = 𝑚
2
1 − 2𝑚1(𝑚1 + 𝑛

𝑐
) cos𝜙

+2𝑚1(𝑚2 + 𝑛
𝑠
) sin𝜙

+(𝑚1 + 𝑛
𝑐
)2 cos2 𝜙

−2(𝑚1 + 𝑛
𝑐
)(𝑚2 − 𝑛

𝑠
) sin𝜙 cos𝜙

+(𝑚2 − 𝑛
𝑠
)2 sin2 𝜙 (8.96)

The variables 𝑚1, 𝑚2, 𝑛𝑐
, 𝑛

𝑠
, and 𝜙 are all assumed to be uncorrelated. It should be pointed out

that for the SSB case, the power spectra of 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) will not be symmetrical about 𝑓

𝑐
.

However, as pointed out in Section 7.5, 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are uncorrelated, since there is no time

displacement. Thus, the mean-square error can be written as

𝜖2 = 𝑚
2
1 − 2𝑚2

1 cos𝜙 + 𝑚
2
1 cos

2 𝜙 + 𝑛2 (8.97)

and we are in a position to consider specific cases.
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First, let us assume the system of interest is QDSB with equal power in each modulating

signal. Under this assumption, 𝑚2
1 = 𝑚

2
2 = 𝜎

2
𝑚
, and the mean-square error is

𝜖
2
𝑄
= 2𝜎2

𝑚
− 2𝜎2

𝑚
cos𝜙 + 2𝜎2

𝑛
(8.98)

This expression can be easily evaluated for the case in which the maximum value of |𝜙(𝑡)| ≪ 1
so that 𝜙(𝑡) can be represented by the first two terms in a power series expansion. Using the
approximation

cos𝜙 ≅ 1 − 1
2
𝜙2 = 1 − 1

2
𝜎
2
𝜙

(8.99)

gives

𝜖
2
𝑄
= 𝜎

2
𝑚
𝜎
2
𝜙
+ 𝜎

2
𝑛

(8.100)

In order to have an easily interpreted measure of system performance, the mean-square error
is normalized by 𝜎

2
𝑚
. This yields

𝜖
2
𝑁𝑄

= 𝜎
2
𝜙
+

𝜎
2
𝑛

𝜎2
𝑚

(8.101)

Note that the first term is the phase-error variance and the second term is simply the reciprocal
of the SNR. Note that for high SNR the important error source is the phase error.

The preceding expression is also valid for the SSB case, since an SSB signal is a QDSB
signalwith equal power in the direct and quadrature components. However,𝜎2

𝑛
may be different

for the SSB and QDSB cases, since the SSB predetection filter bandwidth need only be half
the bandwidth of the predetection filter for the QDSB case. Equation (8.101) is of such general
interest that it is illustrated in Figure 8.8.
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Figure 8.8
Mean-square error versus SNR for QDSB system.
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In order to compute the mean-square error for a DSB system, we simply let 𝑚2 = 0 and
𝑚1 = 𝑚 in (8.97). This yields

𝜖
2
𝐷
= 𝑚2 − 2𝑚2cos𝜙 + 𝑚2 cos2 𝜙 + 𝑛2 (8.102)

or

𝜖
2
𝐷
= 𝜎

2
𝑚
(1 − cos𝜙)2 + 𝑛2 (8.103)

which, for small 𝜙, can be approximated as

𝜖
2
𝐷
≅ 𝜎

2
𝑚

(1
4

)
𝜙4 + 𝑛2 (8.104)

If 𝜙 is zero-mean Gaussian with variance 𝜎
2
𝜙
,

𝜙4 = (𝜙2)2 = 3𝜎4
𝜙

(8.105)

Thus,

𝜖
2
𝐷
≅ 3

4
𝜎
2
𝑚
𝜎
4
𝜙
+ 𝜎

2
𝑛

(8.106)

and the normalized mean-square error becomes

𝜖
2
𝑁𝐷

= 3
4
𝜎
4
𝜙
+

𝜎
2
𝑛

𝜎2
𝑚

(8.107)

Several items are of interest when comparing (8.107) and (8.101). First, equal output
SNRs imply equal normalized mean-square errors for 𝜎

2
𝜙
= 0. This is easy to understand since

the noise is additive at the output. The general expression for 𝑦
𝐷
(𝑡) is 𝑦

𝐷
(𝑡) = 𝑚(𝑡) + 𝑛(𝑡).

The error is 𝑛(𝑡), and the normalized mean-square error is 𝜎
2
𝑛
∕𝜎

2
𝑚
. The analysis also illustrates

that DSB systems are much less sensitive to demodulation-phase errors than SSB or QDSB
systems. This follows from the fact that if 𝜙 ≪ 1, the basic assumption made in the analysis,
then 𝜎

4
𝜙

≪ 𝜎
2
𝜙
.

EXAMPLE 8.2

Assume that the demodulation-phase error variance of a coherent demodulator is described by 𝜎
2
𝜙
= 0.01.

The SNR 𝜎
2
𝑚
∕𝜎

2
𝑛
is 20 dB. If a DSB system is used, the normalized mean-square error is

𝜖
2
𝑁𝐷

= 3
4
(0.01)2 + 10−20∕10 = 0.000075 (DSB) (8.108)

while for the SSB case the normalized mean-square error is

𝜖
2
𝑁𝐷

= (0.01) + 10−20∕10 = 0.02 (SSB) (8.109)

Note that, for the SSB case, the phase error contributes more significantly to the error in the demodulated
output. Recall that demodulation-phase errors in a QDSB system result in crosstalk between the direct
and quadrature message signals. In SSB, demodulation-phase errors result in a portion of �̂�(𝑡) appearing
in the demodulated output for 𝑚(𝑡). Since 𝑚(𝑡) and �̂�(𝑡) are independent, this crosstalk can be a severely
degrading effect unless the demodulation-phase error is very small.

■
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■ 8.3 NOISE IN ANGLE MODULATION

Now that we have investigated the effect of noise on a linear modulation system, we turn
our attention to angle modulation. We will find that there are significant differences between
linear and angle modulation when noise effects are considered. We will also find significant
differences between PM and FM. Finally, we will see that FM can offer greatly improved
performance over both linear modulation and PM systems in noisy environments, but that this
improvement comes at the cost of increased transmission bandwidth.

8.3.1 The Effect of Noise on the Receiver Input

Consider the system shown in Figure 8.9. The predetection filter bandwidth is𝐵
𝑇
and is usually

determined by Carson’s rule. Recall from Chapter 4 that 𝐵
𝑇
is approximately 2(𝐷 + 1)𝑊 Hz,

where 𝑊 is the bandwidth of the message signal and 𝐷 is the deviation ratio, which is the
peak frequency deviation divided by the bandwidth 𝑊 . The input to the predetection filter is
assumed to be the modulated carrier

𝑥
𝑐
(𝑡) = 𝐴

𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] (8.110)

plus additive white noise that has the double-sided power spectral density 1
2𝑁0 W/Hz. For

angle modulation the phase deviation 𝜙(𝑡) is a function of the message signal 𝑚(𝑡).
The output of the predetection filter can be written as

𝑒1(𝑡) = 𝐴
𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)]

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.111)

where

𝑛2
𝑐
= 𝑛2

𝑠
= 𝑁0𝐵𝑇

(8.112)

Equation (8.111) can be written as

𝑒1(𝑡) = 𝐴
𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] + 𝑟

𝑛
(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙

𝑛
(𝑡)] (8.113)

where 𝑟
𝑛
(𝑡) is the Rayleigh-distributed noise envelope and 𝜙

𝑛
(𝑡) is the uniformly distributed

phase. By replacing 2𝜋𝑓
𝑐
𝑡 + 𝜙

𝑛
(𝑡) with 2𝜋𝑓

𝑐
𝑡 + 𝜙(𝑡) + 𝜙

𝑛
(𝑡) − 𝜙(𝑡), we can write (8.113) as

𝑒1(𝑡) = 𝐴
𝑐
cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)]

+𝑟
𝑛
(𝑡) cos[𝜙

𝑛
(𝑡) − 𝜙(𝑡)] cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] (8.114)

−𝑟
𝑛
(𝑡) sin[𝜙

𝑛
(𝑡) − 𝜙(𝑡)] sin[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)]

which is

𝑒1(𝑡) = {𝐴
𝑐
+ 𝑟

𝑛
(𝑡) cos[𝜙

𝑛
(𝑡) − 𝜙(𝑡)]} cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)]

−𝑟
𝑛
(𝑡) sin[𝜙

𝑛
(𝑡) − 𝜙(𝑡)] sin[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙(𝑡)] (8.115)
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Figure 8.9
Angle demodulation system.
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Since the purpose of the receiver is to recover the phase, wewrite the preceding expression
as

𝑒1(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓
𝑐
𝑡 + 𝜃 + 𝜙(𝑡) + 𝜙

𝑒
(𝑡)] (8.116)

where 𝜙
𝑒
(𝑡) is the phase deviation error due to noise and is given by

𝜙
𝑒
(𝑡) = tan−1

{
𝑟
𝑛
(𝑡) sin[𝜙

𝑛
(𝑡) − 𝜙(𝑡)]

𝐴
𝑐
+ 𝑟

𝑛
(𝑡) cos[𝜙

𝑛
(𝑡) − 𝜙(𝑡)]

}
(8.117)

Since𝜙
𝑒
(𝑡) adds to𝜙(𝑡), which conveys themessage signal, it is the noise component of interest.

If 𝑒1(𝑡) is expressed as

𝑒1(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓
𝑐
𝑡 + 𝜃 + 𝜓(𝑡)] (8.118)

the phase deviation of the discriminator input due to the combination of signal and noise is

𝜓(𝑡) = 𝜙(𝑡) + 𝜙
𝑒
(𝑡) (8.119)

where 𝜙
𝑒
(𝑡) is the phase error due to noise. Since the demodulated output is proportional to

𝜓(𝑡) for PM, or 𝑑𝜓∕𝑑𝑡 for FM, we must determine (SNR)
𝑇
for PM and for FM as separate

cases. This will be addressed in following sections.
If the predetection SNR, (SNR)

𝑇
, is large, 𝐴

𝑐
≫ 𝑟

𝑛
(𝑡) most of the time. For this case

(8.117) becomes

𝜙
𝑒
(𝑡) =

𝑟
𝑛
(𝑡)

𝐴
𝑐

sin[𝜙
𝑛
(𝑡) − 𝜙(𝑡)] (8.120)

so that 𝜓(𝑡) is

𝜓(𝑡) = 𝜙(𝑡) +
𝑟
𝑛
(𝑡)

𝐴
𝑐

sin[𝜙
𝑛
(𝑡) − 𝜙(𝑡)] (8.121)

It is important to note that the effect of the noise 𝑟
𝑛
(𝑡) is suppressed if the transmitted signal

amplitude𝐴
𝑐
is increased. Thus, the output noise is affected by the transmitted signal amplitude

even for above-threshold operation.
In (8.121) note that 𝜙

𝑛
(𝑡), for a given value of 𝑡, is uniformly distributed over a 2𝜋 range.

Also, for a given 𝑡, 𝜙(𝑡) is a constant that biases 𝜙
𝑛
(𝑡), and 𝜙

𝑛
(𝑡) − 𝜙(𝑡) is in the same range

mod(2𝜋). We therefore neglect 𝜙(𝑡) in (8.121) and express 𝜓(𝑡) as

𝜓(𝑡) = 𝜙(𝑡) +
𝑛

𝑠
(𝑡)

𝐴
𝑐

(8.122)

where 𝑛
𝑠
(𝑡) is the quadrature noise component at the input to the receiver.

8.3.2 Demodulation of PM

Recall that for PM, the phase deviation is proportional to the message signal so that

𝜙(𝑡) = 𝑘
𝑝
𝑚

𝑛
(𝑡) (8.123)

where 𝑘
𝑝
is the phase-deviation constant in radians per unit of 𝑚

𝑛
(𝑡) and 𝑚

𝑛
(𝑡) is the message

signal normalized so that the peak value of |𝑚(𝑡)| is unity. The demodulated output 𝑦
𝐷
(𝑡) for

PM is given by

𝑦
𝐷
(𝑡) = 𝐾

𝐷
𝜓(𝑡) (8.124)
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where 𝜓(𝑡) represents the phase deviation of the receiver input due to the combined effects of
signal and noise. Using (8.122) gives

𝑦
𝐷𝑃

(𝑡) = 𝐾
𝐷

𝑘
𝑝
𝑚

𝑛
(𝑡) + 𝐾

𝐷

𝑛
𝑠
(𝑡)

𝐴
𝑐

(8.125)

The output signal power for PM is

𝑆
𝐷𝑃

(𝑡) = 𝐾
2
𝐷

𝑘
2
𝑝
𝑚2

𝑛
(8.126)

The power spectral density of the predetection noise is 𝑁0, and the bandwidth of the
predetection noise is 𝐵

𝑇
, which, by Carson’s rule, exceeds 2𝑊 . We therefore remove the

out-of-band noise by following the discriminator with a lowpass filter of bandwidth 𝑊 . This
filter has no effect on the signal but reduces the output noise power to

𝑁
𝐷𝑃

=
𝐾

2
𝐷

𝐴2
𝑐
∫

𝑊

−𝑊

𝑁0𝑑𝑓 = 2
𝐾

2
𝐷

𝐴2
𝑐

𝑁0𝑊 (8.127)

Thus, the SNR at the output of the phase discriminator is

(SNR)
𝐷
=

𝑆
𝐷𝑃

𝑁
𝐷𝑃

=
𝐾

2
𝐷

𝑘
2
𝑝
𝑚2

𝑛

𝐴(2𝐾2
𝐷
∕𝐴2

𝑐
)𝑁0𝑊

(8.128)

Since the transmitted signal power 𝑃
𝑇
is 𝐴

2
𝑐
∕2, we have

(SNR)
𝐷
= 𝑘

2
𝑝
𝑚2

𝑛

𝑃
𝑇

𝑁0𝑊
(8.129)

The above expression shows that the improvement of PM over linear modulation depends
on the phase-deviation constant and the power in the modulating signal. It should be remem-
bered that if the phase deviation of a PM signal exceeds 𝜋 radians, unique demodulation cannot
be accomplished unless appropriate signal processing is used to ensure that the phase deviation
due to 𝑚(𝑡) is continuous. If, however, we assume that the peak value of |𝑘

𝑝
𝑚

𝑛
(𝑡)| is 𝜋, the

maximum value of 𝑘
2
𝑝
𝑚2

𝑛
is 𝜋

2. This yields a maximum improvement of approximately 10 dB

over baseband. In reality, the improvement is significantly less because 𝑘
2
𝑝
𝑚2

𝑛
is typically much

less than the maximum value of 𝜋2. It should be pointed out that if the constraint that the output
of the phase demodulator is continuous is imposed, it is possible for |𝑘

𝑝
𝑚

𝑛
(𝑡)| to exceed 𝜋.

8.3.3 Demodulation of FM: Above Threshold Operation

For the FM case the phase deviation due to the message signal is

𝜙(𝑡) = 2𝜋𝑓
𝑑
∫

𝑡

𝑚
𝑛
(𝛼)𝑑𝛼 (8.130)

where 𝑓
𝑑
is the deviation constant in Hz per unit amplitude of the message signal. If the

maximum value of |𝑚(𝑡)| is not unity, as is usually the case, the scaling constant 𝐾 , defined
by 𝑚(𝑡) = 𝐾𝑚

𝑛
(𝑡), is contained in 𝑘

𝑝
or 𝑓

𝑑
. The discriminator output 𝑦

𝐷
(𝑡) for FM is given by

𝑦
𝐷
(𝑡) = 1

2𝜋
𝐾

𝐷

𝑑𝜓

𝑑𝑡
(8.131)
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where 𝐾
𝐷
is the discriminator constant. Substituting (8.122) into (8.131) and using (8.130)

for 𝜙(𝑡) yields

𝑦
𝐷𝐹

(𝑡) = 𝐾
𝐷

𝑓
𝑑
𝑚

𝑛
(𝑡) +

𝐾
𝐷

2𝜋𝐴
𝑐

𝑑𝑛
𝑠
(𝑡)

𝑑𝑡
(8.132)

The output signal power at the output of the FM demodulator is

𝑆
𝐷𝐹

= 𝐾
2
𝐷

𝑓
2
𝑑
𝑚2

𝑛
(8.133)

Before the noise power can be calculated, the power spectral density of the output noise must
first be determined.

The noise component at the output of the FM demodulator is, from (8.132), given by

𝑛
𝐹
(𝑡) =

𝐾
𝐷

2𝜋𝐴
𝑐

𝑑𝑛
𝑠
(𝑡)

𝑑𝑡
(8.134)

It was shown in Chapter 7 that if 𝑦(𝑡) = 𝑑𝑥∕𝑑𝑡, then 𝑆
𝑦
(𝑓 ) = (2𝜋𝑓 )2𝑆

𝑥
(𝑓 ). Applying this

result to (8.134) yields

𝑆
𝑛𝐹
(𝑓 ) =

𝐾
2
𝐷

(2𝜋)2𝐴2
𝑐

(2𝜋𝑓 )2𝑁0 =
𝐾

2
𝐷

𝐴2
𝑐

𝑁0𝑓
2 (8.135)

for |𝑓 | <
1
2𝐵

𝑇
and zero otherwise. This spectrum is illustrated in Figure 8.10(a). The parabolic

shape of the noise spectrum results from the differentiating action of the FM discriminator and
has a profound effect on the performance of FM systems operating in the presence of noise. It
is clear from Figure 8.10(a) that low-frequency message-signal components are subjected to
lower noise levels than are high-frequency components. Once again, assuming that a lowpass
filter having only sufficient bandwidth to pass the message follows the discriminator, the
output noise power is

𝑁
𝐷𝐹

=
𝐾

2
𝐷

𝐴2
𝑐

𝑁0
∫

𝑊

−𝑊

𝑓
2
𝑑𝑓 = 2

3
𝐾

2
𝐷

𝐴2
𝑐

𝑁0𝑊
3 (8.136)

This quantity is indicated by the shaded area in Figure 8.10(b).
As usual, it is useful to write (8.136) in terms of 𝑃

𝑇
∕𝑁0𝑊 . Since 𝑃

𝑇
= 𝐴

2
𝑐
∕2, we have

𝑃
𝑇

𝑁0𝑊
=

𝐴
2
𝑐

2𝑁0𝑊
(8.137)
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Figure 8.10
(a) Power spectral density for PM discriminator output with portion for |𝑓 | < 𝑊 shaded. (b) Power
spectral density for FM discriminator output with portion for |𝑓 | < 𝑊 shaded.
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and from (8.136) the noise power at the output of the FM demodulator is

𝑁
𝐷𝐹

= 1
3
𝐾

2
𝐷

𝑊
2
(

𝑃
𝑇

𝑁0𝑊

)−1
(8.138)

Note that for both PM and FM the noise power at the discriminator output is inversely
proportional to 𝑃

𝑇
∕𝑁0𝑊 .

The SNR at the FM demodulator output is now easily determined. Dividing the signal
power, defined by (8.133), by the noise power, defined by (8.138), gives

(SNR)
𝐷𝐹

=
𝐾

2
𝐷

𝑓
2
𝑑
𝑚2

𝑛

1
3𝐾

2
𝐷

𝑊 2
(

𝑃𝑇

𝑁0𝑊

)−1 (8.139)

which can be expressed as

(SNR)
𝐷𝐹

= 3
(

𝑓
𝑑

𝑊

)2
𝑚2

𝑛

𝑃
𝑇

𝑁0𝑊
(8.140)

where 𝑃
𝑇
is the transmitted signal power 1

2𝐴
2
𝑐
. Since the ratio of peak deviation to 𝑊 is the

deviation ratio 𝐷, the output SNR can be expressed

(SNR)
𝐷𝐹

= 3𝐷2
𝑚2

𝑛

𝑃
𝑇

𝑁0𝑊
(8.141)

where, as always, the maximum value of |𝑚
𝑛
(𝑡)| is unity. Note that the maximum value of

𝑚(𝑡), together with 𝑓
𝑑
and 𝑊 , determines 𝐷.

At first glance it might appear that we can increase 𝐷 without bound, thereby increasing
the output SNR to an arbitrarily large value. One price we pay for this improved SNR is
excessive transmission bandwidth. For 𝐷 ≫ 1, the required bandwidth 𝐵

𝑇
is approximately

2𝐷𝑊 , which yields

(SNR)
𝐷𝐹

= 3
4

(
𝐵

𝑇

𝑊

)2
𝑚2

𝑛

(
𝑃

𝑇

𝑁0𝑊

)
(8.142)

This expression illustrates the trade-off that exists between bandwidth and output SNR. How-
ever, (8.142) is valid only if the discriminator input SNR is sufficiently large to result in
operation above threshold. Thus, the output SNR cannot be increased to any arbitrary value
by simply increasing the deviation ratio and thus the transmission bandwidth. This effect will
be studied in detail in a later section. First, however, we will study a simple technique for
gaining additional improvement in the output SNR.

8.3.4 Performance Enhancement through the Use of De-emphasis

In Chapter 4 we used pre-emphasis and de-emphasis to partially combat the effects of in-
terference. These techniques can also be used to advantage when noise is present in angle
modulation systems.

As we saw in Chapter 4, the de-emphasis filter is usually a first-order lowpass RC filter
placed directly at the discriminator output. Prior to modulation, the signal is passed through
a highpass pre-emphasis filter having a transfer function so that the combination of the pre-
emphasis and de-emphasis filters has no net effect on the message signal. The de-emphasis
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8.3 Noise in Angle Modulation 375

filter is followed by a lowpass filter, assumed to be ideal with bandwidth 𝑊 , which eliminates
the out-of-band noise. Assume the de-emphasis filter to have the amplitude response

|𝐻
𝐷𝐸

(𝑓 )| = 1
√
1 + (𝑓∕𝑓3)2

(8.143)

where 𝑓3 is the 3-dB frequency 1∕(2𝜋𝑅𝐶)Hz. The total noise power output with de-emphasis
is

𝑁
𝐷𝐹

=
∫

𝑊

−𝑊

|𝐻
𝐷𝐸

(𝑓 )|2𝑆
𝑛𝐹
(𝑓 )𝑑𝑓 (8.144)

Substituting 𝑆
𝑛𝐹
(𝑓 ) from (8.135) and |𝐻

𝐷𝐸
(𝑓 )| from (8.143) yields

𝑁
𝐷𝐹

= 2
𝐾

2
𝐷

𝐴2
𝑐

𝑁0𝑓
2
3 ∫

𝑊

0

𝑓
2

𝑓
2
3 + 𝑓 2

𝑑𝑓 (8.145)

or

𝑁
𝐷𝐹

= 2
𝐾

2
𝐷

𝐴2
𝑐

𝑁0𝑓
3
3

(
𝑊

𝑓3
− tan−1 𝑊

𝑓3

)
(8.146)

or

𝑁
𝐷𝐹

= 𝐾
2
𝐷

𝑁0𝑊

𝑃
𝑇

𝑓
2
3

(
1 −

𝑓3
𝑊

tan−1 𝑊

𝑓3

)
(8.147)

In a typical situation, 𝑓3 ≪ 𝑊 , so that the second term in the above equation is negligible.
For this case,

𝑁
𝐷𝐹

= 𝐾
2
𝐷

𝑓
2
3

𝑁0𝑊

𝑃
𝑇

(8.148)

and the output SNR becomes

(SNR)
𝐷𝐹

=
(

𝑓
𝑑

𝑓3

)2
𝑚2

𝑛

𝑃
𝑇

𝑁0𝑊
(8.149)

A comparison of (8.149) with (8.140) illustrates that for 𝑓3 ≪ 𝑊 , the improvement
gained through the use of pre-emphasis and de-emphasis is approximately (𝑊 ∕𝑓3)2, which
can be very significant in noisy environments.

EXAMPLE 8.3

Commercial FM operates with 𝑓
𝑑
= 75 kHz, 𝑊 = 15 kHz, 𝐷 = 5, and the standard value of 2.1 kHz

for 𝑓3. Assuming that 𝑚2
𝑛
= 0.1, we have, for FM without pre-emphasis and de-emphasis,

(SNR)
𝐷𝐹

= 7.5
𝑃

𝑇

𝑁0𝑊
(8.150)

With pre-emphasis and de-emphasis, the result is

(SNR)
𝐷𝐹 ,𝑝𝑒

= 127.5
𝑃

𝑇

𝑁0𝑊
(8.151)

With the chosen values, FM without de-emphasis is 8.75 dB superior to baseband, and FM with de-
emphasis is 21.06 dB superior to baseband. Thus, with the use of pre-emphasis and de-emphasis, the
transmitter power can be reduced significantly, which more than justifies the use of pre-emphasis and
de-emphasis.

■
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As mentioned in Chapter 4, a price is paid for the SNR improvement gained by the use
of pre-emphasis. The action of the pre-emphasis filter is to accentuate the high-frequency
portion of the message signal relative to the low-frequency portion of the message signal.
Thus, pre-emphasis may increase the transmitter deviation and, consequently, the bandwidth
required for signal transmission. Fortunately, many message signals of practical interest have
relatively small energy in the high-frequency portion of their spectrum, so this effect is often
of little or no importance.

■ 8.4 THRESHOLD EFFECT IN FM DEMODULATION

Since angle modulation is a nonlinear process, demodulation of an angle-modulated signal
exhibits a threshold effect. We now take a closer look at this threshold effect concentrating on
FM demodulators or, equivalently, discriminators.

8.4.1 Threshold Effects in FM Demodulators

Significant insight into the mechanism by which threshold effects take place can be gained
by performing a relatively simple laboratory experiment. We assume that the input to an
FM discriminator consists of an unmodulated sinusoid plus additive bandlimited white noise
having a power spectral density symmetrical about the frequency of the sinusoid. Starting
out with a high SNR at the discriminator input, the noise power is gradually increased, while
continually observing the discriminator output on an oscilloscope. Initially, the discriminator
output resembles bandlimited white noise. As the noise power spectral density is increased,
thereby reducing the input SNR, a point is reached at which spikes or impulses appear in the
discriminator output. The initial appearance of these spikes denotes that the discriminator is
operating in the region of threshold.

The statistics for these spikes are examined in Appendix D. In this section we review the
phenomenon of spike noise with specific application to FM demodulation. The system under
consideration is that of Figure 8.9. For this case,

𝑒1(𝑡) = 𝐴
𝑐
cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) + 𝑛

𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) − 𝑛

𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃) (8.152)

which is

𝑒1(𝑡) = 𝐴
𝑐
cos(2𝜋𝑓

𝑐
𝑡 + 𝜃) + 𝑟

𝑛
(𝑡) cos[2𝜋𝑓

𝑐
𝑡 + 𝜃 + 𝜙

𝑛
(𝑡)] (8.153)

or

𝑒1(𝑡) = 𝑅(𝑡) cos[2𝜋𝑓
𝑐
𝑡 + 𝜃 + 𝜓(𝑡)] (8.154)

The phasor diagram of this signal is given in Figure 8.11. Like Figure D.2 in Appendix
D, it illustrates the mechanism by which spikes occur. The signal amplitude is 𝐴

𝑐
and the

angle is 𝜃, since the carrier is assumed unmodulated. The noise amplitude is 𝑟
𝑛
(𝑡). The angle

difference between signal and noise is 𝜙
𝑛
(𝑡). As threshold is approached, the noise amplitude

grows until, at least part of the time, |𝑟
𝑛
(𝑡)| > 𝐴

𝑐
. Also, since 𝜙

𝑛
(𝑡) is uniformly distributed,

the phase of the noise is sometimes in the region of −𝜋. Thus, the resultant phasor 𝑅(𝑡) can
occasionally encircle the origin. When 𝑅(𝑡) is in the region of the origin, a relatively small
change in the phase of the noise results in a rapid change in 𝜓(𝑡). Since the discriminator
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trajectory

Figure 8.11
Phasor diagram near threshold resulting in spike
output (drawn for 𝜃 = 0).

output is proportional to the time rate of change 𝜓(𝑡), the discriminator output is very large as
the origin is encircled. This is essentially the same effect that was observed in Chapter 4 where
the behavior of an FM discriminator operating in the presence of interference was studied.

The phase deviation 𝜓(𝑡) is illustrated in Figure 8.12 for the case in which the input SNR
is −4.0 dB. The origin encirclements can be observed by the 2𝜋 jumps in 𝜓(𝑡). The output of
an FM discriminator for several predetection SNRs is shown in Figure 8.13. The decrease in
spike noise as the SNR is increased is clearly seen.

In Appendix D it is shown that the power spectral density of spike noise is given by

𝑆
𝑑𝜓∕𝑑𝑡

(𝑓 ) = (2𝜋)2(𝜈 + 𝛿𝜈) (8.155)

where 𝜈 is the average number of impulses per second resulting from an unmodulated carrier
plus noise and 𝛿𝜈 is the net increase of the spike rate due to modulation. Since the discriminator
output is given by

𝑦
𝐷
(𝑡) = 1

2𝜋
𝐾

𝐷

𝑑𝜓

𝑑𝑡
(8.156)

the power spectral density due to spike noise at the discriminator output is

𝑁
𝐷𝛿

= 𝐾
2
𝐷

𝜈 + 𝐾
2
𝐷

𝛿𝜈 (8.157)

Using (D.23) from Appendix D for 𝜈 yields

𝐾
2
𝐷

𝜈 = 𝐾
2
𝐷

𝐵
𝑇√
3
𝑄

⎛
⎜
⎜
⎝

√
𝐴2

𝑐

𝑁0𝐵𝑇

⎞
⎟
⎟
⎠

(8.158)
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Figure 8.12
Phase deviation for a predetection SNR of −4.0 dB.
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t

t

t

t

t

(a)
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(c)

(e)

(d)

Figure 8.13
Output of FM discriminator
due to input noise for various
predetection SNRs.
(a) Predetection SNR =
−10 dB. (b) Predetection
SNR = −4 dB.
(c) Predetection SNR =
−0 dB. (d) Predetection
SNR = 6 dB. (e) Predetection
SNR = 10 dB.

where 𝑄(𝑥) is the Gaussian 𝑄-function defined in Chapter 6. Using (D.28) for 𝛿𝜈 yields

𝐾
2
𝐷

𝛿𝜈 = 𝐾
2
𝐷
|𝛿𝑓 | exp

(
−𝐴

2
𝑐

2𝑁0𝐵𝑇

)

(8.159)

Since the spike noise at the discriminator output is white, the spike noise power at the discrimi-
nator output is found by multiplying the power spectral density by the two-sided postdetection
bandwidth 2𝑊 . Substituting (8.158) and (8.159) into (8.157) and multiplying by 2𝑊 yields

𝑁
𝐷𝛿

= 𝐾
2
𝐷

2𝐵
𝑇
𝑊

√
3

𝑄

⎛
⎜
⎜
⎝

√
𝐴2

𝑐

𝑁0𝐵𝑇

⎞
⎟
⎟
⎠
+ 𝐾

2
𝐷
(2𝑊 )|𝛿𝑓 | exp

(
−𝐴

2
𝑐

2𝑁0𝐵𝑇

)

(8.160)

for the spike noise power. Now that the spike noise power is known, we can determine the
total noise power at the discriminator output. After this is accomplished, the output SNR at
the discriminator output is easily determined.

The total noise power at the discriminator output is the sum of the Gaussian noise power
and spike noise power. The total noise power is therefore found by adding (8.160) to (8.138).
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This gives

𝑁
𝐷
= 1

3
𝐾

2
𝐷

𝑊
2
(

𝑃
𝑇

𝑁0𝑊

)−1
+ 𝐾

2
𝐷

2𝐵
𝑇
𝑊

√
3

𝑄

⎛
⎜
⎜
⎝

√
𝐴2

𝑐

𝑁0𝐵𝑇

⎞
⎟
⎟
⎠

+𝐾
2
𝐷
(2𝑊 )|𝛿𝑓 | exp

(
−𝐴

2
𝑐

2𝑁0𝐵𝑇

)

(8.161)

The signal power at the discriminator output is given by (8.133). Dividing the signal power
by the noise power given above yields, after canceling the 𝐾

𝐷
terms,

(SNR)
𝐷
=

𝑓
2
𝑑
𝑚2

𝑛

1
3𝑊 2(𝑃

𝑇
∕𝑁0𝑊 )−1+(2𝐵

𝑇
𝑊 ∕

√
3)𝑄

(√
𝐴2

𝑐
∕𝑁0𝐵𝑇

)
+2𝑊 |𝛿𝑓 | exp(−𝐴2

𝑐
∕2𝑁0𝐵𝑇

)

(8.162)

This result can be placed in standard form by making the leading term in the denominator
equal to one. This gives the final result

(SNR)
𝐷
=

3(𝑓
𝑑
∕𝑊 )2𝑚2

𝑛
𝑧

1 + 2
√
3(𝐵

𝑇
∕𝑊 )𝑧𝑄

(√
𝐴2

𝑐
∕𝑁0𝐵𝑇

)
+ 6(|𝛿𝑓 |∕𝑊 )𝑧 exp(−𝐴2

𝑐
∕2𝑁0𝐵𝑇

)
(8.163)

where 𝑧 = 𝑃
𝑇
∕𝑁0𝑊 .

For operation above threshold, the region of input SNRs where spike noise is negligible,
the last two terms in the denominator of the preceding expression are much less than one and
may therefore be neglected. For this case, the postdetection SNR is the above threshold result
given by (8.140). It is worth noting that the quantity 𝐴

2
𝑐
∕(2𝑁0𝐵𝑇

) appearing in the spike noise
terms is the predetection SNR. Note that the message signal explicitly affects two terms in

the expression for the postdetection SNR through 𝑚2
𝑛
and |𝛿𝑓 |. Thus, before (SNR)

𝐷
can be

determined, a message signal must be assumed. This is the subject of the following example.

EXAMPLE 8.4

In this example the detection gain of an FM discriminator is determined assuming the sinusoidal message
signal

𝑚
𝑛
(𝑡) = sin(2𝜋𝑊 𝑡) (8.164)

The instantaneous frequency deviation is given by

𝑓
𝑑
𝑚

𝑛
(𝑡) = 𝑓

𝑑
sin(2𝜋𝑊 𝑡) (8.165)

and the average of the absolute value of the frequency deviation is therefore given by

|𝛿𝑓 | = 2𝑊
∫

1∕2𝑊

0
𝑓

𝑑
sin(2𝜋𝑊 𝑡)𝑑𝑡 (8.166)

Carrying out the integration yields

|𝛿𝑓 | = 2
𝜋

𝑓
𝑑

(8.167)
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Note that 𝑓
𝑑
is the peak frequency deviation, which by definition of the modulation index, 𝛽, is 𝛽𝑊 .

[We use the modulation index 𝛽 rather than the deviation ratio 𝐷 since 𝑚(𝑡) is a sinusoidal signal.] Thus,

|𝛿𝑓 | = 2
𝜋

𝛽𝑊 (8.168)

From Carson’s rule we have

𝐵
𝑇

𝑊
= 2(𝛽 + 1) (8.169)

Since the message signal is sinusoidal, 𝛽 = 𝑓
𝑑
∕𝑊 and 𝑚2

𝑛
= 1∕2. Thus,

(
𝑓

𝑑

𝑊

)2

𝑚2
𝑛
= 1

2
𝛽
2 (8.170)

Finally, the predetection SNR can be written

𝐴
2
𝑐

2𝑁0𝐵𝑇

= 1
2(𝛽 + 1)

𝑃
𝑇

𝑁0𝑊
(8.171)

Substituting (8.170) and (8.171) into (8.163) yields

(SNR)
𝐷
= 1.5𝛽2

𝑧

1 + (4∕
√
3)(𝛽 + 1)𝑧𝑄

[√
𝑧∕(𝛽 + 1)

]
+ (12∕𝜋)𝛽𝑧 exp {[−𝑧∕[2(𝛽 + 1)]}

(8.172)

where again 𝑧 = 𝑃
𝑇
∕𝑁0𝑊 is the postdetection SNR. The postdetection SNR is illustrated in Figure 8.14

as a function of 𝑧 = 𝑃
𝑇
∕𝑁0𝑊 . The threshold value of 𝑃

𝑇
∕𝑁0𝑊 is defined as the value of 𝑃

𝑇
∕𝑁0𝑊

at which the postdetection SNR is 3 dB below the value of the postdetection SNR given by the above
threshold analysis. In other words, the threshold value of 𝑃

𝑇
∕𝑁0𝑊 is the value of 𝑃

𝑇
∕𝑁0𝑊 for which

the denominator of (8.172) is equal to 2. It should be noted from Figure 8.14 that the threshold value of
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Figure 8.14
Frequency modulation system performance with sinusoidal modulation.
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𝑃
𝑇
∕𝑁0𝑊 increases as the modulation index 𝛽 increases. The study of this effect is the subject of one of

the computer exercises at the end of this chapter.
Satisfactory operation of FM systems requires that operation be maintained above threshold. Figure

8.14 shows the rapid convergence to the result of the above threshold analysis described by (8.140), with
(8.170) used to allow (8.140) to be written in terms of the modulation index. Figure 8.14 also shows the
rapid deterioration of system performance as the operating point moves into the below-threshold region.

■

COMPUTER EXAMPLE 8.4

The MATLAB program to generate the performance curves illustrated in Figure 8.14 follows.

%File: c8ce4.m
zdB = 0:50; %predetection SNR in dB
z = 10.ˆ(zdB/10); %predetection SNR
beta = [1 5 10 20]; %modulation index vector
hold on %hold for plots
for j=1:length(beta)

bta = beta(j); %current index
a1 = exp(-(0.5/(bta+1)*z)); %temporary constant
a2 = q(sqrt(z/(bta+1))); %temporary constant
num = (1.5*bta*bta)*z;
den = 1+(4*sqrt(3)*(bta+1))*(z.*a2)+(12/pi)*bta*(z.*a1);
result = num./den;
resultdB = 10*log10(result);
plot(zdB,resultdB,‘k’)

end
hold off
xlabel(‘Predetection SNR in dB’)
ylabel(‘Postdetection SNR in dB’)

%End of script file.

■

EXAMPLE 8.5

Equation (8.172) gives the performance of an FM demodulator taking into account both modulation
and additive noise. It is of interest to determine the relative effects of modulation and noise. In order to
accomplish this, (8.172) can be written

(SNR)
𝐷
= 1.5𝛽2

𝑧

1 + 𝐷2(𝛽, 𝑧) + 𝐷3(𝛽, 𝑧)
(8.173)

where 𝑧 = 𝑃
𝑇
∕𝑁0𝑊 and where 𝐷2(𝛽, 𝑧) and 𝐷3(𝛽, 𝑧) represent the second term (due to noise) and third

term (due to modulation) in (8.172), respectively. The ratio of 𝐷3(𝛽, 𝑧) to 𝐷2(𝛽, 𝑧) is

𝐷3(𝛽, 𝑧)
𝐷2(𝛽, 𝑧)

=
√
3

𝜋

𝛽

𝛽 + 1
exp[−𝑧∕2(𝛽 + 1)]

𝑄[𝑧∕(𝛽 + 1)]
(8.174)

This ratio is plotted in Figure 8.15. It is clear that for 𝑧 > 10, the effect of modulation on the denominator
of (8.172) is considerably greater than the effect of noise. However, both 𝐷2(𝛽, 𝑧) and 𝐷3(𝛽, 𝑧) are much
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Ratio of 𝐷3(𝛽, 𝑧) to 𝐷2(𝛽, 𝑧).

0 5 10 15 20 25 30 35 40
100

101

102

103

104

β = 5

β = 20

Predetection SNR in dB

1
 +

 D
3
 a

n
d
 1

 +
 D

2
 +

 D
3

1 + D3

1 + D2 + D3

Figure 8.16
1 + 𝐷3(𝛽, 𝑧) and 1 + 𝐷2(𝛽, 𝑧) + 𝐷3(𝛽, 𝑧).

www.it-ebooks.info

http://www.it-ebooks.info/


8.4 Threshold Effect in FM Demodulation 383

smaller than 1 above threshold. This is shown in Figure 8.16. Operation above threshold requires that

𝐷2(𝛽, 𝑧) + 𝐷3(𝛽, 𝑧) ≪ 1 (8.175)

Thus, the effect of modulation is to raise the value of the predetection SNR required for above threshold
operation.

■

COMPUTER EXAMPLE 8.5

The following MATLAB program generates Figure 8.15.

% File: c8ce5a.m
% Plotting of Fig. 8.15
% User defined subprogram qfn( ) called
%
clf
zdB = 0:50;
z = 10.ˆ(zdB/10);
beta = [1 10 20];
hold on
for j = 1:length(beta)

K = (sqrt(3)/pi)*(beta(j)/(beta(j)+1));
a1 = exp(-0.5/(beta(j)+1)*z);
a2 = qfn(sqrt(z/(beta(j)+1)));
result = K*a1./a2;
plot(zdB, result)
text(zdB(30), result(30)+5, [’\beta =’, num2str(beta(j))])

end
hold off
xlabel(’Predetection SNR in dB’)
ylabel(’D 3/D 2’)

% End of script file.

In addition, the following MATLAB program generates Figure 8.16.

% File: c8ce5b.m
% Plotting of Fig. 8.16
% User-defined subprogram qfn( ) called
%
clf
zdB = 0:0.5:40;
z = 10.ˆ(zdB/10);
beta = [5 20];
for j = 1:length(beta)

a2 = exp(-(0.5/(beta(j)+1)*z));
a1 = qfn(sqrt((1/(beta(j)+1))*z));
r1 = 1+((12/pi)*beta(j)*z.*a2);
r2 = r1+(4*sqrt(3)*(beta(j)+1)*z.*a1);
num = (1.5*beta(j)ˆ2)*z;
den = 1 + (4*sqrt(3)*(beta(j)+1))*(z.*a2) + (12/pi)*beta(j)*(z.*a1);
snrd = num./den;
semilogy(zdB, r1, zdB, r2, ’--’)
text(zdB(30), r1(30)+1.4ˆbeta(j), [’\beta = ’, num2str(beta(j))])
if j == 1

hold on
end

end
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xlabel(’Predetection SNR in dB’)
ylabel(’1 + D 3 and 1 + D 2 + D 3’)
legend(’1 + D 3’, ’1 + D 2 + D 3’)

% End of script file.
■

The threshold extension provided by a phase-locked loop is somewhat difficult to analyze,
and many developments have been published.1 Thus, we will not cover it here. We state,
however, that the threshold extension obtained with the phase-locked loop is typically on the
order of 2 to 3 dB compared to the demodulator just considered. Even though this is a moderate
extension, it is often important in high-noise environments.

■ 8.5 NOISE IN PULSE-CODE MODULATION

Pulse-code modulation was briefly discussed in Chapter 3, and we now consider a simplified
performance analysis. There are two major error sources in PCM. The first of these results
from quantizing the signal, and the other results from channel noise. As we saw in Chapter 3,
quantizing involves representing each input sample by one of 𝑞 quantizing levels. Each
quantizing level is then transmitted using a sequence of symbols, usually binary, to uniquely
represent each quantizing level.

8.5.1 Postdetection SNR

The sampled and quantized message waveform can be represented as

𝑚
𝛿𝑞
(𝑡) =

∑
𝑚(𝑡)𝛿(𝑡 − 𝑖𝑇

𝑠
) +

∑
𝜖(𝑡)𝛿(𝑡 − 𝑖𝑇

𝑠
) (8.176)

where the first term represents the sampling operation and the second term represents the
quantizing operation. The 𝑖th sample of 𝑚

𝛿𝑞
(𝑡) is represented by

𝑚
𝛿𝑞
(𝑡

𝑖
) = 𝑚(𝑡

𝑖
) + 𝜖

𝑞
(𝑡

𝑖
) (8.177)

where 𝑡
𝑖
= 𝑖𝑇

𝑠
. Thus, the SNR resulting from quantizing is

(SNR)
𝑄
=

𝑚2(𝑡
𝑖
)

𝜖2
𝑞
(𝑡

𝑖
)
= 𝑚2

𝜖2
𝑞

(8.178)

assuming stationarity. The quantizing error is easily evaluated for the case in which the
quantizing levels have uniform spacing, 𝑆. For the uniform spacing case the quantizing error
is bounded by ±1

2𝑆. Thus, assuming that 𝜖
𝑞
(𝑡) is uniformly distributed in the range

−1
2
𝑆 ≤ 𝜖

𝑞
≤

1
2
𝑆

the mean-square error due to quantizing is

𝜖2
𝑞
= 1

𝑆 ∫

𝑆∕2

−𝑆∕2
𝑥
2
𝑑𝑥 = 1

12
𝑆
2 (8.179)

so that

(SNR)
𝑄
= 12𝑚2

𝑆2 (8.180)

1See Taub and Schilling (1986), pp. 419--422, for an introductory treatment.
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The next step is to express 𝑚2 in terms of 𝑞 and 𝑆. If there are 𝑞 quantizing levels, each
of width 𝑆, it follows that the peak-to-peak value of 𝑚(𝑡), which is referred to as the dynamic
range of the signal, is 𝑞𝑆. Assuming that 𝑚(𝑡) is uniformly distributed in this range,

𝑚2 = 1
𝑞𝑆 ∫

𝑞𝑆∕2

−𝑞𝑆∕2
𝑥
2
𝑑𝑥 = 1

12
𝑞
2
𝑆
2 (8.181)

Substituting (8.181) into (8.180) yields

(SNR)
𝑄
= 𝑞

2 = 22𝑛 (8.182)

where 𝑛 is the number of binary symbols used to represent each quantizing level. We have
made use of the fact that 𝑞 = 2𝑛 for binary quantizing.

If the additive noise in the channel is sufficiently small, system performance is limited by
quantizing noise. For this case, (8.182) becomes the postdetection SNR and is independent of
𝑃

𝑇
∕𝑁0𝑊 . If quantizing is not the only error source, the postdetection SNR depends on both

𝑃
𝑇
∕𝑁0𝑊 and on quantizing noise. In turn, the quantizing noise is dependent on the signaling

scheme.
An approximate analysis of PCM is easily carried out by assuming a specific signaling

scheme and borrowing a result from Chapter 10. Each sample value is transmitted as a group
of 𝑛 pulses, and as a result of channel noise, any of these 𝑛 pulses can be in error at the receiver
output. The group of 𝑛 pulses defines the quantizing level and is referred to as a digital word.
Each individual pulse is a digital symbol, or bit assuming a binary system. We assume that
the bit-error probability 𝑃

𝑏
is known, as it will be after the next chapter. Each of the 𝑛 bits

in the digital word representing a sample value is received correctly with probability 1 − 𝑃
𝑏
.

Assuming that errors occur independently, the probability that all 𝑛 bits representing a digital
word are received correctly is (1 − 𝑃

𝑏
)𝑛. The word-error probability 𝑃

𝑤
is therefore given by

𝑃
𝑤
= 1 − (1 − 𝑃

𝑏
)𝑛 (8.183)

The effect of a word error depends on which bit of the digital word is in error. We assume that
the bit error is the most significant bit (worst case). This results in an amplitude error of 1

2𝑞𝑆.
The effect of a word error is therefore an amplitude error in the range

−1
2
𝑞𝑆 ≤ 𝜖

𝑤
≤

1
2
𝑞𝑆

For simplicity we assume that 𝜖
𝑤
is uniformly distributed in this range. The resulting mean-

square word error is

𝜖2
𝑤
= 1

12
𝑞
2
𝑆
2 (8.184)

which is equal to the signal power.
The total noise power at the output of a PCM system is given by

𝑁
𝐷
= 𝜖2

𝑞
(1 − 𝑃

𝑤
) + 𝜖2

𝑤
𝑃

𝑤
(8.185)

The first term on the right-hand side of (8.185) is the contribution to 𝑁
𝐷
due to quantizing

error, which is (8.179) weighted by the probability that all bits in a word are received correctly.
The second term is the contribution to 𝑁

𝐷
due to word error weighted by the probability of

word error. Using (8.185) for the noise power and (8.181) for signal power yields

(SNR)
𝐷
=

1
12𝑞

2
𝑆
2

1
12𝑆2(1 − 𝑃

𝑤
) + 1

12𝑞2𝑆2𝑃
𝑤

(8.186)
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which can be written as

(SNR)
𝐷
= 1

𝑞−2(1 − 𝑃
𝑤
) + 𝑃

𝑤

(8.187)

In terms of the wordlength 𝑛, using (8.182) the preceding result is

(SNR)
𝐷
= 1

2−2𝑛 + 𝑃
𝑤
(1 − 2−2𝑛)

(8.188)

The term 2−2𝑛 is completely determined by the wordlength 𝑛, while the word-error probability
𝑃

𝑤
is a function of the SNR, 𝑃

𝑇
∕𝑁0𝑊 , and the wordlength 𝑛.

If the word-error probability 𝑃
𝑤
is negligible, which is the case for a sufficiently high

SNR at the receiver input,

(SNR)
𝐷
= 22𝑛 (8.189)

which, expressed in decibels, is

10 log10(SNR)𝐷 = 6.02𝑛 (8.190)

We therefore gain slightly more than 6 dB in SNR for every bit added to the quantizer
wordlength. The region of operation in which 𝑃

𝑤
is negligible and system performance is

limited by quantization error is referred to as the above-threshold region.

COMPUTER EXAMPLE 8.6

The purpose of this example is to examine the postdetection SNR for a PCM system. Before the
postdetection SNR, (𝑆𝑁𝑅)

𝐷
, can be numerically evaluated, the word-error probability 𝑃

𝑤
must be

known.As shownby (8.183) theword-error probability depends upon the bit-error probability. Borrowing
a result from the next chapter will allow us to illustrate the threshold effect of ˜ PCM. If we assume
frequency-shift keying (FSK), in which transmission using one frequency is used to represent a binary
zero and a second frequency is used to represent a binary one. A noncoherent receiver is assumed, the
probability of bit error is

𝑃
𝑏
= 1

2
exp

(
−

𝑃
𝑇

2𝑁0𝐵𝑇

)
(8.191)

In the preceding expression 𝐵
𝑇
is the bit-rate bandwidth, which is the reciprocal of the time required

for transmission of a single bit in the 𝑛-symbol PCM digital word. The quantity 𝑃
𝑇
∕𝑁0𝐵𝑇

is the
predetection SNR. Substitution of (8.191) into (8.183) and substitution of the result into (8.188) yields
the postdetection (SNR)

𝐷
. This result is shown in Figure 8.17. The threshold effect can easily be seen.

The following MATLAB program plots Figure 8.17.

%File c8ce3.m
n=[4 8 12]; %wordlengths
snrtdB=0:0.1:30; %predetection snr in dB
snrt=10.ˆ(snrtdB/10); %predetection snr
Pb=0.5*exp(-snrt/2); %bit-error probability
hold on %hold for multiple plots
for k=1:length(n)

Pw=1-(1-Pb).ˆn(k); %current value of Pw
a=2ˆ(-2*n(k)); %temporary constant
snrd=1./(a+Pw*(1-a)); %postdetection snr
snrddB=10*log10(snrd); %postdetection snr in dB
plot(snrtdB,snrddB)
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Figure 8.17
Signal-to-noise ratio at output of PCM
system (FSK modulation used with
noncoherent receiver).

end
hold off %release
xlabel(‘Predetection SNR in dB’)
ylabel(‘Postdetection SNR in dB’)

%End of script file.

Note that longer digital words give a higher value of (SNR)
𝐷
above threshold due to reduced

quantizing error. However, the longer digital word means that more bits must be transmitted for each
sample of the original time-domain signal, 𝑚(𝑡). This increases the bandwidth requirements of the
system. Thus, the improved SNR comes at the expense of a higher bit-rate or system bandwidth. We see
again the threshold effect that occurs in nonlinear systems and the resulting trade-off between SNR and
transmission bandwidth.

■

8.5.2 Companding

As we saw in Chapter 3, a PCM signal is formed by sampling, quantizing, and encoding
an analog signal. These three operations are collectively referred to as analog-to-digital
conversion. The inverse process of forming an analog signal from a digital signal is known as
digital-to-analog conversion.

In the preceding section we saw that significant errors can result from the quantizing
process if the wordlength 𝑛 is chosen too small for a particular application. The result of these
errors is described by the signal-to-quantizing-noise ratio expressed by (8.182). Keep in mind
that (8.182) was developed for the case of a uniformly distributed signal.

The level of quantizing noise added to a given sample, (8.179), is independent of the signal
amplitude, and small amplitude signals will therefore suffer more from quantizing effects than
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Compression

characteristic

Linear (no

compression)

characteristic

Max xin

−Max xin

Max xout

–Max xout

Figure 8.18
Input-output compression characteristic.

large amplitude signals. This can be seen from (8.180). The quantizing steps can be made
small for small amplitudes and large for large amplitude portions of the signal.

The second technique, and the one of interest here, is to pass the analog signal through
a nonlinear amplifier prior to the sampling process. An example input-output characteristic
of the amplifier is shown in Figure 8.18. For small values of the input 𝑥in, the slope of the
input-output characteristic is large. A change in a low-amplitude signal will therefore force
the signal through more quantizing levels than the same change in a high-amplitude signal.
This essentially yields smaller step sizes for small amplitude signals and therefore reduces the
quantizing error for small amplitude signals. It can be seen from Figure 8.18 that the peaks
of the input signal are compressed. For this reason the characteristic shown in Figure 8.18 is
known as a compressor.

The effect of the compressor must be compensated when the signal is returned to analog
form. This is accomplished by placing a second nonlinear amplifier at the output of the DA
converter. This second nonlinear amplifier is known as an expander and is chosen so that the
cascade combination of the compressor and expander yields a linear characteristic, as shown
by the dashed line in Figure 8.18. The combination of a compressor and an expander is known
as a compander. A companding system is shown in Figure 8.19.

The concept of predistorting a message signal in order to achieve better perfor-
mance in the presence of noise, and then removing the effect of the predistortion, should

Compressor
A/D

converter

Communication

system

D/A

converter
Expander

xin(t) xout(t)Input

message

Output

message

Figure 8.19
Example of companding.
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remind us of the use of pre-emphasis and de-emphasis filters in the implementation of FM
systems.2

Further Reading

All the books cited at the end of Chapter 3 contain material about noise effects in the systems studied
in this chapter. The books by Lathi and Ding (2009) and Haykin and Moher (2006) are especially
recommended for their completeness. The book by Taub and Schilling (1986), although an older book,
contains excellent sections on both PCM systems and threshold effects in FM systems. The book on
simulation by Tranter et al. (2004) discusses quantizing and SNR estimation in much more depth than is
given here.

Summary

1. The AWGN model is frequently used in the anal-
ysis of communications systems. However, the AWGN
assumption is only valid over a certain bandwidth, and
this bandwidth is a function of temperature. At a temper-
ature of 3 K, this bandwidth is approximately 10 GHz. If
the temperature increases the bandwidth over which the
white-noise assumption is valid also increases. At stan-
dard temperature (290 K), the white-noise assumption is
valid to bandwidths exceeding 1000 GHz. Thermal noise
results from the combined effect of many charge carries.
The Gaussian assumption follows from the central-limit
theorem.

2. The SNR at the output of a baseband communication
system operating in an additive Gaussian noise environ-
ment is 𝑃

𝑇
∕𝑁0𝑊 , where 𝑃

𝑇
is the signal power, 𝑁0 is the

single-sided power spectral density of the noise ( 1
2
𝑁0 is

the two-sided power spectral density), and 𝑊 is the signal
bandwidth.

3. A DSB system has an output SNR of 𝑃
𝑇
∕𝑁0𝑊

assuming perfect phase coherence of the demodulation
carrier and a noise bandwidth of 𝑊 .

4. A SSB system also has an output SNR of 𝑃
𝑇
∕𝑁0𝑊

assuming perfect phase coherence of the demodulation
carrier and a bandwidth of 𝑊 . Thus, under ideal condi-
tions, both SSB and DSB have performance equivalent to
the baseband system.

5. An AM system with coherent demodulation
achieves an output SNR of 𝐸

𝑓𝑓
𝑃

𝑇
∕𝑁0𝑊 , where 𝐸

𝑓𝑓
is

the efficiency of the system. An AM system with enve-
lope detection achieves the same output SNR as an AM
system with coherent demodulation if the SNR is high. If
the predetection SNR is small, the signal and noise at the
demodulation output becomemultiplicative rather than ad-
ditive. The output exhibits severe loss of signal for a small
decrease in the input SNR. This is known as the threshold
effect.

6. The square-law detector is a nonlinear system that
can be analyzed for all values of 𝑃

𝑇
∕𝑁0𝑊 . Since the

square-law detector is nonlinear, a threshold effect is
observed.

7. A simple algorithm exists for determining the SNR
at a point in a system assuming that the ‘‘perfect’’ signal at
that point is an amplitude-scaled and time-delayed version
of a reference signal. In other words, the perfect signal
(SNR = ∞) is a distortionless version of the reference
signal.

8. Using a quadrature double-sideband (QDSB) signal
model, a generalized analysis is easily carried out to de-
termine the combined effect of both additive noise and de-
modulation phase errors on a communication system. The
result shows that SSB and QDSB are equally sensitive to
demodulation phase errors if the power in the two QDSB

2Two popular companding systems are based on the 𝜇-law and A-law compression algorithms. Examples of these,
along with simulation code is contained in the MATLAB communications toolbox. A very simple companding
routine, based on the tanh function, is given in the computer exercises at the end of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


390 Chapter 8 ∙ Noise in Modulation Systems

signals are equal. Double-sideband is much less sensitive
to demodulation phase errors than SSB or QDSB because
SSB andQDSB both exhibit crosstalk between the quadra-
ture channels for nonzero demodulation phase errors.

9. The analysis of anglemodulation systems shows that
the output noise is suppressed as the signal carrier ampli-
tude is increased for system operation above threshold.
Thus, the demodulator noise power output is a function of
the input signal power.

10. The demodulator output power spectral density is
constant over the range |𝑓 | > 𝑊 for PM and is parabolic
over the range if |𝑓 | < 𝑊 for FM. The parabolic power
spectral density for an FM system is due to the fact
that FM demodulation is essentially a differentiation
process.

11. The demodulated output SNR is proportional to 𝑘
2
𝑝

for PM, where 𝑘
𝑝
is the phase-deviation constant. The out-

put SNR is proportional to 𝐷
2 for an FM system, where

𝐷 is the deviation ratio. Since increasing the deviation
ratio also increases the bandwidth of the transmitted sig-
nal, the use of angle modulation allows us to achieve
improved system performance at the cost of increased
bandwidth.

12. The use of pre-emphasis and de-emphasis can signif-
icantly improve the noise performance of an FM system.

Typical values result in a better than 10-dB improvement
in the SNR of the demodulated output.

13. As the input SNR of an FM system is reduced, spike
noise appears. The spikes are due to origin encirclements
of the total noise phasor. The area of the spikes is constant
at 2𝜋, and the power spectral density is proportional to the
spike frequency. Since the predetection bandwidth must
be increased as the modulation index is increased, result-
ing in a decreased predetection SNR, the threshold value
of 𝑃

𝑇
∕𝑁0𝑊 increases as the modulation index increases.

14. An analysis of PCM, which is a nonlinear modu-
lation process due to quantizing, shows that, like FM,
a trade-off exists between bandwidth and output SNR.
PCM system performance above threshold is dominated
by the wordlength or, equivalently, the quantizing error.
PCM performance below threshold is dominated by chan-
nel noise.

15. Amost important result for this chapter is the postde-
tection SNRs for variousmodulationmethods. A summary
of these results is given in Table 8.1. Given in this table
is the postdetection SNR for each technique as well as the
required transmission bandwidth. The trade-off between
postdetection SNR and transmission bandwidth is evident
for nonlinear systems.

Table 8.1 Noise Performance Characteristics

System Postdetection SNR Transmission bandwidth

Baseband 𝑃𝑇

𝑁0𝑊
𝑊

DSB with coherent demodulation 𝑃𝑇

𝑁0𝑊
2𝑊

SSB with coherent demodulation 𝑃𝑇

𝑁0𝑊
𝑊

AM with envelope detection (above threshold)
or AM with coherent demodulation. Note:
𝐸 is efficiency

𝐸𝑃𝑇

𝑁0𝑊
2𝑊

AM with square-law detection 2
(

𝑎
2

2+𝑎2

)2
𝑃𝑇 ∕𝑁0𝑊

1+(𝑁0𝑊 ∕𝑃𝑇 )
2𝑊

PM above threshold 𝐾
2
𝑝
𝑚2

𝑛

𝑃𝑇

𝑁0𝑊
2(𝐷 + 1)𝑊

FM above threshold (without preemphasis) 3𝐷2
𝑚2

𝑛

𝑃𝑇

𝑁0𝑊
2(𝐷 + 1)𝑊

FM above threshold (with preemphasis)
(

𝑓𝑑

𝑓3

)2
𝑚2

𝑛

𝑃𝑇

𝑁0𝑊
2(𝐷 + 1)𝑊
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Drill Problems

8.1 A 10,000 ohm resistor operates at a temperature of
290 K. Determine the variance of the noise generated in a
bandwidth of 1,000,000 Hz.

8.2 Using the parameters of the preceding problem, as-
sume that the temperature is reduced to 10 K? Determine
the new noise variance.

8.3 The input to a receiver has a signal component
having the PSD 𝑆

𝑠
(𝑓 ) = 5Λ( 𝑓

7
). The noise component is

(10−4) Π ( 𝑓

20
). Determine the SNR in dB.

8.4 A signal in a simple system is defined by
5 cos [2𝜋(6)𝑡]. This signal is subjected to additive single-
tone interference defined by 0.2 sin [2𝜋 (8) 𝑡]. Determine
the signal-to-interference ratio. Validate your result, using
the techniques illustrated in Section 8.1.5, by calculating
𝑃

𝑥
, 𝑃

𝑦
, 𝑅

𝑥𝑦
, and the maximum value of 𝑅

𝑥𝑦
.

8.5 An SSB system operates at a signal-to-noise ratio
of 20 dB. The demodulation phase-error standard de-
viation is 5 degrees. Determine the mean-square error
between the original message signal and the demodulated
message signal.

8.6 A PM system operates with a transmitter power
of 10 kW and a message signal bandwidth of 10 kHz.
The phase modulation constant is 𝜋 radians per unit input.
The normalized message signal has a standard deviation

of 0.4. Determine the channel noise PSD that results in a
postdetection SNR of 30 dB.

8.7 An FM system operates with the same parameters
as given in the preceding drill problem except that the de-
viation ratio is 5. Determine the channel noise PSD that
results in a postdetection SNR of 30 dB.

8.8 An FM system operates with a postdetection SNR
with pre-emphasis and de-emphasis defined by (8.149).
Write the expression for the SNR gain resulting from the
use of pre-emphasis and de-emphasis that is a function of
only 𝑓3 and 𝑊 . Use this expression to check the results of
Example 8.3.

8.9 Repeat the preceding drill problem without assum-
ing 𝑓3 ≪ 𝑊 . Using the values given in Example 8.3, show
how the result of the preceding problem change without
making the assumption that 𝑓3 ≪ 𝑊 .

8.10 The performance of a PCM system is limited by
quantizing error. What wordlength is required to ensure
an output SNR of at least 35 dB?

8.11 A compressor has the amplitude compression char-
acteristic of a first-order Butterworth high-pass filter. As-
suming that the input signal has negligible content for
𝑓 ≤ 𝑓1 where 𝑓1 ≪ 𝑓3, where 𝑓3 is the 3-dB break fre-
quency of the high-pass filter, define the amplitude re-
sponse characteristic of the expander.

Problems

Section 8.1

8.1 In discussing thermal noise at the beginning of this
chapter, we stated that at standard temperature (290 K)
the white-noise assumption is valid to bandwidths exceed-
ing 1000 GHz. If the temperature is reduced to 5 K, the
variance of the noise is reduced, but the bandwidth over
which the white-noise assumption is valid is reduced to
approximately 10 GHz. Express both of these reference
temperatures (5 and 290 K) in degrees fahrenheit.

8.2 The waveform at the input of a baseband system
has signal power 𝑃

𝑇
and white noise with single-sided

power spectral density 𝑁0. The signal bandwidth is 𝑊 . In
order to pass the signal without significant distortion, we
assume that the input waveform is bandlimited to a band-
width 𝐵 = 2𝑊 using a Butterworth filter with order 𝑛.
Compute the SNR at the filter output for 𝑛 = 1, 3, 5, and

10 as a function of 𝑃
𝑇
∕𝑁0𝑊 . Also compute the SNR for

the case in which 𝑛 → ∞. Discuss the results.

8.3 A signal is given by

𝑥(𝑡) = 5 cos [2𝜋(5)𝑡]
and the noise PSD is given by

𝑆
𝑛
(𝑓 ) = 1

2
𝑁0, |𝑓 | ≤ 8

Determine the largest permissable value of𝑁0 that ensures
that the SNR is ≥ 30 dB.

8.4 Derive the equation for 𝑦
𝐷
(𝑡) for an SSB system

assuming that the noise is expanded about the frequency
𝑓

𝑥
= 𝑓

𝑐
± 1

2
𝑊 . Derive the detection gain and (SNR)

𝐷
.

Determine and plot 𝑆
𝑛𝑐
(𝑓 ) and 𝑆

𝑛𝑠
(𝑓 ).

8.5 In Section 8.1.3 we expanded the noise compo-
nent about 𝑓

𝑐
. We observed, however, that the noise
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components for SSB could be expanded about 𝑓
𝑐
± 1

2
𝑊 ,

depending on the choice of sidebands. Plot the power spec-
tral density for each of these two cases and, for each case,
write the expressions corresponding to (8.16) and (8.17).

8.6 Assume that an AM system operates with an index
of 0.5 and that the message signal is 10 cos(8𝜋𝑡). Com-
pute the efficiency, the detection gain in dB, and the out-
put SNR in decibels relative to the baseband performance
𝑃

𝑇
∕𝑁0𝑊 . Determine the improvement (in decibels) in

the output SNR that results, if the modulation index is
increased from 0.5 to 0.8.

8.7 AnAMsystem has amessage signal that has a zero-
mean Gaussian amplitude distribution. The peak value of
𝑚(𝑡) is taken as that value that |𝑚(𝑡)| exceeds 1.0% of the
time. If the index is 0.8, what is the detection gain?

8.8 The threshold level for an envelope detector is
sometimes defined as that value of (SNR)

𝑇
for which

𝐴
𝑐

> 𝑟
𝑛
with probability 0.99. Assuming that 𝑎

2
𝑚2

𝑛
≅ 1,

derive the SNR at threshold, expressed in decibels.

8.9 An envelope detector operates above threshold.
The modulating signal is a sinusoid. Plot (SNR)

𝐷
in deci-

bels as a function of 𝑃
𝑇
∕𝑁0𝑊 for the modulation index

equal to 0.3, 0.5, 0.6, and 0.8.

8.10 A square-law demodulator for AM is illus-
trated in Figure 8.20. Assuming that 𝑥

𝑐
(𝑡) = 𝐴

𝑐
[1 +

𝑎𝑚
𝑛
(𝑡)] cos(2𝜋𝑓

𝑐
𝑡) and 𝑚(𝑡) = cos(2𝜋𝑓

𝑚
𝑡) + cos(4𝜋𝑓

𝑚
𝑡),

sketch the spectrum of each term that appears in 𝑦
𝐷
(𝑡). Do

not neglect the noise that is assumed to be bandlimited
white noise with bandwidth 2𝑊 . In the spectral plot, iden-
tify the desired component, the signal-induced distortion,
and the noise.

8.11 Verify the correctness of (8.59).

8.12 Assume that a zero-mean message signal 𝑚(𝑡) has
a Gaussian pdf and that in normalizing the message signal
to form𝑚

𝑛
(𝑡), the maximum value of𝑚(𝑡) is assumed to be

𝑘𝜎
𝑚
, where 𝑘 is a parameter and 𝜎

𝑚
is the standard devi-

ation of the message signal. Plot (SNR)
𝐷
as a function of

𝑃
𝑇
∕𝑁0𝑊 with 𝑎 = 0.5 and 𝑘 = 1, 3, and 5. What do you

conclude?

8.13 Compute (SNR)
𝐷
as a function of 𝑃

𝑇
∕𝑁0𝑊 for a

linear envelope detector assuming a high predetectionSNR
and amodulation index of unity. Compare this result to that

yD(t)
y(t)

xc(t) +n(t)
x(t) Postdetection

f ilter

Square-law

device

y =x2

Predetection

f ilter

Figure 8.20

for a square-law detector, and show that the square-law
detector is inferior by approximately 1.8 dB. If necessary,
you may assume sinusoidal modulation.

8.14 Consider the system shown in Figure 8.21, in which
an RC highpass filter is followed by an ideal lowpass filter
having bandwidth 𝑊 . Assume that the input to the sys-
tem is 𝐴 cos(2𝜋𝑓

𝑐
𝑡), where 𝑓

𝑐
< 𝑊 , plus white noise with

double-sided power spectral density 1
2
𝑁0. Determine the

SNR at the output of the ideal lowpass filter in terms of
𝑁0, 𝐴, 𝑅, 𝐶, 𝑊 , and 𝑓

𝑐
. What is the SNR in the limit as

𝑊 → ∞?

tuptuOtupnI

C

R
Ideal

lowpass

f ilter

Figure 8.21

8.15 The input to a communications receiver is

𝑟(𝑡) = 5 sin(20𝜋𝑡 + 7
4
𝜋) + 𝑖(𝑡) + 𝑛(𝑡)

where

𝑖(𝑡) = 0.2 cos(60𝜋𝑡)

and 𝑛(𝑡) is noise having standard deviation 𝜎
𝑛
= 0.1. The

transmitted signal is 10 cos(20𝜋𝑡). Determine the SNR at
the receiver input and the delay from the transmitted signal
to the receiver input.

Section 8.2

8.16 An SSB system is to be operated with a normalized
mean-square error of 0.06 or less. By making a plot of
output SNR versus demodulation phase-error variance for
the case in which normalized mean-square error is 0.4%,
show the region of satisfactory system performance. Re-
peat for a DSB system. Plot both curves on the same set
of axes.

8.17 Repeat the preceding problem for a normalized
mean-square error of 0.1 or less.
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Section 8.3

8.18 Draw a phasor diagram for an angle-modulated sig-
nal for (SNR)

𝑇
≫ 1 illustrating the relationship between

𝑅(𝑡), 𝐴
𝑐
, and 𝑟

𝑛
(𝑡). Show on this phasor diagram the re-

lationship between 𝜓(𝑡), 𝜙(𝑡), and 𝜙
𝑛
(𝑡). Using the phasor

diagram, justify that for (SNR)
𝑇

≫ 1, the approximation

𝜓(𝑡) ≈ 𝜙(𝑡) +
𝑟
𝑛
(𝑡)

𝐴
𝑐

sin[𝜙
𝑛
(𝑡) − 𝜙(𝑡)]

is valid. Draw a second phasor diagram for the case in
which (SNR)

𝑇
≪ 1 and show that

𝜓(𝑡) ≈ 𝜙
𝑛
(𝑡) +

𝐴
𝑐

𝑟
𝑛
(𝑡)

sin[𝜙
𝑛
(𝑡) − 𝜙(𝑡)]

What do you conclude?

8.19 The process of stereophonic broadcasting was il-
lustrated in Chapter 4. By comparing the noise power in
the 𝑙(𝑡) − 𝑟(𝑡) channel to the noise power in the 𝑙(𝑡) + 𝑟(𝑡)
channel, explain why stereophonic broadcasting is more
sensitive to noise than nonstereophonic broadcasting.

8.20 An FDM communication system uses DSB modu-
lation to form the baseband and FM modulation for trans-
mission of the baseband. Assume that there are eight chan-
nels and that all eight message signals have equal power
𝑃0 and equal bandwidth𝑊 . One channel does not use sub-
carrier modulation. The other channels use subcarriers of
the form

𝐴
𝑘
cos(2𝜋𝑘𝑓 1𝑡), 1 ≤ 𝑘 ≤ 7

The width of the guardbands is 3𝑊 . Sketch the power
spectrum of the received baseband signal showing both
the signal and noise components. Calculate the relation-
ship between the values of 𝐴

𝑘
if the channels are to have

equal SNRs.

8.21 Using (8.146), derive an expression for the ratio of
the noise power in 𝑦

𝐷
(𝑡) with de-emphasis to the noise

power in 𝑦
𝐷
(𝑡) without de-emphasis. Plot this ratio as a

function of 𝑊 ∕𝑓3. Evaluate the ratio for the standard val-
ues of 𝑓3 = 2.1 kHz and 𝑊 = 15 kHz, and use the result
to determine the improvement, in decibels, that results
through the use of de-emphasis. Compare the result with
that found in Example 8.3.

8.22 White noise with two-sided power spectral density
1
2
𝑁0 is added to a signal having the power spectral den-

sity shown in Figure 8.22. The sum (signal plus noise) is
filtered with an ideal lowpass filter with unity passband
gain and bandwidth 𝐵 > 𝑊 . Determine the SNR at the
filter output. By what factor will the SNR increase if 𝐵 is
reduced to 𝑊 ?

− WW

Sx( f )

Sx( f ) = kf 2

0
f

A

Figure 8.22

8.23 Consider the system shown in Figure 8.23. The sig-
nal 𝑥(𝑡) is defined by

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓
𝑐
𝑡)

The lowpass filter has unity gain in the passband and band-
width 𝑊 , where 𝑓

𝑐
< 𝑊 . The noise 𝑛(𝑡) is white with

two-sided power spectral density 1
2
𝑁0. The signal compo-

nent of 𝑦(𝑡) is defined to be the component at frequency
𝑓

𝑐
. Determine the SNR of 𝑦(𝑡).

8.24 Consider the system shown in Figure 8.24. The
noise is white with two-sided power spectral density 1

2
𝑁0.

The power spectral density of the signal is

𝑆
𝑥
(𝑓 ) = 𝐴

1 + (𝑓∕𝑓3)2
, −∞ < 𝑓 < ∞

The parameter 𝑓3 is the 3-dB bandwidth of the signal. The
bandwidth of the ideal lowpass filter is 𝑊 . Determine the
SNR of 𝑦(𝑡). Plot the SNR as a function of 𝑊 ∕𝑓3.

Section 8.4

8.25 Derive an expression, similar to (8.172), that gives
the output SNR of an FM discriminator output for the case
in which the message signal is random with a Gaussian
amplitude pdf. Assume that the message signal is zero
mean and has variance 𝜎

2
𝑚
.

8.26 Assume that the input to a perfect second-order PLL
is an unmodulated sinusoid plus bandlimited AWGN. In
other words, the PLL input is represented by

𝑋
𝑐
(𝑡) = 𝐴

𝑐
cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

+𝑛
𝑐
(𝑡) cos(2𝜋𝑓

𝑐
𝑡 + 𝜃)

−𝑛
𝑠
(𝑡) sin(2𝜋𝑓

𝑐
𝑡 + 𝜃)

Also assume that the SNR at the loop input is large so that
the phase jitter (error) is sufficiently small to justify use
of the linear PLL model. Using the linear model, derive
an expression for the variance of the loop phase error due
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∑x(t)

n(t)
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f ilter

Figure 8.24

to noise in terms of the standard PLL parameters defined
in Chapter 4. Show that the probability density function
of the phase error is Gaussian and that the variance of the
phase error is inversely proportional to the SNR at the loop
input.

Section 8.5

8.27 Assume that a PPM system uses Nyquist rate sam-
pling and that the minimum channel bandwidth is used for

a given pulse duration. Show that the postdetection SNR
can be written as

(SNR)
𝐷
= 𝐾

(
𝐵

𝑇

𝑊

)2
𝑃

𝑇

𝑁0𝑊

and evaluate 𝐾 .

8.28 The message signal on the input to an ADC is
a sinusoid of 15V peak to peak. Compute the signal-
to-quantizing-noise power ratio as a function of the
wordlength of the ADC. State any assumptions you make.

Computer Exercises

8.1 Develop a set of performance curves, similar to those
shown in Figure 8.8, that illustrate the performance of a
coherent demodulator as a function of the phase-error vari-
ance. Let the SNR be a parameter and express the SNR in
decibels. As in Figure 8.8, assume a QDSB system. Repeat
this exercise for a DSB system.

8.2 Execute the computer program used to generate
the FM discriminator performance characteristics illus-
trated in Figure 8.14. Add to the performance curves for
𝛽 = 1, 5, 10, and 20 the curve for 𝛽 = 0.1. Is the threshold
effect more or less pronounced? Why?

8.3 The value of the input SNR at threshold is often de-
fined as the value of 𝑃

𝑇
∕𝑁0𝑊 at which the denominator

of (8.172) is equal to 2. Note that this value yields a post-
detection SNR, (SNR)

𝐷
, that is 3 dB below the value of

(SNR)
𝐷
predicted by the above threshold (linear) analysis.

Using this definition of threshold, plot the threshold value

of 𝑃
𝑇
∕𝑁0𝑊 (in decibels) as a function of 𝛽. What do you

conclude?

8.4 In analyzing the performance of an FM discrimina-
tor, operating in the presence of noise, the postdetection
SNR, (SNR)

𝐷
, is often determined using the approxima-

tion that the effect of modulation on (SNR)
𝐷
is negligible.

In other words, |𝛿𝑓 | is set equal to zero. Assuming sinu-
soidal modulation, investigate the error induced bymaking
this approximation. Start by writing a computer program
for computing and plotting the curves shown in Figure
8.14 with the effect of modulation neglected.

8.5 The preceding computer exercise problem examined
the behavior of a PLL in the acquisition mode. We now
consider the performance in the tracking mode. Develop a
computer simulation in which the PLL is tracking an un-
modulated sinusoid plus noise. Let the predetection SNR
be sufficiently high to ensure that the PLL does not lose
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lock. Using MATLAB and the histogram routine, plot the
estimate of the pdf at the VCO output. Comment on the
results.

8.6 Develop a computer program to verify the perfor-
mance curves shown in Figure 8.17. Compare the perfor-
mance of the noncoherent FSK system to the performance
of both coherent FSK and coherent PSKwith a modulation
index of 1. We will show in the following chapter that the
bit-error probability for coherent FSK is

𝑃
𝑏
= 𝑄

(√
𝑃

𝑇

𝑁0𝐵𝑇

)

and that the bit-error probability for coherent BPSK with
a unity modulation index is

𝑃
𝑏
= 𝑄

⎛
⎜
⎜
⎝

√
2𝑃

𝑇

𝑁0𝐵𝑇

⎞
⎟
⎟
⎠

where 𝐵
𝑇
is the system bit-rate bandwidth. Compare the

results of the three systems studied in this example for
𝑛 = 8 and 𝑛 = 16.
8.7 In Section 8.2 we described a technique for estimat-
ing the gain, delay, and the SNR at a point in a system
given a reference signal. What is the main source of error
in applying this technique? How can this error source be

reduced, and what is the associated cost? Develop a test
signal and sampling strategy that demonstrates this error.

8.8 Assume a three-bit ADC (eight quantizing levels).
We desire to design a companding system consisting of
both a compressor and expander. Assuming that the in-
put signal is a sinusoid, design the compressor such that
the sinusoid falls into each quantizing level with equal
probability. Implement the compressor using a MATLAB
program, and verify the compressor design. Complete the
compander by designing an expander such that the cas-
cade combination of the compressor and expander has the
desired linear characteristic. Using a MATLAB program,
verify the overall design.

8.9 A compressor is often modeled as

𝑥out (𝑡) = 𝐴 tanh[𝑎𝑥in(𝑡)]

We assume that that the input to the compressor is
an audio signal having frequency content in the range
20 ≤ 𝑓 ≤ 15, 000 where frequency is measured in Hz.
Select 𝑎 so that the compressor gives a 6-dB amplitude
attenuation at 20 Hz. Denote this value as the reference
value 𝑎

𝑟
. Let 𝐴 = 1 and plot a family of curves illustrating

the compression characteristic for 𝑎 = 0.5𝑎, 0.75𝑎, 1.0𝑎,
1.25𝑎, and 1.5𝑎. Recognizing that the frequency content
of the input signal is negligible for 𝑓 ≤ 15 Hz, determine
a suitable expander characteristic.
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CHAPTER9

PRINCIPLES OF DIGITAL DATA
TRANSMISSION IN NOISE

In Chapter 8 we studied the effects of noise in analog communication systems. We now consider

digital data modulation system performance in noise. Instead of being concerned with continuous-

time, continuous-level message signals, we are concerned with the transmission of information

from sources that produce discrete-valued symbols. That is, the input signal to the transmitter

block of Figure 1.1 would be a signal that assumes only discrete values. Recall that we started

the discussion of digital data transmission systems in Chapter 5, but without consideration of the

effects of noise.

The purpose of this chapter is to consider various systems for the transmission of digital data

and their relative performances. Before beginning, however, let us consider the block diagram of

a digital data transmission system, shown in Figure 9.1, which is somewhat more detailed than

Figure 1.1. The focus of our attention will be on the portion of the system between the optional

blocks labeled Encoder and Decoder. In order to gain a better perspective of the overall problem

of digital data transmission, we will briefly discuss the operations performed by the blocks shown

as dashed lines.

As discussed previously in Chapters 4 and 5, while many sources result in message signals
that are inherently digital, such as from computers, it is often advantageous to represent analog
signals in digital form (referred to as analog-to-digital conversion) for transmission and then
convert them back to analog form upon reception (referred to as digital-to-analog conversion),
as discussed in the preceding chapter. Pulse-code modulation (PCM), introduced in Chapter 4,
is an example of a modulation technique that can be employed to transmit analog messages
in digital form. The signal-to-noise ratio performance characteristics of a PCM system, which
were presented in Chapter 8, show one advantage of this system to be the option of exchanging
bandwidth for signal-to-noise ratio improvement.1

Throughout most of this chapter we will make the assumption that source symbols occur
with equal probability. Many discrete-time sources naturally produce symbols with equal
probability. As an example, a binary computer file, which may be transmitted through a
channel, frequently contains a nearly equal number of 1s and 0s. If source symbols do not
occur with nearly equal probably, we will see in Chapter 12 that a process called source coding

1A device for converting voice signals from analog-to-digital and from digital-to-analog form is known as a vocoder.
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(a)

(b)
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Digital/

analog

converter
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digital output

Optional

From channel

Clock

(synch. system)
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Carrier ref.

(coherent system)

Detector User

Figure 9.1
Block diagram of a digital data transmission system. (a) Transmitter. (b) Receiver.

(compression) can be used to create a new set of source symbols in which the binary states,
1 and 0, are equally likely, or nearly so. The mapping from the original set to the new set of
source symbols is deterministic so that the original set of source symbols can be recovered
from the data output at the receiver. The use of source coding is not restricted to binary sources.
We will see in Chapter 12 that the transmission of equally likely symbols ensures that the
information transmitted with each source symbol is maximized and, therefore, the channel
is used efficiently. In order to understand the process of source coding, we need a rigorous
definition of information, which will be accomplished in Chapter 12.

Regardless ofwhether a source is purely digital or an analog source that has been converted
to digital, it may be advantageous to add or remove redundant digits to the digital signal. Such
procedures, referred to as forward error-correction coding, are performed by the encoder-
decoder blocks of Figure 9.1 and also will be considered in Chapter 12.

We now consider the basic system in Figure 9.1, shown as the blocks with solid lines. If
the digital signals at the modulator input take on one of only two possible values, the communi-
cation system is referred to as binary. If one of𝑀 > 2 possible values is available, the system
is referred to as 𝑀-ary. For long-distance transmission, these digital baseband signals from
the source may modulate a carrier before transmission, as briefly mentioned in Chapter 5. The
result is referred to as amplitude-shift keying (ASK), phase-shift keying (PSK), or frequency-
shift keying (FSK) if it is amplitude, phase, or frequency, respectively, that is varied in accor-
dance with the baseband signal. An important𝑀-ary modulation scheme, quadriphase-shift
keying (QPSK), is often employed in situations in which bandwidth efficiency is a considera-
tion. Other schemes related to QPSK include offset QPSK and minimum-shift keying (MSK).
These schemes will be discussed in Chapter 10.

A digital communication system is referred to as coherent if a local reference is available
for demodulation that is in phase with the transmitted carrier (with fixed-phase shifts due to
transmission delays accounted for). Otherwise, it is referred to as noncoherent. Likewise, if a
periodic signal is available at the receiver that is in synchronism with the transmitted sequence
of digital signals (referred to as a clock), the system is referred to as synchronous (i.e., the
data streams at transmitter and receiver are in lockstep); if a signaling technique is employed
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in which such a clock is unnecessary (e.g., timing markers might be built into the data blocks,
an examole being split phase as discussed in Chapter 5), the system is called asynchronous.

The primary measure of system performance for digital data communication systems is
the probability of error, 𝑃

𝐸
. In this chapter we will obtain expressions for 𝑃

𝐸
for various

types of digital communication systems. We are, of course, interested in receiver structures
that give minimum 𝑃

𝐸
for given conditions. Synchronous detection in a white Gaussian-

noise background requires a correlation or a matched-filter detector to give minimum 𝑃
𝐸
for

fixed-signal and noise conditions.
We begin our consideration of digital data transmission systems in Section 9.1 with the

analysis of a simple, synchronous baseband system that employs a special case of the matched-
filter detector known as an integrate-and-dump detector. This analysis is then generalized in
Section 9.2 to the matched-filter receiver, and these results are specialized to consideration of
several coherent signaling schemes. Section 9.3 considers two schemes not requiring a coherent
reference for demodulation. In Section 9.4, digital pulse-amplitude modulation is considered,
which is an example of an𝑀-ary modulation scheme. We will see that it allows the trade-off
of bandwidth for 𝑃

𝐸
performance. Section 9.5 provides a comparison of the digital modulation

schemes on the basis of power and bandwidth. After analyzing these modulation schemes,
which operate in an ideal environment in the sense that infinite bandwidth is available, we
look at zero-ISI signaling through bandlimited baseband channels in Section 9.6. In Sections
9.7 and 9.8, the effect of multipath interference and signal fading on data transmission is
analyzed, and in Section 9.9, the use of equalizing filters to mitigate the effects of channel
distortion is examined.

■ 9.1 BASEBAND DATA TRANSMISSION IN WHITE GAUSSIAN NOISE

Consider the binary digital data communication system illustrated in Figure 9.2(a), in which
the transmitted signal consists of a sequence of constant-amplitude pulses of either 𝐴 or −𝐴
units in amplitude and 𝑇 seconds in duration. A typical transmitted sequence is shown in
Figure 9.2(b). We may think of a positive pulse as representing a logic 1 and a negative pulse
as representing a logic 0 from the data source. Each 𝑇 -second pulse is called a binit for binary
digit or, more simply, a bit. (In Chapter 12, the term bit will take on a more precise meaning.)

As in Chapter 8, the channel is idealized as simply adding white Gaussian noise with
double-sided power spectral density 1

2𝑁0 W/Hz to the signal. A typical sample function of the
received signal plus noise is shown in Figure 9.2(c). For sketching purposes, it is assumed that
the noise is bandlimited, although it is modeled as white noise later when the performance of
the receiver is analyzed. It is assumed that the starting and ending times of each pulse are known
by the receiver. The problem of acquiring this information, referred to as synchronization, will
not be considered at this time.

The function of the receiver is to decide whether the transmitted signal was 𝐴 or −𝐴
during each bit period. A straightforward way of accomplishing this is to pass the signal-
pulse noise through a lowpass predetection filter, sample its output at some time within each
𝑇 -second interval, and determine the sign of the sample. If the sample is greater than zero,
the decision is made that +𝐴 was transmitted. If the sample is less than zero, the decision is
that −𝐴 was transmitted. With such a receiver structure, however, we do not take advantage
of everything known about the signal. Since the starting and ending times of the pulses are
known, a better procedure is to compare the area of the received signal-plus-noise waveform
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Figure 9.2
System model and waveforms
for synchronous baseband
digital data transmission.
(a) Baseband digital data
communication system.
(b) Typical transmitted
sequence. (c) Received
sequence plus noise.

(data) with zero at the end of each signaling interval by integrating the received data over
the 𝑇 -second signaling interval. Of course, a noise component is present at the output of the
integrator, but since the input noise has zeromean, it takes on positive and negative values with
equal probability. Thus, the output noise component has zero mean. The proposed receiver
structure and a typical waveform at the output of the integrator are shown in Figure 9.3 where
𝑡0 is the start of an arbitrary signaling interval. For obvious reasons, this receiver is referred
to as an integrate-and-dump detector because charge is dumped after each integration.

(b)

(a)

t
to + T
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AT Signal

Threshold

device

Signal plus noise

t0

> 0: choose +A
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t0 T

t = t0 T

t0
( )dt
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Figure 9.3
Receiver structure and integrator output. (a) Integrate-and-dump receiver. (b) Output from the
integrator.
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The question to be answered is: How well does this receiver perform, and on what
parameters does its performance depend? As mentioned previously, a useful criterion of
performance is probability of error, and it is this we now compute. The output of the integrator
at the end of a signaling interval is

𝑉 =
∫

𝑡0+𝑇

𝑡0

[𝑠(𝑡) + 𝑛(𝑡)] 𝑑𝑡

=
{+𝐴𝑇 +𝑁 if + 𝐴 is sent

−𝐴𝑇 +𝑁 if − 𝐴 is sent
(9.1)

where𝑁 is a random variable defined as

𝑁 =
∫

𝑡0+𝑇

𝑡0

𝑛(𝑡) 𝑑𝑡 (9.2)

Since 𝑁 results from a linear operation on a sample function from a Gaussian process, it is a
Gaussian random variable. It has mean

𝐸{𝑁} = 𝐸

{

∫

𝑡0+𝑇

𝑡0

𝑛(𝑡) 𝑑𝑡

}

=
∫

𝑡0+𝑇

𝑡0

𝐸{𝑛(𝑡)} 𝑑𝑡 = 0 (9.3)

since 𝑛(𝑡) has zero mean. Its variance is therefore

var {𝑁} = 𝐸
{
𝑁

2} = 𝐸
⎧
⎪
⎨
⎪
⎩

[

∫

𝑡0+𝑇

𝑡0

𝑛(𝑡) 𝑑𝑡

]2⎫
⎪
⎬
⎪
⎭

=
∫

𝑡0+𝑇

𝑡0
∫

𝑡0+𝑇

𝑡0

𝐸{𝑛(𝑡)𝑛 (𝜎)} 𝑑𝑡 𝑑𝜎

=
∫

𝑡0+𝑇

𝑡0
∫

𝑡0+𝑇

𝑡0

1
2
𝑁0𝛿 (𝑡 − 𝜎) 𝑑𝑡 𝑑𝜎 (9.4)

where we have made the substitution 𝐸{𝑛(𝑡)𝑛(𝜎)} = 1
2𝑁0𝛿(𝑡 − 𝜎). Using the sifting property

of the delta function, we obtain

var {𝑁} =
∫

𝑡0+𝑇

𝑡0

1
2
𝑁0 𝑑𝜎

= 1
2
𝑁0𝑇 (9.5)

Thus, the pdf of𝑁 is

𝑓
𝑁 (𝜂) = 𝑒

−𝜂2∕𝑁0𝑇

√
𝜋𝑁0𝑇

(9.6)

where 𝜂 is used as the dummy variable for𝑁 to avoid confusion with 𝑛(𝑡).
There are two ways in which errors occur. If +𝐴 is transmitted, an error occurs if

𝐴𝑇 +𝑁 < 0, that is, if𝑁 < −𝐴𝑇 . From (9.6), the probability of this event is

𝑃 (error|𝐴 sent) = 𝑃 (𝐸|𝐴) =
∫

−𝐴𝑇

−∞

𝑒
−𝜂2∕𝑁0𝑇

√
𝜋𝑁0𝑇

𝑑𝜂 (9.7)
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Figure 9.4
Illustration of error probabilities for
binary signaling.

which is the area to the left of 𝜂 = −𝐴𝑇 in Figure 9.4. Letting 𝑢 =
√
2∕𝑁0𝑇 𝜂 and using the

evenness of the integrand, we can write this as

𝑃 (𝐸|𝐴) =
∫

∞
√

2𝐴2𝑇 ∕𝑁0

𝑒
−𝑢2∕2
√
2𝜋

𝑑𝑢 ≜ 𝑄

(√
2𝐴2𝑇

𝑁0

)

(9.8)

where𝑄 (⋅) is the𝑄-function.2 The other way inwhich an error can occur is if−𝐴 is transmitted
and −𝐴𝑇 +𝑁 > 0. The probability of this event is the same as the probability that𝑁 > 𝐴𝑇 ,
which can be written as

𝑃 (𝐸| − 𝐴) =
∫

∞

𝐴𝑇

𝑒
−𝜂2∕𝑁0𝑇

√
𝜋𝑁0𝑇

𝑑𝜂 ≜ 𝑄

(√
2𝐴2𝑇

𝑁0

)

(9.9)

which is the area to the right of 𝜂 = 𝐴𝑇 in Figure 9.4. The average probability of error is

𝑃
𝐸
= 𝑃 (𝐸| + 𝐴)𝑃 (+𝐴) + 𝑃 (𝐸| − 𝐴)𝑃 (−𝐴) (9.10)

Substituting (9.8) and (9.9) into (9.10) and noting that 𝑃 (+𝐴) + 𝑃 (−𝐴) = 1, where 𝑃 (𝐴) is
the probability that +𝐴 is transmitted, we obtain

𝑃
𝐸
= 𝑄

(√
2𝐴2𝑇

𝑁0

)

(9.11)

Thus, the important parameter is 𝐴2
𝑇 ∕𝑁0. We can interpret this ratio in two ways. First,

since the energy in each signal pulse is

𝐸
𝑏
=
∫

𝑡0+𝑇

𝑡0

𝐴
2
𝑑𝑡 = 𝐴2

𝑇 (9.12)

we see that the ratio of signal energy per pulse to noise power spectral density is

𝑧 = 𝐴
2
𝑇

𝑁0
=
𝐸
𝑏

𝑁0
(9.13)

where 𝐸
𝑏
is called the energy per bit because each signal pulse (+𝐴 or −𝐴) carries one bit of

information. Second, we recall that a rectangular pulse of duration 𝑇 seconds has amplitude

2See Appendix F.1 for a discussion and tabulation of the 𝑄-function.
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Figure 9.5
𝑃
𝐸
for antipodal baseband digital signaling.

spectrum 𝐴𝑇 sinc𝑇𝑓 and that 𝐵
𝑝
= 1∕𝑇 is a rough measure of its bandwidth. Thus,

𝐸
𝑏

𝑁0
= 𝐴

2

𝑁0 (1∕𝑇 )
= 𝐴

2

𝑁0𝐵𝑝
(9.14)

can be interpreted as the ratio of signal power to noise power in the signal bandwidth. The
bandwidth 𝐵

𝑝
is sometimes referred to as the bit-rate bandwidth. We will refer to 𝑧 as the

signal-to-noise ratio (SNR). An often-used reference to this signal-to-noise ratio in the digital
communications industry is ‘‘e-b-over-n-naught.’’3

A plot of 𝑃
𝐸
versus 𝑧 is shown in Figure 9.5, where 𝑧 is given in decibels. Also shown is

an approximation for 𝑃
𝐸
using the asymptotic expansion for the 𝑄-function:

𝑄 (𝑢) ≅ 𝑒
−𝑢2∕2

𝑢

√
2𝜋
, 𝑢 ≫ 1 (9.15)

Using this approximation,

𝑃
𝐸
≅ 𝑒

−𝑧

2
√
𝜋𝑧

, 𝑧 ≫ 1 (9.16)

which shows that 𝑃
𝐸
essentially decreases exponentially with increasing 𝑧. Figure 9.5 shows

that the approximation of (9.16) is close to the true result of (9.11) for 𝑧 ⪆ 3 dB.

3A somewhat curious term in use by some is ‘‘ebno.’’
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EXAMPLE 9.1

Digital data is to be transmitted through a baseband system with 𝑁0 = 10−7 W/Hz and the received-
signal amplitude 𝐴 = 20 mV. (a) If 103 bits per second (bps) are transmitted, what is 𝑃

𝐸
? (b) If 104 bps

are transmitted, to what value must 𝐴 be adjusted in order to attain the same 𝑃
𝐸
as in part (a)?

S o l u t i o n

To solve part (a), note that

𝑧 = 𝐴
2
𝑇

𝑁0
= (0.02)2(10−3)

10−7
= 4 (9.17)

Using (9.16), 𝑃
𝐸
≅ 𝑒−4∕2

√
4𝜋 = 2.58 × 10−3. Part (b) is solved by finding 𝐴 such that

𝐴
2(10−4)∕(10−7) = 4, which gives 𝐴 = 63.2 mV.

■

EXAMPLE 9.2

The noise power spectral density is the same as in the preceding example, but a bandwidth of 5000 Hz
is available. (a) What is the maximum data rate that can be supported by the channel? (b) Find the
transmitter power required to give a probability of error of 10−6 at the data rate found in part (a).

S o l u t i o n

(a) Since a rectangular pulse has Fourier transform

Π(𝑡∕𝑇 ) ↔ 𝑇 sinc(𝑓𝑇 )

we take the signal bandwidth to be that of the first null of the sinc function. Therefore, 1∕𝑇 = 5000
Hz, which implies a maximum data rate of 𝑅 = 5000 bps. (b) To find the transmitter power to give
𝑃
𝐸
= 10−6, we solve

10−6 = 𝑄
[√

2𝐴2𝑇 ∕𝑁0

]
= 𝑄

[√
2𝑧

]
(9.18)

Using the approximation (9.15) for the error function, we need to solve

10−6 = 𝑒
−𝑧

2
√
𝜋𝑧

iteratively. This gives the result

𝑧 ≅ 10.53 dB = 11.31 (ratio)

Thus, 𝐴2
𝑇 ∕𝑁0 = 11.31, or

𝐴
2 = (11.31)𝑁0∕𝑇 = (11.31)

(
10−7

)
(5000) = 5.655 mW (actually V2 × 10−3)

This corresponds to a signal amplitude of approximately 75.2 mV.
■
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■ 9.2 BINARY SYNCHRONOUS DATA TRANSMISSION WITH ARBITRARY
SIGNAL SHAPES

In Section 9.1 we analyzed a simple baseband digital communication system. As in the case of
analog transmission, it is often necessary to utilize modulation to condition a digital message
signal so that it is suitable for transmission through a channel. Thus, instead of the constant-
level signals considered in Section 9.1, we will let a logic 1 be represented by 𝑠1 (𝑡) and a
logic 0 by 𝑠2 (𝑡). The only restriction on 𝑠1 (𝑡) and 𝑠2 (𝑡) is that they must have finite energy in
a 𝑇 -second interval. The energies of 𝑠1 (𝑡) and 𝑠2 (𝑡) are denoted by

𝐸1 ≜
∫

∞

−∞
𝑠
2
1 (𝑡) 𝑑𝑡 (9.19)

and

𝐸2 ≜
∫

∞

−∞
𝑠
2
2 (𝑡) 𝑑𝑡 (9.20)

respectively. In Table 9.1, several commonly used choices for 𝑠1 (𝑡) and 𝑠2 (𝑡) are given.

9.2.1 Receiver Structure and Error Probability

A possible receiver structure for detecting 𝑠1 (𝑡) or 𝑠2 (𝑡) in additive white Gaussian noise is
shown in Figure 9.6. Since the signals chosen may have zero-average value over a 𝑇 -second
interval (see the examples in Table 9.1), we can no longer employ an integrator followed by
a threshold device as in the case of constant-amplitude signals. Instead of the integrator, we
employ a filter with, as yet, unspecified impulse response ℎ (𝑡) and corresponding frequency
response function𝐻(𝑓 ). The received signal plus noise is either

𝑦(𝑡) = 𝑠1 (𝑡) + 𝑛(𝑡) (9.21)

or

𝑦(𝑡) = 𝑠2 (𝑡) + 𝑛(𝑡) (9.22)

where the noise, as before, is assumed to be white with double-sided power spectral density
1
2𝑁0.

We can assume, without loss of generality; that the signaling interval under consideration
is 0 ≤ 𝑡 ≤ 𝑇 . (The filter initial conditions are set to zero at 𝑡 = 0.)

To find 𝑃
𝐸
, we again note that an error can occur in either one of two ways. Assume that

𝑠1 (𝑡) and 𝑠2 (𝑡)were chosen such that 𝑠01 (𝑇 )< 𝑠02 (𝑇 ), where 𝑠01 (𝑡) and 𝑠02 (𝑡) are the outputs

Table 9.1 Possible Signal Choices for Binary Digital Signaling

Case 𝒔𝟏 (𝒕) 𝒔𝟐 (𝒕) Type of signaling

1 0 𝐴 cos
(
𝜔
𝑐
𝑡
)
Π

(
𝑡−𝑇 ∕2
𝑇

)
Amplitude-shift keying

2 𝐴 sin(𝜔
𝑐
𝑡 + cos−1 𝑚)Π

(
𝑡−𝑇 ∕2
𝑇

)
𝐴 sin(𝜔

𝑐
𝑡 − cos−1 𝑚)Π

(
𝑡−𝑇 ∕2
𝑇

)
Phase-shift keying with
carrier (cos−1𝑚 ≜

modulation index)

3 𝐴 cos
(
𝜔
𝑐
𝑡
)
Π

(
𝑡−𝑇 ∕2
𝑇

)
𝐴 cos

[(
𝜔
𝑐
+ Δ𝜔

)
𝑡
]
Π

(
𝑡−𝑇 ∕2
𝑇

)
Frequency-shift keying
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h(t)
H( f )

y(t) = s1 (t) + n(t)
or y(t) = s2 (t) + n(t)

0 ≤ t ≤T Threshold

k

t = T

v(t) v(T )

Decision:

v(T ) > k: s2

v(T ) < k: s1

Figure 9.6
A possible receiver structure for detecting binary signals in white Gaussian noise.

of the filter due to 𝑠1 (𝑡) and 𝑠2 (𝑡), respectively, at the input. If not, the roles of 𝑠1 (𝑡) and
𝑠2 (𝑡) at the input can be reversed to ensure this. Referring to Figure 9.6, if 𝑣(𝑇 ) > 𝑘, where
𝑘 is the threshold, we decide that 𝑠2 (𝑡) was sent; if 𝑣(𝑇 ) < 𝑘, we decide that 𝑠1 (𝑡) was sent.
Letting 𝑛0 (𝑡) be the noise component at the filter output, an error is made if 𝑠1 (𝑡) is sent and
𝑣(𝑇 ) = 𝑠01 (𝑇 ) + 𝑛0 (𝑇 ) > 𝑘; if 𝑠2 (𝑡) is sent, an error occurs if 𝑣(𝑇 ) = 𝑠02 (𝑇 ) + 𝑛0 (𝑇 ) < 𝑘.
Since 𝑛0 (𝑡) is the result of passing white Gaussian noise through a fixed linear filter, it is a
Gaussian process. Its power spectral density is

𝑆
𝑛0
(𝑓 ) = 1

2
𝑁0 |𝐻(𝑓 )|2 (9.23)

Because the filter is fixed, 𝑛0 (𝑡) is a stationary Gaussian random process with mean zero and
variance

𝜎
2
0 =

∫

∞

−∞

1
2
𝑁0 |𝐻(𝑓 )|2 𝑑𝑓 (9.24)

Since 𝑛0 (𝑡) is stationary, 𝑁 = 𝑛0 (𝑇 ) is a random variable with mean zero and variance 𝜎20 .
Its pdf is

𝑓
𝑁 (𝜂) = 𝑒

−𝜂2∕2𝜎20
√

2𝜋𝜎20

(9.25)

Given that 𝑠1 (𝑡) is transmitted, the sampler output is

𝑉 ≜ 𝑣(𝑇 ) = 𝑠01 (𝑇 ) +𝑁 (9.26)

and if 𝑠2 (𝑡) is transmitted, the sampler output is

𝑉 ≜ 𝑣(𝑇 ) = 𝑠02 (𝑇 ) +𝑁 (9.27)

These are also Gaussian random variables, since they result from linear operations on
Gaussian random variables. They have means 𝑠01 (𝑇 ) and 𝑠02 (𝑇 ), respectively, and the
same variance as 𝑁 , that is, 𝜎20 . Thus, the conditional pdfs of 𝑉 given 𝑠1 (𝑡) is transmit-

ted, 𝑓
𝑉

(
𝑣 ∣ 𝑠1 (𝑡)

)
, and given 𝑠2 (𝑡) is transmitted, 𝑓

𝑉

(
𝑣 ∣ 𝑠2 (𝑡)

)
, are as shown in Figure 9.7.

Also illustrated is a decision threshold 𝑘.
From Figure 9.7, we see that the probability of error, given 𝑠1 (𝑡) is transmitted, is

𝑃 (𝐸 | 𝑠1 (𝑡)) =
∫

∞

𝑘

𝑓
𝑉
(𝑣|𝑠1(𝑡)) 𝑑𝑣 (9.28)

=
∫

∞

𝑘

𝑒
−[𝑣−𝑠01(𝑇 )]2∕2𝜎20

√
2𝜋𝜎20

𝑑𝑣
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fv (v s1 (t)) fv (v s2 (t))

s01(T ) s02(T )kopt k
v

0

Figure 9.7
Conditional probability density functions of the filter output at time 𝑡 = 𝑇 .

which is the area under 𝑓
𝑉
(𝑣|𝑠1 (𝑡)) to the right of 𝑣 = 𝑘. Similarly, the probability of

error, given 𝑠2 (𝑡) is transmitted, which is the area under 𝑓
𝑉
(𝑣 ∣ 𝑠2 (𝑡)) to the left of 𝑣 = 𝑘, is

given by

𝑃
(
𝐸|𝑠2 (𝑡)

)
=
∫

𝑘

−∞

𝑒
−[𝑣−𝑠02(𝑇 )]2∕2𝜎20

√
2𝜋𝜎20

𝑑𝑣 (9.29)

Assuming that 𝑠1 (𝑡) and 𝑠2 (𝑡) are a priori equally probable,4 the average probability of
error is

𝑃
𝐸
= 1

2
𝑃 [𝐸|𝑠1 (𝑡)] +

1
2
𝑃 [𝐸|𝑠2 (𝑡)] (9.30)

The task now is to minimize this error probability by adjusting the threshold 𝑘 and the impulse
response ℎ (𝑡).

Because of the equal a priori probabilities for 𝑠1 (𝑡) and 𝑠2 (𝑡) and the symmetrical shapes
of 𝑓

𝑉
(𝑣|𝑠1 (𝑡)) and 𝑓𝑉 (𝑣|𝑠2 (𝑡)), it is reasonable that the optimum choice for 𝑘 is the intersection

of the conditional pdfs, which is

𝑘opt =
1
2
[𝑠01(𝑇 ) + 𝑠02(𝑇 )] (9.31)

The optimum threshold is illustrated in Figure 9.7 and can be derived by differentiating (9.30)
with respect to 𝑘 after substitution of (9.28) and (9.29). Because of the symmetry of the pdfs,
the probabilities of either type of error, (9.28) or (9.29), are equal for this choice of 𝑘.

With this choice of 𝑘, the probability of error given by (9.30) reduces to

𝑃
𝐸
= 𝑄

[
𝑠02 (𝑇 ) − 𝑠01 (𝑇 )

2𝜎0

]
(9.32)

Thus, we see that 𝑃
𝐸
is a function of the difference between the two output signals at 𝑡 = 𝑇 .

Remembering that the 𝑄-function decreases monotonically with increasing argument, we see
that 𝑃

𝐸
decreases with increasing distance between the two output signals, a reasonable result.

We will encounter this interpretation again in Chapters 10 and 11, where we discuss concepts
of signal space.

We now consider the minimization of 𝑃
𝐸
by proper choice of ℎ (𝑡). This will lead us to

the matched filter.

4See Problem 9.10 for the case of unequal a priori probabilities.
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t = T

g0(T ) + Ng0(t) + n0(t)h(t)
H( f )

g(t) + n(t)
where

g(t) = s2 (t) – s1 (t)

Figure 9.8
Choosing𝐻(𝑓 ) to minimize 𝑃

𝐸
.

9.2.2 The Matched Filter

For a given choice of 𝑠1 (𝑡) and 𝑠2 (𝑡), we wish to determine an𝐻(𝑓 ), or equivalently, an ℎ(𝑡)
in (9.32), that maximizes

𝜁 =
𝑠02 (𝑇 ) − 𝑠01 (𝑇 )

𝜎0
(9.33)

which follows because the 𝑄-function is monotonically decreasing as its argument increases.
Letting 𝑔(𝑡) = 𝑠2 (𝑡) − 𝑠1 (𝑡), the problem is to find the 𝐻(𝑓 ) that maximizes 𝜁 = 𝑔0(𝑇 )∕𝜎0,
where 𝑔0(𝑡) is the signal portion of the output due to the input, 𝑔(𝑡).5 This situation is illustrated
in Figure 9.8.

We can equally well consider the maximization of

𝜁
2 =

𝑔
2
0 (𝑇 )

𝜎
2
0

=
𝑔
2
0 (𝑡)

𝐸
{
𝑛
2
0 (𝑡)

}
||||||𝑡=𝑇

(9.34)

Since the input noise is stationary,

𝐸
{
𝑛
2
0(𝑡)

}
= 𝐸

{
𝑛
2
0(𝑇 )

}
=
𝑁0
2 ∫

∞

−∞
|𝐻(𝑓 )|2 𝑑𝑓 (9.35)

We can write 𝑔0 (𝑡) in terms of𝐻(𝑓 ) and the Fourier transform of 𝑔(𝑡), 𝐺(𝑓 ), as

𝑔0 (𝑡) = ℑ−1[𝐺(𝑓 )𝐻(𝑓 )] =
∫

∞

−∞
𝐻 (𝑓 )𝐺 (𝑓 ) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 (9.36)

Setting 𝑡 = 𝑇 in (9.36) and using this result along with (9.35) in (9.34), we obtain

𝜁
2 =

|||∫
∞
−∞𝐻 (𝑓 )𝐺 (𝑓 ) 𝑒𝑗2𝜋𝑓𝑇 𝑑𝑓 |||

2

1
2𝑁0 ∫

∞
−∞ |𝐻(𝑓 )|2 𝑑𝑓

(9.37)

To maximize this equation with respect to 𝐻(𝑓 ), we employ Schwarz’s inequality.
Schwarz’s inequality is a generalization of the inequality

|𝐀 ⋅ 𝐁| = |𝐴𝐵 cos 𝜃| ≤ |𝐀| |𝐁| (9.38)

where 𝐀 and 𝐁 are ordinary vectors, with 𝜃 the angle between them, and 𝐀 ⋅ 𝐁 denotes
their inner, or dot, product. Since | cos 𝜃| equals unity if and only if 𝜃 equals zero or an
integer multiple of 𝜋, equality holds if and only if 𝐀 equals 𝛼𝐁, where 𝛼 is a constant (𝛼 > 0
corresponds to 𝜃 = 0while 𝛼 < 0 corresponds to 𝜃 = 𝜋). Considering the case of two complex

5Note that 𝑔 (𝑡) is a fictitious signal in that the difference 𝑠02 (𝑇 ) − 𝑠01 (𝑇 ) does not appear specifically in the receiver
of Figure 9.8. How it relates to the detection of digital signals will be apparent later.
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functions 𝑋(𝑓 ) and 𝑌 (𝑓 ), and defining the inner product as

∫

∞

−∞
𝑋(𝑓 )𝑌 ∗(𝑓 ) 𝑑𝑓

Schwarz’s inequality assumes the form6

||||∫

∞

−∞
𝑋(𝑓 )𝑌 ∗(𝑓 ) 𝑑𝑓

||||
≤

√

∫

∞

−∞
|𝑋 (𝑓 )|2 𝑑𝑓

√

∫

∞

−∞
|𝑌 (𝑓 )|2 𝑑𝑓 (9.39)

Equality holds if and only if 𝑋(𝑓 ) = 𝛼𝑌 (𝑓 ) where 𝛼 is, in general, a complex constant. We
will prove Schwarz’s inequality in Chapter 11 with the aid of signal-space notation.

We now return to our original problem, that of finding the 𝐻(𝑓 ) that maximizes (9.37).
We replace 𝑋(𝑓 ) in (9.39) squared with𝐻(𝑓 ) and 𝑌 ∗(𝑓 ) with 𝐺(𝑓 )𝑒𝑗2𝜋𝑇𝑓 . Thus,

𝜁
2 = 2

𝑁0

|||∫
∞
−∞𝑋(𝑓 )𝑌 ∗(𝑓 ) 𝑑𝑓 |||

2

∫
∞
−∞ |𝐻 (𝑓 )|2 𝑑𝑓

≤
2
𝑁0

∫
∞
−∞ |𝐻 (𝑓 )|2 𝑑𝑓 ∫

∞
−∞ |𝐺 (𝑓 )|2 𝑑𝑓

∫
∞
−∞ |𝐻 (𝑓 )|2 𝑑𝑓

(9.40)

Canceling the integral over |𝐻(𝑓 )|2 in the numerator and denominator, we find the maximum
value of 𝜁2 to be

𝜁
2
max =

2
𝑁0 ∫

∞

−∞
|𝐺(𝑓 )|2 𝑑𝑓 =

2𝐸
𝑔

𝑁0
(9.41)

where 𝐸
𝑔
= ∫

∞
−∞ |𝐺(𝑓 )|2 𝑑𝑓 is the energy contained in 𝑔(𝑡), which follows by Rayleigh’s

energy theorem. Equality holds in (9.40) if and only if

𝐻(𝑓 ) = 𝛼𝐺∗(𝑓 )𝑒−𝑗2𝜋𝑇𝑓 (9.42)

where 𝛼 is an arbitrary constant. Since 𝛼 just fixes the gain of the filter (signal and noise are
amplified the same), we can set it to unity. Thus, the optimum choice for𝐻(𝑓 ),𝐻0(𝑓 ), is

𝐻0(𝑓 ) = 𝐺∗(𝑓 )𝑒−𝑗2𝜋𝑇𝑓 (9.43)

The impulse response corresponding to this choice of𝐻0(𝑓 ) is

ℎ0(𝑡) = ℑ−1[𝐻0(𝑓 )]

=
∫

∞

−∞
𝐺

∗ (𝑓 ) 𝑒−𝑗2𝜋𝑇𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

=
∫

∞

−∞
𝐺 (−𝑓 ) 𝑒−𝑗2𝜋𝑓 (𝑇−𝑡) 𝑑𝑓

=
∫

∞

−∞
𝐺

(
𝑓
′)
𝑒
𝑗2𝜋𝑓 ′(𝑇−𝑡)

𝑑𝑓
′ (9.44)

where the substitution 𝑓 ′ = −𝑓 in the integrand of the third integral to get the fourth integral.
Recognizing this as the inverse Fourier transform of 𝑔(𝑡) with 𝑡 replaced by 𝑇 − 𝑡, we obtain

ℎ0(𝑡) = 𝑔(𝑇 − 𝑡) = 𝑠2(𝑇 − 𝑡) − 𝑠1(𝑇 − 𝑡) (9.45)

6If more convenient for a given application, one could equally well work with the square of Schwarz’s inequality.
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h(t) =
   s
   0 < t < T

1 (T– t)

h(t) =
   s2 (T– t)

 0 < t < T
Threshold

comparison

t = T

v(t)y(t)

Decision:

V > k opt: s2(t)
V < k opt: s1(t)V = v(T)

+

–

Figure 9.9
Matched-filter receiver for binary signaling in white Gaussian noise.

Thus, in terms of the original signals, the optimum receiver corresponds to passing the
received signal plus noise through two parallel filters whose impulse responses are the time
reverses of 𝑠1 (𝑡) and 𝑠2 (𝑡), respectively, and comparing the difference of their outputs at time
𝑇 with the threshold given by (9.31). This operation is illustrated in Figure 9.9.

EXAMPLE 9.3

Consider the pulse signal

𝑠 (𝑡) =

{
𝐴, 0 ≤ 𝑡 ≤ 𝑇

0, otherwise
(9.46)

A filter matched to this signal has the impulse response

ℎ0(𝑡) = 𝑠(𝑡0 − 𝑡) =

{
𝐴, 0 ≤ 𝑡0 − 𝑡 ≤ 𝑇 or 𝑡0 − 𝑇 ≤ 𝑡 ≤ 𝑡0

0, otherwise
(9.47)

where the parameter 𝑡0 will be fixed later. We note that if 𝑡0 < 𝑇 , the filter will be noncausal, since it
will have nonzero impulse response for 𝑡 < 0. The response of the filter to 𝑠(𝑡) is

𝑦(𝑡) = ℎ0(𝑡) ∗ 𝑠(𝑡) =
∫

∞

−∞
ℎ0(𝜏)𝑠(𝑡 − 𝜏) 𝑑𝜏 (9.48)

The factors in the integrand are shown in Figure 9.10(a). The resulting integrations are familiar from our
previous considerations of linear systems, and the filter output is easily found to be as shown in Figure
9.10(b). Note that the peak output signal occurs at 𝑡 = 𝑡0. This is also the time of peak signal-to-rms-noise
ratio, since the noise is stationary.

(b)(a)

τ

s(t – )τ h0 (t)
A

tt – tT 0t0 – T

y(t)

A2T

t
t0t0 – tT 0 + T0

Figure 9.10
Signals pertinent to finding the matched-filter response of Example 9.3.

■
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EXAMPLE 9.4

For a given value of𝑁0, consider the peak signal--squared-to-mean-square-noise ratio at the output of a
matched filter for the two pulses

𝑔1 (𝑡) = 𝐴Π
(
𝑡 − 𝑡0
𝑇

)
(9.49)

and

𝑔2 (𝑡) = 𝐵 cos

[
2𝜋

(
𝑡 − 𝑡0

)

𝑇

]

Π
(
𝑡 − 𝑡0
𝑇

)
(9.50)

Relate 𝐴 and 𝐵 such that both pulses provide the same signal-to-noise ratio at the matched-filter output.

S o l u t i o n

Since the peak signal--squared-to-mean-square-noise ratio at the matched-filter output is 2𝐸
𝑔
∕𝑁0 and

𝑁0 is the same for both cases, we can obtain equal signal-to-noise ratios for both cases by computing
the energy of each pulse and setting the two energies equal. The results are

𝐸
𝑔1
=
∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
𝐴

2
𝑑𝑡 = 𝐴2

𝑇 (9.51)

and

𝐸
𝑔2
=
∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
𝐵

2 cos2
[
2𝜋

(
𝑡 − 𝑡0

)

𝑇

]

𝑑𝑡 = 𝐵
2
𝑇

2
(9.52)

Setting these equal, we have that 𝐴 = 𝐵∕
√
2 to give equal signal-to-noise ratios. The peak signal--

squared-to-mean-square-noise ratio, from (9.41), is

𝜁
2
max =

2𝐸
𝑔

𝑁0
= 2𝐴2

𝑇

𝑁0
= 𝐵

2
𝑇

𝑁0
(9.53)

■

9.2.3 Error Probability for the Matched-Filter Receiver

From (9.33) substituted into (9.32), the error probability for the matched-filter receiver of
Figure 9.9 is

𝑃
𝐸
= 𝑄

(
𝜁

2

)
(9.54)

where 𝜁 has the maximum value

𝜁max =
[

2
𝑁0 ∫

∞

−∞
|𝐺(𝑓 )|2 𝑑𝑓

]1∕2
=

[
2
𝑁0 ∫

∞

−∞
||𝑆2 (𝑓 ) − 𝑆1 (𝑓 )||

2
𝑑𝑓

]1∕2
(9.55)

given by (9.41).Using Parseval’s theorem,we canwrite 𝜁2max in terms of 𝑔(𝑡) = 𝑠2 (𝑡) − 𝑠1 (𝑡) as

𝜁
2
max = 2

𝑁0 ∫

∞

−∞

[
𝑠2 (𝑡) − 𝑠1 (𝑡)

]2
𝑑𝑡

= 2
𝑁0

{

∫

∞

−∞
𝑠
2
2 (𝑡) 𝑑𝑡 + ∫

∞

−∞
𝑠
2
1 (𝑡) 𝑑𝑡 − 2

∫

∞

−∞
𝑠1 (𝑡) 𝑠2 (𝑡) 𝑑𝑡

}
(9.56)
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where 𝑠1 (𝑡) and 𝑠2 (𝑡) are assumed real. From (9.19) and (9.20), we see that the first two terms
inside the braces are 𝐸1 and 𝐸2, the energies of 𝑠1 (𝑡) and 𝑠2 (𝑡), respectively. We define

𝜌12 =
1

√
𝐸1𝐸2

∫

∞

−∞
𝑠1 (𝑡) 𝑠2 (𝑡) 𝑑𝑡 (9.57)

as the correlation coefficient of 𝑠1 (𝑡) and 𝑠2 (𝑡). Just as for random variables, 𝜌12 is ameasure of
the similarity between 𝑠1 (𝑡) and 𝑠2 (𝑡) and is normalized such that −1 ≤ 𝜌12 ≤ 1 (𝜌12 achieves
its end points for 𝑠1 (𝑡) = ±𝑘𝑠2 (𝑡), where 𝑘 is a positive constant). Thus,

𝜁
2
max =

2
𝑁0

(
𝐸1 + 𝐸2 − 2

√
𝐸1𝐸2𝜌12

)
(9.58)

and the error probability is

𝑃
𝐸
= 𝑄

⎡
⎢
⎢
⎣

(
𝐸1 + 𝐸2 − 2

√
𝐸1𝐸2𝜌12

2𝑁0

)1∕2⎤
⎥
⎥
⎦

= 𝑄
⎡
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎝

1
2

(
𝐸1 + 𝐸2

)
−

√
𝐸1𝐸2𝜌12

𝑁0

⎞
⎟
⎟
⎠

1∕2⎤
⎥
⎥
⎥
⎦

= 𝑄
⎡
⎢
⎢
⎣

(
𝐸
𝑏

𝑁0

(

1 −
√
𝐸1𝐸2

𝐸
𝜌12

))1∕2⎤
⎥
⎥
⎦

(9.59)

where 𝐸
𝑏
= 1

2 (𝐸1 + 𝐸2) is the average received-signal energy, since 𝑠1 (𝑡) and 𝑠2 (𝑡) are
transmitted with equal a priori probability. It is apparent from (9.59) that in addition to
depending on the signal energies, as in the constant-signal case, 𝑃

𝐸
also depends on the

similarity between the signals through 𝜌12. We note that (9.58) takes on its maximum value of
(2∕𝑁0)(

√
𝐸1 +

√
𝐸2)2 for 𝜌12 = −1, which gives the minimum value of 𝑃

𝐸
possible through

choice of 𝑠1 (𝑡) and 𝑠2 (𝑡). This is reasonable, for then the transmitted signals are as dissimilar
as possible. Finally, we can write (9.59) as

𝑃
𝐸
= 𝑄

[√
(
1 −𝑅12

) 𝐸
𝑏

𝑁0

]

(9.60)

where 𝑧 = 𝐸
𝑏
∕𝑁0 is the average energy per bit divided by noise power spectral density as it

was for the baseband system. The parameter 𝑅12 is defined as

𝑅12 =
2
√
𝐸1𝐸2

𝐸1 + 𝐸2
𝜌12 =

√
𝐸1𝐸2

𝐸
𝑏

𝜌12 (9.61)

and is a convenient parameter related to the correlation coefficient, but which should not be
confused with a correlation function. The minimum value of 𝑅12 is −1, which is attained for
𝐸1 = 𝐸2 and 𝜌12 = −1. For this value of 𝑅12,

𝑃
𝐸
= 𝑄

⎛
⎜
⎜
⎝

√
2𝐸

𝑏

𝑁0

⎞
⎟
⎟
⎠

(9.62)

which is identical to (9.11), the result for the baseband antipodal system.
The probability of error versus the signal-to-noise ratio is compared in Figure 9.11 for

𝑅12 = 0 (orthogonal signals) and 𝑅12 = −1 (antipodal signals).
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Figure 9.11
Probability of error for arbitrary waveshape case with
𝑅12 = 0 and 𝑅12 = −1.

COMPUTER EXAMPLE 9.1

A MATLAB program for computing the error probability for several values of correlation coefficient,
𝑅12, is given below. Entering the vector [−1 0] in response to the first query reproduces the curves of
Figure 9.11. Note that the user-defined function qfn(⋅) is used because MATLAB includes a function for

erfc(𝑢), but not 𝑄 (𝑢) = 1
2
erfc

(
𝑢∕

√
2
)
.

% file: c9ce1
% Bit error probability for binary signaling;
% vector of correlation coefficients allowed
%
clf
R12 = input(’Enter vector of desired R 1 2 values; <= 3 values ’);
A = char(’-’,’-.’,’:’,’--’);
LR = length(R12);
z dB = 0:.3:15; % Vector of desired values of Eb/N0 in dB
z = 10.ˆ(z dB/10); % Convert dB to ratios
for k = 1:LR % Loop for various desired values of R12

P E=qfn(sqrt(z*(1-R12(k)))); % Probability of error for vector of
z-values

% Plot probability of error versus Eb/N0 in dB
semilogy(z dB,P E,A(k,:)),axis([0 15 10ˆ(-6) 1]),xlabel(’E b/N 0,

dB’),ylabel(’P E’),...
if k==1

hold on; grid % Hold plot for plots for other values of R12
end

end
if LR == 1 % Plot legends for R12 values

legend([’R 1 2 = ’,num2str(R12(1))],1)
elseif LR == 2

legend([’R 1 2 = ’,num2str(R12(1))],[’R 1 2 = ’,num2str(R12(2))],1)
elseif LR == 3

legend([’R 1 2 = ’,num2str(R12(1))],[’R 1 2 = ’,num2str(R12(2))],
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[’R 1 2 = ’,num2str(R12(3))],1)
% This function computes the Gaussian Q-function
%
function Q=qfn(x)
Q = 0.5*erfc(x/sqrt(2));

% End of script file
■

9.2.4 Correlator Implementation of the Matched-Filter Receiver

In Figure 9.9, the optimum receiver involves two filters with impulse responses equal to the
time reverse of the respective signals being detected. An alternative receiver structure can be
obtained by noting that the matched filter in Figure 9.12(a) can be replaced by a multiplier-
integrator cascade as shown in Figure 9.12(b). Such a series of operations is referred to as
correlation detection.

To show that the operations given in Figure 9.12 are equivalent, we will show that 𝑣(𝑇 )
in Figure 9.12(a) is equal to 𝑣′(𝑇 ) in Figure 9.12(b). The output of the matched filter in
Figure 9.12(a) is

𝑣(𝑡) = ℎ (𝑡) ∗ 𝑦(𝑡) =
∫

𝑇

0
𝑠(𝑇 − 𝜏)𝑦(𝑡 − 𝜏) 𝑑𝜏 (9.63)

which follows because ℎ (𝑡) = 𝑠(𝑇 − 𝑡), 0 ≤ 𝑡 < 𝑇 , and zero otherwise. Letting 𝑡 = 𝑇 and
changing variables in the integrand to 𝛼 = 𝑇 − 𝜏, we obtain

𝑣(𝑇 ) =
∫

𝑇

0
𝑠(𝛼) 𝑦(𝛼) 𝑑𝛼 (9.64)

Considering next the output of the correlator configuration in Figure 9.12(b), we obtain

𝑣
′(𝑇 ) =

∫

𝑇

0
𝑦(𝑡) 𝑠(𝑡) 𝑑𝑡 (9.65)

which is identical to (9.64). Thus, the matched filters for 𝑠1 (𝑡) and 𝑠2 (𝑡) in Figure 9.9 can be
replaced by correlation operations with 𝑠1 (𝑡) and 𝑠2 (𝑡), respectively, and the receiver operation
will not be changed. We note that the integrate-and-dump receiver for the constant-signal case
of Section 9.1 is actually a correlation or, equivalently, a matched-filter receiver.

h(t) =
   s (T– t),

 0 ≤ t ≤T

t = T 

v(t)y(t) = s(t) + n(t)

y(t) = s(t) + n(t)

v(T)

t = T

v'(t) v'(T)T

0
( )dt

s(t)
(b)

(a)

×

Figure 9.12
Equivalence of the matched-
filter and correlator receivers.
(a) Matched-filter sampler.
(b) Correlator sampler.
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9.2.5 Optimum Threshold

The optimum threshold for binary signal detection is given by (9.31), where 𝑠01 (𝑇 ) and 𝑠02 (𝑇 )
are the outputs of the detection filter in Figure 9.6 at time 𝑇 due to the input signals 𝑠1 (𝑡)
and 𝑠2 (𝑡), respectively. We now know that the optimum detection filter is a matched filter,
matched to the difference of the input signals, and has the impulse response given by (9.45).
From the superposition integral, we have

𝑠01 (𝑇 ) =
∫

∞

−∞
ℎ(𝜆)𝑠1(𝑇 − 𝜆) 𝑑𝜆

=
∫

∞

−∞

[
𝑠2(𝑇 − 𝜆) − 𝑠1(𝑇 − 𝜆)

]
𝑠1(𝑇 − 𝜆) 𝑑𝜆

=
∫

∞

−∞
𝑠2 (𝑢) 𝑠1 (𝑢) 𝑑𝑢 −

∫

∞

−∞

[
𝑠1 (𝑢)

]2
𝑑𝑢

=
√
𝐸1𝐸2 𝜌12 − 𝐸1 (9.66)

where the substitution 𝑢 = 𝑇 − 𝜏 has been used to go from the second equation to the third,
and the definition of the correlation coefficient (9.57) has been used to get the last equation
along with the definition of energy of a signal. Similarly, it follows that

𝑠02 (𝑇 ) =
∫

∞

−∞

[
𝑠2(𝑇 − 𝜆) − 𝑠1(𝑇 − 𝜆)

]
𝑠2(𝑇 − 𝜆) 𝑑𝜆

=
∫

∞

−∞

[
𝑠2 (𝑢)

]2
𝑑𝑢 −

∫

∞

−∞
𝑠2 (𝑢) 𝑠1 (𝑢) 𝑑𝑢

= 𝐸2 −
√
𝐸1𝐸2 𝜌12 (9.67)

Substituting (9.66) and (9.67) into (9.31), we find the optimum threshold to be

𝑘opt =
1
2

(
𝐸2 − 𝐸1

)
(9.68)

Note that equal energy signals will always result in an optimum threshold of zero. Also note
that the waveshape of the signals, as manifested through the correlation coefficient, has no
effect on the optimum threshold. Only the signal energies do.

9.2.6 Nonwhite (Colored) Noise Backgrounds

The question naturally arises about the optimum receiver for nonwhite noise backgrounds.
Usually, the noise in a receiver system is generated primarily in the front-end stages and is
due to thermal agitation of electrons in the electronic components (see Appendix A). This type
of noise is well approximated as white. If a bandlimited channel precedes the introduction
of the white noise, then we need only work with modified transmitted signals. If, for some
reason, a bandlimiting filter follows the introduction of the white noise (for example, an
intermediate-frequency amplifier following the radio-frequency amplifier and mixers where
most of the noise is generated in a heterodyne receiver), we can use a simple artifice to
approximate the matched-filter receiver. The colored noise plus signal is passed through a
‘‘whitening filter’’ with a frequency response function that is the inverse square root of the
noise spectral density. Thus, the output of this whitening filter is white noise plus a signal
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component that has been transformed by the whitening filter. We then build a matched-filter
receiver with impulse response that is the difference of the time-reverse of the ‘‘whitened’’
signals. The cascade of a whitening filter and matched filter (matched to the whitened signals)
is called awhitened matched filter. This combination provides only an approximately optimum
receiver for two reasons. Since the whitening filters will spread the received signals beyond
the 𝑇 -second signaling interval, two types of degradation will result: (1) the signal energy
spread beyond the interval under consideration is not used by the matched filter in making
a decision; (2) previous signals spread out by the whitening filter will interfere with the
matched-filtering operation on the signal on which a decision is being made. The latter is
referred to as intersymbol interference, as first discussed in Chapter 5, and is explored further
in Sections 9.7 and 9.9. It is apparent that degradation due to these effects is minimized if the
signal duration is short compared with 𝑇 , such as in a pulsed radar system. Finally, signal
intervals adjacent to the interval being used in the decision process contain information that is
relevant to making a decision on the basis of the correlation of the noise. In short, the whitened
matched-filter receiver is nearly optimum if the signaling interval is large compared with the
inverse bandwidth of the whitening filter. The question of bandlimited channels, and nonwhite
background noise, is explored further in Section 9.6.

9.2.7 Receiver Implementation Imperfections

In the theory developed in this section, it is assumed that the signals are known exactly at the
receiver. This is, of course, an idealized situation. Two possible deviations from this assump-
tion are: (1) the phase of the receiver’s replica of the transmitted signal may be in error, and
(2) the exact arrival time of the received signal may be in error. These are called synchroniza-
tion errors. The first case is explored in this section, and the latter is explored in the problems.
Methods of synchronization are discussed in Chapter 10.

9.2.8 Error Probabilities for Coherent Binary Signaling

We now compare the performance of several commonly used coherent binary signaling
schemes. Then we will examine noncoherent systems. To obtain the error probability for
coherent systems, the results of Section 9.2 will be applied directly. The three types of
coherent systems to be considered in this section are amplitude-shift keyed (ASK), phase-shift
keyed (PSK), and frequency-shift keyed (FSK). Typical transmitted waveforms for these three
types of digital modulation are shown in Figure 9.13. We also will consider the effect of an
imperfect phase reference on the performance of a coherent PSK system. Such systems are
often referred to as partially coherent.

Amplitude-Shift Keying (ASK)

In Table 9.1, 𝑠1 (𝑡) and 𝑠2 (𝑡) for ASK are given as 0 and 𝐴 cos
(
𝜔
𝑐
𝑡
)
Π

[
(𝑡 − 𝑇 ∕2) ∕𝑇

]
, where

𝑓
𝑐
= 𝜔

𝑐
∕2𝜋 is the carrier frequency. We note that the transmitter for such a system simply

consists of an oscillator that is gated on and off; accordingly, binary ASK with one amplitude
set to 0 is often referred to as on-off keying. It is important to note that the oscillator runs
continuously as the on-off gating is carried out.
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ASK:

PSK:

FSK:

Phase difference = 2 cos–1m

Figure 9.13
Waveforms for ASK, PSK, and
FSK modulation.

The correlator realization for the optimum receiver consists of multiplication of the re-
ceived signal plus noise by𝐴 cos𝜔

𝑐
𝑡, integration over (0, 𝑇 ), and comparison of the integrator

output with the threshold 1
4𝐴

2
𝑇 as calculated from (9.68).

From (9.57) and (9.61), 𝑅12 = 𝜌12 = 0, and the probability of error, from (9.60), is

𝑃
𝐸
= 𝑄

(√
𝐸
𝑏

𝑁0

)

(9.69)

Because of the lack of a factor
√
2 in the argument of the 𝑄 function, ASK is seen to be 3 dB

worse in terms of signal-to-noise ratio than antipodal baseband signaling. The probability of
error versus SNR corresponds to the curve for 𝑅12 = 0 in Figure 9.11.

Phase-Shift Keying (PSK)

From Table 9.1, the signals for PSK are

𝑠
𝑘
(𝑡) = 𝐴 sin[𝜔

𝑐
𝑡 − (−1)𝑘 cos−1 𝑚], 0 ≤ 𝑡 ≤ 𝑇 , 𝑘 = 1, 2 (9.70)

where cos−1 𝑚, the modulation index, is written in this fashion for future convenience. For
simplicity, we assume that 𝜔

𝑐
= 2𝜋𝑛∕𝑇 , where 𝑛 is an integer. Using sin(−𝑥) = −sin 𝑥 and

cos(−𝑥) = cos(𝑥), we can write (9.70) as

𝑠
𝑘
(𝑡) = 𝐴𝑚 sin

(
𝜔
𝑐
𝑡
)
− (−1)𝑘𝐴

√
1 − 𝑚2 cos

(
𝜔
𝑐
𝑡
)
, 0 < 𝑡 ≤ 𝑇 , 𝑘 = 1, 2 (9.71)

where we note that cos(cos−1 𝑚) = 𝑚 and sin(cos−1 𝑚) =
√
1 − 𝑚2.
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sk(t) + n(t)

t = T

T

0
( )dt

s2(t) – s1(t) = –2A 1 – m2 cos c tω

A2T(1 – m2) + N Thresh.

= 0

Decision:

“1” or “0”

Figure 9.14
Correlator realization of optimum receiver for PSK.

The first term on the right-hand side of (9.71) represents a carrier component included
in some systems for generation of a local carrier reference at the receiver necesary in the
demodulation process (required for implementing the correlation operation of the optimum
receiver). If no carrier component is present (𝑚 = 0) then a Costas loop implementation could
be used to facilitate the demodulation process as discussed in Chapter 3. Whether to allocate
part of the tranmitted signal power to a carrier component is a complex matter that will not be
considered here.7

The power in the carrier component is 1
2 (𝐴𝑚)

2, and the power in the modulation compo-

nent is 1
2𝐴

2(1 − 𝑚2). Thus, 𝑚2 is the fraction of the total power in the carrier component. The
correlator receiver is shown in Figure 9.14, where, instead of two correlators, only a single cor-
relation with 𝑠2 (𝑡) − 𝑠1 (𝑡) is used. The threshold, calculated from (9.68), is zero. We note that
the carrier component of 𝑠

𝑘
(𝑡) is of no consequence in the correlation operation because it is

orthogonal to the modulation component over the bit interval. For PSK,𝐸1 = 𝐸2 =
1
2𝐴

2
𝑇 and

√
𝐸1𝐸2𝜌12 =

∫

𝑇

0
𝑠1 (𝑡) 𝑠2 (𝑡) 𝑑𝑡

=
∫

𝑇

0
(𝐴𝑚 sin𝜔

𝑐
𝑡 + 𝐴

√
1 − 𝑚2 cos𝜔

𝑐
𝑡)

× (𝐴𝑚 sin𝜔
𝑐
𝑡 − 𝐴

√
1 − 𝑚2 cos𝜔

𝑐
𝑡) 𝑑𝑡

= 1
2
𝐴
2
𝑇𝑚

2 − 1
2
𝐴
2
𝑇 (1 − 𝑚2)

= 1
2
𝐴
2
𝑇 (2𝑚2 − 1) (9.72)

Thus 𝑅12, from (9.61), is

𝑅12 =
2
√
𝐸1𝐸2

𝐸1 + 𝐸2
𝜌12 = 2𝑚2 − 1 (9.73)

and the probability of error for PSK, from (9.60), is

𝑃
𝐸
= 𝑄[

√
2(1 − 𝑚2)𝑧] (9.74)

The effect of allocating a fraction 𝑚2 of the total transmitted power to a carrier component is
to degrade 𝑃

𝐸
by 10 log10(1 − 𝑚2) decibels from the ideal 𝑅12 = −1 curve of Figure 9.11.

7See R. L. Didday and W. C. Lindsey, Subcarrier tracking methods and communication design. IEEE Trans. on
Commun.Tech. COM-16, 541--550, August 1968.
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For 𝑚 = 0, the resultant error probability is 3 dB better than ASK and corresponds to the
𝑅12 = −1 curve in Figure 9.11. We will refer to the case for which 𝑚 = 0 as biphase-shift
keying (BPSK) to avoid confusion with the case for which 𝑚 ≠ 0.

EXAMPLE 9.5

Consider PSK with 𝑚 = 1∕
√
2. (a) By how many degrees does the modulated carrier shift in phase each

time the binary data changes? (b) What percent of the total power is in the carrier, and what percent is
in the modulation component? (c) What value of 𝑧 = 𝐸

𝑏
∕𝑁0 is required to give 𝑃

𝐸
= 10−6?

S o l u t i o n

(a) Since the change in phase is from−cos−1 𝑚 to cos−1 𝑚whenever the phase switches, the phase change
of the modulated carrier is

2 cos−1 𝑚 = 2 cos−1(1∕
√
2) = 2(45◦) = 90◦ (9.75)

(b) The carrier and modulation components are

carrier = 𝐴𝑚 sin(𝜔
𝑐
𝑡) (9.76)

and

modulation = ±𝐴
√
1 − 𝑚2 cos(𝜔

𝑐
𝑡) (9.77)

respectively. Therefore, the power in the carrier component is

𝑃
𝑐
= 𝐴

2
𝑚

2

2
(9.78)

and the power in the modulation component is

𝑃
𝑚
=
𝐴

2
(
1 − 𝑚2

)

2
(9.79)

Since the total power is 𝐴2∕2, the percent power in each of these components is

%𝑃
𝑐
= 𝑚2 × 100 = 100

(
1

√
2

)2

= 50%

and

%𝑃
𝑚
= (1 − 𝑚2) × 100 = 100

(
1 − 1

2

)
= 50%

respectively.
(c) We have, for the probability of error,

𝑃
𝐸
= 𝑄

[√
2(1 − 𝑚2)𝑧

]
≅ 𝑒

−(1−𝑚2)𝑧

2
√
𝜋

(
1 − 𝑚2

)
𝑧

= 10−6 (9.80)

Solving this iteratively, we obtain, for 𝑚2 = 0.5, 𝑧 = 22.6 or 𝐸
𝑏
∕𝑁0 = 13.54 dB. Actually, we do not

have to solve the error probability relationship iteratively again. From Example 9.2 we already know that
𝑧 = 10.53 dB gives 𝑃

𝐸
= 10−6 for BPSK (an antipodal signaling scheme). In this example we simply

note that the required power is twice as much as for BPSK, which is equivalent to adding 3.01 dB on to
the 10.53 dB required in Example 9.2.

■
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t = T

T

0
( )dt

Thresh.

= 0

Decision

AT cos  + N;

 =  –θ θ̂

2 cos ( c t + )ω θ̂

A cos ( c t + ) + n(t)ω θ
×

Figure 9.15
Effect of phase error in reference signal for correlation detection of BPSK.

Biphase-Shift Keying with Imperfect Phase Reference

The results obtained earlier for PSK are for the case of a perfect carrier reference at the receiver.
If𝑚 = 0, it is simple to consider the case of an imperfect reference at the receiver as represented
by an input of the form ±𝐴 cos(𝜔

𝑐
𝑡 + 𝜃) + 𝑛(𝑡) and the reference by 𝐴 cos(𝜔

𝑐
𝑡 + �̂�), where 𝜃

is an unknown carrier phase and �̂� is the phase estimate at the receiver.
The correlator implementation for the receiver is shown in Figure 9.15. Using appropriate

trigonometric identities, we find that the signal component of the correlator output at the
sampling instant is ±𝐴𝑇 cos𝜙, where 𝜙 = 𝜃 − �̂� is the phase error. It follows that the error
probability given the phase error 𝜙 is

𝑃
𝐸
(𝜙) = 𝑄(

√
2𝑧 cos2 𝜙) (9.81)

We note that the performance is degraded by 20 log10 cos𝜙 decibels compared with the perfect
reference case.

If we assume 𝜙 to be fixed at some maximum value, we may obtain an upper bound on
𝑃
𝐸
due to phase error in the reference. However, a more exact model is often provided by

approximating 𝜙 as a Gaussian random variable with the pdf8

𝑝 (𝜙) = 𝑒
−𝜙2∕2𝜎2

𝜙

√
2𝜋𝜎2

𝜙

, |𝜙| ≤ 𝜋 (9.82)

This is an especially appropriate model if the phase reference at the receiver is derived by
means of a phase-locked loop operating with high signal-to-noise ratio at its input. If this is
the case, 𝜎2

𝜙
is related to the signal-to-noise ratio at the input of the phase estimation device,

whether it is a phase-locked loop or a bandpass-filter-limiter combination.
To find the error probability averaged over all possible phase errors, we simply find the

expectation of 𝑃 (𝐸 ∣ 𝜙) = 𝑃
𝐸 (𝜙), given by (9.81), with respect to the phase-error pdf, 𝑝(𝜙),

that is,

𝑃
𝐸
=
∫

𝜋

−𝜋
𝑃
𝐸 (𝜙) 𝑝 (𝜙) 𝑑𝜙 (9.83)

8This is an approximation for the actual pdf for the phase error in a first-order phase-locked loop, which is known as

Tikonov and is given by 𝑝 (𝜙) =
exp

(
𝑧loop cos𝜙

)

2𝜋𝐼0
(
𝑧loop

) , |𝜙| ≤ 𝜋, and 0 otherwise. 𝑧loop is the signal-to-noise ratio within the

loop passband and 𝐼0 (𝑢) is the modified Bessel function of the first kind and order zero. Note that (9.82) should be
renormalized so that its area is 1, but the error is small for 𝜎2

𝜙
small, which it is for 𝑧 large.
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Table 9.2 Effect of Gaussian Phase Reference Jitter on the Detection of BPSK

𝑬
𝒃
∕𝑵𝟎,dB 𝑷

𝑬
, 𝝈

𝟐
𝝓
= 𝟎.𝟎𝟏 rad𝟐

𝑷
𝑬
, 𝝈

𝟐
𝝓
= 𝟎.𝟎𝟓 rad𝟐

𝑷
𝑬
, 𝝈

𝟐
𝝓
= 𝟎.𝟏 rad𝟐

9 3.68 × 10−5 6.54 × 10−5 2.42 × 10−4
10 4.55 × 10−6 1.08 × 10−5 8.96 × 10−5
11 3.18 × 10−7 1.36 × 10−6 3.76 × 10−5
12 1.02 × 10−8 1.61 × 10−7 1.83 × 10−5

The resulting integral must be evaluated numerically for typical phase-error pdfs.9 Typical
results are given in Table 9.2 for 𝑝(𝜙) Gaussian.

Frequency-Shift Keying (FSK)

In Table 9.1, the signals for FSK are given as

𝑠1 (𝑡) = 𝐴 cos𝜔
𝑐
𝑡

or 𝑠2 (𝑡) = 𝐴 cos
(
𝜔
𝑐
+ Δ𝜔

)
𝑡

}
0 ≤ 𝑡 ≤ 𝑇 (9.84)

For simplification, we assume that

𝜔
𝑐
= 2𝜋𝑛

𝑇
(9.85)

and

Δ𝜔 = 2𝜋𝑚
𝑇

(9.86)

where 𝑚 and 𝑛 are integers with 𝑚 ≠ 𝑛. This ensures that both 𝑠1 (𝑡) and 𝑠2 (𝑡) will go through
an integer number of cycles in 𝑇 seconds. As a result,

√
𝐸1𝐸2𝜌12 =

∫

𝑇

0
𝐴
2 cos

(
𝜔
𝑐
𝑡
)
cos(𝜔

𝑐
+ Δ𝜔)𝑡 𝑑𝑡

= 1
2
𝐴
2
∫

𝑇

0
[cos (Δ𝜔𝑡) + cos(2𝜔

𝑐
+ Δ𝜔)𝑡] 𝑑𝑡

= 0 (9.87)

and 𝑅12 = 0 in (9.60). Thus, the signal set is othogonal and

𝑃
𝐸
= 𝑄

(√
𝐸
𝑏

𝑁0

)

(9.88)

which is the same as for ASK. The error probability versus signal-to-noise ratio therefore
corresponds to the curve 𝑅12 = 0 in Figure 9.11.

Note that the reason ASK and FSK have the same 𝑃
𝐸
versus SNR characteristics is that

the comparison is being made on the basis of average signal power. If peak signal powers are
constrained to be the same, ASK is 3 dB worse than FSK.

9See, for example, Van Trees (1968), Chapter 4.
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We denote the three schemes just considered as coherent, binary ASK (BASK), PSK
(BPSK), and FSK (BFSK) to indicate the fact that they are binary.

EXAMPLE 9.6

Compare binary ASK, PSK, and FSK on the basis of 𝐸
𝑏
∕𝑁0 required to give 𝑃

𝐸
= 10−6 and on the

basis of transmission bandwidth for a constant data rate. Take the required bandwidth as the null-to-null
bandwidth of the square-pulse modulated carrier. Assume the minimum bandwidth possible for FSK.

S o l u t i o n

From before, we know that to give 𝑃
𝐸,BPSK = 10−6, the required𝐸

𝑏
∕𝑁0 is 10.53 dB. ASK, on an average

SNR basis, and FSK require an 𝐸
𝑏
∕𝑁0 3.01 dB above that of BPSK, or 13.54 dB, to give 𝑃

𝐸
= 10−6.

The Fourier transform of a square-pulse modulated carrier is

Π(𝑡∕𝑇 ) cos(2𝜋𝑓
𝑐
𝑡) ↔ (𝑇 ∕2){sinc[𝑇 (𝑓 − 𝑓

𝑐
)] + sinc[𝑇 (𝑓 + 𝑓

𝑐
)]}

The null-to-null bandwidth of this spectrum is

𝐵RF =
2
𝑇

Hz (9.89)

For binary ASK and PSK, the required bandwidth is

𝐵PSK = 𝐵ASK = 2
𝑇

= 2𝑅 Hz (9.90)

where 𝑅 is the data rate in bits per second. For FSK, the spectra for

𝑠1 (𝑡) = 𝐴 cos
(
𝜔
𝑐
𝑡
)
, 0 ≤ 𝑡 ≤ 𝑇 , 𝜔

𝑐
= 2𝜋𝑓

𝑐

and

𝑠2 (𝑡) = 𝐴 cos(𝜔
𝑐
𝑡 + Δ𝜔)𝑡, 0 ≤ 𝑡 ≤ 𝑇 , Δ𝜔 = 2𝜋Δ𝑓

are assumed to be separated by 1∕2𝑇 Hz, which is the minimum spacing for orthogonality of the signals.
Given that a cosinusoidal pulse has mainlobe half bandwidth of 1∕𝑇 hertz, it can be roughly reasoned
that the required bandwidth for FSK is therefore

𝐵CFSK = 1
𝑇

+ 1
2𝑇

+ 1
𝑇

= 2.5
𝑇

= 2.5𝑅 Hz (9.91)

⏟⏞⏟⏞⏟

𝑓
𝑐
burst

⏟⏞⏟⏞⏟

𝑓
𝑐
+Δ𝑓 burst

We often specify bandwidth efficiency,𝑅∕𝐵, in terms of bits per second per hertz. For binary ASK
and PSK the bandwidth efficiency is 0.5 bits/s/Hz, while for binary coherent FSK it is 0.4 bits/s/Hz.

■

■ 9.3 MODULATION SCHEMES NOT REQUIRING COHERENT REFERENCES

We now consider two modulation schemes that do not require the acquisition of a local
reference signal in phase coherence with the received carrier. The first scheme to be considered
is referred to as differentially coherent phase-shift keying (DPSK) and may be thought of as
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Table 9.3 Differential Encoding Example

Message sequence: 1 0 0 1 1 1 0 0 0
Encoded sequence: 1 1 0 1 1 1 1 0 1 0
Reference digit: ↑
Transmitted phase: 0 0 𝜋 0 0 0 0 𝜋 0 𝜋

the noncoherent version of BPSK considered in Section 9.3. Also considered in this section
will be noncoherent, binary FSK (binary noncoherent ASK is considered in Problem 9.30).

9.3.1 Differential Phase-Shift Keying (DPSK)

One way of obtaining a phase reference for the demodulation of BPSK is to use the carrier
phase of the preceding signaling interval. The implementation of such a scheme presupposes
two things: (1) The mechanism causing the unknown phase perturbation on the signal varies
so slowly that the phase is essentially constant from one signaling interval to the next. (2) The
phase during a given signaling interval bears a known relationship to the phase during the pre-
ceding signaling interval. The former is determined by the stability of the transmitter oscillator,
time-varying changes in the channel, and so on. The latter requirement can be met by employ-
ing what is referred to as differential encoding of the message sequence at the transmitter.

Differential encoding of a message sequence is illustrated in Table 9.3. An arbitrary
reference binary digit is assumed for the initial digit of the encoded sequence. In the example
shown in Table 9.3, a 1 has been chosen. For each digit of the encoded sequence, the present
digit is used as a reference for the following digit in the sequence. A 0 in the message sequence
is encoded as a transition from the state of the reference digit to the opposite state in the encoded
message sequence; a 1 is encoded as no change of state. In the example shown, the first digit
in the message sequence is a 1, so no change in state is made in the encoded sequence, and a
1 appears as the next digit. This serves as the reference for the next digit to be encoded. Since
the next digit appearing in the message sequence is a 0, the next encoded digit is the opposite
of the reference digit, or a 0. The encoded message sequence then phase-shift keys a carrier
with the phases 0 and 𝜋 as shown in the table.

The block diagram in Figure 9.16 illustrates the generation of DPSK. The equivalence
gate, which is the negation of an EXCLUSIVE-OR (XOR), is a logic circuit that performs the
operations listed in Table 9.4. By a simple level shift at the output of the logic circuit, so that
the encoded message is bipolar, the DPSK signal is produced by multiplication by the carrier,
or double-sideband modulation.

A cos ctω

Level

shift

Equival.

gate

Message

sequence

One-bit

delay

±A cos ctω± 1
×

Figure 9.16
Block diagram of a DPSK modulator.
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Table 9.4 Truth Table for the Equivalence Operation

Input 1 (Message) Input 2 (Reference) Output

0 0 1
0 1 0
1 0 0
1 1 1

t = t0 + T

Threshold
Decisiont0 T

t0
( )dt

Received

signal

One-bit

delay

Figure 9.17
Demodulation of DPSK.

A possible implementation of a differentially coherent demodulator for DPSK is shown
in Figure 9.17. The received signal plus noise is first passed through a bandpass filter centered
on the carrier frequency and then correlated bit by bit with a one-bit delayed version10 of the
signal-plus noise. The output of the correlator is finally compared with a threshold set at zero,
a decision being made in favor of a 1 or a 0, depending on whether the correlator output is
positive or negative, respectively.

To illustrate that the received sequence will be correctly demodulated, consider the
example given in Table 9.3, assuming no noise is present. After the first two bits have been
received (the reference bit plus the first encoded bit), the signal input to the correlator is
𝑆1 = 𝐴 cos𝜔

𝑐
𝑡, and the reference, or delayed, input is 𝑅1 = 𝐴 cos𝜔

𝑐
𝑡. The output of the

correlator is

𝑣1 =
∫

𝑇

0
𝐴
2 cos2

(
𝜔
𝑐
𝑡
)
𝑑𝑡 = 1

2
𝐴
2
𝑇 (9.92)

and the decision is that a 1 was transmitted. For the next bit interval, the inputs are 𝑆2 =
𝐴 cos𝜔

𝑐
𝑡 and 𝑅2 = 𝑆1 = 𝐴 cos

(
𝜔
𝑐
𝑡 + 𝜋

)
= −𝐴 cos𝜔

𝑐
𝑡, resulting in a correlator output of

𝑣2 = −
∫

𝑇

0
𝐴
2 cos2

(
𝜔
𝑐
𝑡
)
𝑑𝑡 = −1

2
𝐴
2
𝑇 (9.93)

and a decision that a 0 was transmitted is made. Continuing in this fashion, we see that the
original message sequence is obtained if there is no noise at the input.

This detector, while simple to implement, is actually not optimum. The optimum detector
for binary DPSK is shown in Figure 9.18. The test statistic for this detector is

𝓁 = 𝑥
𝑘
𝑥
𝑘−1 + 𝑦𝑘𝑦𝑘−1 (9.94)

10This assumes that 𝑇 is not changed by channel perturbations and can be accurately specified at the receiver. Usually,
channel perturbations, through Doppler shift, for example, on the carrier frequency are a much more serious problem.
If the carrier frequency shift is significant, some type of frequency estimation at the receiver would be necessary.
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x(kT ) = xk

t = kT

t0 = (k – 1)T, k integer

x(t)

Decision

logic

Decision

t0 +T

t0
( )dt

Received

signal

plus noise
cos ctω

y(kT ) = yk

t = kT

y(t)t0 +T

t0
( )dt

sin ctω

×

×

Figure 9.18
Optimum receiver for binary differential phase-shift keying.

If 𝓁 > 0, the receiver chooses the signal sequence

𝑠1 (𝑡) =
{
𝐴 cos(𝜔

𝑐
𝑡 + 𝜃), −𝑇 ≤ 𝑡 < 0

𝐴 cos(𝜔
𝑐
𝑡 + 𝜃), 0 ≤ 𝑡 < 𝑇

(9.95)

as having been sent. If 𝓁 < 0, the receiver chooses the signal sequence

𝑠2 (𝑡) =
{
𝐴 cos(𝜔

𝑐
𝑡 + 𝜃), −𝑇 ≤ 𝑡 < 0

−𝐴 cos(𝜔
𝑐
𝑡 + 𝜃), 0 ≤ 𝑡 < 𝑇

(9.96)

as having been sent.11

Without loss of generality, we can choose 𝜃 = 0 (the noise and signal orientations with
respect to the sine and cosine mixers in Figure 9.18 are completely random). The probability
of error can then be computed from 𝑃

𝐸
= Pr

(
𝑥
𝑘
𝑥
𝑘−1 + 𝑦𝑘𝑦𝑘−1 < 0

)
∣ 𝑠1 sent, 𝜃 = 0) (it is

assumed that 𝑠1 and 𝑠2 are equally likely). Assuming that the 𝜔
𝑐
𝑇 is an integer multiple of

2𝜋, we find the outputs of the integrators at time 𝑡 = 0 to be

𝑥0 =
𝐴𝑇

2
+ 𝑛1 and 𝑦0 = 𝑛3 (9.97)

where

𝑛1 =
∫

0

−𝑇
𝑛(𝑡) cos(𝜔

𝑐
𝑡) 𝑑𝑡 (9.98)

and

𝑛3 =
∫

0

−𝑇
𝑛(𝑡) sin(𝜔

𝑐
𝑡) 𝑑𝑡 (9.99)

Similarly, at time 𝑡 = 𝑇 , the outputs are

𝑥1 =
𝐴𝑇

2
+ 𝑛2 and 𝑦1 = 𝑛4 (9.100)

11Again, if the carrier frequency shift is significant, some type of frequency estimation at the receiver would be
necessary. We assume the carrier frequency remains stable through the channel here for simplicity.
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where

𝑛2 =
∫

𝑇

0
𝑛(𝑡) cos(𝜔

𝑐
𝑡) 𝑑𝑡 (9.101)

and

𝑛4 =
∫

𝑇

0
𝑛(𝑡) sin(𝜔

𝑐
𝑡) 𝑑𝑡 (9.102)

It follows that 𝑛1, 𝑛2, 𝑛3, and 𝑛4 are uncorrelated, zero-mean Gaussian random variables
with variances 𝑁0𝑇 ∕4. Since they are uncorrelated, they are also independent, and the ex-
pression for 𝑃

𝐸
becomes

𝑃
𝐸
= Pr

[(
𝐴𝑇

2
+ 𝑛1

) (
𝐴𝑇

2
+ 𝑛2

)
+ 𝑛3𝑛4 < 0

]
(9.103)

This can be rewritten as

𝑃
𝐸
= Pr

⎡
⎢
⎢
⎢
⎣

(
𝐴𝑇

2 + 𝑛1
2 + 𝑛2

2

)2
−

(
𝑛1
2 − 𝑛2

2

)2

+
(
𝑛3
2 + 𝑛4

2

)2
−

(
𝑛3
2 − 𝑛4

2

)2
< 0

⎤
⎥
⎥
⎥
⎦

(9.104)

[To check this, simply square the separate terms in the argument of (9.104), collect like terms,
and compare with the argument of (9.103).] Defining new Gaussian random variables as

𝑤1 =
𝑛1
2

+
𝑛2
2

𝑤2 =
𝑛1
2

−
𝑛2
2

(9.105)

𝑤3 =
𝑛3
2

+
𝑛4
2

𝑤4 =
𝑛3
2

−
𝑛4
2

the probability of error can be written as

𝑃
𝐸
= Pr

[(
𝐴𝑇

2
+𝑤1

)2
+𝑤2

3 < 𝑤
2
2 +𝑤

2
4

]
(9.106)

The positive square roots of the quantities on either side of the inequality sign inside the
brackets can be compared just as well as the quantities themselves. From the definitions of
𝑤1, 𝑤2, 𝑤3, and 𝑤4, it can be shown that they are uncorrelated with each other and all are
zero mean with variances 𝑁0𝑇 ∕8. Since they are uncorrelated and Gaussian, they are also
independent. It follows that

𝑅1 =
√(

𝐴𝑇

2
+𝑤1

)2
+𝑤2

3 (9.107)

is a Ricean random variable (see Section 7.5.3). It is also true that

𝑅2 =
√
𝑤

2
2 +𝑤

2
4 (9.108)
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is a Rayleigh random variable. It follows that the probability of error can be written as the
double integral

𝑃
𝐸
=
∫

∞

0

[

∫

∞

𝑟1

𝑓
𝑅2

(
𝑟2

)
𝑑𝑟2

]
𝑓
𝑅1

(
𝑟1

)
𝑑𝑟1 (9.109)

where 𝑓
𝑅1

(
𝑟1

)
is a Ricean pdf and 𝑓

𝑅2

(
𝑟2

)
is a Rayleigh pdf. Letting 𝜎2 = 𝑁0𝑇 ∕8 and

𝐵 = 𝐴𝑇 ∕2 and using the Rayleigh and Ricean pdf forms given in Table 6.4 and by (7.149),
respectively, this double integral becomes

𝑃
𝐸
=
∫

∞

0

[

∫

∞

𝑟1

𝑟2
𝜎2

exp

(

−
𝑟
2
2

2𝜎2

)

𝑑𝑟2

]
𝑟1
𝜎2

exp

(

−
𝑟
2
1 + 𝐵

2

2𝜎2

)

𝐼0

(
𝐵𝑟1
𝜎2

)
𝑑𝑟1

=
∫

∞

0

[

exp

(

−
𝑟
2
1

2𝜎2

)]
𝑟1
𝜎2

exp

(

−
𝑟
2
1 + 𝐵

2

2𝜎2

)

𝐼0

(
𝐵𝑟1
𝜎2

)
𝑑𝑟1

= exp
(
− 𝐵

2

2𝜎2

)

∫

∞

0

𝑟1
𝜎2

exp

(

−
𝑟
2
1
𝜎2

)

𝐼0

(
𝐵𝑟1
𝜎2

)
𝑑𝑟1

= 1
2
exp

(
− 𝐵

2

2𝜎2

)
exp

(
𝐶

2

2𝜎20

)

∫

∞

0

𝑟1

𝜎
2
0

exp

(

−
𝑟
2
1 + 𝐶

2

2𝜎20

)

𝐼0

(
𝐶𝑟1

2𝜎20

)

𝑑𝑟1 (9.110)

where 𝐶 = 𝐵∕2 and 𝜎2 = 2𝜎20 . Since the integral is over a Ricean pdf, we have (recall that
the integral over the entire domain of a pdf is one)

𝑃
𝐸
= 1

2
exp

(
− 𝐵

2

2𝜎2

)
exp

(
𝐶

2

2𝜎20

)

= 1
2
exp

(
− 𝐵

2

4𝜎2

)
= 1

2
exp

(
−𝐴

2
𝑇

2𝑁0

)
(9.111)

Defining the bit energy 𝐸
𝑏
as 𝐴2

𝑇 ∕2 gives

𝑃
𝐸
= 1

2
exp

(
−
𝐸
𝑏

𝑁0

)
(9.112)

for the optimum DPSK receiver of Figure 9.18.
It has been shown in the literature12 that the suboptimum integrate-and-dump detector

of Figure 9.17 with an input filter bandwidth of 𝐵 = 2∕𝑇 gives an asymptotic probability of
error at large 𝐸

𝑏
∕𝑁0-values of

𝑃
𝐸
≅ 𝑄

[√
𝐸
𝑏
∕𝑁0

]
= 𝑄

[√
𝑧

]
(9.113)

The result is about a 1.5-dB degradation in signal-to-noise ratio for a specified probability of
error from that of the optimum detector. Intuitively, the performance depends on the input
filter bandwidth---a wide bandwidth results in excess degradation because more noise enters
the detector (note that there is a multiplicative noise from the product of undelayed and delayed

12J. H. Park, On binary DPSK reception, IEEE Trans. on Commun., COM-26, 484--486, April 1978.
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Figure 9.19
Simulated performance of a delay-and-multiply DPSK detector compared with approximate theoretical
results.

signals), and an excessively narrow bandwidth degrades the detector performance because of
the intersymbol interference introduced by the filtering.

Recalling the result for BPSK, (9.74) with𝑚 = 0, and using the asymptotic approximation
𝑄(𝑢) ≅ 𝑒−𝑢2∕2∕[(2𝜋)1∕2𝑢], we obtain the following result for BPSK valid for large 𝐸

𝑏
∕𝑁0:

𝑃
𝐸
≅ 𝑒

−𝐸𝑏∕𝑁0

2
√
𝜋𝐸

𝑏
∕𝑁0

(BPSK; 𝐸
𝑏
∕𝑁0 ≫ 1) (9.114)

For large 𝐸
𝑏
∕𝑁0, DPSK and BPSK differ only by the factor (𝜋𝐸

𝑏
∕𝑁0)1∕2, as shown by a

comparison of (9.112) and (9.114), or roughly a 1-dB degradation in signal-to-noise ratio
of DPSK with respect to BPSK at low probability of error. This makes DPSK an extremely
attractive solution to the problem of carrier reference acquisition required for demodulation
of BPSK. The only significant disadvantages of DPSK are that the signaling rate is locked to
the specific value dictated by the delay elements in the transmitter and receiver and that errors
tend to occur in groups of two because of the correlation imposed between successive bits
by the differential encoding process (the latter is the main reason for the 1-dB degradation in
performance of DPSK compared with BPSK at high signal-to-noise ratios).

AMATLABMonteCarlo simulation of a delay-and-multiplyDPSKdetector is considered
in Computer Exercise 9.9. A plot of estimated bit error probability may be made by fixing the
desired 𝐸

𝑏
∕𝑁0, simulating a long string of bits plus noise through the detector, comparing the

output bits with the input bits, and counting the errors. Such a plot is shown in Figure 9.19 and
compared with the theoretical curves for the optimum detector, (9.110), as well as the asymp-
totic result, (9.113), for the suboptimum delay-and-multiply detector shown in Figure 9.17.

9.3.2 Differential Encoding and Decoding of Data

If a data stream is differentially encoded at the transmitter and then subsequentially differen-
tially decoded at the receiver, the added benefit of resistance to inadvertent phase reversals
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of a coherent demodulator is obtained. A little thought shows that the inverse operation to
differential encoding is provided by an exclusive OR (XOR) of the differentially encoded bit
stream with its one bit delayed version and taking the negation of the result. That is, if 𝐴 is
the differentially encoded bit stream, the operation is

𝐵 = XOR(𝐴,𝐷−1(𝐴)) (9.115)

where 𝐷−1(𝐴) is the one bit delayed version of 𝐴 and the overbar denotes negation (that is,
0s are changed to 1s and 1s are changed to 0s).

COMPUTER EXAMPLE 9.2

This computer example uses MATLAB funtions to differentially encode and decode a bit stream to
illustrate the above statement. The functions for differentially encoding and decoding a bit stream are
given below along with sample runs.

%c9ce2a; diff enc(input); function to differentially encode a bit
stream vector

%
function output = diff enc(input)
L in = length(input);
output = [];
for k = 1:L in

if k == 1
output(k) = not(bitxor(input(k),1));
else
output(k) = not(bitxor(input(k),output(k-1)));
end

end
output = [1 output];
% End of script file

%c9ce2b; diff dec(input); function to differentially decode a bit
stream vector

%
function output = diff dec(input)
L in = length(input);
A = input;
B = A(2:L in);
C = A(1:L in-1);
output = not(xor(B, C));

% End of script file

Application of the differential encoding function to the bit stream considered at the beginning of
this section yields the following:

>> A = diff enc([1 0 0 1 1 1 0 0 0])
A =

1 1 0 1 1 1 1 0 1 0

Applying the differential decoding function to the differentially encoded bit stream yields the
original bit stream:

>> D = diff dec(A)
D =

1 0 0 1 1 1 0 0 0
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Negating the differentially encoded bit stream (presumably because the carrier acquisition circuit
locked up 180 degrees out of phase), we get

>> A bar = [0 0 1 0 0 0 0 1 0 1];

Differentially decoding this negated bit stream, we get the same bit stream as originally encoded:

>> E = diff dec(A bar)
E =

1 0 0 1 1 1 0 0 0

Thus, differential encoding and decoding a bit stream ensures that a coherent modem is resistant to
accidental 180-degree phase inversions caused by channel perturbations. The loss in 𝐸

𝑏
∕𝑁0 in so doing

is less than a dB.
■

9.3.3 Noncoherent FSK

The computation of error probabilities for noncoherent systems is somewhatmore difficult than
it is for coherent systems. Since more is known about the received signal in a coherent system
than in a noncoherent system, it is not surprising that the performance of the latter is worse
than the corresponding coherent system. Even with this loss in performance, noncoherent
systems are often used when simplicity of implementation is a predominant consideration.
Only noncoherent FSK will be discussed here.13 A truly noncoherent PSK system does not
exist, but DPSK can be viewed as such.

For noncoherent FSK, the transmitted signals are

𝑠1 (𝑡) = 𝐴 cos(𝜔
𝑐
𝑡 + 𝜃), 0 ≤ 𝑡 ≤ 𝑇 (9.116)

and

𝑠2 (𝑡) = 𝐴 cos[
(
𝜔
𝑐
+ Δ𝜔

)
𝑡 + 𝜃], 0 ≤ 𝑡 ≤ 𝑇 (9.117)

where Δ𝜔 is sufficiently large that 𝑠1 (𝑡) and 𝑠2 (𝑡) occupy different spectral regions. The
receiver for FSK is shown in Figure 9.20. Note that it consists of two receivers for noncoherent
ASK in parallel. As such, calculation of the probability of error for FSK proceeds much the
same way as for ASK, although we are not faced with the dilemma of a threshold that must
change with signal-to-noise ratio. Indeed, because of the symmetries involved, an exact result
for 𝑃

𝐸
can be obtained. Assuming 𝑠1 (𝑡) has been transmitted, the output of the upper detector

at time 𝑇 ,𝑅1 ≜ 𝑟1(𝑇 ) has the Ricean pdf

𝑓
𝑅1

(
𝑟1

)
=
𝑟1
𝑁
𝑒
−

(
𝑟
2
1+𝐴

2
)
∕2𝑁

𝐼0

(
𝐴𝑟1
𝑁

)
, 𝑟1 ≥ 0 (9.118)

where 𝐼0(⋅) is the modified Bessel function of the first kind of order zero and we have made
use of Section 7.5.3. The noise power is 𝑁 = 𝑁0𝐵𝑇 . The output of the lower filter at time
𝑇 , 𝑅2 ≜ 𝑟2(𝑇 ), results from noise alone; its pdf is therefore Rayleigh:

𝑓
𝑅2

(
𝑟2

)
=
𝑟2
𝑁
𝑒
−𝑟22∕2𝑁, 𝑟2 ≥ 0 (9.119)

13See Problem 9.30 for a sketch of the derivation of 𝑃
𝐸
for noncoherent ASK.
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Receiver for noncoherent FSK.

An error occurs if 𝑅2 > 𝑅1, the probability of which can be written as

𝑃
(
𝐸|𝑠1 (𝑡)

)
=
∫

∞

0
𝑓
𝑅1

(
𝑟1

) [

∫

∞

𝑟1

𝑓
𝑅2

(
𝑟2

)
𝑑𝑟2

]
𝑑𝑟1 (9.120)

By symmetry, it follows that 𝑃 (𝐸|𝑠1 (𝑡)) = 𝑃 (𝐸|𝑠2 (𝑡)), so that (9.120) is the average proba-
bility of error. The inner integral in (9.120) integrates to exp

(
−𝑟21∕2𝑁

)
, which results in the

expression

𝑃
𝐸
= 𝑒−𝑧

∫

∞

0

𝑟1
𝑁
𝐼0

(
𝐴𝑟1
𝑁

)
𝑒
−𝑟21∕𝑁 𝑑𝑟1 (9.121)

where 𝑧 = 𝐴2∕2𝑁 as before. If we use a table of definite integrals (see Appendix F.4.2), we
can reduce (9.121) to

𝑃 = 1
2
exp(−𝑧∕2) (9.122)

For coherent, binary FSK, the error probability for large signal-to-noise ratios, using the
asymptotic expansion for the 𝑄-function, is

𝑃
𝐸
≅ exp(−𝑧∕2) ∕

√
2𝜋𝑧 for 𝑧 ≫ 1

Since this differs only by the factor
√
2∕𝜋𝑧 from (9.122), this indicates that the power margin

over noncoherent detection at large signal-to-noise ratios is inconsequential. Thus, because
of the comparable performance and the added simplicity of noncoherent FSK, it is employed
almost exclusively in practice instead of coherent FSK.

For bandwidth, we note that since the signaling bursts cannot be coherently orthogonal,
as for coherent FSK, the minimum frequency separation between tones must be of the order
of 2∕𝑇 hertz for noncoherent FSK, giving a minimum null-to-null RF bandwidth of about

𝐵NCFSK = 1
𝑇

+ 2
𝑇

+ 1
𝑇

= 4𝑅 (9.123)

resulting in a bandwidth efficiency of 0.25 bits/s/Hz.
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■ 9.4 M-ARY PULSE-AMPLITUDE MODULATION (PAM)

AlthoughM-ary modulation will be taken up in the next chapter, we consider one such scheme
in this chapter, baseband 𝑀-ary PAM,14 because it is simple to do so and it illustrates why
one might consider such schemes.

Consider a signal set given by

𝑠
𝑖 (𝑡) = 𝐴𝑖𝑝 (𝑡) , 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇 , 𝑖 = 1, 2,… , 𝑀 (9.124)

where 𝑝 (𝑡) is the basic pulse shape, which is 0 outside the interval
[
𝑡0, 𝑡0 + 𝑇

]
with energy

𝐸
𝑝
=
∫

𝑡0+𝑇

𝑡0

𝑝
2 (𝑡) 𝑑𝑡 = 1 (9.125)

and 𝐴
𝑖
is the amplitude of the ith possible transmitted signal with 𝐴1 < 𝐴2 <… < 𝐴

𝑀
.

Because of the assumption of unit energy for 𝑝 (𝑡), the energy of 𝑠
𝑖 (𝑡) is 𝐴2

𝑖
. Since we want

to associate an integer number of bits with each pulse amplitude, we will restrict𝑀 to be an
integer power of 2. For example, if𝑀 = 23 = 8, we can label the pulse amplitudes 000, 001,
010, 011, 100, 101, 110, and 111, thereby conveying three bits of information per transmitted
pulse (an encoding technique called Gray encoding will be introduced later).

The received signal plus additive, white Gaussian noise in the signaling interval[
𝑡0, 𝑡0 + 𝑇

]
is given by

𝑦 (𝑡) = 𝑠𝑖 (𝑡) + 𝑛 (𝑡) = 𝐴𝑖𝑝 (𝑡) + 𝑛 (𝑡) , 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇 (9.126)

where for convenience, we set 𝑡0 = 0. A reasonable receiver structure is to correlate the
received signal plus noise with a replica of 𝑝 (𝑡) and sample the output of the correlator at
𝑡 = 𝑇 , which produces

𝑌 =
∫

𝑇

0

[
𝑠
𝑖 (𝑡) + 𝑛 (𝑡)

]
𝑝 (𝑡) 𝑑𝑡 = 𝐴𝑖 +𝑁 (9.127)

where

𝑁 =
∫

𝑇

0
𝑛 (𝑡) 𝑝 (𝑡) 𝑑𝑡 (9.128)

is a Gaussian random variable of zero mean and variance 𝜎2
𝑁

= 𝑁0∕2 [the derivation is similar
to that of (9.4)]. Following the correlation operation, the sample value is compared with a
series of thresholds set at

(
𝐴1 + 𝐴2

)
∕2,

(
𝐴2 + 𝐴3

)
∕2,… ,

(
𝐴
𝑀−1 + 𝐴𝑀

)
∕2. The possible

decisions are

If 𝑌 ≤
𝐴1 + 𝐴2

2
decide that 𝐴1𝑝 (𝑡) was sent

If
𝐴1 + 𝐴2

2
< 𝑌 ≤

𝐴2 + 𝐴3
2

decide that 𝐴2𝑝 (𝑡) was sent

If
𝐴2 + 𝐴3

2
< 𝑌 ≤

𝐴3 + 𝐴4
2

decide that 𝐴3𝑝 (𝑡) was sent (9.129)

…

If 𝑌 >
𝐴
𝑀−1 + 𝐴𝑀

2
decide that 𝐴

𝑀
𝑝 (𝑡) was sent

14One might question why this modulation scheme is not referred to as𝑀-ary ASK. The main reason for not doing
so is because the pulse shape 𝑝 (𝑡) is an arbitrary finite-energy waveform whereas ASK uses sinusoidal bursts for the
transmitted waveforms.
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Figure 9.21
(a) Amplitudes and thresholds for PAM. (b) Nonnegative-amplitude equally spaced case. (c) Antipodal
equally spaced case.

The correlation operation amounts to projecting the received signal plus noise into a
generalized one-dimensional vector space with the result that the decision-making process
can be illustrated as shown in Figure 9.21. The probability of making a decision error is the
probability that a given pulse amplitude was sent, say 𝐴

𝑗
, and a decision was made in favor of

some other amplitude, averaged over all possible pulse amplitudes. Or, it can be alternatively
computed as one minus the probability that 𝐴

𝑗
was sent and a decision in favor of 𝐴

𝑗
was

made, which is

𝑃
(
𝐸 | 𝐴

𝑗
sent

)
=

⎧
⎪
⎨
⎪
⎩

1 − Pr
[(
𝐴
𝑗−1 + 𝐴𝑗

)
∕2 < 𝑌 ≤

(
𝐴
𝑗
+ 𝐴

𝑗+1
)
∕2

]
, 𝑗 = 2, 3, … , 𝑀 − 1

1 − Pr
[
𝑌 ≤

(
𝐴1 + 𝐴2

)
∕2

]
, 𝑗 = 1

1 − Pr
[
𝑌 >

(
𝐴
𝑀−1 + 𝐴𝑀

)
∕2

]
, 𝑗 =𝑀

To simplify matters, we now make the assumption that 𝐴
𝑗
= (𝑗 − 1)Δ for 𝑗 = 1, 2, … , 𝑀 .

Thus,

𝑃
(
𝐸 | 𝐴

𝑗
sent

)
=

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1 − Pr
[
𝑁 <

Δ
2

]
, 𝑗 = 1

1 − Pr
[
Δ
2 < Δ +𝑁 ≤

3Δ
2

]
= 1 − Pr

[
−Δ

2 < 𝑁 ≤
Δ
2

]
, 𝑗 = 2

1 − Pr
[
3Δ
2 < 2Δ +𝑁 ≤

5Δ
2

]
= 1 − Pr

[
−Δ

2 < 𝑁 ≤
Δ
2

]
, 𝑗 = 3

…

1 − Pr
[
(2𝑀−3)Δ

2 ≤ (𝑀 − 1)Δ +𝑁
]
= 1 − Pr

[
𝑁 > −Δ

2

]
, 𝑗 =𝑀

These reduce to

𝑃
(
𝐸 | 𝐴

𝑗
sent

)
= 1 −

∫

Δ∕2

−∞

exp
(
−𝜂2∕𝑁0

)

√
𝜋𝑁0

𝑑𝜂

=
∫

∞

Δ∕2

exp
(
−𝜂2∕𝑁0

)

√
𝜋𝑁0

𝑑𝜂 = 𝑄

(
Δ

√
2𝑁0

)

, 𝑗 = 1, 𝑀 (9.130)
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and

𝑃
(
𝐸 | 𝐴

𝑗
sent

)
= 1 −

∫

Δ∕2

−Δ∕2

exp
(
−𝜂2∕𝑁0

)

√
𝜋𝑁0

𝑑𝜂

= 2
∫

∞

Δ∕2

exp
(
−𝜂2∕𝑁0

)

√
𝜋𝑁0

𝑑𝜂

= 2𝑄

(
Δ

√
2𝑁0

)

, 𝑗 = 2, … , 𝑀 − 1 (9.131)

If all possible signals are equally likely, the average probability of error is

𝑃
𝐸
= 1
𝑀

𝑀∑

𝑗=1
𝑃

(
𝐸 | 𝐴

𝑗
sent

)

= 2 (𝑀 − 1)
𝑀

𝑄

(
Δ

√
2𝑁0

)

(9.132)

Now the average signal energy is

𝐸ave =
1
𝑀

𝑀∑

𝑗=1
𝐸
𝑗
= 1
𝑀

𝑀∑

𝑗=1
𝐴
2
𝑗
= 1
𝑀

𝑀∑

𝑗=1
(𝑗 − 1)2 Δ2

= Δ2

𝑀

𝑀−1∑

𝑘=1
𝑘
2 = Δ2

𝑀

(𝑀 − 1)𝑀 (2𝑀 − 1)
6

= (𝑀 − 1) (2𝑀 − 1)Δ2

6
(9.133)

where the summation formula
𝑀−1∑

𝑘=1
𝑘
2 = (𝑀 − 1)𝑀 (2𝑀 − 1)

6
(9.134)

has been used. Thus,

Δ2 =
6𝐸ave

(𝑀 − 1) (2𝑀 − 1)
, M-ary PAM (9.135)

so that

𝑃
𝐸
= 2 (𝑀 − 1)

𝑀
𝑄

(√
Δ2

2𝑁0

)

= 2 (𝑀 − 1)
𝑀

𝑄

⎛
⎜
⎜
⎝

√
3𝐸ave

(𝑀 − 1) (2𝑀 − 1)𝑁0

⎞
⎟
⎟
⎠
, M-ary PAM (9.136)

If the signal amplitudes are symmetrically placed about 0, so that

𝐴
𝑗
= (𝑗 − 1)Δ − 𝑀 − 1

2
Δ for 𝑗 = 1, 2, … , 𝑀, (9.137)
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the average signal energy is15

𝐸ave =
(
𝑀

2 − 1
)
Δ2

12
, M-ary antipodal PAM (9.138)

so that

𝑃
𝐸
= 2 (𝑀 − 1)

𝑀
𝑄

(√
Δ2

2𝑁0

)

= 2 (𝑀 − 1)
𝑀

𝑄

(√
6𝐸ave(

𝑀2 − 1
)
𝑁0

)

, M-ary antipodal PAM (9.139)

Note that antipodal binary PAM is 3 dB better than binary PAM (there is a factor of 2
difference between the two 𝑄-function arguments). Also note that with 𝑀 = 2, (9.139) for
M-ary antipodal PAM reduces to the error probability for binary antipodal signaling given by
(9.11).

In order to compare antipodal PAM with the binary modulation schemes considered in
this chapter, we need to do two things. The first is to express 𝐸ave in terms of the energy per
bit. Since it was assumed that𝑀 = 2𝑚 where 𝑚 = log2𝑀 is an integer number of bits, this
is accomplished by setting 𝐸

𝑏
= 𝐸ave∕𝑚 = 𝐸ave∕ log2𝑀 or 𝐸ave = 𝐸𝑏 log2𝑀 . The second

thing we need to do is convert the probabilities of error found above, which are symbol error
probabilities, to bit error probabilities. This will be taken up in Chapter 10 where two cases
will be discussed. The first is where mistaking the correct symbol in the demodulation process
for any of the other possible symbols is equally likely. The second case, which is the case
of interest here, is where adjacent symbol errors are more probable than nonadjacent symbol
errors and encoding is used to ensure only one bit changes in going from a given symbol to an
adjacent symbol (i.e., in PAM, going from a given amplitude to an adjacent amplitude). This
can be ensured by using Gray encoding of the bits associated with the symbol amplitudes.
(Gray encoding is demonstrated in Problem 9.32.) If both of these conditions are satisfied, it
then follows that the bit error probability is approximately 𝑃

𝑏
≅ 1

log2𝑀
𝑃symbol. Thus,

𝑃
𝑏, PAM≅ 2 (𝑀 − 1)

𝑀 log2𝑀
𝑄

⎛
⎜
⎜
⎝

√
3

(
log2𝑀

)
𝐸
𝑏

(𝑀 − 1) (2𝑀 − 1)𝑁0

⎞
⎟
⎟
⎠
, M-ary PAM; Gray encoding (9.140)

and

𝑃
𝑏, antip. PAM ≅ 2 (𝑀 − 1)

𝑀 log2𝑀
𝑄

⎛
⎜
⎜
⎝

√√√√6
(
log2𝑀

)
𝐸
𝑏

(
𝑀2 − 1

)
𝑁0

⎞
⎟
⎟
⎠
, M-ary antipodal PAM; Gray encoding

(9.141)

The bandwidth for PAMmay be deduced by considering the pulses to be ideal rectangular
of width 𝑇 =

(
log2𝑀

)
𝑇bit . Their baseband spectra are therefore 𝑆

𝑘 (𝑓 ) = 𝐴𝑘 sinc(𝑇𝑓 ) for

15Found by substituting (9.137) into 𝐸ave =
1
𝑀

∑𝑀

𝑗=1 𝐴
2
𝑗
and carrying out the summations (there are three of them).

A handy summation formula is
∑𝑀−1
𝑘=1 𝑘 = 𝑀(𝑀−1)

2 for this case.
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a 0 to first null bandwidth of

𝐵bb =
1
𝑇

= 1
(
log2𝑀

)
𝑇
𝑏

hertz (9.142)

If modulated on a carrier, the null-to-null bandwidth is twice the baseband value or

𝐵PAM = 2
(
log2𝑀

)
𝑇
𝑏

= 2𝑅
log2𝑀

hertz (9.143)

whereas BPSK, DPSK, and binary PAM have bandwidths of 𝐵RF = 2
𝑇𝑏

= 2𝑅 hertz. This

illustrates that for a fixed bit rate, PAM requires less bandwidth the larger 𝑀 . In fact the
bandwidth efficiency for𝑀-ary PAM is 0.5 log2𝑀 bits/s/Hz.

■ 9.5 COMPARISON OF DIGITAL MODULATION SYSTEMS

Bit error probabilities are compared in Figure 9.22 for the modulation schemes considered in
this chapter. Note that the curve for antipodal binary PAM is identical to BPSK. Also note that
the bit error probability of antipodal PAM becomes worse the largerM (i.e., the curves move

100
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Figure 9.22
Error probabilities for several binary digital signaling schemes.
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to the right as 𝑀 gets larger). However, more bits per symbol are transmitted the larger M.
In a bandlimited channel with sufficient signal power, it may desirable to send more bits per
symbol at the cost of increased signal power. Noncoherent binary FSK and antipodal PAM
with𝑀 = 4 have almost identical performance at large signal-to-noise ratios. Note also the
small difference in performance between BPSK and DPSK, with a slightly larger difference
between coherent and noncoherent FSK.

In addition to cost and complexity of implementation, there are many other considerations
in choosing one type of digital data system over another. For some channels, where the
channel gain or phase characteristics (or both) are perturbed by randomly varying propagation
conditions, use of a noncoherent system may be dictated because of the near impossibility
of establishing a coherent reference at the receiver under such conditions. Such channels are
referred to as fading. The effects of fading channels on data transmission will be taken up in
Section 9.8.

The following example illustrates some typical 𝐸
𝑏
∕𝑁0 and data rate calculations for the

digital modulation schemes considered in this chapter.

EXAMPLE 9.7

Suppose 𝑃b = 10−6 is desired for a certain digital data transmission system. (a) Compare the necessary
𝐸
𝑏
∕𝑁0 values for BPSK, DPSK, antipodal PAM for𝑀 = 2, 4, 8, and coherent and noncoherent FSK.

(b) Compare maximum bit rates for an RF bandwidth of 20 kHz.

S o l u t i o n

For part (a), we find by trial and error that𝑄 (4.753) ≅ 10−6. BPSK and antipodal PAM for𝑀 = 2 have
the same bit error probability, given by

𝑃
𝑏
= 𝑄

(√
2𝐸

𝑏
∕𝑁0

)
= 10−6

so that
√
2𝐸

𝑏
∕𝑁0 = 4.753 or 𝐸

𝑏
∕𝑁0 = (4.753)2 ∕2 = 11.3 = 10.53 dB. For𝑀 = 4, (9.141) becomes

2 (4 − 1)
4 log2 (4)

𝑄

⎛
⎜
⎜
⎝

√
6 log2 (4)
42 − 1

𝐸
𝑏

𝑁0

⎞
⎟
⎟
⎠
= 10−6

𝑄

(√

0.8
𝐸
𝑏

𝑁0

)

= 1.333 × 10−6

Another trial-and-error search gives𝑄 (4.695) ≅ 1.333 × 10−6 so that
√
0.8𝐸

𝑏
∕𝑁0 = 4.695 or𝐸

𝑏
∕𝑁0 =

(4.695)2 ∕ (0.8) = 27.55 = 14.4 dB. For𝑀 = 8, (9.141) becomes

2 (8 − 1)
8 log2 (8)

𝑄

⎛
⎜
⎜
⎝

√
6 log2 (8)
82 − 1

𝐸
𝑏

𝑁0

⎞
⎟
⎟
⎠
= 10−6

𝑄

(√

0.286
𝐸
𝑏

𝑁0

)

= 1.714 × 10−6
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Table 9.5 Comparison of Binary Modulation Schemes at 𝑷
𝑬
= 𝟏𝟎−𝟔

Modulation Required 𝑬
𝒃
𝑵𝟎 for 𝑷𝒃

= 𝟏𝟎−𝟔 𝑹 for 𝑩
𝑹𝑭

= 𝟐𝟎 kHz
method (dB) (kbps)

BPSK 10.5 10
DPSK 11.2 10
Antipodal 4-PAM 14.4 20
Antipodal 8-PAM 18.8 30
Coherent FSK, ASK 13.5 8
Noncoherent FSK 14.2 5

Yet another trial-and-error search gives 𝑄 (4.643) ≅ 1.714 × 10−6 so that
√
0.286𝐸

𝑏
∕𝑁0 = 4.643 or

𝐸
𝑏
∕𝑁0 = (4.643)2 ∕ (0.286) = 75.38 = 18.77 dB.
For DPSK, we have

1
2
exp

(
−𝐸

𝑏
∕𝑁0

)
= 10−6

exp
(
−𝐸

𝑏
∕𝑁0

)
= 2 × 10−6

which gives

𝐸
𝑏
∕𝑁0 = −ln

(
2 × 10−6

)
= 13.12 = 11.18 dB

For coherent FSK, we have

𝑃
𝑏
= 𝑄

(√
𝐸
𝑏
∕𝑁0

)
= 10−6

so that

√
𝐸
𝑏
∕𝑁0 = 4.753 or 𝐸

𝑏
∕𝑁0 = (4.753)2 = 22.59 = 13.54 dB

For noncoherent FSK, we have

1
2
exp

(
−0.5𝐸

𝑏
∕𝑁0

)
= 10−6

exp
(
−0.5𝐸

𝑏
∕𝑁0

)
= 2 × 10−6

which results in

𝐸
𝑏
∕𝑁0 = −2 ln

(
2 × 10−6

)
= 26.24 = 14.18 dB

For (b), we use the previously developed bandwidth expressions given by (9.90), (9.91), (9.123),
and (9.143). Results are given in the third column of Table 9.5.

The results of Table 9.5 demonstrate that 𝑀-ary PAM is a modulation scheme that allows a
trade-off between power efficiency (in terms of the 𝐸

𝑏
∕𝑁0 required for a desired bit error probability)

and bandwidth efficiency (in terms of maximum data rate for a fixed bandwidth channel). The power-
bandwidth efficiency trade-off of other𝑀-ary digital modulation schemes will be examined further in
Chapter 10.

■
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■ 9.6 NOISE PERFORMANCE OF ZERO-ISI DIGITAL DATA
TRANSMISSION SYSTEMS

Although a fixed channel bandwidth was assumed in Example 9.7, the results of Chapter 5,
Section 5.3, demonstrated that, in general, bandlimiting causes intersymbol interference (ISI)
and can result in severe degradation in performance. The use of pulse shaping to avoid ISI
was also introduced in Chapter 5, where Nyquist’s pulse-shaping criterion was proved in
Section 5.4.2. The frequency response characteristics of transmitter and receiver filters for
implementing zero-ISI transmission were examined in Section 5.4.3, resulting in (5.48). In
this section, we continue that discussion and derive an expression for the bit error probability
of a zero-ISI data transmission system. Before beginning the derivation of the expression
for the bit error probability we note, as pointed out in Chapter 5, that nothing precludes the
limitation to the binary case---𝑀-ary PAM could just as well be considered but we limit our
consideration to binary signaling for simplicity.

Consider the system of Figure 5.9, repeated in Figure 9.23, where everything is the same
except we now specify the noise as Gaussian and having a power spectral density of 𝐺

𝑛 (𝑓 ) .
The transmitted signal is

𝑥(𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝛿(𝑡 − 𝑘𝑇 ) ∗ ℎ

𝑇
(𝑡)

=
∞∑

𝑘=−∞
𝑎
𝑘
ℎ
𝑇 (𝑡 − 𝑘𝑇 ) (9.144)

where ℎ
𝑇
(𝑡) is the impulse response of the transmitter filter with corresponding frequency

response function𝐻
𝑇
(𝑓 ) = ℑ[ℎ

𝑇
(𝑡)]. This signal passes through a bandlimiting channel filter,

after which Gaussian noise with power spectral density 𝐺
𝑛
(𝑓 ) is added to give the received

signal

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ
𝐶
(𝑡) + 𝑛(𝑡) (9.145)

where ℎ
𝐶
(𝑡) = ℑ−1[𝐻

𝐶
(𝑡)] is the impulse response of the channel. Detection at the receiver

is accomplished by passing 𝑦(𝑡) through a filter with impulse response ℎ
𝑅
(𝑡) and sampling its

output at intervals of 𝑇 seconds (the bit period). If we require that the cascade of transmitter,
channel, and receiver filters satisfies Nyquist’s pulse-shaping criterion, it then follows that the

V
v(t)y(t)x(t) Receiver

f ilter

HR( f )

Channel

f ilter

HC ( f )

Transmitter

f ilter

HT ( f )
Source

Sampler:

tm = mT + td

Gaussian noise n(t)
PSD = Gn( f )

∑
∞

k = –∞

ak (t – kT )δ

∑

Figure 9.23
Baseband system for signaling through a bandlimited channel.
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output sample at time 𝑡 = 𝑡
𝑑
, where 𝑡

𝑑
is the delay imposed by the channel and the receiver

filters, is

𝑉 = 𝐴𝑎0𝑝(0) +𝑁

= 𝐴𝑎0 +𝑁, (9.146)

where

𝐴𝑝(𝑡 − 𝑡
𝑑
) = ℎ

𝑇 (𝑡) ∗ ℎ𝐶 (𝑡) ∗ ℎ𝑅(𝑡) (9.147)

or, by Fourier-transforming both sides, we have

𝐴𝑃 (𝑓 ) exp(−𝑗2𝜋𝑓𝑡
𝑑
) = 𝐻

𝑇
(𝑓 )𝐻

𝐶
(𝑓 )𝐻

𝑅
(𝑓 ) (9.148)

In (9.147), 𝐴 is a scale factor, 𝑡
𝑑
is a time delay accounting for all delays in the system, and

𝑁 = 𝑛(𝑡) ∗ ℎ
𝑅
(𝑡)||𝑡=𝑡𝑑 (9.149)

is the Gaussian noise component at the output of the detection filter at time 𝑡 = 𝑡
𝑑
.

As mentioned above, we assume binary signaling (𝑎
𝑚
= +1 or −1) for simplicity so that

the average probability of error is

𝑃
𝐸
=

P(𝑎
𝑚
= 1)P(𝐴𝑎

𝑚
+𝑁 ≤ 0 given 𝑎

𝑚
= 1)

+ P(𝑎
𝑚
= −1)P(𝐴𝑎

𝑚
+𝑁 ≥ 0 given 𝑎

𝑚
= −1)

= P(𝐴𝑎
𝑚
+𝑁 < 0 given 𝑎

𝑚
= 1)

= P(𝐴𝑎
𝑚
+𝑁 > 0 given 𝑎

𝑚
= −1) (9.150)

where the latter two equations result by assuming 𝑎
𝑚
= 1 and 𝑎

𝑚
= −1 are equally likely and

the symmetry of the noise pdf is invoked. Taking the last equation of (9.150), it follows that

𝑃
𝐸
= P (𝑁 ≥ 𝐴) =

∫

∞

𝐴

exp
(
−𝑢2∕2𝜎2

)

√
2𝜋𝜎2

𝑑𝑢 = 𝑄
(
𝐴

𝜎

)
(9.151)

where

𝜎
2 = var (𝑁) =

∫

∞

−∞
𝐺
𝑛
(𝑓 ) ||𝐻𝑅

(𝑓 )||
2
𝑑𝑓 (9.152)

Because the𝑄-function is a monotonically decreasing function of its argument, it follows
that the average probability of error can be minimized through proper choice of 𝐻

𝑇
(𝑓 ) and

𝐻
𝑅
(𝑓 ) [𝐻

𝐶
(𝑓 ) is assumed to be fixed], by maximizing 𝐴∕𝜎 or by minimizing 𝜎2∕𝐴2. The

minimization can be carried out, subject to the constraint in (9.148), by applying Schwarz’s
inequality. The result is

||𝐻𝑅
(𝑓 )||opt =

𝐾
1∕2
𝑃
1∕2 (𝑓 )

𝐺
1∕4
𝑛 (𝑓 ) ||𝐻𝐶

(𝑓 )||
1∕2

(9.153)

and

||𝐻𝑇
(𝑓 )||opt =

𝐴𝑃
1∕2 (𝑓 )𝐺1∕4

𝑛 (𝑓 )

𝐾1∕2 ||𝐻𝐶
(𝑓 )||

1∕2 (9.154)

where 𝐾 is an arbitrary constant and any appropriate phase response can be used (recall that
𝐺
𝑛
(𝑓 ) is nonnegative since it is a power spectral density).𝑃 (𝑓 ) is assumed to have the zero-ISI

www.it-ebooks.info

http://www.it-ebooks.info/


440 Chapter 9 ∙ Principles of Digital Data Transmission in Noise

property of (5.33) and to be nonnegative. Note that it is the cascade of transmitter, channel, and
receiver filters that produces the overall zero-ISI pulse spectrum in accordance with (9.148).

The minimum value for the error probability corresponding to the above choices for the
optimum transmitter and receiver filters is

𝑃
𝐸,min = 𝑄

⎧
⎪
⎨
⎪
⎩

√
𝐸
𝑏

[

∫

∞

−∞

𝐺
1∕2
𝑛 (𝑓 )𝑃 (𝑓 )
||𝐻𝐶 (𝑓 )||

𝑑𝑓

]−1⎫
⎪
⎬
⎪
⎭

(9.155)

where

𝐸
𝑏
= 𝐸

{
𝑎
2
𝑚

}
∫

∞

−∞
||ℎ𝑇 (𝑡)||

2
𝑑𝑡 =

∫

∞

−∞
||𝐻𝑇 (𝑓 )||

2
𝑑𝑓 (9.156)

is the transmit signal (bit) energy and the last integral follows by Rayleigh’s energy theorem.
Also, note that 𝐸

{
𝑎
2
𝑚

}
= 1 since 𝑎

𝑚
= 1 or 𝑎

𝑚
= −1 with equal probability.

That (9.155) is the minimum error probability can be shown as follows. Taking the
magnitude of (9.148), solving for ||𝐻𝑇 (𝑓 )|| , and substituting into (9.156), we may show that
the transmitted signal energy is

𝐸
𝑏
= 𝐴2

∫

∞

−∞

𝑃
2 (𝑓 ) 𝑑𝑓

||𝐻𝐶
(𝑓 )||

2 ||𝐻𝑅
(𝑓 )||

2 (9.157)

Solving (9.157) for 1∕𝐴2 and using (9.152) for var(𝑁) = 𝜎2, it follows that

𝜎
2

𝐴2 = 1
𝐸
𝑏
∫

∞

−∞
𝐺
𝑛 (𝑓 ) ||𝐻𝑅

(𝑓 )||
2
𝑑𝑓

∫

∞

−∞

𝑃
2 (𝑓 ) 𝑑𝑓

||𝐻𝐶
(𝑓 )||

2 ||𝐻𝑅
(𝑓 )||

2 (9.158)

Schwarz’s inequality (9.39) may now be applied to show that the minimum for 𝜎2∕𝐴2 is

(
𝜎

𝐴

)2

min
= 1
𝐸
𝑏

[

∫

∞

−∞

𝐺
1∕2
𝑛 (𝑓 )𝑃 (𝑓 )
||𝐻𝐶 (𝑓 )||

𝑑𝑓

]2

(9.159)

which is achieved for ||𝐻𝑅 (𝑓 )||opt and ||𝐻𝑇 (𝑓 )||opt given by (9.153) and (9.154). The square
root of the reciprocal of (9.159) is then the maximum 𝐴∕𝜎 that minimizes the error prob-
ability (9.151). In this case, Schwarz’s inequality is applied in reverse with |𝑋 (𝑓 )| =
𝐺

1∕2
𝑛 (𝑓 ) ||𝐻𝑅

(𝑓 )|| and |𝑌 (𝑓 )| = 𝑃 (𝑓 ) ∕
[||𝐻𝐶

(𝑓 )|| ||𝐻𝑅
(𝑓 )||

]
. The condition for equality [i.e.,

achieving the minimum in (9.39)] is 𝑋 (𝑓 ) = 𝐾𝑌 (𝑓 ) (𝐾 is an arbitrary constant) or

𝐺
1∕2
𝑛 (𝑓 ) ||𝐻𝑅

(𝑓 )||opt = 𝐾
𝑃 (𝑓 )

||𝐻𝐶
(𝑓 )|| ||𝐻𝑅

(𝑓 )||opt
(9.160)

which can be solved for ||𝐻𝑅
(𝑓 )||opt , while ||𝐻𝑇

(𝑓 )||opt is obtained by taking the magnitude

of (9.148) and substituting ||𝐻𝑅
(𝑓 )||opt .

A special case of interest occurs when

𝐺
𝑛
(𝑓 ) =

𝑁0
2
, all 𝑓 (white noise) (9.161)

and

𝐻
𝐶
(𝑓 ) = 1, |𝑓 | ≤ 1

𝑇
(9.162)
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Then
||𝐻𝑇

(𝑓 )||opt = ||𝐻𝑅
(𝑓 )||opt = 𝐾

′
𝑃
1∕2 (𝑓 ) (9.163)

where𝐾 ′ is an arbitrary constant. In this case, if 𝑃 (𝑓 ) is a raised-cosine spectrum, the transmit
and receive filters are called ‘‘square-root raised-cosine filters’’ (in applications, the square-
root raised-cosine pulse shape is formed digitally by sampling). The minimum probability of
error then simplifies to

𝑃
𝐸,min = 𝑄

⎧
⎪
⎨
⎪
⎩

√
𝐸
𝑏

[
𝑁0
2 ∫

1∕𝑇

−1∕𝑇
𝑃 (𝑓 ) 𝑑𝑓

]−1⎫
⎪
⎬
⎪
⎭

= 𝑄
(√

2𝐸
𝑏
∕𝑁0

)
(9.164)

where

𝑝 (0) =
∫

1∕𝑇

−1∕𝑇
𝑃 (𝑓 ) 𝑑𝑓 = 1 (9.165)

follows because of the zero-ISI property expressed by (5.34). This result is identical to that
obtained previously for binary antipodal signaling in an infinite bandwidth baseband channel.

Note that the case of𝑀-ary transmission can be solved with somewhat more complication
in computing the average signal energy. The average error probability is identical to (9.139)
with the argument adjusted accordingly.

EXAMPLE 9.8

Show that (9.164) results from (9.155) if the noise power spectral density is given by

𝐺
𝑛
(𝑓 ) =

𝑁0

2
||𝐻𝐶

(𝑓 )||
2 (9.166)

That is, the noise is colored with spectral shape given by the channel filter.

S o l u t i o n

Direct substitution into the argument of (9.155) results in

√
𝐸
𝑏

[

∫

∞

−∞

𝐺
1∕2
𝑛 (𝑓 )𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−1

=
√
𝐸
𝑏

[

∫

∞

−∞

√
𝑁0∕2 ||𝐻𝐶

(𝑓 )||𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−1

=
√
𝐸
𝑏

[√
𝑁0∕2

∫

∞

−∞
𝑃 (𝑓 ) 𝑑𝑓

]−1

=

√
2𝐸

𝑏

𝑁0
(9.167)

where (9.165) has been used.
■

EXAMPLE 9.9

Suppose that 𝐺
𝑛
(𝑓 ) = 𝑁0∕2 and that the channel filter is fixed but unspecified. Find the degradation

factor in𝐸
𝑏
∕𝑁0 over that for a infinite-bandwidth white-noise channel for the error probability of (9.155)

due to pulse shaping and channel filtering.
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S o l u t i o n

The argument of (9.155) becomes

√
𝐸
𝑏

[

∫

∞

−∞

𝐺
1∕2
𝑛 (𝑓 )𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−1

=
√
𝐸
𝑏

[

∫

∞

−∞

√
𝑁0∕2𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−1

=

√
2𝐸

𝑏

𝑁0

[

∫

∞

−∞

𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−1

=

√

2
[

∫

∞

−∞

𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]−2
𝐸
𝑏

𝑁0

=

√
2
𝐹

𝐸
𝑏

𝑁0
(9.168)

where

𝐹 =
[

∫

∞

−∞

𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]2

=
[
2
∫

∞

0

𝑃 (𝑓 )
||𝐻𝐶

(𝑓 )||
𝑑𝑓

]2

(9.169)

■

COMPUTER EXAMPLE 9.3

AMATLABprogram to evaluate𝐹 of (9.169) assuming a raised-cosine pulse spectrumand aButterworth
channel frequency response is given below. The degradation is plotted in dB in Figure 9.24 versus the
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Figure 9.24
Degradations for raised-cosine signaling through a Butterworth channel with additive Gaussian noise.
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rolloff factor for a channel filter 3-dB cutoff frequency of 1/2 data rate. Note that the degradation, which
is the dB increase in 𝐸

𝑇
∕𝑁0 needed to maintain the same bit error probability as in a infinite bandwidth

white Gaussian noise channel, ranges from less that 0.5 to 3 dB for the 4-pole case as the raised-cosine
spectral width ranges from 𝑓3 (𝛽 = 0) to 2𝑓3 (𝛽 = 1)

% file: c9ce3.m
% Computation of degradation for raised-cosine signaling
% through a channel modeled as Butterworth
%
clf
T = 1;
f3 = 0.5/T;
for np = 1:4;

beta = 0.001:.01:1;
Lb = length(beta);
for k = 1:Lb

beta0 = beta(k);
f1 = (1-beta0)/(2*T);
f2 = (1+beta0)/(2*T);
fmax = 1/T;
f = 0:.001:fmax;
I1 = find(f>=0 & f<f1);
I2 = find(f>=f1 & f<f2);
I3 = find(f>=f2 & f<=fmax);
Prc = zeros(size(f));
Prc(I1) = T;
Prc(I2) = (T/2)*(1+cos((pi*T/beta0)*(f(I2)-(1-beta0)/(2*T))));
Prc(I3) = 0;
integrand = Prc.*sqrt(1+(f./f3).ˆ(2*np));
F(k) = (2*trapz(f, integrand)).ˆ2;

end
FdB = 10*log10(F);
subplot(2,2,np), plot(beta, FdB), xlabel(’\beta’),...
ylabel(’Degr. in E T /N 0, dB’), ...
legend([’H C(f): no. poles: ’, num2str(np)]), axis([0 1 0 3])
if np == 1

title([’f 3/R = ’, num2str(f3*T)])
end

end

% End of script file
■

■ 9.7 MULTIPATH INTERFERENCE

The channel models that we have assumed so far have been rather idealistic in that the only
signal perturbation considered was additive Gaussian noise. Although realistic for many situa-
tions, additive Gaussian-noise channel models do not accurately represent many transmission
phenomena. Other important sources of degradation in many digital data systems are bandlim-
iting of the signal by the channel, as examined in the previous section; non-Gaussian noise,
such as impulse noise due to lightning discharges or switching; radio frequency interference
due to other transmitters; and multiple transmission paths, termed multipath, due to stratifica-
tions in the transmission medium or objects that reflect or scatter the propagating signal.

In this section we characterize the effects of multipath transmission because it is a fairly
common transmission perturbation and its effects on digital data transmission can, in the
simplest form, be analyzed in a straightforward fashion.
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sd (t – m)τβ ReceiverTrans.

sd (t)

Figure 9.25
Channel model for multipath transmission.

Initially, we consider a two-ray multipath model as illustrated in Figure 9.25. In addi-
tion to the multiple transmission paths, the channel perturbs the signal with white Gaussian
noise with double-sided power spectral density 1

2𝑁0. Thus, the received signal plus noise is
given by

𝑦(𝑡) = 𝑠
𝑑
(𝑡) + 𝛽𝑠

𝑑
(𝑡 − 𝜏

𝑚
) + 𝑛(𝑡) (9.170)

where 𝑠
𝑑
(𝑡) is the received direct-path signal, 𝛽 is the attenuation of the multipath component,

and 𝜏
𝑚
is its delay. For simplicity, consider the effects of this channel on BPSK. The direct-path

signal can be represented as

𝑠
𝑑
(𝑡) = 𝐴𝑑(𝑡) cos𝜔

𝑐
𝑡 (9.171)

where 𝑑(𝑡), the data stream, is a contiguous sequence of plus or minus 1-valued rectangular
pulses, each one of which is 𝑇 seconds in duration. Because of the multipath component,
we must consider a sequence of bits at the receiver input. We will analyze the effect of the
multipath component and noise on a correlation receiver as shown in Figure 9.26, which, we
recall, detects the data in the presence of Gaussian noise alone with minimum probability of
error. Writing the noise in terms of quadrature components 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡), we find that the

input to the integrator, ignoring double frequency terms, is

𝑥(𝑡) = Lp
{
2𝑦(𝑡) cos𝜔

𝑐
𝑡
}

= 𝐴𝑑(𝑡) + 𝛽𝐴𝑑(𝑡 − 𝜏
𝑚
) cos𝜔

𝑐
𝜏
𝑚
+ 𝑛

𝑐
(𝑡) (9.172)

where Lp{⋅} stands for the lowpass part of the quantity in braces.
The second term in (9.172) represents interference due to the multipath. It is useful to

consider two special cases:

1. 𝜏
𝑚
∕𝑇 ≅ 0, so that 𝑑

(
𝑡 − 𝜏

𝑚

)
≅ 𝑑 (𝑡) . For this case, it is usually assumed that 𝜔0𝜏𝑚 is a

uniformly distributed random variable in (−𝜋, 𝜋) and that there are many other multipath

t = T

v(t)x(t) V Threshold

= 0
Decision

T

0

2 cos ctω

y(t) = sd(t)
+

+ n(t)
sd (t – m)τβ ×

Figure 9.26
Correlation receiver for BPSK with signal-plus multipath at its input.
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components of random amplitudes and phases. In the limit as the number of components
becomes large, the sum process, composed of inphase and quadrature components, has
Gaussian amplitudes. Thus, the envelope of the received signal is Rayleigh or Ricean (see
Section 7.3.3), depending on whether there is a steady signal component present or not.
The Rayleigh case will be analyzed in the next section.

2. 0 < 𝜏
𝑚
∕𝑇 ≤ 1, so that successive bits of 𝑑(𝑡) and 𝑑(𝑡 − 𝜏

𝑚
) overlap; in other words, there

is intersymbol interference. For this case, we will let 𝛿 = 𝛽 cos𝜔
𝑐
𝜏
𝑚
be a parameter in the

analysis.

We now analyze the receiver performance for case 2, for which the effect of intersymbol
interference is nonnegligible. To simplify notation, let

𝛿 = 𝛽 cos
(
𝜔
𝑐
𝜏
𝑚

)
(9.173)

so that (9.172) becomes

𝑥(𝑡) = 𝐴𝑑(𝑡) + 𝐴𝛿𝑑(𝑡 − 𝜏
𝑚
) + 𝑛

𝑐
(𝑡) (9.174)

If 𝜏
𝑚
∕𝑇 ≤ 1, only adjacent bits of 𝐴𝑑(𝑡) and 𝐴𝛿𝑑(𝑡 − 𝜏

𝑚
) will overlap. Thus, we can compute

the signal component of the integrator output in Figure 9.26 by considering the four combina-
tions shown in Figure 9.27. Assuming 1s and 0s are equally probable, the four combinations
shown in Figure 9.27 will occur with equal probabilities of 1

4 . Thus, the average probability
of error is

𝑃
𝐸
= 1

4
[𝑃 (𝐸 ∣ ++) + 𝑃 (𝐸 ∣ −+) + 𝑃 (𝐸 ∣ +−) + 𝑃 (𝐸 ∣ −−)] (9.175)

where 𝑃 (𝐸 ∣ ++) is the probability of error given two 1s were sent, and so on. The noise
component of the integrator output, namely,

𝑁 =
∫

𝑇

0
2𝑛(𝑡) cos

(
𝜔
𝑐
𝑡
)
𝑑𝑡 (9.176)
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t
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Figure 9.27
The various possible cases for intersymbol interference in multipath transmission.
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is Gaussian with zero mean and variance

𝜎
2
𝑛
= 𝐸

{
4
∫

𝑇

0 ∫

𝑇

0
𝑛 (𝑡) 𝑛 (𝜎) cos

(
𝜔
𝑐
𝑡
)
cos

(
𝜔
𝑐
𝜎
)
𝑑𝑡 𝑑𝜎

}

= 4
∫

𝑇

0 ∫

𝑇

0

𝑁0
2
𝛿 (𝑡 − 𝜎) cos

(
𝜔
𝑐
𝑡
)
cos

(
𝜔
𝑐
𝜎
)
𝑑𝜎 𝑑𝑡

= 2𝑁0
∫

𝑇

0
cos2

(
𝜔
𝑐
𝑡
)
𝑑𝑡

= 𝑁0𝑇 (𝜔
𝑐
𝑇 an integer multiple of 2𝜋) (9.177)

Because of the symmetry of the noise pdf and the symmetry of the signals shown in Figure 9.27,
it follows that

𝑃 (𝐸| + +) = 𝑃 (𝐸| − −) and 𝑃 (𝐸| − +) = 𝑃 (𝐸| + −) (9.178)

so that only two probabilities need be computed instead of four. From Figure 9.27, it follows
that the signal component at the integrator output, given a 1, 1 was transmitted, is

𝑉++ = 𝐴𝑇 (1 + 𝛿) (9.179)

and if a −1, 1 was transmitted, it is

𝑉−+ = 𝐴𝑇 (1 + 𝛿) − 2𝐴𝛿𝜏
𝑚

= 𝐴𝑇
[
(1 + 𝛿) −

2𝛿𝜏
𝑚

𝑇

]
(9.180)

The conditional error probability 𝑃 (𝐸| + +) is therefore

𝑃 (𝐸| + +) = Pr[𝐴𝑇 (1 + 𝛿) +𝑁 < 0] =
∫

−𝐴𝑇 (1+𝛿)

−∞

𝑒
−𝑢2∕2𝑁0𝑇

√
2𝜋𝑁0𝑇

𝑑𝑢

= 𝑄
⎡
⎢
⎢
⎣

√
2𝐸

𝑏

𝑁0
(1 + 𝛿)

⎤
⎥
⎥
⎦

(9.181)

where 𝐸
𝑏
= 1

2𝐴
2
𝑇 is the energy of the direct-signal component. Similarly, 𝑃 (𝐸| − +) is

given by

𝑃 (𝐸| − +) = Pr
{
𝐴𝑇

[
(1 + 𝛿) −

2𝛿𝜏
𝑚

𝑇

]
+𝑁 < 0

}

=
∫

−𝐴𝑇 (1+𝛿)+2𝛿𝜏𝑚∕𝑇

−∞

𝑒
−𝑢2∕2𝑁0𝑇

√
2𝜋𝑁0𝑇

𝑑𝑢

= 𝑄

{√
2𝐸

𝑏

𝑁0

[
(1 + 𝛿) −

2𝛿𝜏
𝑚

𝑇

] }

(9.182)

Substituting these results into (9.175) and using the symmetry properties for the other condi-
tional probabilities, we have for the average probability of error

𝑃
𝐸
= 1

2
𝑄

[√
2𝑧0(1 + 𝛿)

]
+ 1

2
𝑄

{√
2𝑧0[(1 + 𝛿) − 2𝛿𝜏

𝑚
∕𝑇 ]

}
(9.183)

where 𝑧0 ≜ 𝐸𝑏∕𝑁0 = 𝐴2
𝑇 ∕2𝑁0 as before.
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Figure 9.28
𝑃
𝐸
versus 𝑧 for various conditions of fading and intersymbol interference due to multipath.

A plot of 𝑃
𝐸
versus 𝑧0 for various values of 𝛿 and 𝜏𝑚∕𝑇 , as shown in Figure 9.28, gives an

indication of the effect of multipath on signal transmission. A question arises as to which curve
in Figure 9.28 should be used as a basis of comparison. The one for 𝛿 = 𝜏

𝑚
∕𝑇 = 0 corresponds

to the error probability for BPSK signaling in a nonfading channel. However, note that

𝑧
𝑚
=
𝐸
𝑏 (1 + 𝛿)2

𝑁0
= 𝑧0(1 + 𝛿)2 (9.184)

is the signal-to-noise ratio that results if the total effective received-signal energy, including
that of the indirect component, is used. Indeed, from (9.183) it follows that this is the curve
for 𝜏

𝑚
∕𝑇 = 0 for a given value of 𝛿. Thus, if we use this curve for 𝑃

𝐸
as a basis of comparison

for 𝑃
𝐸
with 𝜏

𝑚
∕𝑇 nonzero for each 𝛿, we will be able to obtain the increase in 𝑃

𝐸
due to

intersymbol interference alone. However, it is more useful for system design purposes to have
degradation in SNR instead. That is, we want the increase in signal-to-noise ratio (or signal
energy) necessary to maintain a given 𝑃

𝐸
in the presence of multipath relative to a channel

with 𝜏
𝑚
= 0. Figure 9.29 shows typical results for 𝑃

𝐸
= 10−4.

Note that the degradation is actually negative for 𝛿 < 0; that is, the performance with
intersymbol interference is better than for no intersymbol interference, provided the indirect
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Figure 9.29
Degradation versus 𝛿 for correlation detection of BPSK
in specular multipath for 𝑃

𝐸
= 10−4.

received signal fades out of phase with respect to the direct component. This seemingly
contradictory result is explained by consulting Figure 9.27, which shows that the direct
and indirect received-signal components being out of phase, as implied by 𝛿 < 0, results in
additional signal energy being received for cases (b) and (d) with 𝜏

𝑚
∕𝑇 > 0 over what would

be received if 𝜏
𝑚
∕𝑇 = 0. On the other hand, the received-signal energy for cases (a) and (c) is

independent of 𝜏
𝑚
∕𝑇 .

Two interesting conclusions may be drawn from Figure 9.29. First, note that when 𝛿 < 0,
the effect of intersymbol interference is negligible, since variation of 𝜏

𝑚
∕𝑇 has no significant

effect on the degradation. The degradation is due primarily to the decrease in signal amplitude
owing to the destructive interference because of the phase difference of the direct and indirect
signal components. Second, when 𝛿 > 0, the degradation shows a strong dependence on 𝜏

𝑚
∕𝑇 ,

indicating that intersymbol interference is the primary source of the degradation.
The adverse effects of intersymbol interference due to multipath can be combated by

using an equalization filter that precedes detection of the received data.16 To illustrate the
basic idea of such a filter, we take the Fourier transform of (9.174) with 𝑛(𝑡) = 0 to obtain the
frequency response function of the channel,𝐻

𝐶
(𝑓 ):

𝐻
𝐶 (𝑓 ) =

ℑ [𝑦 (𝑡)]
ℑ

[
𝑠
𝑑 (𝑡)

] (9.185)

If 𝛽 and 𝜏
𝑚
are known, the correlation receiver of Figure 9.26 can be preceded by a filter,

referred to as an equalizer, with the frequency response function

𝐻eq(𝑡) =
1

𝐻
𝐶
(𝑓 )

= 1
1 + 𝛽𝑒−𝑗2𝜋𝜏𝑚𝑓

(9.186)

to fully compensate for the signal distortion introduced by the multipath. Since 𝛽 and 𝜏
𝑚
will

not be known exactly, or may even change with time, provision must be made for adjusting the
parameters of the equalization filter. Noise, although important, is neglected for simplicity.

16Equalization can be used to improve performance whenever intersymbol interference is a problem, for example,
due to filtering as pointed out in Chapter 5.
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■ 9.8 FADING CHANNELS

9.8.1 Basic Channel Models

Before examining the statistics and error probabilities of flat fading channels, we pause to
examine a fading-channel model and define flat fading using a simple two-ray multipath
channel as an example. Concentrating only on the channel, we neglect the noise component
in (9.170) and modify (9.170) slightly to write it as

𝑦(𝑡) = 𝑎(𝑡)𝑠
𝑑
(𝑡) + 𝑏(𝑡)𝑠

𝑑
[𝑡 − 𝜏(𝑡)] (9.187)

In the preceding equation 𝑎(𝑡) and 𝑏(𝑡) represent the attenuation of the direct path and the
multipath component, respectively. Note that we have assumed that 𝑎, 𝑏, and the relative delay
𝜏 are time varying. This is the dynamic channel model in which the time-varying nature of 𝑎,
𝑏, and 𝜏 are typically due to relative motion of the transmitter and the receiver.

If the delay of the multipath component is negligible, we have the model

𝑦(𝑡) = [𝑎(𝑡) + 𝑏(𝑡)]𝑠
𝑑
(𝑡) (9.188)

Note that this model is independent of frequency. Thus, the channel is flat (frequency inde-
pendent) fading. Although the channel response is flat, it is time varying and is known as the
time-varying flat-fading channel model.

In this section we only consider static fading channels in which 𝑎, 𝑏, and 𝜏 are constants
or random variables, at least over a significantly long sequence of bit transmissions. For this
case (9.187) becomes

𝑦(𝑡) = 𝑎𝑠
𝑑
(𝑡) + 𝑏𝑠

𝑑
[𝑡 − 𝜏] (9.189)

Taking the Fourier transform of (9.189) term-by-term gives

𝑌 (𝑓 ) = 𝑎𝑆
𝑑
(𝑓 ) + 𝑏𝑆

𝑑
(𝑓 ) exp(−2𝜋𝑓𝜏) (9.190)

which gives the channel transfer function

𝐻
𝐶
(𝑓 ) = 𝑌 (𝑓 )

𝑆
𝑑
(𝑓 )

= 𝑎 + 𝑏 exp(−𝑗2𝜋𝑓𝜏) (9.191)

This channel is normally frequency selective. However, if 2𝜋𝑓𝜏 is negligible for a particular
application, the channel transfer function is no longer frequency selective and the transfer
function is

𝐻
𝐶
(𝑓 ) = 𝑎 + 𝑏 (9.192)

which is, in general, random or a constant as a special case; i.e., the channel is flat fading and
time invariant.

EXAMPLE 9.10

A two-path channel consists of a direct path and one delayed path. The delayed path has a delay of
3 microseconds. The channel can be considered flat fading if the phase shift induced by the delayed
path is 5 degrees or less. Determine the maximum bandwidth of the channel for which the flat-fading
assumption holds.
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S o l u t i o n

A phase shift of 5 degrees is equivalent to 5(𝜋∕180) radians. We assume a bandpass channel with
bandwidth 𝐵. In the baseband model the highest frequency will be 𝐵∕2. We therefore find the largest
value of 𝐵 that satisfies

2𝜋
(
𝐵

2

)
(3 × 10−6) ≤ 5

(
𝜋

180

)
(9.193)

Thus,

𝐵 = 5
180(3 × 10−6)

= 9.26 kHz (9.194)

■

9.8.2 Flat-Fading Channel Statistics and Error Probabilities

Returning to (9.170), we assume that there are several delayed multipath components with
random amplitudes and phases.17 Applying the central-limit theorem, it follows that the
inphase and quadrature components of the received-signal are Gaussian, the sum total of
which we refer to as the diffuse component. In some cases, there may be one dominant
component due to a direct line of sight from transmitter to receiver, which we refer to as the
specular component. Applying the results of Section 7.5.3, it follows that the envelope of the
received signal obeys a Ricean probability density function, given by

𝑓
𝑅 (𝑟) =

(
𝑟

𝜎2

)
exp

[

−
(
𝑟
2 + 𝐴2)

2𝜎2

]

𝐼0

(
𝑟𝐴

𝜎2

)
, 𝑟 ≥ 0 (9.195)

where 𝐴 is the amplitude of the specular component, 𝜎2 is the variance of each quadrature
diffuse component, and 𝐼0 (𝑢) is the modified Bessel function of the first kind and order zero.
Note that if 𝐴 = 0, the Ricean pdf reduces to a Rayleigh pdf. We consider this special case
because the general Ricean case is more difficult to analyze.

Implicit in this channel model as just discussed is that the envelope of the received signal
varies slowly compared with the bit interval. This is known as a slowly fading channel. If the
envelope (and phase) of the received-signal envelope and/or phase varies nonnegligibly over
the bit interval, the channel is said to be fast fading. This is a more difficult case to analyze
than the slowly fading case and will not be considered here. A commonmodel for the envelope
of the received signal in the slowly fading case is a Rayleigh random variable, which is also
the simplest case to analyze.

We illustrate the consideration of a BPSK signal received from a Rayleigh slowly fading
channel as follows. Let the demodulated signal be written in the simplified form

𝑥(𝑡) = 𝑅𝑑(𝑡) + 𝑛
𝑐
(𝑡) (9.196)

where 𝑅 is a Rayleigh random variable with pdf given by (9.195) with 𝐴 = 0. If 𝑅 were a
constant, we know that the probability of error is given by (9.74) with 𝑚 = 0. In other words,

17For a prize-winning review of all aspects of fading channels, including statistical models, code design, and equal-
ization, see the following paper: E. Biglieri, J. Proakis, and S. Shamai, ‘‘Fading Channels: Information-Theoretic and
Communications Aspects,’’ IEEE Trans. on Infor. Theory, 44, 2619--2692, October 1998.
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given 𝑅, we have for the probability of error

𝑃
𝐸
(𝑅) = 𝑄

(√
2𝑍

)
(9.197)

where uppercase 𝑍 is used because it is considered to be a random variable. In order to find
the probability of error averaged over the envelope 𝑅, we average (9.197) with respect to the
pdf of 𝑅, which is assumed to be Rayleigh in this case. However, 𝑅 is not explicitly present
in (9.197) because it is buried in 𝑍:

𝑍 = 𝑅
2
𝑇

2𝑁0
(9.198)

Now if 𝑅 is Rayleigh-distributed, it can be shown by transformation of random variables that
𝑅
2, and therefore, 𝑍 is exponentially distributed. Thus, the average of (9.197) is18

𝑃
𝐸
=
∫

∞

0
𝑄

(√
2𝑧

) 1
𝑍

𝑒
−𝑧∕𝑍

𝑑𝑧 (9.199)

where 𝑍 is the average signal-to-noise ratio. This integration can be carried out by parts with

𝑢 = 𝑄
(√

2𝑧
)
=
∫

∞

√
2𝑧

exp
(
−𝑡2∕2

)

√
2𝜋

𝑑𝑡 and 𝑑𝑣 =
exp

(
−𝑧∕𝑍

)

𝑍

𝑑𝑧 (9.200)

Differentiation of the first expression and integration of the second expression gives

𝑑𝑢 = −
exp(−𝑧)
√
2𝜋

𝑑𝑧
√
2𝑧

and 𝑣 = −exp
(
−𝑧∕𝑍

)
(9.201)

Putting this into the integration by parts formula, ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢, gives

𝑃
𝐸
= −𝑄

(√
2𝑧

)
exp

(
−𝑧∕𝑍

)||||

∞

0
−
∫

∞

0

exp(−𝑧) exp
(
−𝑧∕𝑍

)

√
4𝜋𝑧

𝑑𝑧

= 1
2
− 1

2
√
𝜋
∫

∞

0

exp
[
−𝑧

(
1 + 1∕𝑍

)]

√
𝑧

𝑑𝑧 (9.202)

In the last integral, let 𝑤 =
√
𝑧 and 𝑑𝑤 = 𝑑𝑧

2
√
𝑧
, which gives

𝑃
𝐸
= 1

2
− 1

√
𝜋
∫

∞

0
exp

[
−𝑤2

(
1 + 1∕𝑍

)]
𝑑𝑤 (9.203)

18Note that there is somewhat of a disconnect here from reality---the Rayleigh model for the envelope corresponds
to a uniformly distributed random phase in (0, 2𝜋) (new phase and envelope random variables are assumed drawn
each bit interval). Yet, a BPSK demodulator requires a coherent phase reference. One way to establish this coherent
phase reference might be via a pilot signal sent along with the data-modulated signal. Experiment and simulation
have shown that it is very difficult to establish a coherent phase reference directly from the Rayleigh fading signal
itself, for example, by a Costas phase-locked loop.
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We know that

∫

∞

0

exp
(
−𝑤2∕2𝜎2

𝑤

)

√
2𝜋𝜎2

𝑤

𝑑𝑤 = 1
2

(9.204)

because it is the integral over half of a Gaussian density function. Identifying 𝜎2
𝑤
= 1

2
(
1+1∕𝑍

)

in (9.203) and using the integral (9.204) gives, finally, that

𝑃
𝐸
= 1

2

⎡
⎢
⎢
⎣
1 −

√
𝑍

1 +𝑍

⎤
⎥
⎥
⎦
, BPSK (9.205)

which is a well-known result.19 A similar analysis for binary, coherent FSK results in the
expression

𝑃
𝐸
= 1

2

⎡
⎢
⎢
⎣
1 −

√
𝑍

2 +𝑍

⎤
⎥
⎥
⎦
, coherent FSK (9.206)

Other modulation techniques that can be considered in a similar fashion, but are more
easily integrated than BPSK or coherent FSK, are DPSK and noncoherent FSK. For these
modulation schemes, the average error probability expressions are

𝑃
𝐸
=
∫

∞

0

1
2
𝑒
−𝑧 1
𝑍

𝑒
−𝑧∕𝑍

𝑑𝑧 = 1
2(1 +𝑍)

, DPSK (9.207)

and

𝑃
𝐸
=
∫

∞

0

1
2
𝑒
−𝑧∕2 1

𝑍

𝑒
−𝑧∕𝑍

𝑑𝑧 = 1
2 +𝑍

, noncoherent FSK (9.208)

respectively. The derivations are left to the problems. These results are plotted in Figure 9.30
and compared with the corresponding results for nonfading channels. Note that the penalty
imposed by the fading is severe.

What can be done to combat the adverse effects of fading? We note that the degradation
in performance due to fading results from the received-signal envelope being much smaller on
some bits than it would be for a nonfading channel, as reflected by the random envelope 𝑅. If
the transmitted signal power is split between two or more subchannels that fade independently
of each other, then the degradation will most likely not be severe in all subchannels for a given
binary digit. If the outputs of these subchannels are then recombined in the proper fashion,
it seems reasonable that better performance can be obtained than if a single transmission
path is used. The use of such multiple transmission paths to combat fading is referred to as
diversity transmission, touched upon briefly in Chapter 11. There are various ways to obtain
the independent transmission paths; chief ones are by transmitting over spatially different
paths (space diversity), at different times (time diversity, often implemented by coding),
with different carrier frequencies (frequency diversity), or with different polarizations of the
propagating wave (polarization diversity).

19See J. G. Proakis, Digital Communications (fourth ed.), New York: McGraw Hill, 2001, Chapter 14.
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Figure 9.30
Error probabilities for various
modulation schemes in flat-fading
Rayleigh channels. (a) Coherent and
noncoherent FSK. (b) BPSK and DPSK.

In addition, the recombining may be accomplished in various fashions. First, it can take
place either in the RF path of the receiver (predetection combining) or following the detector
before making hard decisions (postdetection combining). The combining can be accomplished
simply by adding the various subchannel outputs (equal-gain combining), weighting the vari-
ous subchannel components proportionally to their respective signal-to-noise ratios (maximal-
ratio combining), or selecting the largest magnitude subchannel component and basing the
decision only on it (selection combining).

In some cases, in particular, if the combining technique is nonlinear, such as in the
case of selection combining, an optimum number of subpaths exist that give the maximum
improvement. The number of subpaths 𝐿 employed is referred to as the order of diversity.

That an optimum value of𝐿 exists in some cases may be reasoned as follows. Increasing𝐿
provides additional diversity and decreases the probability that most of the subchannel outputs
are badly faded. On the other hand, as 𝐿 increases with total signal energy held fixed, the
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average signal-to-noise ratio per subchannel decreases, thereby resulting in a larger probability
of error per subchannel. Clearly, therefore, a compromise between these two situations must
be made. The problem of fading is again reexamined in Chapter 11 (Section 11.3), and the
optimum selection of 𝐿 is considered in Problem 11.17.

Finally, the reader is referred to Simon and Alouini (2000) for a generalized approach to
performance analysis in fading channels.

COMPUTER EXAMPLE 9.4

A MATLAB program for computing the bit error probability of BPSK, coherent BFSK, DPSK, and
noncoherent BFSK in nonfading and fading environments and providing a plot for comparison of
nonfading and fading performance is given below.

% file: c9ce4.m
% Bit error probabilities for binary BPSK, CFSK, DPSK, NFSK in Rayleigh

fading
% compared with same in nonfading
%
clf
mod type = input(’Enter mod. type: 1=BPSK; 2=DPSK; 3=CFSK; 4=NFSK: ’);
z dB = 0:.3:30;
z = 10.ˆ(z dB/10);
if mod type == 1

P E nf = qfn(sqrt(2*z));
P E f = 0.5*(1-sqrt(z./(1+z)));

elseif mod type == 2
P E nf = 0.5*exp(-z);
P E f = 0.5./(1+z);

elseif mod type == 3
P E nf = qfn(sqrt(z));
P E f = 0.5*(1-sqrt(z./(2+z)));

elseif mod type == 4
P E nf = 0.5*exp(-z/2);
P E f = 1./(2+z);

end
semilogy(z dB,P E nf,’-’),axis([0 30 10ˆ(-6) 1]),xlabel(’E b/N 0,

dB’),ylabel(’P E’),...
hold on
grid
semilogy(z dB,P E f,’--’)
if mod type == 1

title(’BPSK’)
elseif mod type == 2

title(’DPSK’)
elseif mod type == 3

title(’Coherent BFSK’)
elseif mod type == 4

title(’Noncoherent BFSK’)
end
legend(’No fading’,’Rayleigh Fading’,1)

%
% This function computes the Gaussian Q-function
%
function Q=qfn(x)
Q = 0.5*erfc(x/sqrt(2));

% End of script file

■
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Figure 9.31
Transversal filter
implementation for
equalization of intersymbol
interference.

■ 9.9 EQUALIZATION

As explained in Section 9.7, an equalization filter can be used to combat channel-induced
distortion caused by perturbations such as multipath propagation or bandlimiting due to filters.
According to (9.186), a simple approach to the idea of equalization leads to the concept of
an inverse filter. As in Chapter 5, we specialize our considerations of an equalization filter
to a particular form---a transversal or tapped-delay-line filter the block diagram of which is
repeated in Figure 9.31.20

We can take two approaches to determining the tap weights, 𝛼−𝑁,… , 𝛼0,… 𝛼
𝑁

in
Figure 9.31 for given channel conditions. One is zero-forcing, and the other is minimiza-
tion of mean-square error. We briefly review the first method, including a consideration of
noise effects, and then consider the second.

9.9.1 Equalization by Zero-Forcing

In Chapter 5 it was shown how the pulse response of the channel output, 𝑝
𝑐
(𝑡), could be forced

to have a maximum value of 1 at the desired sampling time with𝑁 samples of 0 on either side
of the maximum by properly choosing the tap weights of a (2𝑁 + 1)-tap transversal filter. For
a desired equalizer output at the sampling times of

𝑝eq(𝑚𝑇 ) =
𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑝
𝑐
[(𝑚 − 𝑛)𝑇 ]

=
{1, 𝑚 = 0

0, 𝑚 ≠ 0
𝑚 = 0,±1,±2,… ,±𝑁 (9.209)

the solution was to find the middle column of the inverse of the channel response matrix [𝑃
𝑐
]:

[𝑃eq] = [𝑃
𝑐
][𝐴] (9.210)

20For an excellent overview of equalization, see S. Quereshi, ‘‘Adaptive Equalization,’’ Proc. of the IEEE, 73,
1349--1387, September 1985.
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where the various matrices are defined as

[𝑃eq] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0
1
0
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝑁 zeros

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝑁 zeros

(9.211)

[𝐴] =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼−𝑁
𝛼−𝑁+1

⋮

𝛼
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

(9.212)

and

[
𝑃
𝑐

]
=

⎡
⎢
⎢
⎢
⎢
⎣

𝑝
𝑐 (0) 𝑝

𝑐 (−𝑇 ) ⋯ 𝑝
𝑐 (−2𝑁𝑇 )

𝑝
𝑐 (𝑇 ) 𝑝

𝑐 (0) ⋯ 𝑝
𝑐 (−2𝑁 + 1) 𝑇

⋮ ⋮

𝑝
𝑐 (2𝑁𝑇 ) 𝑝

𝑐 (0)

⎤
⎥
⎥
⎥
⎥
⎦

(9.213)

That is, the equalizer coefficient matrix is given by

[𝐴]opt =
[
𝑃
𝑐

]−1 [
𝑃eq

]
= middle column of

[
𝑃
𝑐

]−1
(9.214)

The equalizer response for delays less than −𝑁𝑇 or greater than 𝑁𝑇 are not necessarily
zero. Since the zero-forcing equalization procedure only takes into account the received pulse
sample values while ignoring the noise, it is not surprising that its noise performance may be
poor in some channels. In fact, in some cases, the noise spectrum is enhanced considerably at
certain frequencies by a zero-forcing equalizer as a plot of its frequency response reveals:

𝐻eq (𝑓 ) =
𝑁∑

𝑛=−𝑁
𝛼
𝑛
exp(−𝑗2𝜋𝑛𝑓𝑇 ) (9.215)

To assess the effects of noise, consider the input-output relation for the transversal filter

with a signal pulse plus Gaussian noise of power spectral density 𝐺
𝑛 (𝑓 ) =

𝑁0
2 Π

(
𝑓

2𝐵

)
at its
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input. The output can be written as

𝑦 (𝑚𝑇 ) =
𝑁∑

𝑙=−𝑁
𝛼
𝑙

{
𝑝
𝑐
[(𝑚 − 𝑙)𝑇 ] + 𝑛 [(𝑚 − 𝑙) 𝑇 ]

}

=
𝑁∑

𝑙=−𝑁
𝛼
𝑙
𝑝
𝑐
[(𝑚 − 𝑙)𝑇 ] +

𝑁∑

𝑙=−𝑁
𝛼
𝑙
𝑛 [(𝑚 − 𝑙) 𝑇 ]

= 𝑝eq(𝑚𝑇 ) +𝑁𝑚
, 𝑚 = ⋯ , −2, −1, 0, 1, 2, ⋯ (9.216)

The random variables
{
𝑁
𝑚

}
are zero-mean, Gaussian, and have variance

𝜎
2
𝑁

= 𝐸
{
𝑁

2
𝑘

}

= 𝐸

{
𝑁∑

𝑗=−𝑁
𝛼
𝑗
𝑛 [(𝑘 − 𝑗) 𝑇 ]

𝑁∑

𝑙=−𝑁
𝛼
𝑙
𝑛 [(𝑘 − 𝑙) 𝑇 ]

}

= 𝐸

{
𝑁∑

𝑗=−𝑁

𝑁∑

𝑙=−𝑁
𝛼
𝑗
𝛼
𝑙
𝑛 [(𝑘 − 𝑗) 𝑇 ] 𝑛 [(𝑘 − 𝑙) 𝑇 ]

}

=
𝑁∑

𝑗=−𝑁

𝑁∑

𝑙=−𝑁
𝛼
𝑗
𝛼
𝑙
𝐸 {𝑛 [(𝑘 − 𝑗) 𝑇 ] 𝑛 [(𝑘 − 𝑙) 𝑇 ]}

=
𝑁∑

𝑗=−𝑁

𝑁∑

𝑙=−𝑁
𝛼
𝑗
𝛼
𝑙
𝑅
𝑛
[(𝑗 − 𝑙) 𝑇 ] (9.217)

where

𝑅
𝑛 (𝜏) = ℑ−1[𝐺

𝑛 (𝑓 )] = ℑ−1
[
𝑁0
2

Π
(
𝑓

2𝐵

)]
= 𝑁0𝐵 sinc (2𝐵𝜏) (9.218)

If it is assumed that 2𝐵𝑇 = 1 (consistent with the sampling theorem), then

𝑅
𝑛
[(𝑗 − 𝑙) 𝑇 ] = 𝑁0𝐵 sinc (𝑗 − 𝑙) =

𝑁0
2𝑇

sinc (𝑗 − 𝑙) =

{
𝑁0
2𝑇 , 𝑗 = 𝑙
0, 𝑗 ≠ 𝑙

}

(9.219)

and (9.217) becomes

𝜎
2
𝑁

=
𝑁0
2𝑇

𝑁∑

𝑗=−𝑁
𝛼
2
𝑗

(9.220)

For a sufficiently long equalizer, the signal component of the output, assuming binary trans-
mission, can be taken as ±1 equally likely. The probability of error is then

𝑃
𝐸
= 1

2
Pr

(
−1 +𝑁

𝑚
> 0

)
+ 1

2
Pr

(
1 +𝑁

𝑚
< 0

)

= Pr
(
𝑁
𝑚
> 1

)
= Pr

(
𝑁
𝑚
< −1

)
(by symmetry of the noise pdf)
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=
∫

∞

1

exp
(
−𝜂2∕

(
2𝜎2
𝑁

))

√
2𝜋𝜎2

𝑁

𝑑𝜂 = 𝑄
(

1
𝜎
𝑁

)

= 𝑄
⎛
⎜
⎜
⎜
⎝

1
√

𝑁0
2𝑇

∑
𝑗
𝛼
2
𝑗

⎞
⎟
⎟
⎟
⎠

= 𝑄

(√
2 × 12 × 𝑇
𝑁0

∑
𝑗
𝛼
2
𝑗

)

= 𝑄

(√
1

∑
𝑗
𝛼
2
𝑗

2𝐸
𝑏

𝑁0

)

(9.221)

From (9.221) it is seen that performance is degraded in proportion to
∑𝑁

𝑗=−𝑁 𝛼
2
𝑗
, which is a

factor that directly enhances the output noise.

EXAMPLE 9.11

Consider the following pulse samples at a channel output:
{
𝑝
𝑐
(𝑛)

}
= {−0.01 0.05 0.004 −0.1 0.2 −0.5 1.0 0.3 −0.4 0.04 −0.02 0.01 0.001}

Obtain the five-tap zero-forcing equalizer coefficients and plot themagnitude of the equalizer’s frequency
response. By what factor is the signal-to-noise ratio worsened due to noise enhancement?

S o l u t i o n

The matrix
[
𝑃
𝑐

]
, from (9.213), is

[
𝑃
𝑐

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −0.5 0.2 −0.1 0.004
0.3 1 −0.5 0.2 −0.1
−0.4 0.3 1 −0.5 0.2
0.04 −0.4 0.3 1 −0.5
−0.02 0.04 −0.4 0.3 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.222)

The equalizer coefficients are the middle column of
[
𝑃
𝑐

]−1
, which is

[
𝑃
𝑐

]−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.889 0.435 0.050 0.016 0.038
−0.081 0.843 0.433 0.035 0.016
0.308 0.067 0.862 0.433 0.050
−0.077 0.261 0.067 0.843 0.435
0.167 −0.077 0.308 −0.081 0.890

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.223)

Therefore, the coefficient vector is

[𝐴]opt =
[
𝑃
𝑐

]−1 [
𝑃eq

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.050
0.433
0.862
0.067
0.308

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.224)

Plots of the input and output sequences are given in Figure 9.32(a) and (b), respectively, and a
plot of the equalizer frequency response magnitude is shown in Figure 9.32(c). There is considerable
enhancement of the output noise spectrum at low frequencies as is evident from the frequency response.
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Figure 9.32
(a) Input and (b) output sample sequences for a five-tap zero-forcing equalizer. (c) Equalizer frequency
response.

Depending on the received pulse shape, the noise enhancement may be at higher frequencies in other
cases. The noise enhancement, or degradation, factor in this example is

4∑

𝑗=−4
𝛼
2
𝑗
= 1.0324 = 0.14 dB (9.225)

which is not severe in this case.
■

9.9.2 Equalization by MMSE

Suppose that the desired output from the transversal filter equalizer of Figure 9.31 is 𝑑(𝑡). A
minimum mean-squared error (MMSE) criterion then seeks the tap weights that minimize the
mean-squared error between the desired output from the equalizer and its actual output. Since
this output includes noise, we denote it by 𝑧(𝑡) to distinguish it from the pulse response of the
equalizer. The MMSE criterion is therefore expressed as

 = 𝐸
{
[𝑧(𝑡) − 𝑑(𝑡)]2

}
= minimum (9.226)

where, if 𝑦(𝑡) is the equalizer input including noise, the equalizer output is

𝑧(𝑡) =
𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑦 (𝑡 − 𝑛Δ) (9.227)
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Since {⋅} is a concave (bowl-shaped) function of the tapweights, a set of sufficient conditions
for minimizing the tap weights is

𝜕

𝜕𝛼
𝑚

= 0 = 2𝐸
{
[𝑧(𝑡) − 𝑑(𝑡)]𝜕𝑧 (𝑡)

𝜕𝛼
𝑚

}
, 𝑚 = 0,±1,… ,±𝑁 (9.228)

Substituting (9.227) into (9.228) and carrying out the differentiation, we obtain the con-
ditions

𝐸 {[𝑧(𝑡) − 𝑑(𝑡)]𝑦(𝑡 − 𝑚Δ)} = 0, 𝑚 = 0,±1,±2,… ,±𝑁 (9.229)

or

𝑅
𝑦𝑧 (𝑚Δ) = 𝑅𝑦𝑑 (𝑚Δ) = 0, 𝑚 = 0,±1,±2,… ,±𝑁 (9.230)

where

𝑅
𝑦𝑧
(𝜏) = 𝐸[𝑦(𝑡)𝑧(𝑡 + 𝜏)] (9.231)

and

𝑅
𝑦𝑑
(𝜏) = 𝐸[𝑦(𝑡)𝑑(𝑡 + 𝜏)] (9.232)

are the cross-correlations of the received signal with the equalizer output and with the data,
respectively.

Using the expression (9.227) for 𝑧(𝑡) in (9.230), these conditions can be expressed as the
matrix equation21

[𝑅
𝑦𝑦
][𝐴]opt = [𝑅

𝑦𝑑
] (9.233)

where

[𝑅
𝑦𝑦
] =

⎡
⎢
⎢
⎢
⎢
⎣

𝑅
𝑦𝑦
(0) 𝑅

𝑦𝑦
(Δ) ⋯ 𝑅

𝑦𝑦
(2𝑁Δ)

𝑅
𝑦𝑦
(−Δ) 𝑅

𝑦𝑦
(0) ⋯ 𝑅

𝑦𝑦
[2 (𝑁 − 1)Δ]

⋮ ⋮

𝑅
𝑦𝑦
(−2𝑁Δ) ⋯ 𝑅

𝑦𝑦
(0)

⎤
⎥
⎥
⎥
⎥
⎦

(9.234)

and

[𝑅
𝑦𝑑
] =

⎡
⎢
⎢
⎢
⎢
⎣

𝑅
𝑦𝑑 (−𝑁Δ)

𝑅
𝑦𝑑

[− (𝑁 − 1)Δ]
⋮

𝑅
𝑦𝑑 (𝑁Δ)

⎤
⎥
⎥
⎥
⎥
⎦

(9.235)

and [𝐴] is defined by (9.212). Note that these conditions for the optimum tap weights using the
MMSE criterion are similar to the conditions for the zero-forcing weights, except correlation-
function samples are used instead of pulse-response samples.

The solution to (9.233) is

[𝐴]opt = [𝑅
𝑦𝑦
]−1[𝑅

𝑦𝑑
] (9.236)

21These are known as the Wiener--Hopf equations. See S. Haykin, Adaptive Filter Theory, 3rd ed., Upper Saddle
River, NJ: Prentice Hall, 1996.
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which requires knowledge of the correlation matrices. The mean-squared error is

 = 𝐸
⎧
⎪
⎨
⎪
⎩

[
𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑦 (𝑡 − 𝑛Δ) − 𝑑(𝑡)

]2⎫
⎪
⎬
⎪
⎭

= 𝐸

{

𝑑
2 (𝑡) − 2𝑑 (𝑡)

𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑦 (𝑡 − 𝑛Δ) +

𝑁∑

𝑚=−𝑁

𝑁∑

𝑛=−𝑁
𝛼
𝑚
𝛼
𝑛
𝑦 (𝑡 − 𝑚Δ) 𝑦 (𝑡 − 𝑛Δ)

}

= 𝐸
{
𝑑
2 (𝑡)

}
− 2

𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝐸 {𝑑 (𝑡) 𝑦 (𝑡 − 𝑛Δ)}

+
𝑁∑

𝑚=−𝑁

𝑁∑

𝑛=−𝑁
𝛼
𝑚
𝛼
𝑛
𝐸 {𝑦 (𝑡 − 𝑚Δ) 𝑦 (𝑡 − 𝑛Δ)}

= 𝜎2
𝑑
− 2

𝑁∑

𝑛=−𝑁
𝛼
𝑛
𝑅
𝑦𝑑 (𝑛Δ) +

𝑁∑

𝑚=−𝑁

𝑁∑

𝑛=−𝑁
𝛼
𝑚
𝛼
𝑛
𝑅
𝑦𝑦
[(𝑚 − 𝑛) Δ]

= 𝜎2
𝑑
− 2 [𝐴]𝑇

[
𝑅
𝑦𝑑

]
+ [𝐴]𝑇

[
𝑅
𝑦𝑦

]
[𝐴] (9.237)

where the superscript 𝑇 denotes the matrix transpose and 𝜎2
𝑑
= 𝐸

[
𝑑
2 (𝑡)

]
. For the optimum

weights, (9.236), this becomes

min = 𝜎2
𝑑
− 2

{
[𝑅

𝑦𝑦
]−1[𝑅

𝑦𝑑
]
}𝑇 [

𝑅
𝑦𝑑

]
+

{
[𝑅

𝑦𝑦
]−1[𝑅

𝑦𝑑
]
}𝑇 [

𝑅
𝑦𝑦

] {
[𝑅

𝑦𝑦
]−1[𝑅

𝑦𝑑
]
}

= 𝜎2
𝑑
− 2

{
[𝑅

𝑦𝑑
]𝑇 [𝑅

𝑦𝑦
]−1

} [
𝑅
𝑦𝑑

]
+ [𝑅

𝑦𝑑
]𝑇 [𝑅

𝑦𝑦
]−1

[
𝑅
𝑦𝑦

] {
[𝑅

𝑦𝑦
]−1[𝑅

𝑦𝑑
]
}

= 𝜎2
𝑑
− 2[𝑅

𝑦𝑑
]𝑇 [𝐴]opt + [𝑅

𝑦𝑑
]𝑇 [𝐴]opt

= 𝜎2
𝑑
− [𝑅

𝑦𝑑
]𝑇 [𝐴]opt (9.238)

where the matrix relation (𝐀𝐁)𝑇 = 𝐁𝑇𝐀𝑇 has been used along with the fact that the autocor-
relation matrix is symmetric.

The question remains as to the choice for the time delay Δ between adjacent taps. If the
channel distortion is due to multiple transmission paths (multipath) with the delay of a strong
component equal to a fraction of a bit period, then it may be advantageous to set Δ equal to
that expected fraction of a bit period (called a fractionally spaced equalizer).22 On the other
hand, if the shortest multipath delay is several bit periods, then it would make sense to set
Δ = 𝑇 .

22See J. R. Treichler, I. Fijalkow, and C. R. Johnson, Jr., ‘‘Fractionally Spaced Equalizers,’’ IEEE Signal Proc. Mag.,
65--81, May 1996.
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EXAMPLE 9.12

Consider a channel consisting of a direct path and a single indirect path plus additive Gaussian noise.
Thus, the channel output is

𝑦 (𝑡) = 𝐴0𝑑 (𝑡) + 𝛽𝐴0𝑑
(
𝑡 − 𝜏

𝑚

)
+ 𝑛 (𝑡) (9.239)

where it is assumed that carrier demodulation has taken place so 𝑑 (𝑡) = ±1 in 𝑇 -second bit periods is
the data with assumed autocorrelation function 𝑅

𝑑𝑑
(𝜏) = Λ (𝜏∕𝑇 ) (i.e., a random coin-toss sequence);

𝐴0 is the signal amplitude. The strength of the multipath component relative to the direct component is
𝛽 and its relative delay is 𝜏

𝑚
. The noise 𝑛 (𝑡 ) is assumed to be bandlimited with power spectral density

𝑆
𝑛
(𝑓 ) = 𝑁0

2
Π

(
𝑓

2𝐵

)
W/Hz so that its autocorrelation function is 𝑅

𝑛𝑛
(𝜏) = 𝑁0𝐵 sinc(2𝐵𝜏) where it is

assumed that 2𝐵𝑇 = 1. Find the coefficients of an MMSE three-tap equalizer with tap spacing Δ = 𝑇
assuming that 𝜏

𝑚
= 𝑇 .

S o l u t i o n

The autocorrelation function of 𝑦 (𝑡) is

𝑅
𝑦𝑦
(𝜏) = 𝐸 {𝑦 (𝑡) 𝑦 (𝑡 + 𝜏)}

= 𝐸
{[
𝐴0𝑑 (𝑡) + 𝛽𝐴0𝑑

(
𝑡 − 𝜏

𝑚

)
+ 𝑛 (𝑡)

] [
𝐴0𝑑 (𝑡 + 𝜏) + 𝛽𝐴0𝑑

(
𝑡 + 𝜏 − 𝜏

𝑚

)
+ 𝑛 (𝑡 + 𝜏)

]}

=
(
1 + 𝛽2

)
𝐴

2
0𝑅𝑑𝑑 (𝜏) +𝑅𝑛𝑛 (𝜏) + 𝛽𝐴

2
0

[
𝑅
𝑑𝑑

(𝜏 − 𝑇 ) + 𝑅
𝑑𝑑

(𝜏 + 𝑇 )
]

(9.240)

In a similar fashion, we find

𝑅
𝑦𝑑
(𝜏) = 𝐸 [𝑦 (𝑡) 𝑑 (𝑡 + 𝜏)]

= 𝐴0𝑅𝑑𝑑 (𝜏) + 𝛽𝐴0𝑅𝑑𝑑 (𝜏 + 𝑇 ) (9.241)

Using (9.234) with𝑁 = 3, Δ = 𝑇 , and 2𝐵𝑇 = 1 we find

[
𝑅
𝑦𝑦

]
=

⎡
⎢
⎢
⎢
⎣

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵 𝛽𝐴

2
0 0

𝛽𝐴
2
0

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵 𝛽𝐴

2
0

0 𝛽𝐴
2
0

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵

⎤
⎥
⎥
⎥
⎦

(9.242)

and

[
𝑅
𝑦𝑑

]
=

⎡
⎢
⎢
⎢
⎣

𝑅
𝑦𝑑
(−𝑇 )

𝑅
𝑦𝑑
(0)

𝑅
𝑦𝑑
(𝑇 )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛽𝐴0

𝐴0

0

⎤
⎥
⎥
⎥
⎦

(9.243)

The condition (9.233) for the optimum weights becomes

⎡
⎢
⎢
⎢
⎣

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵 𝛽𝐴

2
0 0

𝛽𝐴
2
0

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵 𝛽𝐴

2
0

0 𝛽𝐴
2
0

(
1 + 𝛽2

)
𝐴

2
0 +𝑁0𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛼−1

𝛼0

𝛼1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛽𝐴0

𝐴0

0

⎤
⎥
⎥
⎥
⎦

(9.244)

We may make these equations dimensionless by factoring out𝑁0𝐵 (recall that 2𝐵𝑇 = 1 by assumption)
and defining new weights 𝑐

𝑖
= 𝐴0𝛼𝑖, which gives

⎡
⎢
⎢
⎢
⎢
⎣

(
1 + 𝛽2

) 2𝐸𝑏
𝑁0

+ 1 2𝛽 𝐸𝑏
𝑁0

0

2𝛽 𝐸𝑏
𝑁0

(
1 + 𝛽2

) 2𝐸𝑏
𝑁0

+ 1 2𝛽 𝐸𝑏
𝑁0

0 2𝛽 𝐸𝑏
𝑁0

(
1 + 𝛽2

) 2𝐸𝑏
𝑁0

+ 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐−1

𝑐0

𝑐1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

2𝛽 𝐸𝑏
𝑁0

2 𝐸𝑏
𝑁0

0

⎤
⎥
⎥
⎥
⎦

(9.245)
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Table 9.6 Bit Error Performance of an MMSE Equalizer in Multipath

𝑬
𝒃
∕𝑵𝟎, dB No. of bits 𝑷

𝒃
, no equal. 𝑷

𝒃
, equal. 𝑷

𝒃
, Gauss noise only

10 200, 000 5.7 × 10−3 4.4 × 10−4 3.9 × 10−6
11 300, 000 2.7 × 10−3 1.4 × 10−4 2.6 × 10−7
12 300, 000 1.2 × 10−3 4.3 × 10−5 9.0 × 10−9

where 𝐸𝑏

𝑁0
≐

𝐴
2
0𝑇

𝑁0
. For numerical values, we assume that 𝐸𝑏

𝑁0
= 10 and 𝛽 = 0.5, which gives

⎡
⎢
⎢
⎢
⎣

26 10 0
10 26 10
0 10 26

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐−1

𝑐0

𝑐1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

10
20
0

⎤
⎥
⎥
⎥
⎦

(9.246)

or, finding the inverse of the modified 𝑅
𝑦𝑦
matrix using MATLAB, we get

⎡
⎢
⎢
⎢
⎣

𝑐−1

𝑐0

𝑐1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0.0465 −0.0210 0.0081
−0.0210 0.0546 −0.0210
0.0081 −0.0210 0.0465

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

10
20
0

⎤
⎥
⎥
⎥
⎦

(9.247)

giving finally that

⎡
⎢
⎢
⎢
⎣

𝑐−1

𝑐0

𝑐1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0.045
0.882
−0.339

⎤
⎥
⎥
⎥
⎦

(9.248)

We can find the minimummean-square error according to (9.238). We need the optimum weights, given
by (9.248), and the cross-correlation matrix, given by (9.243). Assuming that 𝐴0 = 1, it follows that
𝛼
𝑗
= 1

𝐴0
𝑐
𝑗
= 𝑐

𝑗
. Also, 𝜎2

𝑑
= 1 assuming that 𝑑 (𝑡) = ±1. Hence, the minimum mean-square error is

𝜖min = 𝜎
2
𝑑
− [𝑅

𝑦𝑑
]𝑇 [𝐴]opt

= 1 −
[
𝛽𝐴0 𝐴0 0

]
⎡
⎢
⎢
⎢
⎣

𝛼−1

𝛼0

𝛼1

⎤
⎥
⎥
⎥
⎦

= 1 −
[
0.5 1 0

]
⎡
⎢
⎢
⎢
⎣

0.045
0.882
−0.339

⎤
⎥
⎥
⎥
⎦

= 0.095 (9.249)

Evaluation of the equalizer performance in terms of bit error probability requires simulation. Some
results are given in Table 9.6, where it is seen that the equalizer provides significant improvement in this
case.

■

9.9.3 Tap Weight Adjustment

Two questions remain with regard to setting the tap weights. The first is what should be used
for the desired response 𝑑(𝑡)? In the case of digital signaling, one has two choices.
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1. A known data sequence can be sent periodically and used for tap weight adjustment.

2. The detected data can be used if the modem performance is moderately good, since an error
probability of only 10−2, for example, still implies that 𝑑(𝑡) is correct for 99 out of 100 bits.
Algorithms using the detected data as 𝑑(𝑡), the desired output, are called decision-directed.
Often, the equalizer tap weights will be initially adjusted using a known sequence and after
settling into nearly optimum operation, the adjustment algorithm will be switched over to
a decision-directed mode.

The second question is what procedure should be followed if the sample values of the
pulse needed in the zero-forcing criterion or the samples of the correlation function required
for the MMSE criterion are not available. Useful strategies to follow in such cases fall under
the heading of adaptive equalization.

To see how one might implement such a procedure, we note that the mean-squared error
(9.237) is a quadratic function of the tap weights with minimum value given by (9.238)
for the optimum weights. Thus, the method of steepest descent may be applied. In this
procedure, initial values for theweights, [𝐴](0), are chosen and subsequent values are calculated
according to23

[𝐴](𝑘+1) = [𝐴](𝑘) + 1
2
𝜇

[
−∇ (𝑘)]

, 𝑘 = 0, 1, 2, … (9.250)

where the superscript 𝑘 denotes the 𝑘th calculation time and ∇ is the gradient, or ‘‘slope,’’
of the error surface. The idea is that starting with an initial guess of the weight vector, then
the next closest guess is in the direction of the negative gradient. Clearly, the parameter 𝜇∕2
is important in this stepwise approach to the minimum of  , for one of two adverse things
can happen: (1) A very small choice for 𝜇 means very slow convergence to the minimum of
 ; (2) Too large of a choice for 𝜇 can mean overshoot of the minimum for  with the result
being damped oscillation about the minimum or even divergence from it.24 To guarantee
convergence, the adjustment parameter 𝜇 should obey the relation

0 < 𝜇 < 2∕𝜆max (9.251)

where 𝜆max is the largest eigenvalue of the matrix
[
𝑅
𝑦𝑦

]
according to Haykin. Another rule of

thumb for choosing 𝜇 is25

0 < 𝜇 < 1∕
[
(𝐿 + 1) × (signal power)

]
(9.252)

where 𝐿 = 2𝑁 + 1. This avoids computing the autocorrelation matrix (a difficult problem
with limited data).

Note that use of the steepest descent algorithm does not remove two disadvantages of the
optimum weight computation: (1) It is dependent on knowing the correlation matrices

[
𝑅
𝑦𝑑

]

and
[
𝑅
𝑦𝑦

]
; (2) It is computationally intensive in that matrix multiplications are still necessary

(although no matrix inversions), for the gradient of  can be shown to be

∇ = ∇
{
𝜎
2
𝑑
− 2 [𝐴]𝑇

[
𝑅
𝑦𝑑

]
+ [𝐴]𝑇

[
𝑅
𝑦𝑦

]
[𝐴]

}

= −2
[
𝑅
𝑦𝑑

]
+ 2

[
𝑅
𝑦𝑦

]
[𝐴] (9.253)

23See Haykin, 1996, Section 8.2, for a full development.
24Two sources of error in tap weight adjustment are due to the input noise itself and the adjustment noise of the tap
weight adjustment algorithm.
25Widrow and Stearns, 1985.
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which must be recalculated for each new estimate of the weights. Substituting (9.253) into
(9.250) gives

[𝐴](𝑘+1) = [𝐴](𝑘) + 𝜇
[[
𝑅
𝑦𝑑

]
−

[
𝑅
𝑦𝑦

]
[𝐴](𝑘)

]
, 𝑘 = 0, 1, 2, … (9.254)

An alternative approach, known as the least-mean-square (LMS) algorithm, that avoids
both of these disadvantages, replaces the matrices

[
𝑅
𝑦𝑑

]
and

[
𝑅
𝑦𝑦

]
with instantaneous data-

based estimates. An initial guess for 𝛼
𝑚
is corrected from step 𝑘 to step 𝑘 + 1 according to the

recursive relationship

𝛼
(𝑘+1)
𝑚

= 𝛼(𝑘)
𝑚

− 𝜇𝑦 [(𝑘 − 𝑚) Δ] 𝜖 (𝑘Δ) , 𝑚 = 0, ±1, … , ±𝑁 (9.255)

where the error is 𝜖 (𝑘Δ) = 𝑦eq(𝑘Δ) − 𝑑(𝑘Δ) with 𝑦eq(𝑘Δ) being the equalizer output and
𝑑(𝑘Δ) being a data sequence (either a training sequence or detected data if the tap weights
have been adapted sufficiently). Note that some delays may be necessary in aligning the
detected data with the equalizer output.

EXAMPLE 9.13

The maximum eigenvalue for the autocorrelation matrix (9.244) for 𝐸
𝑏
∕𝑁0 = 10 dB and 𝛽 = 0.5 is

40.14 (found with the aid of the MATLAB program eig) giving 0 < 𝜇 < 0.05; for 𝐸
𝑏
∕𝑁0 = 12 dB

the maximum eigenvalue is 63.04 giving 0 < 𝜇 < 0.032. A plot of the bit error probability versus𝐸
𝑏
∕𝑁0

for the three-tap equalizer with adaptive weights is compared with that for the unequalized case in Fig-
ure 9.33. Note that the gain provided by equalization over the unequalized case is over 2.5 dB in 𝐸

𝑏
∕𝑁0.

6

(a)

7 8 9 10 11
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0, dB

P
b

Unequalized; 400,000 bits

Equalized; μ = 0.001; training bits: 800

Gauss noise, theory

Figure 9.33
(a) Bit error probability plots for an adaptive MMSE equalizer. (b) Error and adaptation of weights.
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Figure 9.33
(Continued )

■

There are many more topics that could be covered on equalization, including decision
feedback, maximum-likelihood sequence, and Kalman equalizers to name only a few.26

Further Reading

A number of the books listed in Chapter 3 have chapters covering digital communications at roughly the
same level as this chapter. For an authorative reference on digital communications, see Proakis (2001).

Summary

1. Binary baseband data transmission in additive white
Gaussian noise with equally likely signals having constant
amplitudes of ±𝐴 and of duration 𝑇 results in an average
error probability of

𝑃
𝐸
= 𝑄

(√
2𝐴2𝑇

𝑁0

)

where 𝑁0 is the single-sided power spectral density of
the noise. The hypothesized receiver is the integrate-and-

dump receiver, which turns out to be the optimum receiver
in terms of minimizing the probability of error.
2. An important parameter in binary data transmission

is 𝑧 = 𝐸
𝑏
∕𝑁0, the energy per bit divided by the noise

power spectral density (single-sided). For binary baseband
signaling, it can be expressed in the following equivalent
forms:

𝑧 =
𝐸
𝑏

𝑁0
= 𝐴

2
𝑇

𝑁0
= 𝐴

2

𝑁0(1∕𝑇 )
= 𝐴

2

𝑁0𝐵𝑝

26See Proakis, 2001, Chapter 11.
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where 𝐵
𝑝
is the ‘‘pulse’’ bandwidth, or roughly the band-

width required to pass the baseband pulses. The latter ex-
pression then allows the interpretation that 𝑧 is the signal
power divided by the noise power in a pulse, or bit-rate,
bandwidth.
3. For binary data transmission with arbitrary (finite

energy) signal shapes, 𝑠1 (𝑡) and 𝑠2 (𝑡), the error probabil-
ity for equally probable signals was found to be

𝑃
𝐸
= 𝑄

(
𝜁max

2

)

where

𝜁
2
max = 2

𝑁0 ∫

∞

−∞

||2 (𝑓 ) − 1 (𝑓 )||
2
𝑑𝑓

= 2
𝑁0 ∫

∞

−∞

||𝑠2 (𝑡) − 𝑠1 (𝑡)||
2
𝑑𝑡

in which 1(𝑓 ) and 2(𝑓 ) are the Fourier transforms of
𝑠1 (𝑡) and 𝑠2 (𝑡), respectively. This expression resulted from
minimizing the average probability of error, assuming a
linear-filter/threshold-comparison type of receiver. The re-
ceiver involves the concept of amatched filter; such a filter
is matched to a specific signal pulse and maximizes peak
signal divided by rms noise ratio at its output. In a matched
filter receiver for binary signaling, two matched filters are
used in parallel, each matched to one of the two signals
representing, respectively the 1s and 0s, and their outputs
are compared at the end of each signaling interval. The
matched filters also can be realized as correlators.

4. The expression for the error probability of a
matched-filter receiver can also be written as

𝑃
𝐸
= 𝑄

{
[𝑧(1 − 𝑅12)]1∕2

}

where 𝑧 = 𝐸
𝑏
∕𝑁0, with 𝐸𝑏 being the average signal en-

ergy given by 𝐸
𝑏
= 1

2
(𝐸1 + 𝐸2). 𝑅12 is a parameter that is

a measure of the similarity of the two signals; it is given
by

𝑅12 =
2

𝐸1 + 𝐸2 ∫

∞

−∞
𝑠1 (𝑡) 𝑠2 (𝑡) 𝑑𝑡

If 𝑅12 = −1, the signaling is termed antipodal, whereas if
𝑅12 = 0, the signaling is termed orthogonal.

5. Examples of coherent (that is, the signal arrival time
and carrier phase are known at the receiver) signaling tech-
niques at a carrier frequency 𝜔

𝑐
rad/s are the following:

PSK : 𝑠
𝑘
(𝑡) = 𝐴 sin[𝜔

𝑐
𝑡 − (−1)𝑘 cos−1 𝑚],

𝑛𝑡0 ≤ 𝑡 ≤ 𝑛𝑡0 + 𝑇 , 𝑘 = 1, 2,⋯

( cos−1 𝑚 is called the modulation index)

ASK: 𝑠1 (𝑡) = 0, 𝑛𝑡0 ≤ 𝑡 ≤ 𝑛𝑡0 + 𝑇
𝑠2 (𝑡) = 𝐴 cos

(
𝜔
𝑐
𝑡
)
, 𝑛𝑡0 ≤ 𝑡 ≤ 𝑛𝑡0 + 𝑇

FSK: 𝑠1 (𝑡) = 𝐴 cos
(
𝜔
𝑐
𝑡
)
, 𝑛𝑡0 ≤ 𝑡 ≤ 𝑛𝑡0 + 𝑇

𝑠2 (𝑡) = 𝐴 cos
(
𝜔
𝑐
+ Δ𝜔

)
𝑡, 𝑛𝑡0 ≤ 𝑡 ≤ 𝑛𝑡0 + 𝑇

If Δ𝜔 = 2𝜋𝓁∕𝑇 for FSK, where 𝓁 is an integer, it is an
example of an orthogonal signaling technique. If𝑚 = 0 for
PSK, it is an example of an antipodal signaling scheme. A
value of 𝐸

𝑏
∕𝑁0 of approximately 10.53 dB is required to

achieve an error probability of 10−6 for PSK with 𝑚 = 0;
3 dB more than this is required to achieve the same error
probability for ASK and FSK.

6. Examples of signaling schemes not requiring co-
herent carrier references at the receiver are differential
phase-shift keying (DPSK) and noncoherent FSK. Using
ideal minimum-error-probability receivers, DPSK yields
the error probability

𝑃
𝐸
= 1

2
exp(−𝐸

𝑏
∕𝑁0)

while noncoherent FSK gives the error probability

𝑃
𝐸
= 1

2
exp(−𝐸

𝑏
∕2𝑁0)

Noncoherent ASK is another possible signaling scheme
with about the same error probability performance as non-
coherent FSK.

7. One 𝑀-ary modulation scheme was considered in
this chapter, namely, 𝑀-level pulse-amplitude modula-
tion. It was found to be a scheme that allows the trade-off
of bandwidth efficiency (in terms of bits per second per
hertz) for power efficiency (in terms of the required value
of 𝐸

𝑏
∕𝑁0 for a desired value of bit error probability).

8. In general, if a sequence of signals is transmitted
through a bandlimited channel, adjacent signal pulses are
smeared into each other by the transient response of the
channel. Such interference between signals is termed in-
tersymbol interference. By appropriately choosing trans-
mitting and receiving filters, it is possible to signal through
bandlimited channels while eliminating intersymbol inter-
ference. This signaling technique was examined by using
Nyquist’s pulse-shaping criterion and Schwarz’s inequal-
ity. A useful family of pulse shapes for this type of signal-
ing are those having raised-cosine spectra.

9. One form of channel distortion is multipath inter-
ference. The effect of a simple two-ray multipath channel
on binary data transmission is examined. Half of the time
the received-signal pulses interfere destructively, and the
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rest of the time they interfere constructively. The interfer-
ence can be separated into intersymbol interference of the
signaling pulses and cancelation due to the carriers of the
direct and multipath components arriving out of phase.

10. Fading results from channel variations caused by
propagation irregularities resulting in multiple transmis-
sion paths (termed multipath) through the communication
medium. Fading results if the differential delays of the
multipath components are short with respect to a symbol
period but significantly long compared with the wavelenth
of the propagating signal. A commonly used model for a
fading channel is one where the envelope of the received
signal has a Rayleigh pdf. In this case, the power or symbol
energy of the received signal can be modeled as having an
exponential pdf, and the probability of error can be found
by using the previously obtained error probability expres-
sions for nonfading channels and averaging over the signal
energy with respect to the assumed exponential pdf of the
energy. Figure 9.30 compares the error probability for fad-
ing and nonfading cases for various modulation schemes.
Fading results in severe degradation of the performance of
a given modulation scheme. A way to combat fading is to
use diversity.

11. Intersymbol interference results in a multipath chan-
nel having differential delays of the multipath components
that are a significant fraction of a symbol period or even of
the order of several symbol periods. Equalization can
be used to remove a large part of the intersymbol in-
terference introduced by multipath or channel filtering.
Two techniques were briefly examined: zero-forcing and
minimum-mean-squared error. Both can be realized by
tapped delay-line filters. In the former technique, zero in-
tersymbol interference is forced at sampling instants sepa-
rated by multiples of a symbol period. If the tapped delay
line is of length (2𝑁 + 1)𝑇 , where 𝑇 is the symbol period,
then 𝑁 zeros can be forced on either side of the desired
pulse. In a minimum mean-square-error equalizer, the tap
weights are sought that give minimum mean-square error
between the desired output from the equalizer and the ac-
tual output. The resulting weights for either case can be
precalculated and preset, or adaptive circuitry can be im-
plemented to automatically adjust the weights. The latter
technique canmake use of a training sequence periodically
sent through the channel, or it can make use of the received
data itself, assuming the error probability is fairly good, in
order to carry out the minimizing adjustment.

Drill Problems

9.1 Given that𝑄
(√

2𝑧
)
= 10−6 for 𝑧 = 11.31 find the

following:

(a) The signal amplitude (assume rectangular pulses)
for antipodal baseband signaling that gives 𝑃

𝐸
=

10−6 in a channel with 𝑁0 = 10−7 W/Hz and a
data rate of 1 kbps.

(b) Same question as in (a), but for a data rate of
10 kbps.

(c) Same question as in (a), but for a data rate of
100 kbps.

(d) The signal amplitude for antipodal baseband
signaling that gives 𝑃

𝐸
= 10−6, but for 𝑁0 =

10−5 W/Hz and a data rate of 1 kbps.
(e) Same question as in (d), but for a data rate of

10 kbps.
(f) Same question as in (d), but for a data rate of

100 kbps.

9.2 Taking the required channel bandwidth to be the
first null of the rectangular pulse representing a 1 or 0
(plus for 1 and minus for 0), give bandwidths for the fol-
lowing data rates for a baseband transmission system using
nonreturn-to-zero encoding:

(a) 100 kbps;

(b) 1 Mbps;

(c) 1 Gbps;

(d) 100 kbps but split phase encoded;

(e) 100 kbps using nonreturn-to-zero encoding, but
translated to a carrier frequency of 10 MHz.

9.3 Consider PSK with 10% of the transmitted signal
power in a carrier component.

(a) What is the value of 𝑚 for the transmitted signal?

(b) What is the change in phase in degrees each time
the data switches?

(c) If the total𝐸
𝑏
∕𝑁0 = 10 dB (including power ded-

icated to the carrier), what is 𝑃
𝐸
?

(d) If the total 𝐸
𝑏
∕𝑁0 of 10 dB were available for

data, what would the 𝑃
𝐸
be?

9.4
(a) Rank the following binary modulation schemes

in terms of 𝐸
𝑏
∕𝑁0 required to give 𝑃

𝐸
= 10−6

from best to worst (the lowest required 𝐸
𝑏
∕𝑁0

is the best system): PSK; coherent FSK; DPSK;
coherent ASK; and noncoherent FSK.

(b) Do the samewith respect to bandwidth efficiency.
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9.5 The input signal to a matched filter is given by

𝑔 (𝑡) =
⎧
⎪
⎨
⎪
⎩

2, 0 ≤ 𝑡 < 1
1, 1 ≤ 𝑡 < 2
0, otherwise

The noise is white with signal-sided power spec-
tral density 𝑁0 = 10−1 W/Hz. What is the peak signal--
squared-to-mean-square-noise ratio at its output?

9.6 Antipodal baseband PAM is used to transmit data
through a lowpass channel of bandwidth 10 kHz with
AWGN background. Give the required value of 𝑀 , to
the next higher power of 2, for the following data rates:

(a) 20 kbps;

(b) 30 kbps;

(c) 50 kbps;

(d) 100 kbps;

(e) 150 kbps

(f) What will limit the highest practical value of𝑀?

9.7 Refering to Figure 9.24, where 𝑓3∕𝑅 = 0.5, what
behavior would you expect the curves to exhibit if 𝑓3∕𝑅 =
1? Why?

9.8 Whatmight be an effective communication scheme
in a flat-fading channel if one could determine when the
channel goes into a deep fade? What is the downside of
this scheme? (Hint:What would happen if the transmitter
could be switched off and on and these instants could be
conveyed to the receiver?)

9.9 A two-path channel consists of a direct path and
one delayed path. The delayed path has a delay of 5 mi-
croseconds. The channel can be considered flat fading if
the phase shift induced by the delayed path is 10 degrees
or less. Determine the maximum bandwidth of the channel
for which the flat-fading assumption holds.

9.10 What is the minimum number of taps required to
equalize a channel, which produces two multipath compo-
nents plus the main path? That is, the channel input-output
relationship is given by

𝑦 (𝑡) = 𝐴𝑑 (𝑡) + 𝛽1𝐴𝑑
(
𝑡 − 𝜏1

)
+ 𝛽2𝐴𝑑

(
𝑡 − 𝜏2

)
+ 𝑛 (𝑡)

9.11 What two sources of noise affect the convergence
of a tap weight adjustment algorithm for an equalizer?

Problems

Section 9.1

9.1 A baseband digital transmission system that sends
±𝐴-valued rectangular pulses through a channel at a rate
of 20,000 bps is to achieve an error probability of 10−6. If
the noise power spectral density is𝑁0 = 10−6 W/Hz, what
is the required value of 𝐴? What is a rough estimate of the
bandwidth required?

9.2 Consider an antipodal baseband digital transmis-
sion system with a noise level of 𝑁0 = 10−3 W/Hz. The
signal bandwidth is defined to be that required to pass the
main lobe of the signal spectrum. Fill in the following table
with the required signal power and bandwidth to achieve
the error probability/data rate combinations given.

9.3 Suppose 𝑁0 = 10−6 W/Hz and the baseband
data bandwidth is given by 𝐵 = 𝑅 = 1∕𝑇 Hz. For the

Required Signal Power A𝟐 and Bandwidth

𝑹, bps 𝑷
𝑬
= 𝟏𝟎−𝟑 𝑷

𝑬
= 𝟏𝟎−𝟒 𝑷

𝑬
= 𝟏𝟎−𝟓 𝑷

𝑬
= 𝟏𝟎−𝟔

1,000
10,000
100,000

following bandwidths, find the required signal powers,
𝐴

2, to give a bit error probability of 10−4 along with the
allowed data rates:

(a) 5 kHz;

(b) 10 kHz;

(c) 100 kHz;

(d) 1 MHz.

9.4 A receiver for baseband digital data has a thresh-
old set at 𝜖 instead of zero. Rederive (9.8), (9.9), and
(9.11) taking this into account. If 𝑃 (+𝐴) = 𝑃 (−𝐴) = 1

2
,

find 𝐸
𝑏
∕𝑁0 in decibels as a function of 𝜖 for 0 ≤ 𝜖∕𝜎 ≤ 1

to give 𝑃
𝐸
= 10−6, where 𝜎2 is the variance of𝑁 .

9.5 With 𝑁0 = 10−5 W/Hz and 𝐴 = 40 mV in a base-
band data transmission system, what is the maximum data
rate (use a bandwidth of 0 to first null of the pulse spec-
trum) that will allow a 𝑃

𝐸
of 10−4 or less? 10−5? 10−6?

9.6 Consider antipodal signaling with amplitude im-
balance. That is, a logic 1 is transmitted as a rectangu-
lar pulse of amplitude 𝐴1 and duration 𝑇 , and a logic 0
is transmitted as a rectangular pulse of amplitude −𝐴2
where 𝐴1 ≥ 𝐴2 > 0. The receiver theshold is still set at 0.
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Define the ratio 𝜌 = 𝐴2∕𝐴1 and note that the average sig-
nal energy, for equally likely 1s and 0s, is

𝐸 =
𝐴

2
1 + 𝐴

2
2

2
𝑇 =

𝐴
2
1𝑇

2
(
1 + 𝜌2

)

(a) Show that the error probability with amplitude
imbalance can be written as

𝑃
𝐸
= 1

2
Pr

(
error |𝐴1 sent

)
+ 1

2
Pr

(
error |𝐴2 sent

)

= 1
2
𝑄

(√
2

1 + 𝜌2
2𝐸
𝑁0

)

+ 1
2
𝑄

(√
2𝜌2

1 + 𝜌2
2𝐸
𝑁0

)

= 1
2
𝑄

(√
4𝑧

1 + 𝜌2

)
+ 1

2
𝑄

⎛
⎜
⎜
⎝

√
2𝜌2 (2𝑧)
1 + 𝜌2

⎞
⎟
⎟
⎠

(b) Plot 𝑃
𝐸
versus 𝑧 in dB for 𝜌2 = 1, 0.8, 0.6, 0.4,

respectively. Estimate the degradation in dB at
𝑃
𝐸
= 10−6 due to amplitude imbalance for these

values of 𝜌2.

9.7 The received signal in a digital baseband system
is either +𝐴 or −𝐴, equally likely, for 𝑇 -second contigu-
ous intervals. However, the timing is off at the receiver
so that the integration starts Δ𝑇 seconds late (positive)
or early (negative). Assume that the timing error is less
than one signaling interval. By assuming a zero threshold
and considering two successive intervals [i.e., (+𝐴,+𝐴),
(+𝐴,−𝐴), (−𝐴,+𝐴), and (−𝐴,−𝐴)] obtain an expression
for the probability of error as a function of Δ𝑇 . Show that
it is

𝑃
𝐸
= 1

2
𝑄

⎛
⎜
⎜
⎝

√
2𝐸

𝑏

𝑁0

⎞
⎟
⎟
⎠
+ 1

2
𝑄

⎡
⎢
⎢
⎣

√
2𝐸

𝑏

𝑁0

(
1 − 2 |Δ𝑇 |

𝑇

)⎤
⎥
⎥
⎦

Plot curves of 𝑃
𝐸

versus 𝐸
𝑏
∕𝑁0 in dB for |Δ𝑇 |∕𝑇 =

0, 0.1, 0.2, and 0.3 (four curves). Estimate the degrada-
tion in 𝐸

𝑏
∕𝑁0 in dB at 𝑃

𝐸
= 10−4 imposed by timing

misalignment.

9.8 Redo the derivation of Section 9.1 for the case
where the possible transmitted signals are either 0 or 𝐴
for 𝑇 seconds. Let the threshold be set at 𝐴𝑇 ∕2. Express
your result in terms of signal energy averaged over both
signal possibilities, which are assumed equally probable;

i.e., 𝐸ave =
1
2
(0) + 1

2
𝐴

2
𝑇 = 𝐴

2
𝑇

2
.

Section 9.2

9.9 As an approximation to the integrate-and-dump de-
tector in Figure 9.3(a), we replace the integrator with a

lowpass RC filter with frequency response function

𝐻(𝑓 ) = 1
1 + 𝑗(𝑓∕𝑓3)

where 𝑓3 is the 3-dB cutoff frequency.

(a) Find 𝑠02 (𝑇 ) ∕𝐸{𝑛20(𝑡)}, where 𝑠0(𝑇 ) is the value
of the output signal at 𝑡 = 𝑇 due to +𝐴 being
applied at 𝑡 = 0, and 𝑛0 (𝑡) is the output noise.
(Assume that the filter initial conditions are zero.)

(b) Find the relationship between 𝑇 and 𝑓3 such that
the signal-to-noise ratio found in part (a) is max-
imized. (Numerical solution required.)

9.10 Assume that the probabilities of sending the sig-
nals 𝑠1 (𝑡) and 𝑠2 (𝑡) are not equal, but are given by 𝑝 and
𝑞 = 1 − 𝑝, respectively. Derive an expression for 𝑃

𝐸
that

replaces (9.32) that takes this into account. Show that the
error probability is minimized by choosing the threshold
to be

𝑘opt =
𝜎
2
0

𝑠01 (𝑇 ) − 𝑠02 (𝑇 )
ln(𝑝∕𝑞) +

𝑠01 (𝑇 ) + 𝑠02 (𝑇 )
2

9.11 The general definition of a matched filter is a fil-
ter that maximizes peak signal-to-rms noise at some pre-
chosen instant of time 𝑡0.

(a) Assuming white noise at the input, use Schwarz’s in-
equality to show that the frequency response function
of the matched filter is

𝐻
𝑚
(𝑓 ) = 𝑆∗(𝑓 ) exp(−𝑗2𝜋𝑓𝑡0)

where 𝑆(𝑓 ) = ℑ[𝑠(𝑡)] and 𝑠(𝑡) is the signal to which
the filter is matched.

(b) Show that the impulse response for the matched-filter
frequency response function found in part (a) is

ℎ
𝑚
(𝑡) = 𝑠(𝑡0 − 𝑡)

(c) If 𝑠(𝑡) is not zero for 𝑡 > 𝑡0, the matched-filter im-
pulse response is nonzero for 𝑡 < 0; that is, the filter is
noncausal and cannot be physically realized because
it responds before the signal is applied. If we want a
realizable filter, we use

ℎ
𝑚𝑟
(𝑡) =

{
𝑠(𝑡0 − 𝑡), 𝑡 ≥ 0
0, 𝑡 < 0

Find the realizable matched-filter impulse response
corresponding to the signal

𝑠(𝑡) = 𝐴Π[(𝑡 − 𝑇 ∕2)∕𝑇 ]

and 𝑡0 equal to 0, 𝑇 ∕2, 𝑇 , and 2𝑇 .

www.it-ebooks.info

http://www.it-ebooks.info/


Problems 471

(d) Find the peak output signal for all cases in part (c).
Plot them versus 𝑡0. What do you conclude about the
relation between 𝑡0 and the causality condition?

9.12 Referring to Problem 9.11 for the general definition
of a matched filter, find the following in relation to the two
signals shown in Figure 9.34.

A

0 0
tt

x(t)

y(t)

τ

B

T = 7τ

Figure 9.34

(a) The causal matched-filter impulse responses.
Sketch them.

(b) Relate the constants A and B so that both cases
give the same peak-signal-to-rms noise ratio at
the matched-filter output.

(c) Sketch the output of the matched filters as a func-
tion of time with signal only at the input.

(d) Comment on the ability of the twomatched filters
for these signals to provide an accurate measure-
ment of time delay. What do you estimate the
maximum error to be in so doing in each case?

(e) If peak transmitted power is a consideration,
which waveform (and matched filter) is prefer-
able?

9.13

(a) Find the optimum (matched) filter impulse re-
sponse ℎ0(𝑡), as given by (9.45) for 𝑠1 (𝑡) and
𝑠2 (𝑡), shown in Figure 9.35.

A

–A

t

s1(t)

0 1

2 T T

A

t

s2(t)

0 Tt0
1

2 Tt0 +

Figure 9.35

(b) Find 𝜁2 as given by (9.56). Plot 𝜁 2 versus 𝑡0.

(c) What is the best choice for 𝑡0 such that the error
probability is minimized?

(d) What is the value of the threshold 𝑘 as a function
of 𝑡0 to use according to (9.33)?

(e) Sketch a correlator receiver structure for these
signals.

9.14 Find the peak-signal-squared-to-mean-squared-
noise ratio for the output of a matched filter for each of
the following signals in terms of 𝐴 and 𝑇 . Take the noise
spectral density (single-sided) as𝑁0. Sketch each signal.

(a) 𝑠1 (𝑡) = 𝐴Π
[
(𝑡−𝑇 ∕2)
𝑇

]

(b) 𝑠2 (𝑡) =
𝐴

2

{
1 + cos

[
2𝜋(𝑡−𝑇 ∕2)

𝑇

]}
Π

[
(𝑡−𝑇 ∕2)
𝑇

]

(c) 𝑠3 (𝑡) = 𝐴 cos
[
𝜋(𝑡−𝑇 ∕2)

𝑇

]
Π

[
(𝑡−𝑇 ∕2)
𝑇

]

(d) 𝑠4(𝑡) = 𝐴Λ
[
2(𝑡−𝑇 ∕2)

𝑇

]

The signalsΠ(𝑡) andΛ(𝑡) are the unit-rectangular and
unit-triangular functions defined in Chapter 2.

9.15 Given these signals:

𝑠
𝐴
(𝑡) = 𝐴Π

[
(𝑡 − 𝑇 ∕2)

𝑇

]

𝑠
𝐵
(𝑡) = 𝐵 cos

[
𝜋 (𝑡 − 𝑇 ∕2)

𝑇

]
Π

[
(𝑡 − 𝑇 ∕2)

𝑇

]

𝑠
𝐶
(𝑡) = 𝐶

2

{
1 + cos

[
2𝜋 (𝑡 − 𝑇 ∕2)

𝑇

]}
Π

[
(𝑡 − 𝑇 ∕2)

𝑇

]

Assume that they are used in a binary digital data transmis-
sion system in the following combinations. Express 𝐵 and
𝐶 in terms of 𝐴 so that their energies are the same. Sketch
each one and in each case, calculate 𝑅12 in (9.61) in terms
of 𝐴 and 𝑇 . Write down an expression for 𝑃

𝐸
according

to (9.60). What is the optimum threshold in each case?

(a) 𝑠1 (𝑡) = 𝑠𝐴(𝑡); 𝑠2(𝑡) = 𝑠𝐵(𝑡)
(b) 𝑠1 (𝑡) = 𝑠𝐴(𝑡); 𝑠2 (𝑡) = 𝑠𝐶 (𝑡)
(c) 𝑠1(𝑡) = 𝑠𝐵(𝑡); 𝑠2 (𝑡) = 𝑠𝐶 (𝑡)
(d) 𝑠1 (𝑡) = 𝑠𝐵(𝑡); 𝑠2(𝑡) = −𝑠

𝐵
(𝑡)

(e) 𝑠1 (𝑡) = 𝑠𝐶 (𝑡); 𝑠2(𝑡) = −𝑠
𝐶
(𝑡)

9.16 Given the three signals

𝑠
𝐴
(𝑡) = 𝐴Π

[
(𝑡 − 𝑇 ∕2)

𝑇

]

𝑠
𝐵
(𝑡) = 𝐴Π

[
2 (𝑡 − 𝑇 ∕4)

𝑇

]
− 𝐴Π

[
2 (𝑡 − 3𝑇 ∕4)

𝑇

]
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𝑠
𝐶
(𝑡) = 𝐴Π

[
4 (𝑡 − 𝑇 ∕8)

𝑇

]
− 𝐴Π

[
4 (𝑡 − 3𝑇 ∕8)

𝑇

]

+𝐴Π
[
4 (𝑡 − 5𝑇 ∕8)

𝑇

]
− 𝐴Π

[
4 (𝑡 − 7𝑇 ∕8)

𝑇

]

(a) Sketch each one and show that each has energy
of 𝐴2

𝑇 .

(b) Show that 𝑅12 = 0 for each of the combi-
nations (𝐴, 𝐵), (𝐵, 𝐶), and (𝐴, 𝐶). What is the
optimum threshold for each of these signaling
combinations?

(c) What is𝑃
𝐸
for each of the signaling combinations

(𝐴, 𝐵), (𝐵, 𝐶), and (𝐴, 𝐶)?

9.17 A channel of bandwidth 10 kHz with single-sided
noise power spectral density 10−7 W/Hz is available. A
data rate through it of at least 4 kbps is desired at a
𝑃
𝐸
≤ 10−6. Design at least two data transmission systems

that will achieve this data rate but don’t require acquisi-
tion of a coherent reference at the receiver. That is, specify
the modulation scheme meeting these requirements and
find the required received-signal power. Simplicity is an
important requisite.

9.18 Plot the results for 𝑃
𝐸
given in Table 9.2 versus

𝑧 = 𝐸
𝑏
∕𝑁0 in decibels with 𝑃𝐸 plotted on a semilog axis.

Estimate the additional 𝐸
𝑏
∕𝑁0 at 𝑃

𝐸
= 10−5 in decibels

over the case for no phase error. Compare these results
with that for constant phase error, as given by (9.81), of
the same magnitude (𝜙 for constant phase error equals 𝜎

𝜙

for the Gaussian phase-error case).

9.19 Find 𝑧 = 𝐸
𝑏
∕𝑁0 required to give 𝑃𝐸 = 10−5 for the

following coherent digital modulation techniques: (a) bi-
nary ASK; (b) BPSK; (c) binary FSK; (d) BPSK with no
carrier component but with a phase error of 5 degrees in
the demodulator; (e) PSK with no phase error in demodu-

lation, but with 𝑚 = 1∕
√
2; (f) PSK with 𝑚 = 1∕

√
2 and

with a phase error of 5 degrees in the demodulator.

9.20 AnNFSK receivermust be designedwith additional
bandwidth for the input filters to accommodate frequency
uncertainty of the received signal (due to Doppler shift,
for example).

(a) Justify that the resultant probability of error with
frequency uncertainty is

𝑃
𝐸, |Δ𝑓 | =

1
2
exp

(
−𝑧
2

1
1 + |Δ𝑓 | ∕𝐵

𝑇

)
, 𝑧 = 𝐴

2

2𝑁0𝐵𝑇

(b) Plot 𝑃
𝐸, |Δ𝑓 | versus 𝑧 in dB for |Δ𝑓 | ∕𝐵

𝑇
=

0, 0.1, 0.2, 0.3, 0.4. Estimate the degradation
in dB at a probability of error of 10−6.

(c) Give the mathematical expression for the degra-
dation and compare it with the results estimated
in part (b).

9.21 A binary PSK-modulated signal with carrier com-
ponent was written in Section 9.2.8 as

𝑆PSK(𝑡) = 𝐴 sin
[
𝜔
𝑐
𝑡 + cos−1 𝑚𝑑 (𝑡) + 𝜃

]

where 0 ≤ 𝑚 ≤ 1 is the modulation index and 𝑑 (𝑡) is the
data. It was expanded as

𝑆PSK(𝑡)=𝐴𝑚 sin
(
𝜔
𝑐
𝑡 + 𝜃

)
+𝐴

√
1 − 𝑚2𝑑 (𝑡) cos

(
𝜔
𝑐
𝑡 + 𝜃

)

The first term is an unmodulated carrier component and
the second term is the modulated component; 100𝑚2 is the
percent of the total power in the carrier component and
100

(
1 − 𝑚2

)
is the percent of the total power in the mod-

ulation component. Generate a plot showing probability of
error versus percent power in the modulation component
for 𝑧 = 10.5, 10, 9.5, 9, 8.5 dBwhere 𝑧 is the total𝐸

𝑏
∕𝑁0

(i.e., including both carrier and modulation components).
From your plot, estimate the percent power in the modu-
lation component that will produce a probability of error
of 10−4 for each value of 𝑧 listed above.

9.22

(a) Consider the transmission of digital data at a
rate of 𝑅 = 50 kbps and at an error probability
of 𝑃

𝐸
= 10−6. Using the bandwidth of the main

lobe as a bandwidth measure, give an estimate of
the required transmission bandwidth and 𝐸

𝑏
∕𝑁0

in decibels required for the following coherent
modulation schemes: (i) binary ASK; (ii) BPSK;
(iii) binary coherent FSK (take the minimum
spacing possible between the signal representing
the logic 1 and that representing the logic 0).

(b) Consider the same question as in part (a), but with
𝑅 = 500 kbps and 𝑃

𝐸
= 10−5.

9.23 Derive an expression for 𝑃
𝐸
for binary coherent

FSK if the frequency separation of the two transmitted
signals is chosen to give a minimum correlation coeffi-
cient between the two signals. That is, evaluate

√
𝐸1𝐸2𝜌12 =

∫

𝑇

0
𝐴

2 cos
(
𝜔
𝑐
𝑡
)
cos(𝜔

𝑐
+ Δ𝜔)𝑡 𝑑𝑡

as a function of Δ𝜔 and find the minimum value for
𝑅12. How much improvement in 𝐸

𝑏
∕𝑁0 in dB over the

orthogonal-signal case is obtained? (Hint: Assume the
sum-frequency term integrates to 0.)
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Section 9.3

9.24 Differentially encode the following binary
sequences. Arbitrarily choose a 1 as the reference bit to
begin the encoding process. (Note: Spaces are used to add
clarity.)

(a) 111 110 001 100 (b) 101 011 101 011
(c) 111 111 111 111 (d) 000 000 000 000
(e) 111 111 000 000 (f) 110 111 101 001
(g) 101 010 101 010 (h) 101 110 011 100

9.25
(a) Consider the sequence 011 101 010 111. Differ-

entially encode it and assume that the differen-
tially encoded sequence is used to biphase modu-
late a sinusoidal carrier of arbitrary phase. Prove
that the demodulator of Figure 9.17 properly
gives back the original sequence.

(b) Now invert the sequence (i.e., 1s become 0s and
vice versa). What does the demodulator of Fig-
ure 9.17 give now?

9.26
(a) In the analysis of the optimumdetector forDPSK,

show that the random variables 𝑛1, 𝑛2, 𝑛3, and 𝑛4
have zero means and variances𝑁0𝑇 ∕4.

(b) Show that 𝑤1, 𝑤2, 𝑤3, and 𝑤4 have zero means
and variances𝑁0𝑇 ∕8.

9.27 A delay-and-multiply receiver for DPSK as shown
in Figure 9.17 should have an input filter bandwidth of
𝐵 = 2∕𝑇 = 2𝑅 Hz to achieve the asymptotic probability
of error given by (9.113). If the received signal has a fre-
quency error of Δ𝑓 (due to Doppler shift, for example),
the input filter must have a bandwidth of 2𝑅 + |Δ𝑓 | to
accommodate this frequency error.

(a) Show that the error probability as a result of this
frequency error is given by

𝑃
𝐸, |Δ𝑓 | = 𝑄

(√
𝐸
𝑏

𝑁0

1
1 + |Δ𝑓 | ∕2𝑅

)

= 𝑄

(√
𝑧

1 + |Δ𝑓 | ∕2𝑅

)

(b) Plot 𝑃
𝐸, |Δ𝑓 | versus 𝑧 in dB for |Δ𝑓 | ∕2𝑅 =

0, 0.1, 0.2, 0.3, and 0.4. Estimate the degra-
dation in dB at a probability of error of 10−6.

(c) Give the mathematical expression for the degra-
dation and compare it with the results estimated
in part (b).

9.28 Assume that the delay in a delay-and-multiply re-
ceiver for DPSK as shown in Fig. 9.17 is in error by |Δ𝑇 |.

(a) Show that the asymptotic bit error probability
becomes

𝑃
𝐸, |Δ𝑇 | =

1
2
𝑄

(√
𝐸
𝑏

𝑁0

)

+ 1
2
𝑄

⎛
⎜
⎜
⎝

√
𝐸
𝑏

𝑁0

(
1 − |Δ𝑇 |

𝑇

)⎞
⎟
⎟
⎠

= 1
2
𝑄

(√
𝑧

)
+ 1

2
𝑄

(√
𝑧 (1 − |Δ𝑇 |𝑅)

)

(Hint: Consider the possible data sequences 11,
00, 10, and 01 thereby accounting for the cases
of degradation and no degradation in the signal
component at the integrator output.)

(b) Plot 𝑃
𝐸, |Δ𝑇 | versus 𝑧 in dB for |Δ𝑓 |𝑅 =

0, 0.1, 0.2, 0.3, 0.4. Estimate the degradation
in dB at a probability of error of 10−6.

9.29 A channel of bandwidth 100 kHz is available. Us-
ing null-to-null RF bandwidths, what data rates may be
supported by:

(a) BPSK;

(b) coherent FSK (tone spacing = 1∕2𝑇 );
(c) DPSK;

(d) noncoherent FSK (tone spacing = 2∕𝑇 ).

9.30 Find the probability of error for noncoherent ASK,
with signal set

𝑠
𝑖
(𝑡) =

{
0, 0 ≤ 𝑡 ≤ 𝑇 , 𝑖 = 1
𝐴 cos(2𝜋𝑓

𝑐
𝑡 + 𝜃), 0 ≤ 𝑡 ≤ 𝑇 , 𝑖 = 2

where 𝜃 is a uniformly distributed random variable in
[0, 2𝜋). White Gaussian noise of two-sided power spec-
tral density 𝑁0∕2 is added to this signal in the channel.
The receiver is a bandpass filter of bandwidth 2∕𝑇 Hz
centered on 𝑓

𝑐
, followed by an envelope detector, which is

input to a sampler and threshold comparator. Assume that
the signal, when present, is passed by the filter without
distortion, and let the noise variance at the filter output be
𝜎
2
𝑁
= 𝑁0𝐵𝑇 = 2𝑁0∕𝑇 .
Show that the envelope detector output with signal

1 present (i.e., zero signal) is Rayleigh-distributed, and
that the envelope detector output with signal 2 present is
Ricean-distributed. Assuming that the threshold is set at
𝐴∕2, find an expression for the probability of error. You
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will not be able to integrate this expression. However, by
making use of the approximation

𝐼0 (𝜈) ≈
𝑒
𝜈

√
2𝜋𝜈

, 𝜈 ≫ 1

you will be able to approximate the pdf of the sampler out-
put for large signal-to-noise ratio as Gaussian and express
the probability of error in terms of a 𝑄-function. (Hint:
Neglect the 𝜈−1∕2 in the above approximation.)

Show that the probability of error for the signal-to-
noise ratio large is approximately

𝑃
𝐸
= 1

2
𝑃 (𝐸 | 𝑆 +𝑁) + 1

2
𝑃 (𝐸 | 0)

≈ 𝑒
−𝑧

√
4𝜋𝑧

+ 1
2
𝑒
−𝑧∕2

, 𝑧 = 𝐴
2

4𝜎2
𝑁

≫ 1

Note that 𝑧 = 𝐴
2

4𝜎2
𝑁

is the average signal power- (the signal

is 0 half the time) to-noise variance ratio. Plot the error
probability versus the signal-to-noise ratio and compare
with that for DPSK and noncoherent FSK.

9.31 Integrate (9.121) by recasting the integrand into the
form of a Ricean pdf and therefore use the fact that it in-
tegrates to 1. You will have to redefine some parameters
and multiply and divide by exp

(
𝐴

2∕2𝑁
)
similarly to the

steps that led to (9.112). The result should be (9.120).

Section 9.4

9.32 Gray encoding of decimal numbers ensures that
only one bit changes when the decimal number changes
by one unit. Let 𝑏1𝑏2𝑏3 … 𝑏

𝑛
represent an ordinary bi-

nary representation of a decimal number, with 𝑏1 being
the most significant bit. Let the corresponding Gray code
bits be 𝑔1𝑔2𝑔3 … 𝑔

𝑛
. Then the Gray code representation is

obtained by the algorithm

𝑔1 = 𝑏1

𝑔
𝑛
= 𝑏

𝑛
⊕ 𝑏

𝑛−1

where ⊕ denotes modulo-2 addition (i.e., 0⊕ 0 = 0,
0⊕ 1 = 1, 1⊕ 0 = 1, and 1⊕ 1 = 0). Find the Gray code
representation for the decimal numbers 0 through 32.

9.33 Show that (9.162) is the average energy in terms of
Δ for binary antipodal ASK.

9.34 Consider a baseband antipodal PAM system with
channel bandwidth of 5 kHz and a desired data rate of 20
kbps. (a)What is the required value for𝑀? (b)What value
of 𝐸

𝑏
∕𝑁0 in dB will give a bit error probability of 10−6?

10−5?
9.35 A channel of 100 kHz is available. What RF mod-
ulation scheme can be used to communicate through it at
a data rate of:

(a) 50 kbps;

(b) 100 kbps;

(c) 150 kbps;

(d) 200 kbps;

(e) 250 kbps?

For each modulation scheme, compute the signal-to-
noise ratio, 𝑧 = 𝐸

𝑏
∕𝑁0, to achieve a bit error probability

of 10−6.

Section 9.5

9.36 Recompute the entries in Table 9.5 for a bit error
probability of 10−4 and an RF bandwidth of 100 kHz.

Section 9.6

9.37 Assume a raised-cosine pulsewith 𝛽 = 0.2, additive
noise with power spectral density

𝐺
𝑛
(𝑓 ) =

𝜎
2
𝑛
∕𝑓3

1 + (𝑓∕𝑓3)2

and a channel filter with transfer-function-squared magni-
tude given by

||𝐻𝐶
(𝑓 )||

2 = 1
1 +

(
𝑓∕𝑓

𝐶

)2

Find and plot the optimum transmitter and receiver filter
amplitude responses for binary signaling for the following
cases:

(a) 𝑓3 = 𝑓𝐶 = 1
2𝑇

(b) 𝑓
𝐶
= 2𝑓3 =

1
𝑇

(c) 𝑓3 = 2𝑓
𝐶
= 1

𝑇

9.38

(a) Sketch the trapezoidal spectrum 𝑃 (𝑓 ) =
𝑏

𝑏−𝑎
Λ (𝑓∕𝑏) − 𝑎

𝑏−𝑎
Λ (𝑓∕𝑎), 𝑏 > 𝑎 > 0, for 𝑎 = 1

and 𝑏 = 2.
(b) By appropriate sketches, show that it satisfies

Nyquist’s pulse-shaping criterion.

9.39 Data are to be transmitted through a bandlimited
channel at a rate 𝑅 = 1∕𝑇 = 9600 bps. The channel filter
has frequency response function

𝐻
𝐶
(𝑓 ) = 1

1 + 𝑗(𝑓∕4800)
The noise is white with power spectral density

𝑁0

2
= 10−11 W/Hz

www.it-ebooks.info

http://www.it-ebooks.info/


Problems 475

Assume that a received pulse with raised-cosine spectrum
given by (9.128) with

𝛽 = 1
2𝑇

= 4800 Hz

is desired.

(a) Find the magnitudes of the transmitter and re-
ceiver filter transfer functions that give zero in-
tersymbol interference and optimum detection.

(b) Using a table or the asymptotic approximation for
the𝑄-function, find the value of 𝐴∕𝜎 required to
give 𝑃

𝐸,min = 10−4.
(c) Find 𝐸

𝑏
to give this value of 𝐴∕𝜎 for the

𝑁0, 𝐺𝑛(𝑓 ), 𝑃 (𝑓 ), and 𝐻𝐶
(𝑓 ) given above. (Nu-

merical integration required.)

Section 9.7

9.40 Plot 𝑃
𝐸
from Equation (9.183) versus 𝑧0 for 𝛿 = 0.5

and 𝜏
𝑚
∕𝑇 = 0.2, 0.6, and 1.0. Develop a MATLAB pro-

gram to plot the curves.

9.41 Redraw Figure 9.29 for 𝑃
𝐸
= 10−5. Write a MAT-

LAB program using the find function to obtain the degra-
dation for various values of 𝛿 and 𝜏

𝑚
∕𝑇 .

Section 9.8

9.42 Fading margin can be defined as the incremental
𝐸
𝑏
∕𝑁0, in decibels, required to provide a certain desired

error probability in a fading channel as could be achieved
with the same modulation technique in a nonfading chan-
nel. Assume that a bit error probability of 10−4 is specified.
Find the fading margin required for the following cases:
(a) BPSK; (b) DPSK; (c) coherent FSK; (d) noncoherent
FSK.

9.43 Show the details in making the substitution 𝜎2
𝑤
=

1
2
(
1+1∕𝑍

) in (9.203) so that it gives (9.206) after integra-

tion.

9.44 Carry out the integrations leading to (9.206)[use
(9.205) as a pattern], (9.207), and (9.208) given that
the signal-to-noise ratio pdf is given by 𝑓

𝑍
(𝑧) = 1

𝑍
𝑒
−𝑧∕𝑍

,

𝑧 > 0.

Section 9.9

9.45 Given the following pulse-response samples:

𝑝
𝑐
(−4𝑇 ) = 0; 𝑝

𝑐
(−3𝑇 ) = −1∕9;

𝑝
𝑐
(−2𝑇 ) = 1∕2; 𝑝

𝑐
(−𝑇 ) = −1;

𝑝
𝑐
(0) = 1∕2; 𝑝

𝑐
(𝑇 ) = −1;

𝑝
𝑐
(2𝑇 ) = 1∕2; 𝑝

𝑐
(3𝑇 ) = −1∕9;

𝑝
𝑐
(4𝑇 ) = 0

(a) Find the tap coefficients for a three-tap zero-
forcing equalizer. Plot the equalizer input and
output samples.

(b) Find the tap coefficients for a five-tap zero-
forcing equalizer. Plot the equalizer input and
output samples. Calculate the noise-enhancement
factor in dB. Plot the frequency response function
of the equalizer.

9.46 Given the following pulse-response samples:

𝑝
𝑐
(−4𝑇 ) = 0; 𝑝

𝑐
(−3𝑇 ) = −1∕9;

𝑝
𝑐
(−2𝑇 ) = 1∕10; 𝑝

𝑐
(−𝑇 ) = −1;

𝑝
𝑐
(0) = 1∕2; 𝑝

𝑐
(𝑇 ) = −1;

𝑝
𝑐
(2𝑇 ) = 1∕2; 𝑝

𝑐
(3𝑇 ) = −1∕9;

𝑝
𝑐
(4𝑇 ) = 0

(a) Find the tap coefficients for a three-tap zero-
forcing equalizer. Plot the equalizer input and
output samples.

(b) Find the tap coefficients for a five-tap zero-
forcing equalizer. Plot the equalizer input and
output samples. Calculate the noise-enhancement
factor in dB. Plot the frequency response function
of the equalizer.

9.47

(a) Consider the design of an MMSE equalizer for a
multipath channel whose output is of the form

𝑦(𝑡) = 𝐴𝑑(𝑡) + 𝑏𝐴𝑑(𝑡 − 𝑇
𝑚
) + 𝑛(𝑡)

where the second term is a multipath component
and the third term is noise independent of the data,
𝑑(𝑡). Assume 𝑑(𝑡) is a random (coin-toss) binary
sequence with autocorrelation function𝑅

𝑑𝑑
(𝜏) =

Λ(𝜏∕𝑇 ). Let the noise have a lowpass-RC-filtered
spectrum with 3-dB cutoff frequency 𝑓3 = 1∕𝑇
so that the noise power spectral density is

𝑆
𝑛𝑛
(𝑓 ) =

𝑁0∕2

1 +
(
𝑓∕𝑓3

)2

where𝑁0∕2 is the two-sided power spectral den-
sity at the lowpass filter input. Let the tap spacing
beΔ = 𝑇

𝑚
= 𝑇 . Express thematrix [𝑅

𝑦𝑦
] in terms

of the signal-to-noise ratio 𝐸
𝑏
∕𝑁0 = 𝐴2

𝑇 ∕𝑁0.
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(b) Obtain the optimum tap weights for a three-tap
MMSE equalizer and at a signal-to-noise ratio of
10 dB.

(c) Find an expression for the MMSE.

9.48 For the numerical auto- and cross-correlation ma-
trices of Example 9.9, find explicit expressions (write
out an equation for each weight) for the steepest-descent
tap weight adjustment algorithm (9.254). Let 𝜇 = 0.01.
Justify this as an appropriate value using the criterion
0 < 𝜇 < 2∕max(𝜆

𝑖
) where the 𝜆

𝑖
are the eigenvalues

of
[
𝑅
𝑦𝑦

]
.

9.49 Consider (9.246) with all elements of both
[
𝑅
𝑦𝑦

]

and
[
𝑅
𝑦𝑑

]
divided by 10. (a) Do the weights remain the

same? (b)What is an acceptable range for 𝜇 for an adaptive
MMSEweight adjustment algorithm (steepest descent) us-
ing the criterion 0 < 𝜇 < 2∕max(𝜆

𝑖
) where the 𝜆

𝑖
are the

eigenvalues of
[
𝑅
𝑦𝑦

]
.

9.50 Rework Example 9.9 for 𝐸𝑏
𝑁0

= 20 and 𝛽 = 0.1. That
is, recompute thematrices

[
𝑅
𝑦𝑦

]
and

[
𝑅
𝑦𝑑

]
. Find the equal-

izer coefficients and the MMSE. Comment on the differ-
ences from Example 9.9.

Computer Exercises

9.1 Develop a computer simulation of an integrate-and-
dump detector for antipodal baseband signaling based on
(9.1). Generate 𝐴𝑇 or −𝐴𝑇 randomly by drawing a uni-
form random number in [0, 1] and comparing it with 1/2.
Add to this a Gaussian random variable of zero mean and
variance given by (9.5). Compare with a threshold of 0
and increment a counter if an error occurs. Repeat this
many times and estimate the error probability as the ra-
tio of the number of errors to the total number of bits
simulated. If you want to estimate a bit error probabil-
ity of 10−3, for example, you will have to simulate at
least 10 × 1000 = 10,000 bits. Repeat for several signal-
to-noise ratios so that you can rough out a bit error prob-
ablity curve versus 𝐸

𝑏
∕𝑁0. Compare with theory given in

Figure 9.5.

9.2 Write a computer program to evaluate the degrada-
tion imposed by bit timing error at a desired error proba-
bility as discussed in Problem 9.7.

9.3 Write a computer program to evaluate the degra-
dation imposed by Gaussian phase jitter at a desired
error probability as discussed in connection with the
data presented in Table 9.2. This will require numerical
integration.

9.4 Write a computer program to evaluate various digital
modulation techniques:

(a) For a specified data rate and error probability,
find the required bandwidth and 𝐸

𝑏
∕𝑁0 in deci-

bels. Corresponding to the data rate and required

𝐸
𝑏
∕𝑁0, find the required received-signal power

for𝑁0 = 1W/Hz.

(b) For a specified bandwidth and error probability
find the allowed data rate and required 𝐸

𝑏
∕𝑁0 in

decibels. Corresponding to the data rate and re-
quired 𝐸

𝑏
∕𝑁0, find the required received-signal

power for𝑁0 = 1W/Hz.

9.5 Design a Monte Carlo simulation of a delay-and-
multiply DPSK receiver operating in additive white Gaus-
sian noise to show the degration of its operation relative to
the optimum receiver for DPSK. One of your adjustable
parameters for the simulation should be the bandwidth of
the input filter relative to the data rate.

9.6 Write a computer program to verify Figures 9.28 and
9.29.

9.7 Write a computer program to evaluate degradation
due to flat Rayleigh fading at a specified error probability.
Include PSK, FSK, DPSK, and noncoherent FSK.

9.8 Write a computer program to design equalizers for
specified channel conditions for:

(a) the zero-forcing criterion;

(b) the MMSE criterion.

9.9 Write a computer simulation program to evaluate
the bit error rate performance of a MMSE equalizer using
LMS tap weight adjustment, thus verifying the results of
Figure 9.33.
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CHAPTER10

ADVANCED DATA
COMMUNICATIONS TOPICS

In this chapter we consider some topics on data transmission that are more advanced than the

fundamental ones considered in Chapter 9. The first topic considered is that ofM-ary digital modu-

lation systems, where𝑴 > 𝟐.Wewill developmethods for comparing them on the basis of bit error

probability (power efficiency). We next examine bandwidth requirements for data transmission

systems so that theymay be compared on the basis of bandwidth efficiency. An important consider-

ation in any communications system is synchronization including carrier, symbol, andword, which

is examined next. Following this, modulation techniques that utilize bandwidths much larger than

required for data modulation itself, called spread spectrum, are briefly considered. After spread

spectrum modulation, an old concept called multicarrier modulation is reviewed (a special case of

which is known as orthogonal frequency-division multiplexing) and its application to delay spread

channels is discussed. Application areas include wireless communications, digital subscriber lines,

digital audio broadcasting, and digital video broadcasting. Finally, the basics of cellular wire-

less communications systems are briefly covered. This topic provides a specific example of the

application of some of the digital communications principles considered in Chapters 9 and 10.

■ 10.1 M-ARY DATA COMMUNICATIONS SYSTEMS

With the binary digital communications systems we have considered so far (with the exception
of𝑀-ary PAM in Chapter 9), one of only two possible signals can be transmitted during each
signaling interval. In an𝑀-ary system, one of𝑀 possible signals may be transmitted during
each 𝑇

𝑠
-second signaling interval, where𝑀 ≥ 2 (we now place a subscript 𝑠 on the signaling

interval 𝑇 to denote ‘‘symbol’’; we will place the subscript 𝑏 on 𝑇 to denote ‘‘bit’’ when
𝑀 = 2). Thus, binary data transmission is a special case of𝑀-ary data transmission. We refer
to each possible transmitted signal of an𝑀-ary message sequence as a symbol.

10.1.1 M-ary Schemes Based on Quadrature Multiplexing

In Section 4.6 we demonstrated that two different messages can be sent through the same
channel by means of quadrature multiplexing. In a quadrature-multiplexed system, the

477
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Figure 10.1
Modulator and typical waveforms for QPSK.

messages 𝑚1 (𝑡) and 𝑚2 (𝑡) are used to double-sideband modulate two carrier signals of fre-
quency 𝑓

𝑐
Hz, which are in phase quadrature, to produce the modulated signal

𝑥
𝑐 (𝑡) = 𝐴[𝑚1 (𝑡) cos 2𝜋𝑓𝑐𝑡 + 𝑚2 (𝑡) sin 2𝜋𝑓𝑐𝑡]

≜ 𝑅(𝑡) cos[2𝜋𝑓
𝑐
𝑡 + 𝜃

𝑖 (𝑡)] (10.1)

Demodulation at the receiver is accomplished by coherent demodulation with two reference
sinusoids in phase quadrature that are ideally phase and frequency coherent with the quadrature
carriers. This same principle can be applied to transmission of digital data and results in several
modulation schemes, three of which will be described here: (1) quadriphase-shift keying
(QPSK), (2) offset quadriphase-shift keying (OQPSK), and (3) minimum-shift keying (MSK).

In the analysis of these systems,wemake use of the fact that coherent demodulation ideally
results in the two messages 𝑚1 (𝑡) and 𝑚2 (𝑡) being separate at the outputs of the quadrature
mixers. Thus, these quadrature-multiplexed schemes can be viewed as two separate digital
modulation schemes operating in parallel.

The block diagram of a parallel realization for a QPSK transmitter is shown in Figure 10.1,
along with typical signal waveforms. In the case of QPSK, we set 𝑚1 (𝑡) = 𝑑1 (𝑡) and 𝑚2 (𝑡) =
−𝑑2 (𝑡), where 𝑑1 and 𝑑2 are ±1-valued waveforms that have possible transitions each 𝑇

𝑠

seconds. Symbol transition instants are usually aligned for 𝑑1 (𝑡) and 𝑑2 (𝑡).1 Note that we may

1The two data streams could be due to separate sources, not necessarily of the same data rate. At this point in the
discussion, we assume that they are at the same rate.
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think of 𝑑1 (𝑡) and 𝑑2 (𝑡), the symbol streams that modulate the quadrature carriers, as being
obtained by grouping the bits of a binary signal 𝑑 (𝑡)with a bit period half the symbol period of
𝑑1 (𝑡) and 𝑑2 (𝑡) two bits at a time, or 𝑑1 (𝑡) and 𝑑2 (𝑡)may originate from two entirely different
sources. Simple trigonometry on (10.1) results in

𝜃
𝑖
= − tan−1

[
𝑚2 (𝑡)
𝑚1 (𝑡)

]
= tan−1

[
𝑑2 (𝑡)
𝑑1 (𝑡)

]
(10.2)

and we see that 𝜃
𝑖
takes on the four possible values ±45 degrees and ±135 degrees. Conse-

quently, a QPSK transmitter can be alternatively realized in a parallel fashion or in a serial
fashion where 𝑑1 (𝑡) and 𝑑2 (𝑡) impose phase shifts on the carrier that are integer multiples of
90 degrees.

Because the transmitted signal for a QPSK system can be viewed as two binary PSK
signals summed as shown in Figure 10.1, it is reasonable that demodulation and detection
involve two binary receivers in parallel, one for each quadrature carrier. The block diagram
of such a system is shown in Figure 10.2. We note that a symbol in 𝑑 (𝑡) will be correct only if
the corresponding symbols in both 𝑑1 (𝑡) and 𝑑2 (𝑡) are correct. Thus, the probability of correct
reception 𝑃

𝑐
for each symbol phase is given by

𝑃
𝑐
= (1 − 𝑃

𝐸1
)(1 − 𝑃

𝐸2
) (10.3)

where 𝑃
𝐸1

and 𝑃
𝐸2

are the probabilities of error for the quadrature channels. In writing (10.3),
it has been assumed that errors in the quadrature channels are independent. We will discuss
this assumption shortly.

Turning now to the calculation of 𝑃
𝐸1

and 𝑃
𝐸2
, we note that because of symmetry,

𝑃
𝐸1

= 𝑃
𝐸2
. Assuming that the input to the receiver is signal plus white Gaussian noise with

double-sided power spectral density𝑁0∕2, that is,

𝑦(𝑡) = 𝑥
𝑐 (𝑡) + 𝑛 (𝑡)

= 𝐴𝑑1 (𝑡) cos
(
2𝜋𝑓

𝑐
𝑡
)
− 𝐴𝑑2 (𝑡) sin

(
2𝜋𝑓

𝑐
𝑡
)
+ 𝑛(𝑡) (10.4)

y (t) = xc(t) + n (t)

sin ωct

cos ωct

90°

Integrate

and

sample

Integrate

and

sample

Parallel to

serial

conversion

~
V1 = ± ATs + N1

1
2

V2 = ± ATs + N2
1
2

Ad (t)1
2

Figure 10.2
Demodulator for QPSK.
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we find that the output of the upper correlator in Figure 10.2 at the end of a signaling interval
𝑇
𝑠
is

𝑉1 =
∫

𝑇𝑠

0
𝑦 (𝑡) cos

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡 = ±1

2
𝐴𝑇

𝑠
+𝑁1 (10.5)

where

𝑁1 =
∫

𝑇𝑠

0
𝑛(𝑡) cos

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡 (10.6)

Similarly, the output of the lower correlator at 𝑡 = 𝑇
𝑠
is

𝑉2 =
∫

𝑇𝑠

0
𝑦 (𝑡) sin

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡 = ±1

2
𝐴𝑇

𝑠
+𝑁2 (10.7)

where

𝑁2 =
∫

𝑇𝑠

0
𝑛(𝑡) sin

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡 (10.8)

Errors at either correlator output will be independent if 𝑉1 and 𝑉2 are independent, which
requires that 𝑁1 and 𝑁2 be independent. We can show that 𝑁1 and 𝑁2 are uncorrelated
(Problem 10.4), and since they are Gaussian (why?), they are independent.

Returning to the calculation of 𝑃
𝐸1
, we note that the problem is similar to the antipodal

baseband case. The mean of 𝑁1 is zero, and its variance is (the by now usual assumption is
made that 𝑓

𝑐
𝑇
𝑠
is an integer)

𝜎
2
1 = 𝐸

{
𝑁

2
1
}
= 𝐸

{[

∫

𝑇𝑠

0
𝑛(𝑡) cos

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡

]2}

=
∫

𝑇𝑠

0 ∫

𝑇𝑠

0
𝐸 {𝑛(𝑡)𝑛(𝛼)} cos

(
2𝜋𝑓

𝑐
𝑡
)
cos

(
2𝜋𝑓

𝑐
𝛼
)
𝑑𝑡

=
∫

𝑇𝑠

0 ∫

𝑇𝑠

0

𝑁0
2
𝛿 (𝑡 − 𝛼) cos

(
2𝜋𝑓

𝑐
𝑡
)
cos

(
2𝜋𝑓

𝑐
𝛼
)
𝑑𝛼 𝑑𝑡

=
𝑁0
2 ∫

𝑇𝑠

0
cos2

(
2𝜋𝑓

𝑐
𝑡
)
𝑑𝑡

=
𝑁0𝑇𝑠
4

(10.9)

Thus, following a series of steps similar to the case of binary antipodal signaling, we find that

𝑃
𝐸1

= Pr(𝑑1 = +1) Pr(𝐸1|𝑑1 = +1) + Pr(𝑑1 = −1) Pr(𝐸1|𝑑1 = −1)

= Pr(𝐸1|𝑑1 = +1) = Pr(𝐸1|𝑑1 = −1) (10.10)
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where the latter equation follows by noting the symmetry of the pdf of 𝑉1. But

Pr(𝐸|𝑑1 = +1) = Pr
(1
2
𝐴𝑇

𝑠
+𝑁1 < 0

)
= Pr

(
𝑁1 < −1

2
𝐴𝑇

𝑠

)

=
∫

−𝐴𝑇𝑠∕2

−∞

𝑒
−𝑛21∕2𝜎

2
1

√
2𝜋𝜎21

𝑑𝑛1 = 𝑄
⎛
⎜
⎜
⎝

√
𝐴2𝑇

𝑠

𝑁0

⎞
⎟
⎟
⎠

(10.11)

Thus, the probability of error for the upper channel in Figure 10.2 is

𝑃
𝐸1

= 𝑄
⎛
⎜
⎜
⎝

√
𝐴2𝑇

𝑠

𝑁0

⎞
⎟
⎟
⎠

(10.12)

with the same result for 𝑃
𝐸2
. Noting that 1

2𝐴
2
𝑇
𝑠
is the average energy for one quadrature

channel, we see that (10.12) is identical to binary PSK. Thus, considered on a per channel
basis, QPSK performs identically to binary PSK.

However, if we consider the probability of error for a single phase of a QPSK system, we
obtain, from (10.3), the result

𝑃
𝐸
= 1 − 𝑃

𝑐
= 1 −

(
1 − 𝑃

𝐸1

)2

≅ 2𝑃
𝐸1
, 𝑃

𝐸1
≪ 1 (10.13)

= 2𝑄
⎛
⎜
⎜
⎝

√
𝐴2𝑇

𝑠

𝑁0

⎞
⎟
⎟
⎠

(10.14)

Noting that the energy per symbol is 𝐴2
𝑇
𝑠
≜ 𝐸

𝑠
for the quadriphase signal, we may write

(10.14) as

𝑃
𝐸
= 2𝑄

(√
𝐸
𝑠

𝑁0

)

(10.15)

A direct comparison of QPSK and BPSK on the basis of average symbol-energy-to-noise-
spectral-density ratio shows that QPSK is approximately 3 dB worse than binary PSK. How-
ever, this is not a fair comparison since twice as many bits per signaling interval are being
transmitted with the QPSK system as compared to the BPSK system, assuming 𝑇

𝑠
is the

same. A comparison of QPSK and binary PSK on the basis of the systems transmitting equal
numbers of bits per second (two bits per QPSK phase), shows that their performances are
the same, as will be shown later. Binary PSK and QPSK are compared in Figure 10.3 on the
basis of probability of error versus signal-to-noise ratio 𝑧 = 𝐸

𝑠
∕𝑁0, where 𝐸𝑠 is the average

energy per symbol. Note that the curve for QPSK approaches 3
4 as the SNR approaches zero

(−∞ dB). This is reasonable because the receiver will, on average, make only one correct
decision for every four signaling intervals (one of four possible phases) if the input is noise
alone.

10.1.2 OQPSK Systems

Because the quadrature data streams 𝑑1 (𝑡) and 𝑑2 (𝑡) can switch signs simultaneously in a
QPSK system, it follows that the data-bearing phase 𝜃

𝑖
of themodulated signal can occasionally
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Figure 10.3
Symbol error probability for QPSK
compared with that for BPSK.

change by 180 degrees. This can have an undesirable effect in terms of envelope deviation if
the modulated signal is filtered, which is invariably the case in a practical system. To avoid the
possibility of 180-degree phase switching, the switching instants of the quadrature-channel
data signals 𝑑1 (𝑡) and 𝑑2 (𝑡) of a quadriphase system can be offset by 𝑇

𝑠
∕2 relative to each

other, where 𝑇
𝑠
is the signaling interval in either channel. The resulting modulation scheme is

referred to as offset QPSK, which is abbreviated OQPSK; it is also sometimes called staggered
QPSK. With the offsetting or staggering of quadrature data streams by 𝑇

𝑠
∕2, the maximum

phase change due to data modulation of the transmitted carrier is 90 degrees. Theoretically,
the error probability performance of OQPSK and QPSK are identical. One limitation of an
OQPSK system is that the data streams 𝑑1 (𝑡) and 𝑑2 (𝑡) must have the same symbol durations,
whereas for QPSK they need not.

10.1.3 MSK Systems

Type I and Type II MSK

In (10.1), suppose that message 𝑚1 (𝑡) is of the form

𝑚1 (𝑡) = 𝑑1(𝑡) cos 2𝜋𝑓1𝑡 (10.16)

and message 𝑚2 (𝑡) is given by

𝑚2 (𝑡) = −𝑑2 (𝑡) sin 2𝜋𝑓1𝑡 (10.17)

where 𝑑1 (𝑡) and 𝑑2 (𝑡) are binary data signals taking on the value +1 or −1 in symbol intervals
of length 𝑇

𝑠
= 2𝑇

𝑏
seconds with switching times offset by 𝑇

𝑏
, and 𝑓1 is the frequency in Hz of

the weighting functions, cos 2𝜋𝑓1𝑡 and sin 2𝜋𝑓1𝑡, to be specified later. As in the case of QPSK,
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(2k + 1)Tb

(2k – 1)Tb

(    )dt

t = (2k + 1)Tb

d1(t)

cos (πt/2Tb)cos (2π fct)

Lowpass

f ilter

2(k + 1)Tb

2k Tb

(    )dt

t = 2(k + 1)Tb

d2(t)

xc(t)

sin (πt/2Tb)sin (2π fct)

Lowpass

f ilter

+1

–1

+1

–1

(b)

cos (πt/2Tb) cos (2π fct)Serial/

parallel

converter

d(t) = (1, 1, – 1, –1, –1, 1, 1, 1, . . .)

     (Bit duration = Tb s)

d1(t) = (1, –1, –1, 1, . . .); symbol duration = 2Tb s

d2(t) = (1, –1, 1, 1, . . .); symbol duration = 2T sb
(Staggered T sb  relative to d1(t))

xc(t)
sin (πt/2Tb) sin (2π fct)

(a)

Figure 10.4
Block diagrams for parallel type I MSK modulator and demodulator. (a) Modulator. (b) Demodulator.

these data signals can be thought of as having been derived from a serial binary data stream
whose bits occur each 𝑇

𝑏
seconds, with even-indexed bits producing 𝑑1 (𝑡) and odd-indexed

bits producing 𝑑2 (𝑡), or vice versa. These binary data streams are weighted by a cosine or
sine waveform as shown in Figure 10.4. If we substitute (10.16) and (10.17) into (10.1) and
keep in mind that 𝑑1 (𝑡) and 𝑑2 (𝑡) are either +1 or −1 , then, through the use of appropriate
trigonometric identities, it follows that the modulated signal can be written as

𝑥
𝑐 (𝑡) = 𝐴 cos[2𝜋𝑓

𝑐
𝑡 + 𝜃

𝑖
(𝑡)] (10.18)

where

𝜃
𝑖
(𝑡) = tan−1

{[
𝑑2(𝑡)
𝑑1 (𝑡)

]
tan(2𝜋𝑓1𝑡)

}
(10.19)

If 𝑑2 (𝑡) = 𝑑1 (𝑡) (i.e., successive bits in the serial data stream are the same sign, either both 1
or both −1), then

𝜃
𝑖
(𝑡) = 2𝜋𝑓1𝑡 (10.20)

whereas, if 𝑑2 (𝑡) = −𝑑1 (𝑡) (i.e., successive bits in the serial data stream are opposite sign),
then

𝜃
𝑖
(𝑡) = −2𝜋𝑓1𝑡 (10.21)
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Figure 10.5
(a) Inphase and quadrature waveforms for MSK type I modulation. (b) MSK type II modulation.

One form of minimum-shift keying (MSK) results if 𝑓1 =
1
2𝑇𝑠

= 1
4𝑇𝑏

Hz. In this case,

each symbol of the data signal 𝑑1 (𝑡) is multiplied or weighted by one-half cycle of a cosine
waveform, and each symbol of the data signal 𝑑2 (𝑡) is weighted by one-half cycle of a sine
waveform, as shown in Figure 10.5(a). This form of MSK, wherein the weighting functions
for each symbol are alternating half cycles of cosine or sine waveforms, is referred to asMSK
type I. MSK type II modulation results if the weighting is always a positive half-cosinusoid
or half-sinusoid, depending on whether it is the upper or lower arm in Figure 10.4 being
referred to. This type of MSKmodulation, which is illustrated in Figure 10.5(b), bears a closer
relationship to OQPSK than does MSK type I.

Using 𝑓1 =
1
4𝑇𝑏

in (10.19) and substituting the result into (10.18) gives

𝑥
𝑐
(𝑡) = 𝐴 cos

[
2𝜋

(
𝑓
𝑐
± 1

4𝑇
𝑏

)
𝑡 + 𝑢

𝑘

]
(10.22)

where 𝑢
𝑘
= 0 or 𝑢

𝑘
= 𝑘𝜋 modulo(2𝜋), according to whether 𝑑2∕𝑑1 equals +1 or −1, respec-

tively. From this form of an MSK-modulated signal, we can see that MSK can be viewed
as frequency modulation in which the transmitted tones2 are either one-quarter data rate

2One should not infer from this that the spectrum of the transmitted signal consists of impulses at frequencies
𝑓
𝑐
± 1∕

(
4𝑇
𝑏

)
.
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(Continued )

[1∕
(
4𝑇
𝑏

)
] above or one-quarter data rate below the carrier 𝑓

𝑐
in instantaneous frequency

(since the carrier is not actually transmitted, 𝑓
𝑐
is sometimes referred to as the apparent

carrier). Note that the frequency spacing between the tones is Δ𝑓 = 1∕
(
2𝑇
𝑏

)
, which is the

minimum frequency spacing required for the tones to be coherently orthogonal.
In neither MSK type I nor MSK type II modulation formats is there a one-to-one cor-

respondence between the data bits of the serial bit stream and the instantaneous frequency
of the transmitted signal. A modulation format in which this is the case, referred to as fast
frequency-shift keying (FFSK), can be obtained by differentially encoding the serial bit stream
before modulation by means of an MSK type I modulator.

Viewing (10.22) as a phase-modulated signal, we note that the argument of the cosine
can be separated into two phase terms, one due solely to the carrier frequency, or 2𝜋𝑓

𝑐
𝑡, and

the other due to the modulation, or ±𝜋(𝑡∕2𝑇
𝑏
) + 𝑢

𝑘
. The latter term is referred to as the excess

phase and is conveniently portrayed by a phase tree diagram as shown in Figure 10.6(a). If
the phase is shown modulo 2𝜋, a phase trellis diagram results as shown in Figure 10.6(b).
Note that the excess phase changes by exactly 𝜋∕2 radians each 𝑇

𝑏
seconds and that it is a

continuous function of time. This results in even better envelope deviation characteristics than
OQPSK when filtered. In the excess-phase trellis diagram of Figure 10.6(a), straight lines
with negative slope correspond to alternating 1s and −1s (alternating logic 1s and 0s) in the
serial-data sequence, and straight lines with positive slope correspond to all 1s or all −1s (all
logic 1s or logic 0s) in the serial-data sequence.
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Figure 10.6
MSK phase tree (a) and phase trellis (b) diagrams.

The detector for MSK signals can be realized in parallel form in analogous fashion to
QPSK or OQPSK, as shown in Figure 10.2, except that multiplication by cos(𝜋𝑡∕2𝑇

𝑏
) is

required in the upper arm and multiplication by sin(𝜋𝑡∕2𝑇
𝑏
) is required in the lower arm in

order to realize the optimum correlation detector for the two data signals 𝑑1 (𝑡) and 𝑑2 (𝑡). As
in the case of QPSK (or OQPSK), it can be shown that the noise components at the integrator
outputs of the upper and lower arms are uncorrelated. Except for a different scaling factor
(which affects the signal and noise components the same), the error probability analysis for
MSK is identical to that for QPSK, and consequently, the error probability performance of
MSK is identical to that of QPSK or OQPSK.

Serial MSK

In the discussion of MSK so far, we have viewed the modulation and detection processes
as being accomplished by parallel structures like those shown in Figures 10.1 and 10.2 for
QPSK. It turns out that MSK can be processed in a serial fashion as well. The serial modulator
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structure consists of a BPSKmodulator with a conversion filter at its output with the frequency
response function

𝐺(𝑓 ) = {sinc[(𝑓 − 𝑓
𝑐
)𝑇
𝑏
− 0.25] + sinc[(𝑓 + 𝑓

𝑐
)𝑇
𝑏
+ 0.25]}𝑒−𝑗2𝜋𝑓𝑡0 (10.23)

where 𝑡0 is an arbitrary filter delay and 𝑓𝑐 is the apparent carrier frequency of the MSK signal.
Note that the peak of the frequency response of the conversion filter is offset in frequency
one-quarter data rate above the apparent carrier. The BPSK signal, on the other hand, is offset
one-quarter data rate below the desired apparent carrier of the MSK signal. Its power spectrum
can be written as

𝑆BPSK(𝑓 ) = (𝐴2
𝑇
𝑏
∕2){sinc2[(𝑓 − 𝑓

𝑐
)𝑇
𝑏
+ 0.25] + sinc2[(𝑓 + 𝑓

𝑐
)𝑇
𝑏
− 0.25]} (10.24)

The product of |𝐺(𝑓 )|2 and𝑆BPSK(𝑓 ) gives the power spectrum of the conversion filter output,
which, after some simplification, can be shown to be

𝑆MSK (𝑓 ) =
32𝐴2

𝑇
𝑏

𝜋4

⎧
⎪
⎨
⎪
⎩

cos2 2𝜋𝑇
𝑏

(
𝑓 − 𝑓

𝑐

)

[
1 − 16𝑇 2

𝑏

(
𝑓 − 𝑓

𝑐

)2]2
+

cos2 2𝜋𝑇
𝑏

(
𝑓 + 𝑓

𝑐

)

[
1 − 16𝑇 2

𝑏

(
𝑓 + 𝑓

𝑐

)2]2

⎫
⎪
⎬
⎪
⎭

(10.25)

This is the double-sided power spectrum of an MSK-modulated signal, which demonstrates
in the frequency domain the validity of the serial approach to the generation of MSK. Thus,
the parallel modulator structure can be replaced by a serial modulator structure, which means
that the difficult task of producing amplitude-matched phase-quadrature signals in the parallel
structure can be replaced by the perhaps easier task of generation of BPSK signals and synthesis
of a conversion filter.

At the receiver, for serial demodulation, essentially the reverse of the signal-processing
procedure at the transmitter is carried out. The received signal is passed through a filter whose
frequency response is proportional to the square root of the MSK spectrum. Although the
details will not be given here,3 it can be shown that each symbol is sampled independently of
those preceding or following it at the proper sampling instants.

Gaussian MSK

Even though MSK has lower out-of-band power characteristics than QPSK and OQPSK, it
still is not good enough for some applications such as satellite communications and cellular
radio. Better sidelobe suppression of the modulated signal spectrum can be obtained for
MSK by making the phase transitions smoother than the straight-line characteristics shown in
Figure 10.6. One means of doing this is to pass the NRZ-represented data through a lowpass
filter with Gaussian frequency response given by4

𝐻 (𝑓 ) = exp

[

−ln 2
2

(
𝑓

𝐵

)2
]

(10.26)

where 𝐵 is the 3-dB two-sided bandwidth of the filter. The filter output is then used as the
input to a frequency modulator with deviation constant 𝑓

𝑑
chosen to produce a phase transition

in going from a data bit −1 to data bit 1 of 𝜋∕2 radians. An implementation problem is how

3See F. Amoroso and J. A. Kivett, ‘‘Simplified MSK Signaling Technique,’’ IEEE Transactions on Communications,
COM-25: 433--441, April 1977.
4K. Morota and K. Haride, ‘‘GMSK Modulation for Digital Mobile Radio Telephony,’’ IEEE Transactions on
Communications, COM-29: 1044--1050, July 1981.
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to build a filter with frequency response given by (10.26), which corresponds to a filter with
Gaussian impulse response (Table F.5)

ℎ (𝑡) =
√

2𝜋
ln 2

𝐵 exp
(
−2𝜋2𝐵2

ln 2
𝑡
2
)

(10.27)

This is often done by digitally implementing a filter with Gaussian impulse response over a
finite range of 𝑡. The step response of this filter is the integral of the impulse response,

𝑦
𝑠 (𝑡) =

∫

𝑡

−∞
ℎ (𝜏) 𝑑𝜏 (10.28)

so its response to a rectangular pulse, Π
(
𝑡∕𝑇

𝑏

)
, is

𝑔 (𝑡) =
∫

𝑡+𝑇𝑏∕2

−∞
ℎ (𝜏) 𝑑𝜏 −

∫

𝑡−𝑇𝑏∕2

−∞
ℎ (𝜏) 𝑑𝜏

= 1
2

[

erf

(√
2
ln 2

𝜋𝐵𝑇
𝑏

(
𝑡

𝑇
𝑏

+ 1
2

))

− erf

(√
2
ln 2

𝜋𝐵𝑇
𝑏

(
𝑡

𝑇
𝑏

− 1
2

))]

= 1
2

[

erf

(√
2
ln 2

𝜋𝐵𝑇
𝑏

(
𝑡

𝑇
𝑏

+ 1
2

))

+ erf

(

−
√

2
ln 2

𝜋𝐵𝑇
𝑏

(
𝑡

𝑇
𝑏

− 1
2

))]

(10.29)

where 𝑇
𝑏
is the bit period and erf (𝑢) = 2√

𝜋
∫
𝑢

0 exp
(
−𝑡2

)
𝑑𝑡 is the error function. Themodulated

waveform is produced by passing the entireNRZ-represented data stream through theGaussian
filter and then using the filter output to frequency modulate the carrier. The the excess phase
of the resulting FM-modulated carrier is

𝜙 (𝑡) = 2𝜋𝑓
𝑑

∞∑

𝑛=−∞
𝛼
𝑛
∫

𝑡

−∞
𝑔
(
𝜆 − 𝑛𝑇

𝑏

)
𝑑𝜆 (10.30)

where 𝛼
𝑛
is the sign of the 𝑛𝑡ℎ bit and 𝑓

𝑑
is the deviation constant chosen to give phase

transitions of 𝜋∕2 radians. This modulation scheme, called Gaussian MSK (GMSK), can be
shown to have a spectrum with very low sidelobes as determined by the product 𝐵𝑇

𝑏
at the

expense of more intersymbol interference the smaller 𝐵𝑇
𝑏
. GMSK is used as the modulation

scheme in the second-generation European cellular radio standard. Some results, taken from
Murota and Hirade, giving 90% power containment bandwidth (i.e., the bandwidth within
which 90% of the modulated signal power is contained) and degradation in 𝐸

𝑏
∕𝑁0 from ideal

MSK versus 𝐵𝑇
𝑏
are given in Table 10.1.

Table 10.1 90% Power Containment Bandwidths and Degradations in E
𝑏
/N0

for GMSK

𝑩𝑻
𝒃

90% containment BW, bit rates∗ Degradation from MSK, dB

0.2 0.52 1.3
0.25 0.57 0.7
0.5 0.69 0.3
∞ (MSK) 0.78 0

∗Double these for RF bandwidths.
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K(t)

Ts
( )dt

t = Ts

Zk

y(t)

2(t)

Ts
( )dt

t = Ts

Z2

1(t)

Ts
( )dt

t = Ts

Z1

0

0

0

Note: y(t) = si(t) + n(t) where n(t) is white Gaussian noise.

ϕ

ϕ

ϕ

Figure 10.7
Computation of signal space
coordinates.

10.1.4 M-ary Data Transmission in Terms of Signal Space

A convenient framework for discussing 𝑀-ary data transmission systems is that of signal
space. The approach used here in terms of justifying the receiver structure is heuristic. It is
placed on a firm theoretical basis in Chapter 11, where optimum signal detection principles
are discussed.5

We consider coherent communication systems with signal sets of the form

𝑠
𝑖 (𝑡) =

𝐾∑

𝑗=1
𝑎
𝑖𝑗
𝜙
𝑗
(𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝐾 ≤𝑀, 𝑖 = 1, 2,… ,𝑀 (10.31)

where the functions 𝜙
𝑗
(𝑡) are orthonormal over the symbol interval. That is,

∫

𝑇𝑠

0
𝜙
𝑚 (𝑡)𝜙𝑛 (𝑡) 𝑑𝑡 =

{1, 𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

(10.32)

Based on (10.31), we can visualize the possible transmitted signals as points in a space with
coordinate axes 𝜙1 (𝑡) , 𝜙2 (𝑡) , 𝜙3 (𝑡) ,… , 𝜙

𝐾 (𝑡).
At the output of the channel it is assumed that signal plus additive white Gaussian noise

is received; that is,

𝑦(𝑡) = 𝑠
𝑖 (𝑡) + 𝑛(𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇𝑠, 𝑖 = 1,… ,𝑀 (10.33)

where 𝑡0 is an arbitrary starting time equal to an integer times 𝑇
𝑠
. As shown in Figure 10.7,

the receiver consists of a bank of 𝐾 correlators, one for each orthonormal function.

5Kotelnikov (1947) was first to introduce the use of signal space into communication system characterization and,
later, the book by Wozencraft and Jacobs (1965).

For an analysis of several𝑀-ary digital modulation schemes using signal space, see E. Arthurs and H. Dym,
‘‘On the Optimum Detection of Digital Signals in the Presence of White Gaussian Noise---A Geometric Interpretation
and a Study of Three Basic Data Transmission Systems,’’ IRE Transactions on Communications Systems, CS-10:
336--372, December 1962.
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The output of the 𝑗th correlator is

𝑍
𝑗
= 𝑎

𝑖𝑗
+𝑁

𝑗
, 𝑗 = 1, 2,… , 𝐾, 𝑖 = 1, 2,… , 𝑀 (10.34)

where the noise component𝑁
𝑗
is given by (𝑡0 = 0 for notational ease)

𝑁
𝑗
=
∫

𝑇𝑠

0
𝑛(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡 (10.35)

Since 𝑛(𝑡) is Gaussian and white, the random variables 𝑁1, 𝑁2,… , 𝑁
𝐾

can be shown to
be independent, zero-mean, Gaussian random variables with variances 𝑁0∕2, which is the
two-sided spectral density of the noise. That this is the case may be shown by considering the
development

𝐸
[
𝑁
𝑗
𝑁
𝑘

]
= 𝐸

[

∫

𝑇𝑠

0
𝑛(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡

∫

𝑇𝑠

0
𝑛(𝜆)𝜙

𝑘
(𝜆) 𝑑𝜆

]

= 𝐸
[

∫

𝑇𝑠

0 ∫

𝑇𝑠

0
𝑛(𝑡)𝑛(𝜆)𝜙

𝑗
(𝑡)𝜙

𝑘
(𝜆) 𝑑𝜆𝑑𝑡

]

=
∫

𝑇𝑠

0 ∫

𝑇𝑠

0
𝐸[𝑛(𝑡)𝑛(𝜆)]𝜙

𝑗
(𝑡)𝜙

𝑘
(𝜆) 𝑑𝜆𝑑𝑡

=
∫

𝑇𝑠

0 ∫

𝑇𝑠

0

𝑁0
2
𝛿 (𝑡 − 𝜆)𝜙𝑗(𝑡)𝜙𝑘(𝜆) 𝑑𝜆𝑑𝑡

=
𝑁0
2 ∫

𝑇𝑠

0
𝜙
𝑗
(𝑡)𝜙

𝑘
(𝑡) 𝑑𝑡

=
{
𝑁0∕2, 𝑗 = 𝑘
0, 𝑗 ≠ 𝑘

(10.36)

where the last line follows by virtue of the orthogonality of the 𝜙
𝑗
(𝑡)s. Since 𝑛 (𝑡) is zero mean,

so are𝑁1, 𝑁2,… , 𝑁
𝐾
. The development leading to (10.36) shows that they are uncorrelated.

Since they are Gaussian (each is a linear operation on a Gaussian random process), they are
independent.

It can be shown that this signal space representation preserves all the information required
to make a minimum error probability decision regarding which signal was transmitted. The
next operation in the receiver is a decision box that performs the following function:

Compare the received signal-plus-noise coordinates with the stored signal coordinates, 𝑎
𝑖𝑗
. Choose

as the transmitted signal the one closest to the received signal-plus-noise point with distance
measured in the Euclidean sense; i.e., choose the transmitted signal as the one whose 𝑎

𝑖𝑗
s minimize

𝑑
2
𝑖
=

𝐾∑

𝑗=1

[
𝑍
𝑗
− 𝑎

𝑖𝑗

]2
(10.37)

This decision procedurewill be shown inChapter 11 to result in theminimumerror probability
possible with respect to the signal set.
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EXAMPLE 10.1

Consider BPSK. Only one orthonormal function is required in this case, and it is

𝜙(𝑡) =

√
2
𝑇
𝑏

cos 2𝜋𝑓
𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑏
(10.38)

The possible transmitted signals can be represented as

𝑠1 (𝑡) =
√
𝐸
𝑏
𝜙(𝑡) and 𝑠2(𝑡) = −

√
𝐸
𝑏
𝜙(𝑡) (10.39)

where 𝐸
𝑏
is the bit energy, so 𝛼11 =

√
𝐸
𝑏
and 𝛼21 = −

√
𝐸
𝑏
. For example, for a correlator output of

𝑍1 = −1 and with 𝐸
𝑏
= 4, (10.37) becomes

𝑑
2
1 =

(
−1 −

√
4
)2

= 9

𝑑
2
2 =

(
−1 +

√
4
)2

= 1

so the decision would be made that 𝑠2 (𝑡) was sent.
■

10.1.5 QPSK in Terms of Signal Space

From Figures 10.7 and 10.2 we see that the receiver for QPSK consists of a bank of two
correlators. Thus, the received data can be represented in a two-dimensional signal space as
shown in Figure 10.8. The transmitted signals can be represented in terms of two orthonormal
functions 𝜙1(𝑡) and 𝜙2(𝑡) as

𝑥
𝑐 (𝑡) = 𝑠𝑖 (𝑡) =

√
𝐸
𝑠

[
𝑑1 (𝑡)𝜙1(𝑡) − 𝑑2 (𝑡)𝜙2(𝑡)

]
=

√
𝐸
𝑠

[
±𝜙1(𝑡) ± 𝜙2(𝑡)

]
(10.40)

Es

R4:

Decide S4

R3:

Decide S3

R1:

Decide S1

R2:

Decide S2

2(t)

1(t)

S1S2

S4S3

ϕ

ϕ Figure 10.8
Signal space for QPSK.
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where

𝜙1 (𝑡) =

√
2
𝑇
𝑠

cos 2𝜋𝑓
𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑠
(10.41)

𝜙2(𝑡) =

√
2
𝑇
𝑠

sin 2𝜋𝑓
𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑠
(10.42)

𝐸
𝑠
is the energy contained in 𝑥

𝑐 (𝑡) in one symbol interval. The resulting regions for associating
a received data point with a possible signal point are also illustrated in Figure 10.8. It can
be seen that the coordinate axes provide the boundaries of the regions that determine a given
signal point to be associated with a received data point. For example, if the received data point
is in the first quadrant (region𝑅1), the decision is made that 𝑑1 (𝑡) = 1 and 𝑑2 (𝑡) = 1 (this will
be denoted as signal point 𝑆1 in the signal space). A simple bound on symbol error probability
can be obtained by recalling that the circular symmetry makes the conditional probability of
error independent of the signal point chosen and noting that

𝑃
𝐸
= Pr(𝑍 ∈ 𝑅2 or 𝑅3 or 𝑅4|𝑆1 sent)

< Pr(𝑍 ∈ 𝑅2 or 𝑅3|𝑆1 sent) + Pr(𝑍 ∈ 𝑅3 or 𝑅4|𝑆1 sent) (10.43)

The two probabilities on the right-hand side of (10.43) can be shown to be equal. Thus,

𝑃
𝐸
< 2Pr(𝑍 ∈ 𝑅2 or 𝑅3) = 2Pr

(√
𝐸
𝑠
∕2 +𝑁

⊥
< 0

)

= 2Pr
(
𝑁
⊥
< −

√
𝐸
𝑠
∕2

)
(10.44)

where 𝑁
⊥
, as shown in Figure 10.9, is the noise component perpendicular to the decision

boundary between𝑅1 and𝑅2. It can be shown that it has zero mean and variance𝑁0∕2. Thus,

𝑃
𝐸
< 2

∫

−
√
𝐸𝑠∕2

−∞

𝑒
−𝑢2∕𝑁0
√
𝜋𝑁0

𝑑𝑢 = 2
∫

∞

√
𝐸𝑠∕2

𝑒
−𝑢2∕𝑁0
√
𝜋𝑁0

𝑑𝑢 (10.45)

2(t)

1(t)

Signal plus

noise vector

Total noise vector

Decision region R1

N

S1 = (            )Es, Es

Figure 10.9
Representation of signal plus noise in signal
space, showing𝑁

⊥
, the noise component that

can cause the received data vector to land
in 𝑅2.
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Making the change of variables 𝜇 = 𝑣∕
√
𝑁0∕2, we can reduce this to the form

𝑃
𝐸
< 2𝑄

(√
𝐸
𝑠
∕𝑁0

)
(10.46)

This is identical to (10.15), which resulted in neglecting the square of 𝑃
𝐸1

in (10.14).

10.1.6 M-ary Phase-Shift Keying

The signal set for QPSK can be generalized to an arbitrary number of phases. The modulated
signal takes the form

𝑠
𝑖 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
[
2𝜋𝑓

𝑐
𝑡 + 2𝜋 (𝑖 − 1)

𝑀

]
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝑖 = 1, 2,… ,𝑀 (10.47)

Using trigonometric identities, this can be expanded as

𝑠
𝑖
(𝑡) =

√
𝐸
𝑠

[

cos
(
2𝜋 (𝑖 − 1)
𝑀

)√
2
𝑇
𝑠

cos 2𝜋𝑓
𝑐
𝑡 − sin

(
2𝜋 (𝑖 − 1)
𝑀

)√
2
𝑇
𝑠

sin 2𝜋𝑓
𝑐
𝑡

]

=
√
𝐸
𝑠

[
cos

(
2𝜋 (𝑖 − 1)
𝑀

)
𝜙1(𝑡) − sin

(
2𝜋 (𝑖 − 1)
𝑀

)
𝜙2(𝑡)

]
(10.48)

where 𝜙1(𝑡) and 𝜙2(𝑡) are the orthonormal functions defined by (10.41) and (10.42).
A plot of the signal points 𝑆

𝑖
, 𝑖 = 1, 2,… ,𝑀 along with the optimum decision regions

is shown in Figure 10.10(a) for 𝑀 = 8. The probability of error can be overbounded by
noting from Figure 10.10(b) that the total area represented by the two half planes 𝐷1 and 𝐷2
is greater than the total shaded area in Figure 10.10(b), and thus the probability of symbol
error is overbounded by the probability that the received data point 𝑍

𝑗
lies in either half

plane. Because of the circular symmetry of the noise distribution, both probabilities are
equal. Consider a single half plane along with a single signal point, which is at a minimum
distance of

𝑑 =
√
𝐸
𝑠
sin(𝜋∕𝑀) (10.49)

away from the boundary of the half plane. As in Figure 10.9, consider the noise component
𝑁
⊥
, which is perpendicular to the boundary of the half plane. It is the only noise component

that can possibly put the received data point on the wrong side of the decision boundary; it
has zero mean and a variance 𝑁0∕2. From this discussion and referring to Figure 10.10(b), it
follows that the probability of error is overbounded by

𝑃
𝐸
< Pr(𝑍 ∈ 𝐷1 or 𝐷2) = 2Pr(𝑍 ∈ 𝐷1)

= 2 Pr(𝑑 +𝑁
⊥
< 0) = 2 Pr(𝑁

⊥
< −𝑑)

= 2
∫

−𝑑

−∞

𝑒
−𝑢2∕𝑁0
√
𝜋𝑁0

𝑑𝑢 = 2𝑄
⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑁0
sin(𝜋∕𝑀)

⎞
⎟
⎟
⎠

(10.50)
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Figure 10.10
(a) Signal space for𝑀-ary PSK with𝑀 = 8. (b) Signal space for𝑀-ary PSK showing two half planes
that can be used to overbound 𝑃

𝐸
. (c) Coordinate setup for deriving Craig’s exact integral for 𝑃

𝐸
.

From Figure 10.10(b) it can be seen that the bound becomes tighter as𝑀 gets larger (because
the overlap of 𝐷1 and 𝐷2 becomes smaller with increasing𝑀).

An exact expression for the symbol error probability is6

𝑃
𝐸
= 1
𝜋 ∫

𝜋−𝜋∕𝑀

0
exp

[

−
(
𝐸
𝑠
∕𝑁0

)
sin2 (𝜋∕𝑀)

sin2 𝜙

]

𝑑𝜙 (10.51)

The derivation, with the aid of Figure 10.10(c), is given below and follows that given in
Craig’s paper. Figure 10.10(c) shows the 𝑛th decision region for signal point 𝑆

𝑛
(recall that

6J. W. Craig, ‘‘A New, Simple and Exact Result for Calculating the Probability of Error for Two-Dimensional Signal
Constellations,’’ IEEE Milcom ’91 Proceedings, 571--575, October 1991.
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due to the circular symmetry we can rotate this decision region to any convenient location).
The probability of symbol error is the probability that the noise causes the received data point
to land outside the wedge-shaped region bounded by the semi-infinite lines AO and CO, for
example the point 𝑍, and is seen to be twice the probability that 𝑍 lies above the boundary
AOD. It can be expressed as

𝑃
𝐸
= 2

∫

𝜋−𝜋∕𝑀

0 ∫

∞

𝑅

𝑓
𝑅Θ (𝑟, 𝜃) 𝑑𝑟𝑑𝜃 (10.52)

where 𝑅 is the distance from the signal point to the boundary and 𝑓
𝑅Θ (𝑟, 𝜃) is the joint pdf

of the noise components expressed in polar coordinates, which is

𝑓
𝑅Θ (𝑟, 𝜃) = 𝑟

𝜋𝑁0
exp

(
− 𝑟

2

𝑁0

)
, 𝑟 ≥ 0, −𝜋 < 𝜃 ≤ 𝜋 (10.53)

(recall that the variance of the noise components is 𝑁0∕2). Substituting (10.53) into (10.52)
and carrying out the integration over 𝑟, we get

𝑃
𝐸
= 1
𝜋 ∫

𝜋−𝜋∕𝑀

0
exp

(
−𝑅

2

𝑁0

)
𝑑𝜃 (10.54)

Now by the law of sines from Figure 10.10(c), we have

𝑅

sin𝜓
=

𝑋0
sin(𝜋 − 𝜃 − 𝜓)

=
𝑋0

sin(𝜃 + 𝜓)
or

𝑅 =
𝑋0 sin𝜓
sin(𝜃 + 𝜓)

=
√
𝐸
𝑠
sin(𝜋∕𝑀)

sin(𝜃 + 𝜋∕𝑀)
(10.55)

Substitution of this expression for 𝑅 into (10.54) gives

𝑃
𝐸
= 1
𝜋 ∫

𝜋−𝜋∕𝑀

0
exp

(

−
𝐸
𝑠
sin2 (𝜋∕𝑀)

𝑁0 sin2 (𝜃 + 𝜋∕𝑀)

)

𝑑𝜃 (10.56)

which, after the substitution𝜙 = 𝜋 − (𝜃 + 𝜋∕𝑀) gives (10.51). Performance curves computed
from (10.51) will be presented later after conversion from symbol to bit error probabilities is
discussed.

10.1.7 Quadrature-Amplitude Modulation (QAM)

Another signaling scheme that allows multiple signals to be transmitted using quadra-
ture carriers is quadrature-amplitude modulation (QAM) where the transmitted signal is
represented as

𝑠
𝑖 (𝑡) =

√
2
𝑇
𝑠

(𝐴
𝑖
cos 2𝜋𝑓

𝑐
𝑡 + 𝐵

𝑖
sin 2𝜋𝑓

𝑐
𝑡), 0 < 𝑡 ≤ 𝑇

𝑠
(10.57)

where 𝐴
𝑖
and 𝐵

𝑖
take on the possible values ±𝑎,±3𝑎,… ,±

(√
𝑀 − 1

)
𝑎 with equal proba-

bility, where𝑀 is an integer power of 4. The parameter 𝑎 can be related to the average energy

www.it-ebooks.info

http://www.it-ebooks.info/


496 Chapter 10 ∙ Advanced Data Communications Topics

2(t)

1(t)

(III)

0010

(II)

0110

(II)

1110

(III)

1010

(III) (II) (II) (III)

)II()II(

(II)

(I)

)II()I(

(I)

(I)

0011 0111 1111 1011

0001 0101 1101 1001

0000 0100 1100 1000

3a

3a

a

a

–a

–a

–3a

–3a

TS

TS

y(t)
cos ωct)

2

TS

sin ωct
2

TS

TS

0
( )dt

TS

0
( )dt

Thresholds

and

decision

logic

Decision

Note: y(t) = si(t) + n(t), where n(t) is white Gaussian noise.

(a)

(b)

Decision boundaries

Roman numerals show

decision region type

1

Q

ϕ

ϕ

Figure 10.11
Signal space and detector structure for 16-QAM. (a) Signal constellation and decision regions for
16-QAM. (b) Detector structure for𝑀-ary QAM. (Binary representations for signal points are Gray
encoded.)

of a symbol, 𝐸
𝑠
, as (see Problem 10.16)

𝑎 =

√
3𝐸

𝑠

2 (𝑀 − 1)
(10.58)

A signal space representation for 16-QAM is shown in Figure 10.11(a), and the receiver
structure is shown in Figure 10.11(b). The probability of symbol error for 𝑀-QAM can be
shown to be

𝑃
𝐸
= 1 − 1

𝑀

[(√
𝑀 − 2

)2
𝑃 (𝐶 ∣ I) + 4

(√
𝑀 − 2

)
𝑃 (𝐶 ∣ II) + 4𝑃 (𝐶 ∣ III)

]
(10.59)
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where the conditional probabilities 𝑃 (𝐶|I), 𝑃 (𝐶|II), and 𝑃 (𝐶|III) are given by

𝑃 (𝐶 ∣ I) =

[

∫

𝑎

−𝑎

exp
(
−𝑢2∕𝑁0

)

√
𝜋𝑁0

𝑑𝑢

]2

=

[

1 − 2𝑄

(√
2𝑎2
𝑁0

)]2

(10.60)

𝑃 (𝐶 ∣ II) =
∫

𝑎

−𝑎

exp
(
−𝑢2∕𝑁0

)

√
𝜋𝑁0

𝑑𝑢
∫

∞

−𝑎

exp
(
−𝑢2∕𝑁0

)

√
𝜋𝑁0

𝑑𝑢

=

[

1 − 2𝑄

(√
2𝑎2
𝑁0

)][

1 −𝑄

(√
2𝑎2
𝑁0

)]

(10.61)

𝑃 (𝐶 ∣ III) =

[

∫

∞

−𝑎

exp
(
−𝑢2∕𝑁0

)

√
𝜋𝑁0

𝑑𝑢

]2

=

[

1 −𝑄

(√
2𝑎2
𝑁0

)]2

(10.62)

The notation I, II, or III denotes that the particular probability refers to the probability of
correct reception for the three types of decision regions shown in Figure 10.11(a). In general,

there are
(√

𝑀 − 2
)2

type I decision regions (4 in the case of 16-QAM), 4
(√

𝑀 − 2
)
type

II decision regions (8 in the case of 16-QAM), and four type III decision regions (the corners).
Thus, assuming that the possible symbols are equiprobable, the probability of a given type of
decision region is 1∕𝑀 times these numbers, which shows the rationale behind (10.59).

A computer program is useful for computations of the symbol error probability using
(10.59) through (10.62). For large 𝐸

𝑠
∕𝑁0 the square of the 𝑄-function may be neglected in

comparison with the 𝑄-function itself, which results in the approximation

𝑃
𝑠
≅ 4

(

1 − 1
√
𝑀

)

𝑄

(√
2𝑎2
𝑁0

)

, 𝐸
𝑠
∕𝑁0 ≫ 1 (10.63)

Error probabilities for𝑀-ary PSK and QAM will be compared later in the chapter.

10.1.8 Coherent FSK

The error probability for coherent𝑀-ary FSK is derived in Chapter 11. The transmitted signals
have the form

𝑠
𝑖 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
{
2𝜋

[
𝑓
𝑐
+ (𝑖 − 1)Δ𝑓

]
𝑡
}
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝑖 = 1, 2,… ,𝑀 (10.64)

where Δ𝑓 is a frequency separation large enough to make the signals represented by (10.64)
coherently orthogonal (the minimum separation isΔ𝑓 = 1∕2𝑇

𝑠
). Since each of the𝑀 possible

transmitted signals is orthogonal to the rest, it follows that the signal space is𝑀-dimensional
where the orthogonal set of functions is

𝜙
𝑖 (𝑡) =

√
2
𝑇
𝑠

cos
{
2𝜋

[
𝑓
𝑐
+ (𝑖 − 1)Δ𝑓

]
𝑡
}
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝑖 = 1, 2,… ,𝑀 (10.65)

so that the 𝑖th signal can be expressed as

𝑠
𝑖 (𝑡) =

√
𝐸
𝑠
𝜙
𝑖 (𝑡) (10.66)
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Figure 10.12
Signal space showing decision
regions for 3-ary coherent FSK.

An example signal space is shown in Figure 10.12 for 𝑀 = 3 (this unrealistic example is
chosen for ease of drawing). An upper bound for the probability of error that becomes tighter
as𝑀 gets larger is given by7

𝑃
𝐸
≤ (𝑀 − 1)𝑄

(√
𝐸
𝑠

𝑁0

)

(10.67)

which follows because, for an error to occur, the received data vector must be closer to any
one of the 𝑀 − 1 incorrect signal points rather than the correct one. The probability of any

one of these incorrect events is 𝑄
(√

𝐸
𝑠
∕𝑁0

)
.

10.1.9 Noncoherent FSK

Noncoherent𝑀-ary FSK employs the same signal set as coherent FSK; however, a receiver
structure is used that does not require the acquisition of a coherent carrier reference. A block
diagram of a suitable receiver structure is shown in Figure 10.13. The symbol error probability
can be shown to be

𝑃
𝐸
=
𝑀−1∑

𝑘=1

(
𝑀 − 1
𝑘

)
(−1)𝑘+1

𝑘 + 1
exp

(
− 𝑘

𝑘 + 1
𝐸
𝑠

𝑁0

)
(10.68)

The derivation of the symbol error probability may be sketched as follows. Referring to
Figure 10.13, consider a received signal of the form

𝑦
𝑖 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
(
2𝜋𝑓

𝑖
𝑡 + 𝛼

)
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝑖 = 1, 2,… , 𝑀 (10.69)

7This is derived by using the union bound of probability, which states that, for any set of 𝐾 events that may or may
not be disjoint, Pr

(
𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴

𝐾

)
≤ Pr

(
𝐴1

)
+ Pr

(
𝐴2

)
+ … + Pr

(
𝐴
𝐾

)
.
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Note: y(t) = si (t) + n(t), where n(t) is white Gaussian noise.

Figure 10.13
Receiver structure for noncoherent FSK.

where |𝑓
𝑖±1 − 𝑓𝑖| ≥ 1∕𝑇

𝑠
and 𝛼 is an unknown phase angle. The orthogonal basis functions

for the 𝑗th correlator pair are

𝜙2𝑗−1 (𝑡) =

√
2
𝑇
𝑠

cos
(
2𝜋𝑓

𝑗
𝑡
)
, 0 ≤ 𝑡 ≤ 𝑇

𝑠

𝜙2𝑗 (𝑡) =

√
2
𝑇
𝑠

sin
(
2𝜋𝑓

𝑗
𝑡
)
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
, 𝑗 = 1, 2,… , 𝑀 (10.70)
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Given that 𝑠
𝑖 (𝑡) was sent, the coordinates of the received data vector, denoted as Z

=
(
𝑍1, 𝑍2, 𝑍3, . . ., 𝑍2𝑀−1, 𝑍2𝑀

)
, are

𝑍2𝑗−1 =

{
𝑁2𝑗−1, 𝑗 ≠ 𝑖
√
𝐸
𝑠
cos 𝛼 +𝑁2𝑗−1, 𝑗 = 𝑖

(10.71)

and

𝑍2𝑗 =

{
𝑁2𝑗 , 𝑗 ≠ 𝑖

−
√
𝐸
𝑠
sin 𝛼 +𝑁2𝑗 , 𝑗 = 𝑖

(10.72)

where 𝑗 = 1, 2,… , 𝑀 . The noise components are given by

𝑁2𝑗−1 =

√
2
𝑇
𝑠
∫

𝑇𝑠

0
𝑛 (𝑡) cos

(
2𝜋𝑓

𝑗
𝑡
)
𝑑𝑡

𝑁2𝑗 =

√
2
𝑇
𝑠
∫

𝑇𝑠

0
𝑛 (𝑡) sin

(
2𝜋𝑓

𝑗
𝑡
)
𝑑𝑡 (10.73)

and are uncorrelated Gaussian random variables with zero means and variances𝑁0∕2. Given
that 𝑠

𝑖 (𝑡) was sent, a correct reception is made if

𝑍
2
2𝑗−1 +𝑍

2
2𝑗 < 𝑍

2
2𝑖−1 +𝑍

2
2𝑖, all 𝑗 ≠ 𝑖

or, equivalently, if
√
𝑍

2
2𝑗−1 +𝑍

2
2𝑗 <

√
𝑍

2
2𝑖−1 +𝑍

2
2𝑖, all 𝑗 ≠ 𝑖 (10.74)

Evaluation of the symbol error probability requires the joint pdf of the random variables

𝑅
𝑗
=

√
𝑍

2
2𝑗−1 +𝑍

2
2𝑗 , 𝑗 = 1, 2,… , 𝑀 . For 𝑗 = 𝑖 and given 𝛼, 𝑍2𝑗−1 is a Gaussian random

variable with mean
√
𝐸
𝑠
cos 𝛼 and variance𝑁0∕2, which follows from (10.71). Similarly, for

𝑗 = 𝑖 and given 𝛼, 𝑍2𝑗 is a Gaussian random variable with mean −
√
𝐸
𝑠
sin 𝛼 and variance

𝑁0∕2, which follows from (10.72). For 𝑗 ≠ 𝑖, both have zero means and variances 𝑁0∕2.
Thus, the joint pdf of 𝑍2𝑗 and 𝑍2𝑗−1 given 𝛼 is (𝑥 and 𝑦 are the dummy variables for the pdf)

𝑓
𝑍2𝑗−1, 𝑍2𝑗

(𝑥, 𝑦 | 𝛼)=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
𝜋𝑁0

exp
{
− 1
𝑁0

[(
𝑥−

√
𝐸
𝑠
cos 𝛼

)2
+
(
𝑦+

√
𝐸
𝑠
sin 𝛼

)2
]}

, 𝑗 = 𝑖

1
𝜋𝑁0

exp
{
− 1
𝑁0

[
𝑥
2+𝑦2

]}
𝑗 ≠ 𝑖

(10.75)

To proceed, it is convenient to change to polar coordinates, defined by

𝑥 =
√
𝑁0
2
𝑟 sin𝜙

𝑦 =
√
𝑁0
2
𝑟 cos𝜙

⎫
⎪
⎪
⎬
⎪
⎪
⎭

, 𝑟 ≥ 0, 0 ≤ 𝜙 < 2𝜋 (10.76)
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With this change of variables, minus the exponent in (10.75) becomes

1
𝑁0

⎡
⎢
⎢
⎣

(√
𝑁0
2
𝑟 sin𝜙 −

√
𝐸
𝑠
cos 𝛼

)2

+

(√
𝑁0
2
𝑟 cos𝜙 +

√
𝐸
𝑠
sin 𝛼

)2⎤
⎥
⎥
⎦

= 1
𝑁0

[
𝑁0𝑟

2

2
sin2 𝜙 −

√
2𝐸

𝑠
𝑁0𝑟 sin𝜙 cos 𝛼 + 𝐸

𝑠
cos2 𝛼 +

𝑁0𝑟
2

2
cos2 𝜙

+
√
2𝐸

𝑠
𝑁0𝑟 cos𝜙 sin 𝛼 + 𝐸

𝑠
sin2 𝛼

]

= 𝑟
2

2
−

√
2𝐸

𝑠

𝑁0
𝑟 (sin𝜙 cos 𝛼 − cos𝜙 sin 𝛼) +

𝐸
𝑠

𝑁0

= 𝑟
2

2
+
𝐸
𝑠

𝑁0
−

√
2𝐸

𝑠

𝑁0
𝑟 sin (𝜙 − 𝛼) (10.77)

When this is substituted into (10.75), we get (note that 𝑑𝑥𝑑𝑦 → 𝑁0
2 𝑟𝑑𝑟𝑑𝜙)

𝑓
𝑅𝑗Φ𝑗 |𝛼 (𝑟, 𝜙 | 𝛼) = 𝑟

2𝜋
exp

⎧
⎪
⎨
⎪
⎩

−
⎡
⎢
⎢
⎣

𝑟
2

2
+
𝐸
𝑠

𝑁0
−

√
2𝐸

𝑠

𝑁0
𝑟 sin (𝜙 − 𝛼)

⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

, 𝑗 = 𝑖, 𝑟 ≥ 0, 0 ≤ 𝜙 < 2𝜋

= 𝑟

2𝜋
exp

[
−
(
𝑟
2

2
+
𝐸
𝑠

𝑁0

)]
exp

⎡
⎢
⎢
⎣

√
2𝐸

𝑠

𝑁0
𝑟 sin(𝜙 − 𝛼)

⎤
⎥
⎥
⎦

(10.78)

The result for 𝑗 ≠ 𝑖 can be obtained by setting 𝐸
𝑠
= 0. The unconditional pdf is found by

averaging with respect to the pdf of 𝛼, which is uniform in any 2𝜋 range. Thus,

𝑓
𝑅𝑗Φ𝑗 (𝑟, 𝜙) =

𝑟

2𝜋
exp

[
−1
2

(
𝑟
2 +

2𝐸
𝑠

𝑁0

)]

∫

2𝜋−𝜙

𝜙

exp
⎡
⎢
⎢
⎣

√
2𝐸

𝑠

𝑁0
𝑟 sin(𝜙 − 𝛼)

⎤
⎥
⎥
⎦

𝑑𝛼

2𝜋

= 𝑟

2𝜋
exp

[
−1
2

(
𝑟
2 +

2𝐸
𝑠

𝑁0

)]
𝐼0

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑁0
𝑟

⎞
⎟
⎟
⎠
,

𝑗 = 𝑖,
𝑟 ≥ 0, 0 ≤ 𝜙 < 2𝜋

(10.79)

where 𝐼0 (⋅) is the modified Bessel function of the first kind and order zero. The marginal pdf
for 𝑅

𝑗
is obtained by integrating over 𝜙, which gives

𝑓
𝑅𝑗

(𝑟) = 𝑟 exp
[
−1
2

(
𝑟
2 +

2𝐸
𝑠

𝑁0

)]
𝐼0

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑁0
𝑟

⎞
⎟
⎟
⎠
, 𝑗 = 𝑖, 𝑟 ≥ 0 (10.80)

which is a Ricean pdf. We get the result for 𝑗 ≠ 𝑖 by setting 𝐸
𝑠
= 0, which gives

𝑓
𝑅𝑗

(𝑟) = 𝑟 exp
(
−𝑟

2

2

)
, 𝑗 ≠ 𝑖, 𝑟 ≥ 0 (10.81)

which is recognized as a Rayleigh pdf.
In terms of the random variables 𝑅

𝑗
, 𝑗 = 1, 2, . . ., 𝑀 , the detection criterion is

𝑅
𝑗
< 𝑅

𝑖
, all 𝑗 ≠ 𝑖 (10.82)
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Since the𝑅
𝑗
s are statistically independent random variables, the probability of this compound

event is

Pr
(
𝑅
𝑗
< 𝑅

𝑖
, all 𝑗 ≠ 𝑖 | 𝑅

𝑖

)
= Π𝑀

𝑗=1, 𝑗≠𝑖 Pr
(
𝑅
𝑗
< 𝑅

𝑖
| 𝑅

𝑖

)
(10.83)

But

Pr
(
𝑅
𝑗
< 𝑅

𝑖
| 𝑅

𝑖

)
=
∫

𝑅𝑖

0
𝑟 exp

(
−𝑟2∕2

)
𝑑𝑟 = 1 − exp

(
−𝑅2

𝑖
∕2

)
(10.84)

The probability of correct reception, given 𝑠
𝑖 (𝑡) was sent, is (10.84) averaged over 𝑅

𝑖
, where

𝑅
𝑖
has the Ricean pdf given by (10.80). This may be written, using (10.84) and (10.80), as the

integral

𝑃
𝑠

(
𝐶|𝑠

𝑖
sent

)
=
∫

∞

0

[
1−exp

(
−𝑟2∕2

)]𝑀−1
𝑟 exp

[
−1
2

(
𝑟
2+

2𝐸
𝑠

𝑁0

)]
𝐼0

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑁0
𝑟

⎞
⎟
⎟
⎠
𝑑𝑟

(10.85)

Now, by the binomial theorem

[
1 − exp

(
−𝑟2∕2

)]𝑀−1 =
𝑀−1∑

𝑘=0

(
𝑀 − 1
𝑘

)
(−1)𝑘 exp

(
−𝑘𝑟2∕2

)
(10.86)

Thus, interchanging the order of integration and summation, (10.85) may be written as

𝑃
𝑠

(
𝐶|𝑠

𝑖
sent

)
=
𝑀−1∑

𝑘=0

(
𝑀 − 1
𝑘

)
(−1)𝑘

∫

∞

0
𝑟 exp

{
−1
2

[
(𝑘 + 1) 𝑟2 +

2𝐸
𝑠

𝑁0

]}
𝐼0

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑁0
𝑟

⎞
⎟
⎟
⎠
𝑑𝑟

= exp
(
−𝐸

𝑠
∕𝑁0

)𝑀−1∑

𝑘=0

(
𝑀 − 1
𝑘

)
(−1)𝑘

𝑘 + 1
exp

[
𝐸
𝑠

(𝑘 + 1)𝑁0

]
(10.87)

where the definite integral

∫

∞

0
𝑥 exp

(
−𝑎𝑥2

)
𝐼0 (𝑏𝑥) 𝑑𝑥 = 1

2𝑎
exp

(
𝑏
2

4𝑎

)
, 𝑎, 𝑏 > 0 (10.88)

has been used.
Since this result is independent of the signal sent, it holds for any of the 𝑀 possible

signals and therefore is the probability of correct reception independent of the particular 𝑠
𝑖 (𝑡)

assumed. Hence, the probability of symbol error is given by

𝑃
𝐸
= 1 − 𝑃

𝑠

(
𝐶 | 𝑠

𝑖
sent

)

= 1 − exp
(
−𝐸

𝑠
∕𝑁0

)𝑀−1∑

𝑘=0

(
𝑀 − 1
𝑘

)
(−1)𝑘

𝑘 + 1
exp

[
𝐸
𝑠

(𝑘 + 1)𝑁0

]
(10.89)

which can be shown to be equivalent to (10.68).

10.1.10 Differentially Coherent Phase-Shift Keying

Binary differential phase-shift keying (DPSK) was introduced in Chapter 9 as a phase-shift-
keyed modulation scheme where the previous bit interval is used as a reference for the current
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bit interval with the transmitted information conveyed in the phase difference by means of
differential encoding. Recall that the loss in 𝐸

𝑏
∕𝑁0 relative to coherent binary phase-shift

keying is approximately 0.8 dB at low bit error probabilities. The idea underlying binary
DPSK is readily extended to the 𝑀-ary case, where the information is transmitted via the
phase difference from one symbol interval to the next. The receiver then compares successive
received signal phases to estimate the relative phase shift. That is, if successive transmitted
signals are represented as

𝑠1 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
(
2𝜋𝑓

𝑐
𝑡
)
, 0 ≤ 𝑡 < 𝑇

𝑠

𝑠
𝑖 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
(
2𝜋𝑓

𝑐
𝑡 + 2𝜋 (𝑖 − 1)

𝑀

)
, 𝑇

𝑠
≤ 𝑡 < 2𝑇

𝑠
(10.90)

then, assuming the channel-induced phase shift 𝛼 is constant over two successive signaling
intervals, the received signal plus noise can be represented as

𝑦1 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
(
2𝜋𝑓

𝑐
𝑡 + 𝛼

)
+ 𝑛 (𝑡) , 0 ≤ 𝑡 < 𝑇

𝑠

𝑦
𝑖 (𝑡) =

√
2𝐸

𝑠

𝑇
𝑠

cos
(
2𝜋𝑓

𝑐
𝑡 + 𝛼 + 2𝜋 (𝑖 − 1)

𝑀

)
+ 𝑛 (𝑡) , 𝑇𝑠 ≤ 𝑡 < 2𝑇

𝑠
(10.91)

and the receiver’s decision rule is then one of determining the amount of phase shift in 2𝜋∕𝑀
steps from one signaling interval to the next.

Over the years, several approximations and bounds have been derived for the symbol
error probability of𝑀-ary DPSK (𝑀-DPSK).8 Just as for𝑀-PSK, an exact expression for
the symbol error probability for𝑀-DPSK has been published that utilizes the Craig expression
for the 𝑄-function given in Appendix F.9 The result is

𝑃
𝐸
= 1
𝜋 ∫

𝜋−𝜋∕𝑀

0
exp

[

−
(
𝐸
𝑠
∕𝑁0

)
sin2 (𝜋∕𝑀)

1 + cos(𝜋∕𝑀) cos𝜙
𝑑𝜙

]

(10.92)

Results for bit error probabilities computed with the aid of (10.92) will be presented after
the conversion of symbol to bit error probabilities is discussed.

10.1.11 Bit Error Probability from Symbol Error Probability

If one of𝑀 possible symbols is transmitted, the number of bits required to specify this symbol
is log2𝑀 . It is possible to number the signal points using a binary code such that only one bit

8V. K. Prabhu, ‘‘Error Rate Performance for Differential PSK,’’ IEEE Transactions on Communications, COM-30:
2547--2550, December 1982.

R. Pawula, ‘‘Asymptotics and Error Rate Bounds for𝑀-ary DPSK,’’ IEEE Transactions on Communications,
COM-32: 93--94, January 1984.
9R. F. Pawula, ‘‘ANew Formula forMDPSKSymbol Error Probability,’’ IEEECommunications Letters, 2: 271--272,
October 1998.
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Table 10.2 Gray Code for M = 8

Digit Binary code Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Note: The encoding algorithm is given in Problem 9.32.

changes in going from a signal point to an adjacent signal point. Such a code is a Gray code,
as introduced in Chapter 9, with the case for𝑀 = 8 given in Table 10.2.

Since mistaking an adjacent signal point for a given signal point is the most probable
error, we assume that nonadjacent errors may be neglected and that Gray encoding has been
used so that a symbol error corresponds to a single bit error (as would occur, for example,
with 𝑀-ary PSK). We may then write the bit error probability in terms of the symbol error
probability for an𝑀-ary communications system for which these assumptions are valid as

𝑃
𝐸, bit =

𝑃
𝐸, symbol

log2𝑀
(10.93)

Because we neglect probabilities of symbol errors for nonadjacent symbols, (10.93) gives a
lower bound for the bit error probability.

A second way of relating bit error probability to symbol error probability is as follows.
Consider an 𝑀-ary modulation scheme for which 𝑀 = 2𝑛, 𝑛 an integer. Then each symbol
(𝑀-ary signal) can be represented by an 𝑛-bit binary number, for example, the binary rep-
resentation of the signal’s index minus one. Such a representation is given in Table 10.3 for
𝑀 = 8.

Take any column, say the last, which is enclosed by a box. In this column, there are𝑀∕2
zeros and𝑀∕2 ones. If a symbol (𝑀-ary signal) is received in error, then for any given bit
position of the binary representation (the right-most bit in this example), there are𝑀∕2 of a
possible𝑀 − 1 ways that the chosen bit can be in error (one of the𝑀 possibilities is correct).

Table 10.3 Pertinent to the Computation of Bit
Error Probability for Orthogonal Signaling

M-ary signal Bin. repres.

1 (0) 0 0 0
2 (1) 0 0 1
3 (2) 0 1 0
4 (3) 0 1 1
5 (4) 1 0 0
6 (5) 1 0 1
7 (6) 1 1 0
8 (7) 1 1 1
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Therefore, the probability of a given data bit being in error, given that a signal (symbol) was
received in error, is

𝑃 (𝐵|𝑆) =
𝑀∕2
𝑀 − 1

(10.94)

Since a symbol is in error if a bit in the binary representation of it is in error, it follows that
the probability 𝑃 (𝑆|𝐵) of a symbol error given a bit error is unity. Employing Bayes’s rule,
we find the equivalent bit error probability of an𝑀-ary system can be approximated by

𝑃
𝐸, bit =

𝑃 (𝐵|𝑆)𝑃
𝐸, symbol

𝑃 (𝑆|𝐵)
= 𝑀

2 (𝑀 − 1)
𝑃
𝐸, symbol (10.95)

This result is especially useful for orthogonal signaling schemes such as FSK, where it is
equally probable that any of the𝑀 − 1 incorrect signal points may be mistaken for the correct
one.

Finally, in order to compare two communications systems using different numbers of
symbols on an equivalent basis, the energies must be put on an equivalent basis. This is done
by expressing the energy per symbol, 𝐸

𝑠
, in terms of the energy per bit, 𝐸

𝑏
, in each system

by means of the relationship

𝐸
𝑠
=

(
log2𝑀

)
𝐸
𝑏

(10.96)

which follows since there are log2𝑀 bits per symbol.

10.1.12 Comparison of M-ary Communications Systems on the
Basis of Bit Error Probability

Figure 10.14 compares coherent and differentially coherent𝑀-ary PSK systems on the basis
of bit error probability versus 𝐸

𝑏
∕𝑁0 along with QAM. Figure 10.14 shows that the bit error

probability for these systems gets worse as𝑀 gets larger. This can be attributed to the signal
points being crowded closer together in the two-dimensional signal space with increasing
𝑀 . In addition, 𝑀-ary DPSK performs a few dB worse than coherent PSK, which can be
attributed to the noisy phase at the receiver for the former. QAM performs considerably
better than PSK because it makes more efficient use of the signal space (since it varies in
amplitude in addition to phase, the transmitted waveform has a nonconstant envelope, which
is disadvantageous from the standpoint of efficient power amplification).

Not all𝑀-ary digital modulation schemes exhibit the undesirable behavior of increasing
bit error probability with increasing𝑀 . We have seen that𝑀-ary FSK is a signaling scheme
in which the number of dimensions in the signal space grows directly with𝑀 . This means that
the bit error probabilities for coherent and noncoherent𝑀-ary FSK decrease as𝑀 increases
because the increasing dimensionality means that the signal points are not crowded together
as with𝑀-ary PSK, for example, for which the signal space is two-dimensional regardless of
the value of 𝑀 (except for 𝑀 = 2). This is illustrated in Figure 10.15, which compares bit
error probabilities for coherent and noncoherent FSK for various values of𝑀 . Unfortunately,
the bandwidth required for 𝑀-ary FSK (coherent or noncoherent) grows directly with 𝑀 ,
whereas this is not the case for𝑀-ary PSK. Thus, to be completely fair, one must compare
𝑀-ary communications systems on the basis of both their bit error probability characteristics
and their relative bandwidths. Note that the performance degradation of noncoherent over
coherent FSK is not as severe as one might expect.
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Figure 10.14
Bit error probability versus 𝐸

𝑏
∕𝑁0 for𝑀-ary (a) PSK, (b) differentially coherent PSK, and (c) QAM.
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Figure 10.15
Bit error probability versus 𝐸

𝑏
∕𝑁0 for (a) coherent and (b) noncoherent𝑀-ary FSK.
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EXAMPLE 10.2

Compare the performances of noncoherent and coherent FSK on the basis of 𝐸
𝑏
∕𝑁0 required to provide

a bit error probability of 10−6 for various values of𝑀 .

S o l u t i o n

Using (10.67), (10.68), (10.95), and (10.96), the results in Table 10.4 can be obtained with the aid of
appropriate MATLAB routines. Note that the loss in performance due to noncoherence is surprisingly
small.

Table 10.4 Power Efficiencies for Noncoherent and Coherent FSK

𝑬
𝒃
∕𝑵𝟎 in dB for 𝑷

𝑬, 𝐛𝐢𝐭 = 𝟏𝟎−𝟔

𝑴 Noncoherent Coherent
2 14.20 13.54
4 11.40 10.78
8 9.86 9.26
16 8.80 8.22
32 8.02 7.48

■

COMPUTER EXAMPLE 10.1

The MATLAB program given below plots bit error probabilities for𝑀-ary PSK and differential𝑀-ary
PSK based on (10.51) and (10.92) along with the conversion of symbol to bit error probability given by
(10.93).

% file: c9ce1.m
% BEP for MPSK and MDPSK using Craig’s integral
clf; clear all
M max = input(’Enter max value for M (power of 2) =>’);
rhobdB max = input(’Enter maximum Eb/N0 in dB =>’);
rhobdB = 5:0.5:rhobdB max;
Lrho = length(rhobdB);
for k = 1:log2(M max)

M = 2ˆk;
rhob = 10.ˆ(rhobdB/10);
rhos = k*rhob;
up lim = pi*(1-1/M);
phi = 0:pi/1000:up lim;
PsMPSK = zeros(size(rhobdB));
PsMDPSK = zeros(size(rhobdB));
for m = 1:Lrho

arg exp PSK = rhos(m)*sin(pi/M)ˆ2./(sin(phi)).ˆ2;
Y PSK = exp(-arg exp PSK)/pi;
PsMPSK(m) = trapz(phi, Y PSK);
arg exp DPSK = rhos(m)*sin(pi/M)ˆ2./(1+cos(pi/M)*cos(phi));
Y DPSK = exp(-arg exp DPSK)/pi;
PsMDPSK(m) = trapz(phi, Y DPSK);

end
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PbMPSK = PsMPSK/k;
PbMDPSK = PsMDPSK/k;
if k == 1

I = 4;
elseif k == 2

I = 5;
elseif k == 3

I = 10;
elseif k == 4

I = 19;
elseif k == 5

I = 28;
end
subplot(1,2,1), semilogy(rhobdB, PbMPSK), ...

axis([min(rhobdB) max(rhobdB) 1e-6 1]), ...
title(’MPSK’), ylabel(’{\itP b}’), xlabel(’{\itE b/N} 0’), ...
text(rhobdB(I)+.3, PbMPSK(I), [’{\itM} = ’, num2str(M)])

if k == 1
hold on
grid on

end
subplot(1,2,2), semilogy(rhobdB, PbMDPSK), ...

axis([min(rhobdB) max(rhobdB) 1e-6 1]), ...
title(’MDPSK’), ylabel(’{\itP b}’), xlabel(’{\itE b/N} 0’), ...
text(rhobdB(I+2)+.3, PbMPSK(I+2), [’{\itM} = ’, num2str(M)])

if k == 1
hold on
grid on

end
end

% End of script file

Results computed using this program match those shown in Figure 10.14.
■

10.1.13 Comparison of M-ary Communications Systems on the Basis of
Bandwidth Efficiency

If one considers the bandwidth required by an𝑀-ary modulation scheme to be that required
to pass the main lobe of the signal spectrum (null to null), it follows that the bandwidth
efficiencies of the various𝑀-ary schemes that we have just considered are as given in Table
9.5. These follow by extension of the arguments used in Chapter 9 for the binary cases. For
example, analogous to (9.91) for coherent binary FSK, we have 1∕𝑇

𝑠
hertz on either end to

the spectral null with𝑀 − 1 spaces of 1∕2𝑇
𝑠
hertz in between for the remaining𝑀 − 2 tone

burst spectra (𝑀 − 1 spaces 1∕2𝑇
𝑠
hertz wide), giving a total bandwidth of

𝐵 = 1
𝑇
𝑠

+ 𝑀 − 1
2𝑇
𝑠

+ 1
𝑇
𝑠

= 𝑀 + 3
2𝑇
𝑠

= 𝑀 + 3
2
(
log2𝑀

)
𝑇
𝑏

=
(𝑀 + 3)𝑅𝑏
2 log2𝑀

hertz (10.97)

from which the result for 𝑅
𝑏
∕𝐵 given in Table 10.5 follows.
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Table 10.5 Bandwidth Efficiencies of Various𝑀-ary Digital
Modulation Schemes

M-ary scheme Bandwidth efficiency (bits/s/Hz)

PSK, DPSK, QAM 1
2
log2𝑀

Coherent FSK
2 log2𝑀
𝑀 + 3

(tone burst spacing of 1∕2𝑇
𝑠
Hz)

Noncoherent FSK
log2𝑀
2𝑀

(tone burst spacing of 2∕𝑇
𝑠
Hz)

The reasoning for noncoherent FSK is similar except that tone burst spectra are assumed
to be spaced by 2∕𝑇

𝑠
hertz10 for a total bandwidth of

𝐵 = 1
𝑇
𝑠

+ 2 (𝑀 − 1)
𝑇
𝑠

+ 1
𝑇
𝑠

= 2𝑀
𝑇
𝑠

= 2𝑀
(
log2𝑀

)
𝑇
𝑏

=
2𝑀𝑅

𝑏(
log2𝑀

) hertz (10.98)

PSK (including differentially coherent) and QAM have a single tone burst spectrum (of
varying phase for PSK and phase/amplitude for QAM) for a total null-to-null bandwidth of

𝐵 = 2
𝑇
𝑠

= 2
(
log2𝑀

)
𝑇
𝑏

=
2𝑅

𝑏(
log2𝑀

) hertz (10.99)

EXAMPLE 10.3

Compare bandwidth efficiencies on a mainlobe spectrum basis for PSK, QAM, and FSK for various𝑀 .

S o l u t i o n

Bandwidth efficiencies in bits per second per hertz for various values of𝑀 are as given in Table 10.6.
Note that for QAM,𝑀 must be a power of 4. Also note that the bandwidth efficiency of𝑀-ary PSK
increases with increasing𝑀 , while that for FSK decreases.

Table 10.6 Bandwidth Efficiencies for Example 10.3; bits/s/Hz

M QAM PSK Coh. FSK Noncoh. FSK

2 0.5 0.4 0.25
4 1 1 0.57 0.25
8 1.5 0.55 0.19
16 2 2 0.42 0.13
32 2.5 0.29 0.08
64 3 3 0.18 0.05

■

10This increased tone spacing as compared with coherent FSK is made under the assumption that frequency is not
estimated in a noncoherent system to the degree of accuracy as would be necessary in a coherent system where
detection is implemented by correlation with the possible transmitted frequencies.

www.it-ebooks.info

http://www.it-ebooks.info/


510 Chapter 10 ∙ Advanced Data Communications Topics

■ 10.2 POWER SPECTRA FOR DIGITAL MODULATION

10.2.1 Quadrature Modulation Techniques

The measures of performance for the various modulation schemes considered so far have
been probability of error and bandwidth occupancy. For the latter, we used rough estimates
of bandwidth based on null-to-null points of the modulated signal spectrum. In this section,
we derive an expression for the power spectrum of quadrature-modulated signals. This can be
used to obtain more precise measures of the bandwidth requirements of quadrature modulation
schemes such as QPSK, OQPSK, MSK, and QAM. One might ask why not do this for other
signal sets, such as𝑀-ary FSK. The answer is that such derivations are complex and difficult
to apply (recall the difficulty of deriving spectra for analog FM). The literature on this problem
is extensive, an example of which is given here.11

Analytical expressions for the power spectra of digitally modulated signals allow a def-
inition of bandwidth that is based on the criterion of fractional power of the signal within a
specified bandwidth. That is, if𝑆(𝑓 ) is the double-sided power spectrum of a givenmodulation
format, the fraction of total power in a bandwidth 𝐵 is given by

Δ𝑃IB = 2
𝑃
𝑇
∫

𝑓𝑐+𝐵∕2

𝑓𝑐−𝐵∕2
𝑆(𝑓 ) 𝑑𝑓 (10.100)

where the factor of 2 is used since we are only integrating over positive frequencies,

𝑃
𝑇
=
∫

∞

−∞
𝑆(𝑓 ) 𝑑𝑓 (10.101)

is the total power, and 𝑓
𝑐
is the ‘‘center’’ frequency of the spectrum (usually the carrier

frequency, apparent or otherwise). The percent out-of-band power Δ𝑃OB is defined as

Δ𝑃OB = (1 − Δ𝑃IB) × 100% (10.102)

The definition of modulated signal bandwidth is conveniently given by setting Δ𝑃OB
equal to some acceptable value, say 0.01 or 1%, and solving for the corresponding bandwidth.
A curve showing Δ𝑃OB in decibels versus bandwidth is a convenient tool for carrying out
this procedure, since the 1% out-of-band power criterion for bandwidth corresponds to the
bandwidth at which the out-of-band power curve has a value of −20 dB. Later we will present
several examples to illustrate this procedure.

As pointed out in Chapter 5, the spectrum of a digitally modulated signal is influenced
both by the particular baseband data format used to represent the digital data and by the type
of modulation scheme used to prepare the signal for transmission. We will assume nonreturn-
to-zero (NRZ) data formatting in the following.

To proceed, we consider a quadrature-modulated waveform of the form given by (10.1),
where 𝑚1 (𝑡) = 𝑑1 (𝑡) and 𝑚2 (𝑡) = −𝑑2 (𝑡) are random (coin-toss) waveforms represented as

𝑑1 (𝑡) =
∞∑

𝑘=−∞
𝑎
𝑘
𝑝(𝑡 − 𝑘𝑇

𝑠
− Δ1) (10.103)

11H. E. Rowe and V. K. Prabhu, ‘‘Power Spectrum of a Digital, Frequency Modulation Signal,’’ The Bell System
Technical Journal, 54: 1095--1125, July--August, 1975.
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and

𝑑2 (𝑡) =
∞∑

𝑘=−∞
𝑏
𝑘
𝑞(𝑡 − 𝑘𝑇

𝑠
− Δ2) (10.104)

where {𝑎
𝑘
} and {𝑏

𝑘
} independent, identically distributed (iid) sequences with

𝐸{𝑎
𝑘
} = 𝐸{𝑏

𝑘
} = 0, 𝐸{𝑎

𝑘
𝑎
𝑙
} = 𝐴2

𝛿
𝑘𝑙
, 𝐸{𝑏

𝑘
𝑏
𝑙
} = 𝐵2

𝛿
𝑘𝑙

(10.105)

in which 𝛿
𝑘𝑙
= 1, 𝑘 = 𝑙, and 0 otherwise is called the Kronecker delta. Each data stream

includes arbitrary time shifts, Δ1 and Δ2 less than 𝑇𝑠, for generality of the time origin.
The pulse-shape functions 𝑝(𝑡) and 𝑞(𝑡) in (10.103) and (10.104) may be the same, or one

of them may be zero. We now show that the double-sided spectrum of (10.1), with (10.103)
and (10.104) substituted, is

𝑆(𝑓 ) = 𝐺(𝑓 − 𝑓
𝑐
) + 𝐺(𝑓 + 𝑓

𝑐
) (10.106)

where

𝐺(𝑓 ) = 𝐴
2 |𝑃 (𝑓 )|2 + 𝐵2 |𝑄(𝑓 )|2

𝑇
𝑠

(10.107)

in which 𝑃 (𝑓 ) and 𝑄(𝑓 ) are the Fourier transforms of 𝑝(𝑡) and 𝑞(𝑡), respectively. This result
can be derived by applying (7.25). First, we may write the modulated signal in terms of its
complex envelope as

𝑥
𝑐 (𝑡) = Re

{
𝑧 (𝑡) exp

(
𝑗2𝜋𝑓

𝑐
𝑡
)}

(10.108)

where

𝑧 (𝑡) = 𝑑1 (𝑡) + 𝑗𝑑2 (𝑡) (10.109)

According to (7.25) the power spectrum of 𝑧 (𝑡) is

𝐺 (𝑓 ) = lim
𝑇→∞

𝐸

{
|||ℑ

[
𝑧2𝑇 (𝑡)

]|||
2
}

2𝑇
= lim
𝑇→∞

𝐸

{
||𝐷1, 2𝑇 (𝑓 )||

2 + ||𝐷2, 2𝑇 (𝑓 )||
2
}

2𝑇
(10.110)

where 𝑧2𝑇 (𝑡) is 𝑧 (𝑡) truncated to 0 outside of [−𝑇 , 𝑇 ], which we take to be the same as
truncating the sums of (10.103) and (10.104) from −𝑁 to 𝑁 . By the superposition and
time-delay theorems of Fourier transforms, it follows that

𝐷1, 2𝑇 (𝑓 ) = ℑ
[
𝑑1, 2𝑇 (𝑡)

]
=

𝑁∑

𝑘=−𝑁
𝑎
𝑘
𝑃 (𝑓 ) 𝑒−𝑗2𝜋(𝑘𝑇𝑠+Δ1)

𝐷2, 2𝑇 (𝑓 ) = ℑ
[
𝑑2, 2𝑇 (𝑡)

]
=

𝑁∑

𝑘=−𝑁
𝑏
𝑘
𝑃 (𝑓 ) 𝑒−𝑗2𝜋(𝑘𝑇𝑠+Δ2) (10.111)
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which gives

𝐸

{
||𝐷1, 2𝑇 (𝑓 )||

2
}

= 𝐸

{
𝑁∑

𝑘=−𝑁
𝑎
𝑘
𝑃 (𝑓 ) 𝑒−𝑗2𝜋(𝑘𝑇𝑠+Δ1)

𝑁∑

𝑙=−𝑁
𝑎
𝑙
𝑃
∗ (𝑓 ) 𝑒𝑗2𝜋(𝑙𝑇𝑠+Δ1)

}

= |𝑃 (𝑓 )|2 𝐸

{
𝑁∑

𝑘=−𝑁

𝑁∑

𝑙=−𝑁
𝑎
𝑘
𝑎
𝑙
𝑒
−𝑗2𝜋(𝑘−𝑙)𝑇𝑠

}

= |𝑃 (𝑓 )|2
𝑁∑

𝑘=−𝑁

𝑁∑

𝑙=−𝑁
𝐸
[
𝑎
𝑘
𝑎
𝑙

]
𝑒
−𝑗2𝜋(𝑘−𝑙)𝑇𝑠

= |𝑃 (𝑓 )|2
𝑁∑

𝑘=−𝑁

𝑁∑

𝑙=−𝑁
𝐴
2
𝛿
𝑘𝑙
𝑒
−𝑗2𝜋(𝑘−𝑙)𝑇𝑠

= |𝑃 (𝑓 )|2
𝑁∑

𝑘=−𝑁
𝐴
2 = (2𝑁 + 1) |𝑃 (𝑓 )|2 𝐴2 (10.112)

Similarly, it follows that

𝐸

{
||𝐷2, 2𝑇 (𝑓 )||

2
}
= (2𝑁 + 1) |𝑄 (𝑓 )|2 𝐵2 (10.113)

Let 2𝑇 = (2𝑁 + 1) 𝑇𝑠 + Δ𝑡, where Δ𝑡 < 𝑇
𝑠
accounts for end effects, and substitute (10.112)

and (10.113) into (10.110), which becomes (10.107) in the limit.
This result can be applied to BPSK, for example, by letting 𝑞(𝑡) = 0 and 𝑝(𝑡) = Π(𝑡∕𝑇

𝑏
).

The resulting baseband spectrum is

𝐺BPSK(𝑓 ) = 𝐴2
𝑇
𝑏
sinc2(𝑇

𝑏
𝑓 ) (10.114)

The spectrum for QPSK follows by letting 𝐴2 = 𝐵2, 𝑇
𝑠
= 2𝑇

𝑏
, and

𝑝(𝑡) = 𝑞(𝑡) = 1
√
2
Π
(
𝑡

2𝑇
𝑏

)
(10.115)

to get 𝑃 (𝑓 ) = 𝑄 (𝑓 ) =
√
2𝑇
𝑏
sinc(2𝑇

𝑏
𝑓 ). This results in the baseband spectrum

𝐺QPSK(𝑓 ) =
2𝐴2 |𝑃 (𝑓 )|2

2𝑇
𝑏

= 2𝐴2
𝑇
𝑏
sinc2(2𝑇

𝑏
𝑓 ) (10.116)

This result also holds for OQPSK because the pulse-shape function 𝑞(𝑡) differs from 𝑝(𝑡) only
by a time shift that results in a factor of exp(−𝑗2𝜋𝑇

𝑏
𝑓 ) (magnitude of unity) in the amplitude

spectrum |𝑄(𝑓 )|.
For𝑀-ary QAM we use 𝐴2 = 𝐵2 (these are the mean-squared values of the amplitudes

on the I and Q channels), 𝑇
𝑠
=

(
log2𝑀

)
𝑇
𝑏
, and

𝑝(𝑡) = 𝑞(𝑡) = 1
√
log2𝑀

Π

(
𝑡

(
log2𝑀

)
𝑇
𝑏

)

(10.117)
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to get 𝑃 (𝑓 ) = 𝑄 (𝑓 ) =
√
log2𝑀𝑇𝑏sinc

[(
log2𝑀

)
𝑇
𝑏
𝑓
]
. This gives the baseband spectrum

𝐺MQAM(𝑓 ) =
2𝐴2 |𝑃 (𝑓 )|2
(
log2𝑀

)
𝑇
𝑏

= 2𝐴2
𝑇
𝑏
sinc2

[(
log2𝑀

)
𝑇
𝑏
𝑓
]

(10.118)

The baseband spectrum for MSK is found by choosing the pulse-shape functions

𝑝(𝑡) = 𝑞(𝑡 − 𝑇
𝑏
) = cos

(
𝜋𝑡

2𝑇
𝑏

)
Π
(
𝑡

2𝑇
𝑏

)
(10.119)

and by letting 𝐴2 = 𝐵2. It can be shown (see Problem 10.25) that

ℑ
{
cos

(
𝜋𝑡

2𝑇
𝑏

)
Π
(
𝑡

2𝑇
𝑏

)}
=

4𝑇
𝑏
cos

(
2𝜋𝑇

𝑏
𝑓
)

𝜋

[
1 −

(
4𝑇
𝑏
𝑓
)2] (10.120)

which results in the following baseband spectrum for MSK:

𝐺MSK(𝑓 ) =
16𝐴2

𝑇
𝑏
cos2(2𝜋𝑇

𝑏
𝑓 )

𝜋2
[
1 −

(
4𝑇
𝑏
𝑓
)2]2

(10.121)

Using these results for the baseband spectra of BPSK, QPSK (or OQPSK), and MSK in
the definition of percent out-of-band power, Equation (10.102), results in the set of plots for
fractional out-of-band power shown in Figure 10.16. These curves were obtained by numerical
integration of the power spectra of (10.114), (10.116), and (10.121). From Figure 10.16, it
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Figure 10.16
Fractional out-of-band power
for BPSK, QPSK or OQPSK,
and MSK.
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follows that the RF bandwidths containing 90% of the power for these modulation formats are
approximately

𝐵90% ≅ 1
𝑇
𝑏

Hz (QPSK, OQPSK, MSK) (10.122)

𝐵90% ≅ 2
𝑇
𝑏

Hz (BPSK)

These are obtained by noting the bandwidths corresponding to Δ𝑃
𝑂𝐵

= −10 dB and doubling
these values, since the plots are for baseband bandwidths.

Because the MSK out-of-band power curve rolls off at a much faster rate than do the
curves for BPSK or QPSK, a more stringent in-band power specification, such as 99%, results
in a much smaller containment bandwidth for MSK than for BPSK or QPSK. The bandwidths
containing 99% of the power are

𝐵99% ≅ 1.2
𝑇
𝑏

(MSK) (10.123)

𝐵99% ≅ 8
𝑇
𝑏

(QPSK or OQPSK; BPSK off the plot)

10.2.2 FSK Modulation

It is difficult to derive analytical expressions of power spectra for coherent and noncoherent
FSK. A simulation approach is therefore advisable. This is done in the following computer
example.

COMPUTER EXAMPLE 10.2

The MATLAB program given below computes and plots the spectra shown in Figure 10.17. Note that
bandwidths estimated from the spectra check closely with those obtained from the results of Table
10.5. For example, from the plots for𝑀 = 8 in Figure 10.17, the bandwidth of the main lobe is about
𝐵
𝐶
= 5.1 Hz for coherent FSK modulation and about 𝐵

𝑁𝐶
= 16 Hz for noncoherent modulation. From

(10.97) with 𝑇
𝑠
= 1 s, we compute 𝐵

𝐶
= 𝑀+3

2𝑇𝑠
= 5.5 Hz and from (10.98) we compute 𝐵

𝑁𝐶
= 2𝑀

𝑇𝑠

= 16
Hz. These compare closely with the values obtained from simulation.

% file: c10ce2
% Plot of FSK power spectra
%
clear all; clf
N = 3000; % Number of symbols in the simulation
Nsps = 500; % Number of samples per symbol
for CNC = 0:1 % CNC is 0 for coherent FSK; 1 for noncoherent

M = 2;
for I = 1:4
if CNC == 0

II = I;
elseif CNC == 1

II = I+4;
end
M = 2*M
sig = [];
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Figure 10.17
Power spectra for coherent and noncoherent FSK (for the sake of plotting, 𝑓

𝑐
= 10 Hz and 𝑇

𝑠
= 1 s).

Ts = 1;
fc = 10;
if CNC == 0

delf = 1/(2*Ts);
else

delf = 2/(Ts);
end
delt = Ts/Nsps;
fs = 1/delt;
for n = 1:N

ii = floor(M*rand)+1;
alpha = CNC*2*pi*rand;
for nn = 1:Nsps

% Construct one symbol of FSK samples
sigTs(nn) = cos(2*pi*(fc + (ii - 1)*delf)*nn*delt + alpha);

end
sig = [sig sigTs]; % Build total signal of N samples

end
% Use built-in MATLAB function to estimate PSD

[Z, W] = pwelch(sig, [], [], [], fs);
NW = length(W);
if CNC ==0
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NN = floor(.4*NW);
else

NN = floor(.7*NW);
end
subplot(4,2,II), plot(W(1:NN), 10*log10(Z(1:NN)))
if II == 1 & CNC == 0

title(’Coherent FSK’)
elseif II == 5 & CNC == 1

title(’Noncoherent FSK’)
end
if II == 7 | II == 8

xlabel(’f, Hz’)
end
if II == 1 | II == 3 | II == 5 | II == 7

ylabel(’PSD; dB’)
end
if CNC == 0

axis([0 40 -30 10])
elseif CNC == 1

axis([0 100 -30 0])
end
legend([’M = ’, num2str(M)])
PP = trapz(Z) % Check total power
end

end

% End of script file
■

10.2.3 Summary

The preceding approach to determining bandwidth occupancy of digitally modulated signals
provides one criterion for selecting modulation schemes based on bandwidth considerations.
It is not the only approach by any means. Another important criterion is adjacent channel
interference. In other words, what is the degradation imposed on a given modulation scheme
by channels adjacent to the channel of interest? In general, this is a difficult problem. For one
approach, the reader is referred to a series of papers on the concept of crosstalk.12

■ 10.3 SYNCHRONIZATION

We have seen that at least two levels of synchronization are necessary in a coherent communi-
cation system. For the known-signal-shape receiver considered in Section 9.2, the beginning
and ending times of the pulses must be known. When specialized to the case of coherent
ASK, PSK, or coherent FSK, knowledge is required not only of the bit timing but of carrier
phase as well. In addition, if the bits are grouped into blocks or words, the starting and ending
times of the words are also required. In this section we will look at methods for achieving
synchronization at these three levels. In order of consideration, we will look at methods for (1)
carrier synchronization, (2) bit synchronization (already considered in Section 5.7 at a simple

12See I. Kalet, ‘‘A Look at Crosstalk in Quadrature-Carrier Modulation Systems,’’ IEEE Transactions on Communi-
cations, COM-25: 884--892, September 1977.
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Figure 10.18
𝑀-power law system for carrier synchronization of𝑀-ary PSK.

level), and (3) word synchronization. There are also other levels of synchronization in some
communication systems that will not be considered here.

10.3.1 Carrier Synchronization

The main types of digital modulation methods considered were ASK, PSK, FSK, PAM,
and QAM. ASK and FSK can be noncoherently modulated and PSK can be differentially
modulated, thus avoiding the requirement of a coherent carrier reference at the receiver
(of course, we have seen that detection of noncoherently modulated signals entails some
degradation in 𝐸

𝑏
∕𝑁0 in data detection relative to the corresponding coherent modulation

scheme). In the case of coherent ASK, a discrete spectral component at the carrier frequency
will be present in the received signal that can be tracked by a phase-lock loop circuit to
implement coherent demodulation (which is the first step in data detection). In the case of
FSK, discrete spectral components related to the FSK tone bursts may or may not be present
in the received signal depending on the modulation parameters. For𝑀PSK, assuming equally
likely phases due to the modulation, a carrier component is not present in the received signal.
If the carrier component is absent, one may sometimes be inserted along with the modulated
signal (called a pilot carrier) to facilitate generation of a carrier reference at the receiver. Of
course, the inclusion of a pilot carrier robs power from the data-modulated part of the signal,
which will have to be accounted for in the power budget for the communications link.

We now focus attention on PSK. For BPSK, which really amounts to double-sideband
(DSB) modulation as considered in Chapter 3, two alternatives were illustrated in Chapter 3
for coherent demodulation of DSB. In particular these were a squaring phase-lock loop
arrangement and a Costas loop. When used for digital data demodulation of BPSK, however,
these loop mechanizations introduce a problem that was not present for demodulation of
analog message signals. We note that either loop (squaring or Costas) will lock if 𝑑 (𝑡) cos𝜔𝑐𝑡
or −𝑑 (𝑡) cos𝜔𝑐𝑡 is present at the loop input (i.e., we can’t tell if the data-modulated carrier
has been accidently inverted from our perspective or not). Some method is usually required
to resolve this sign ambiguity at the demodulator output. One method of doing so is to
differentially encode the data stream before modulation and differentially decode it at the
detector output with a resultant small loss in signal-to-noise ratio as pointed out in Chapter 9.
This is referred to as coherent detection of differentially encoded BPSK and is different from
differentially coherent detection of DPSK.

Circuits similar to the Costas and squaring loops may be constructed for 𝑀-ary PSK.
For example, the mechanism shown by the block diagram of Figure 10.18 will produce
a coherent carrier reference from 𝑀-ary PSK, as the following development shows.13

13Just as there is a binary phase ambiguity in Costas or squaring loop demodulation of BPSK, an𝑀-phase ambiguity
is present in establishing a coherent carrier reference in𝑀-PSK by using the𝑀-power technique illustrated here.
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We take the𝑀 th power of a PSK signal and get

𝑦 (𝑡) =
[
𝑠
𝑖 (𝑡)

]𝑀 =
⎧
⎪
⎨
⎪
⎩

√
2𝐸

𝑠

𝑇
𝑠

cos
[
𝜔
𝑐
𝑡 + 2𝜋 (𝑖 − 1)

𝑀

]⎫
⎪
⎬
⎪
⎭

𝑀

= 𝐴𝑀
{

1
2
exp

[
𝑗𝜔

𝑐
𝑡 + 𝑗 2𝜋 (𝑖 − 1)

𝑀

]
+ 1

2
exp

[
−𝑗𝜔

𝑐
𝑡 − 𝑗 2𝜋 (𝑖 − 1)

𝑀

]}𝑀

=
(
𝐴

2

)𝑀
{

𝑀∑

𝑚=0

(
𝑀

𝑚

)
exp

[
𝑗 (𝑀 − 𝑚)𝜔𝑐𝑡 + 𝑗

2𝜋 (𝑀 − 𝑚) (𝑖 − 1)
𝑀

]

× exp
[
−𝑗𝑚𝜔

𝑐
𝑡 − 𝑗 2𝜋𝑚 (𝑖 − 1)

𝑀

]}

=
(
𝐴

2

)𝑀
{

𝑀∑

𝑚=0

(
𝑀

𝑚

)
exp

[
𝑗 (𝑀 − 2𝑚)𝜔𝑐𝑡 + 𝑗

2𝜋 (𝑀 − 2𝑚) (𝑖 − 1)
𝑀

]}

=
(
𝐴

2

)𝑀 {
exp

[
𝑗𝑀𝜔

𝑐
𝑡 + 𝑗2𝜋 (𝑖 − 1)

]
+ exp

[
−𝑗𝑀𝜔

𝑐
𝑡 − 𝑗2𝜋 (𝑖 − 1)

]
+ ⋅ ⋅ ⋅

}

=
(
𝐴

2

)𝑀 {
2 cos

[
𝑀𝜔

𝑐
𝑡 + 2𝜋 (𝑖 − 1)

]
+ ⋅ ⋅ ⋅

}
=

(
𝐴

2

)𝑀 {
2 cos

(
𝑀𝜔

𝑐
𝑡
)
+ ⋅ ⋅ ⋅

}
(10.124)

where 𝐴 =
√
2𝐸

𝑠
∕𝑇
𝑠
has been used for convenience and the binomial formula (see Appendix

F.3) has been used to carry out the expansion of the 𝑀 th power. Only the first and last
terms of the sum in the fourth line are of interest (the remaining terms are indicated by the
three dots), for they make up the term 2 cos

[
𝑀𝜔

𝑐
𝑡 + 2𝜋 (𝑖 − 1)

]
= 2 cos

(
2𝜋𝑀𝑓

𝑐
𝑡
)
, which

can clearly be tracked by a phase-lock loop and a frequency divider used to produce a coherent
reference at the carrier frequency. A possible disadvantage of this scheme is that 𝑀 times
the desired frequency must be tracked, but normally this would not be the carrier frequency
itself but, rather, an intermediate frequency. Costas-like carrier tracking loops for 𝑀 > 2
have been presented and analyzed in the literature, but these will not be discussed here. We
refer the reader to the literature on the subject, including the two-volume work by Meyr and
Ascheid (1990).14

The question naturally arises as to the effect of noise on these phase-tracking devices.
The phase error, that is, the difference between the input signal phase and the VCO phase,
can be shown to be approximately Gaussian with zero mean at high signal-to-noise ratios
at the loop input. Table 10.7 summarizes the phase-error variance for these various cases.15

When used with equations such as (9.83), these results provide a measure for the average
performance degradation due to an imperfect phase reference. Note that in all cases, 𝜎2

𝜙
is

14B. T. Kopp and W. P. Osborne, ‘‘Phase Jitter in MPSK Carrier Tracking Loops: Analytical, Simulation and
Laboratory Results,’’ IEEE Transactions on Communications, COM-45: 1385--1388, November 1997.

S. Hinedi andW. C. Lindsey, ‘‘On the Self-Noise in QASKDecision-Feedback Carrier Tracking Loops,’’ IEEE
Transactions on Communications, COM-37: 387--392, April 1989.
15Stiffler (1971), Equation (8.3.13).
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Table 10.7 Tracking Loop Error Variances

Type of modulation Tracking loop error variance, 𝝈𝟐
𝝓

None (PLL) 𝑁0𝐵𝐿∕𝑃𝑐
BPSK (squaring or Costas loop) 𝐿

−1
(
1∕𝑧 + 0.5∕𝑧2

)

QPSK (quadrupling or data
estimation loop) 𝐿

−1
(
1∕𝑧 + 4.5∕𝑧2 + 6∕𝑧3 + 1.5∕𝑧4

)

inversely proportional to the signal-to-noise ratio raised to integer powers and to the effective
number 𝐿 of symbols remembered by the loop in making the phase estimate. (See Problem
10.28.)

The terms used in Table 10.7 are defined as follows:
𝑇
𝑠
= symbol duration

𝐵
𝐿
= single-sided loop bandwidth

𝑁0 = single-sided noise spectral density
𝐿 = effective number of symbols used in phase estimate
𝑃
𝑐
= signal power (tracked component only)

𝐸
𝑠
= symbol energy
𝑧 = 𝐸

𝑠
∕𝑁0

𝐿 = 1∕
(
𝐵
𝐿
𝑇
𝑠

)

EXAMPLE 10.4

Compare tracking error standard deviations of two BPSK systems: (a) One using a PLL tracking on a
BPSK signal with 10% of the total transmit power in a carrier component; (b) The second using a Costas
loop tracking a BPSK signal with no carrier component. The data rate is 𝑅

𝑏
= 10 kbps and the received

𝐸
𝑏
∕𝑁0 is 10 dB. The loop bandwidths of both the PLL and Costas loops are 50 Hz. (c) For the same

parameter values, what is the tracking error variance for a QPSK tracking loop?

S o l u t i o n

For (a), from Table 10.7, first row, the PLL tracking error variance and standard deviation are

𝜎
2
𝜙,PLL =

𝑁0𝐵𝐿

𝑃
𝑐

=
𝑁0

(
𝑇
𝑏
𝐵
𝐿

)

𝑃
𝑐
𝑇
𝑏

=
𝑁0

0.1𝐸
𝑏

𝐵
𝐿

𝑅
𝑏

= 1
0.1 × 10

50
104

= 5 × 10−3 rad2

𝜎
𝜙,PLL = 0.0707 rad

For (b), from Table 10.7, second row, the Costas PLL tracking error variance and standard deviation
are

𝜎
2
𝜙,Costas = 𝐵𝐿𝑇𝑏

(1
𝑧
+ 1

2𝑧2
)

= 50
104

( 1
10

+ 1
200

)
= 5.25 × 10−4 rad2

𝜎
𝜙,Costas = 0.0229 rad
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The first case has the disadvantage that the loop tracks on only 10% of the received power. Not
only is the PLL tracking on a lower power signal than the Costas loop, but either there is less power for
signal detection (if total transmit powers are the same in both cases), or the transmit power for case 1
must be 10% higher than for case 2.

For (c), from Table 10.7, third row, the QPSK data tracking loop’s tracking error variance and
standard deviation are (𝑇

𝑠
= 2𝑇

𝑏
)

𝜎
2
𝜙,QPSK data est = 2𝐵

𝐿
𝑇
𝑏

(1
𝑧
+ 4.5
𝑧2

+ 6
𝑧3

+ 1.5
𝑧4

)

= 100
104

(
1
10

+ 4.5
100

+ 6
1,000

+ 1.5
10,000

)

= 1.5 × 10−3 rad2

𝜎
𝜙,QPSK data est = 0.0389 rad

■

10.3.2 Symbol Synchronization

Three general methods by which symbol synchronization16 can be obtained are (1) derivation
from a primary or secondary standard (for example, transmitter and receiver slaved to a
master timing source with delay due to propagation accounted for), (2) utilization of a separate
synchronization signal (use of a pilot clock, or a line code with a spectral line at the symbol
rate---for example, see the unipolar RZ spectrum of Figure 5.3), and (3) derivation from the
modulation itself, referred to as self-synchronization, as explored in Chapter 5 (see Figure 5.16
and accompanying discussion).

Loop configurations for acquiring bit synchronization that are similar in form to the Costas
loop are also possible.17 One such configuration, called the early-late gate synchronization
loop, is shown in Figure 10.19(a) in its simplest form. A binary NRZ data waveform is
assumed as shown in Figure 10.19(b). Assuming that the integration gates’ start and stop
times are coincident with the leading and trailing edges, respectively, of a data bit 1 (or data
bit −1), it is seen that the control voltage into the loop filter will be zero and the VCO will be
allowed to put out timing pulses at the same frequency. On the other hand, if the VCO timing
pulses are such that the gates are too early, the control voltage into the VCO will be negative,
which will decrease the VCO frequency so that VCO timing pulses will delay the gate timing.
Similarly, if the VCO timing pulses are such that the gates are too late, the control voltage into
the VCO will be positive, which will increase the VCO frequency so that VCO timing pulses
will advance the gate timing. The nonlinearity in the feedforward arms can be any even-order
nonlinearity. It has been shown18 that for an absolute value nonlinearity the variance of the

16See Stiffler (1971) or Lindsey and Simon (1973) for a more extensive discussion.
17See L. E. Franks, ‘‘Carrier and Bit Synchronization in Data Communication---A Tutorial Review,’’ IEEE Transac-
tions on Communications, COM-28: 1107--1121, August 1980.

Also see C. Georghiades and E. Serpedin, ‘‘Synchronization,’’ Chaper 11 in Gibson, 2013.
18M. K. Simon, ‘‘Nonlinear Analysis of an Absolute Value Type of an Early-Late Gate Bit Synchronizer,’’ IEEE
Transactions Communications Technolology, COM-18: 589--596, October 1970.
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Figure 10.19
(a) Early-late gate type of bit
synchronizer; (b) waveforms
pertinent to its operation.

timing jitter normalized by the bit duration is

𝜎
2
𝜖, AV ≊

𝐵
𝐿
𝑇
𝑏

8
(
𝐸
𝑏
∕𝑁0

) (10.125)

where 𝐵
𝐿
= loop bandwidth, Hz, and 𝑇

𝑏
= bit duration, s.

The timing jitter variance for a loop with square-law nonlinearities is

𝜎
2
𝜖, SL ≊

5𝐵
𝐿
𝑇
𝑏

32
(
𝐸
𝑏
∕𝑁0

) (10.126)

which differs negligibly from that of the absolute value nonlinearity.
An early paper giving simulation results for the performance of optimum and suboptimum

synchronizers by Wintz and Luecke makes interesting reading on the subject.19

10.3.3 Word Synchronization

The same principles used for bit synchronization may be applied to word synchronization.
These are (1) derivation from a primary or secondary standard, (2) utilization of a separate

19P. A. Wintz and E. J. Luecke, ‘‘Performance of Optimum and Suboptimum Synchronizers,’’ IEEE Transactions
on Communication Technology, COM-17: 380--389, June 1969.
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Table 10.8 Marker Codes with Peak Nonzero-Delay Correlation Values

Magnitude:
Code Binary representation peak correl.∗

C7 1 0 1 1 0 0 0 1
C8 1 0 1 1 1 0 0 0 3
C9 1 0 1 1 1 0 0 0 0 2
C10 1 1 0 1 1 1 0 0 0 0 3
C11 1 0 1 1 0 1 1 1 0 0 0 1
C12 1 1 0 1 0 1 1 0 0 0 0 0 2
C13 1 1 1 0 1 0 1 1 0 0 0 0 0 3
C14 1 1 1 0 0 1 0 1 1 0 0 0 0 0 3
C15 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 3

∗Zero-delay correlation = length of code.

synchronization signal, and (3) self-synchronization. Only the secondmethodwill be discussed
here. The third method involves the utilization of self-synchronizing codes. It is clear that such
codes,which consist of sequences of logic 1s and 0s in the binary case,must be such that no shift
of an arbitrary sequence of code words produces another code word. If this is the case, proper
alignment of the code words at the receiver is accomplished simply by comparing all possible
time shifts of a received digital sequence with all code words in the code dictionary (assumed
available at the receiver) and choosing the shift and code word having maximum correlation.
For long code words, this could be very time consuming. Furthermore, the construction of
good codes is not a simple task and often requires computer search procedures.20

When a separate synchronization code is employed, this code may be transmitted over a
channel separate from the one being employed for data transmission, or over the data channel by
inserting the synchronization code (called a marker code) preceding data words. Such marker
codes should have low-magnitude nonzero-delay autocorrelation values and low-magnitude
cross-correlation values with random data. Some possible marker codes, obtained by computer
search, are given in Table 10.8 along with values for their nonzero-delay peak correlation
magnitudes.21 Concatenation of the marker code and data sequence constitutes one frame.

Finally, it is important that correlation with the locally stored marker code be relatively
immune to channel errors in the incoming marker code and in the received data frame. Scholtz
gives a bound for the one-pass (i.e, on onemarker sequence correlation) acquisition probability
for frame synchronization. For a frame consisting of𝑀 marker bits and 𝐷 data bits, it is

𝑃one−pass ≥
[
1 − (𝐷 +𝑀 − 1)𝑃FAD

]
𝑃TAM (10.127)

where 𝑃FAD, the probability of false acquisition on data alone, and 𝑃TAM, the probability of
true acquisition of the marker code, are given, respectively, by

𝑃FAD =
(1
2

)𝑀 ℎ∑

𝑘=0

(
𝑀

𝑘

)
(10.128)

20See Stiffler (1971) or Lindsey and Simon (1973).
21R. A. Scholtz, ‘‘Frame Synchronization Techniques,’’ IEEE Transactions on Communications, COM-28: 1204--
1213, August 1980.
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Table 10.9 Illustration of Word Synchronization with a Marker Code

1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 (delay,
Ham. dist.)

1 0 1 1 0 0 0 (0, 2)
1 0 1 1 0 0 0 (1, 2)

1 0 1 1 0 0 0 (2, 5)
1 0 1 1 0 0 0 (3, 4)

1 0 1 1 0 0 0 (4, 4)
1 0 1 1 0 0 0 (5, 4)

1 0 1 1 0 0 0 (6, 4)
1 0 1 1 0 0 0 (7, 1)

1 0 1 1 0 0 0 (8, 5)
1 0 1 1 0 0 0 (9, 5)

1 0 1 1 0 0 0 (10, 3)
1 0 1 1 0 0 0 (11, 3)

1 0 1 1 0 0 0 (12, 6)
1 0 1 1 0 0 0 (13, 5)

and

𝑃TAM =
ℎ∑

𝑙=0

(
𝑀

𝑙

)(
1 − 𝑃

𝑒

)𝑀−𝑙
𝑃
𝑙

𝑒
(10.129)

in which ℎ is the allowed disagreement between the marker sequence and the closest sequence
in the received frame, and 𝑃

𝑒
is the probability of a bit error due to channel noise.

To illustrate implemention of a search for the marker sequence in a received frame (with
some errors due to noise), consider the received frame sequence

1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1

Suppose ℎ = 1 and we want to find the closest match (to within one bit) of the 7-bit
marker sequence 1 0 1 1 0 0 0. This amounts to counting the total number of disagreements,
called the Hamming distance, between the marker sequence and a 7-bit block of the frame.
This is illustrated by Table 10.9.

There is one match to within one bit, so the test has succeeded. In fact, one of four
possibilities can occur each time we correlate a marker sequence with a frame: Let ham(m, 𝐝

𝑖
)

be the Hamming distance between the marker code m and the 𝑖th 7-bit (in this case) segment
of the frame sequence 𝐝

𝑖
. The possible outcomes are: (1) We get ham(m, 𝐝

𝑖
) ≤ ℎ for one, and

only one, shift and it is the correct one (sync detected correctly); (2) We get ham(m, 𝐝
𝑖
) ≤ ℎ

for one, and only one, shift and it is the incorrect one (sync detected in error); (3) We get
ham(m, 𝐝

𝑖
) ≤ ℎ for two or more shifts (no sync detected); (4) We get no result for which

ham(m, 𝐝
𝑖
) ≤ ℎ (no sync detected). If we do this experiment repeatedly, with each bit being

in error with probability 𝑃
𝑒
, then 𝑃one-pass is approximately the ratio of correct syncs to the

total number of trials. Of course, in an actual system, the test of whether the synchronization
is successful is if the data can be decoded properly.

The number of marker bits to provide one-pass probabilities of 0.93, 0.95, 0.97, and 0.99,
computed from (10.127), are plotted in Figure 10.20 versus the number of data bits for various
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Figure 10.20
Number of marker bits
required for various one-pass
probabilities of word
acquisition: (a) One-pass
acquisition probability of
0.93; (b) One-pass acquisition
probability of 0.95;
(c) One-pass acquisition
probability of 0.97;
(d) One-pass acquisition
probability of 0.99.

bit error probabilities. The disagreement tolerance is ℎ = 1. Note that the number of marker
bits required is surprisingly relatively insensitive to 𝑃

𝑒
. Also, as the data packet length in-

creases, the number of marker bits required to maintain 𝑃one-pass at the chosen value increases,
but not significantly. Finally, more marker bits are required on average the larger 𝑃one-pass.

10.3.4 Pseudo-Noise (PN) Sequences

Pseudo-noise (PN) codes are binary-valued, noiselike sequences; they approximate a sequence
of coin tossings for which a 1 represents a head and a 0 represents a tail. However, their primary
advantages are that they are deterministic, being easily generated by feedback shift register
circuits, and they have an autocorrelation function for a periodically extended version of the
code that is highly peaked for zero delay and approximately zero for other delays. Thus,
they find application wherever waveforms at remote locations must be synchronized. These
applications include not onlyword synchronization but also the determination of range between
two points, the measurement of the impulse response of a system by cross-correlation of input
with output, as discussed in Chapter 7 (Example 7.7), and in spread spectrum communications
systems to be discussed in Section 10.4.

Figure 10.21 illustrates the generation of a PN code of length 23 − 1 = 7, which is
accomplished with the use of a shift register three stages in length. After each shift of the
contents of the shift register to the right, the contents of the second and third stages are used
to produce an input to the first stage through an EXCLUSIVE-OR (XOR) operation (that is,
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Figure 10.21
Generation of a 7-bit PN sequence: (a) Generation; (b) Shift register contents.

a binary add without carry). The logical operation performed by the XOR circuit is given in
Table 10.10. Thus, if the initial contents (called the initial state) of the shift register are 1 1
1, as shown in the first row of Figure 10.21(b), the contents for seven more successive shifts
are given by the remaining rows of this table. Therefore, the shift register again returns to the
1 1 1 state after 23 − 1 = 7 more shifts, which is also the length of the output sequence taken
at the third stage before repeating. By using an 𝑛-stage shift register with proper feedback
connections, PN sequences of length 2𝑛 − 1may be obtained. Note that 2𝑛 − 1 is the maximum
possible length of the PN sequence because the total number of states of the shift register is 2𝑛,
but one of these is the all-zeros state from which the shift register will never recover if it were
to end up in it. Hence, a proper feedback connection will be one that cycles the shift register
through all states except the all-zeros state; the total number of allowed states is therefore
2𝑛 − 1. Proper feedback connections for several values of 𝑛 are given in Table 10.11.

Considering next the autocorrelation function (normalized to a peak value of unity) of the
periodic waveform obtained by letting the shift register in Figure 10.21(a) run indefinitely, we
see that its values for integer multiples of the output pulse width Δ = 𝑛Δ𝑡 are given by

𝑅(Δ) =
𝑁
𝐴
−𝑁

𝑈

sequence length
(10.130)

where𝑁
𝐴
is the number of like digits of the sequence and a sequence shifted by 𝑛 pulses and

𝑁
𝑈
is the number of unlike digits of the sequence and a sequence shifted by 𝑛 pulses. This equa-

tion is a direct result of the definition of the autocorrelation function for a periodic waveform,
given in Chapter 2, and the binary-valued nature of the shift register output. Thus, the autocor-
relation function for the sequence generated by the feedback shift register of Figure 10.21(a)
is as shown in Figure 10.22(a), as one may readily verify. Applying the definition of the
autocorrelation function, we could also easily show that the shape for noninteger values of
delay is as shown in Figure 10.22(a).

Table 10.10 Truth Table for the XOR Operation

Input 1 Input 2 Output

1 1 0
1 0 1
0 1 1
0 0 0
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Table 10.11 Feedback Connections for Generation of PN Codes𝟐𝟐

Sequence Sequence (Initial Feedback
𝒏 length State: All Ones) digit

2 3 110 𝑥1 ⊕ 𝑥2
3 7 11100 10 𝑥2 ⊕ 𝑥3
4 15 11110 00100 𝑥3 ⊕ 𝑥4

11010
5 31 11111 00011 𝑥2 ⊕ 𝑥5

01110 10100
00100 10110 0

6 63 11111 10000 𝑥5 ⊕ 𝑥6
01000 01100
01010 01111
01000 11100
10010 11011
10110 01101 010

In general, for a sequence of length 𝑁 , the minimum correlation is −1∕𝑁 . One period
of the autocorrelation function of a PN sequence of length𝑁 = 2𝑛 − 1 can be written as

𝑅
𝐶 (𝜏) =

(
1 + 1

𝑁

)
Λ
(
𝜏

Δ𝑡

)
− 1
𝑁
, |𝜏| ≤ 𝑁Δ𝑡

2
(10.131)
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(a) Correlation function of a
7-chip PN code. (b) Power
spectrum for the same
sequence.

22See Peterson, Ziemer, and Borth (1995) for additional sequences and proper feedback connections.
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where Λ (𝑥) = 1 − |𝑥| , |𝑥| ≤ 1, and 0 otherwise is the unit-triangular function defined in
Chapter 2.

Its power spectrum is the Fourier transform of the autocorrelation function, which can be
obtained by applying (2.133). Consider only the first term of (10.131). The Fourier transform
of it is

ℑ
[(

1 + 1
𝑁

)
Λ
(
𝜏

Δ𝑡

)]
=

(
1 + 1

𝑁

)
Δ𝑡 sinc2 (Δ𝑡𝑓 )

According to (2.133), this times𝑓
𝑠
= 1∕ (𝑁Δ𝑡) is theweightmultiplier of the Fourier transform

of the periodic correlation function (10.131), which is composed of impulses spaced by
𝑓
𝑠
= 1∕(𝑁Δ𝑡), minus the contribution due to the 1∕𝑁 , so

𝑆
𝐶 (𝑓 ) =

∞∑

𝑛=−∞

1
𝑁

(
1 + 1

𝑁

)
sinc2

[
Δ𝑡

(
𝑛

𝑁Δ𝑡

)]
𝛿

(
𝑓 − 𝑛

𝑁Δ𝑡

)
− 1
𝑁
𝛿 (𝑓 )

=
∞∑

𝑛=−∞, 𝑛≠0

𝑁 + 1
𝑁2 sinc2

(
𝑛

𝑁

)
𝛿

(
𝑓 − 𝑛

𝑁Δ𝑡

)
+ 1
𝑁2 𝛿 (𝑓 ) (10.132)

Thus, the impulses showing the spectral content of a PN sequence are spaced by 1∕ (𝑁Δ𝑡) Hz
and are weighted by 𝑁+1

𝑁2 sinc2
(
𝑛

𝑁

)
except for the one at 𝑓 = 0 with weight 1∕𝑁2. Note that

this checks with the DC level of the PN code, which is −1∕𝑁 corresponding to a DC power of
1∕𝑁2. The power spectrum for the 7-chip sequence generated by the circuit of Figure 10.21(a)
is shown in Figure 10.22(b).

Because the correlation function of a PN sequence consists of a narrow triangle around
zero delay and is essentially zero otherwise, it resembles that of white noise when used to
drive any system whose bandwidth is small compared with the inverse pulse width. This is
another manifestation of the reason for the name ‘‘pseudo-noise.’’

The synchronization of PN waveforms at remotely located points can be accomplished
by feedback loop structures similar to the early-late gate bit synchronizer of Figure 10.19 after
carrier demodulation. By using long PN sequences, one could measure the time it takes for
propagation of electromagnetic radiation between two points and therefore distance. It is not
difficult to see how such a system could be used for measuring the range between two points
if the transmitter and receiver were colocated and a transponder at a remote location simply
retransmitted whatever it received, or if the transmitted signal were reflected from a distant
target as in a radar system.

Another possibility is that both transmitter and receiver have access to a very precise
clock and that an epoch of the transmitted PN sequence is precisely known relative to the
clock time. Then by noting the delay of the received code relative to the locally generated
code, the receiver could determine the one-way delay of the transmission. This is, in fact, the
technique used for the Global Positioning System (GPS), where delays of the transmissions
from at least four satellites with accurately known positions are measured to determine the
latitude, longitude, and altitude of a platform bearing a GPS receiver at any point in the vacinity
of the earth. There are 24 such satellites in the GPS constellation, each at an altitude of about
12,000 miles and making two orbits in less than a day, so it is highly probable that a receiver
will be able to connect with at least four satellites no matter what its location. Modern GPS
receivers are able to connect with up to 12 satellites.
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Table 10.12 The Barker Sequences

1 0
1 1 0
1 1 0 1
1 1 1 0 1
1 1 1 0 0 1 0
1 1 1 0 0 0 1 0 0 1 0
1 1 1 1 1 0 0 1 1 0 1 0 1

While the autocorrelation function of a PN sequence is very nearly ideal, sometimes the
aperiodic autocorrelation function obtained by sliding the sequence past itself rather than
past its periodic extension is important. Sequences with good aperiodic correlation properties,
in the sense of low autocorrelation peaks at nonzero delays, are the Barker codes, which
have aperiodic autocorrelation functions that are bounded by (sequence length)−1 for nonzero
delays.23 Unfortunately the longest known Barker code is of length 13. Table 10.12 lists all
known Barker sequences (see Problem 10.32). Other digital sequences with good correlation
properties can be constructed as combinations of appropriately chosen PN sequences (referred
to as Gold codes).24

■ 10.4 SPREAD-SPECTRUM COMMUNICATION SYSTEMS

We next consider a special class of modulation referred to as spread-spectrum modulation.
In general, spread-spectrum modulation refers to any modulation technique in which the
bandwidth of the modulated signal is spread well beyond the bandwidth of the modulating
signal, independently of the modulating signal bandwidth. The following are reasons for
employing spread-spectrum modulation:25

1. To provide resistance to intentional or unintentional jamming by another transmitter;

2. To provide a means for masking the transmitted signal in the background noise and prevent
another party from eavesdropping;

3. To provide resistance to the degrading effects of multipath transmission;

4. To provide a means for more than one user to use the same transmission channel;

5. To provide range-measuring capability.

The two most common techniques for effecting spread-spectrum modulation are referred
to as direct sequence (DS) and frequency hopping (FH). Figures 10.23 and 10.24 are block
diagrams of these generic systems. Variations and combinations of these two basic systems
are also possible.

23See Skolnik (1970), Chapter 20.
24See Peterson, Ziemer, and Borth, (1995).
25A good survey paper on the early history of spread spectrum is Robert A. Scholtz, ‘‘The Origins of Spread-Spectrum
Communications,’’ IEEE Transactions on Communications, COM-30: 822--854, May 1982.
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10.4.1 Direct-Sequence Spread Spectrum

In a direct-sequence spread-spectrum (DSSS) communication system, the modulation format
may be almost any of the coherent digital techniques discussed previously, although BPSK,
QPSK, and MSK are the most common. Figure 10.23 illustrates the use of BPSK. The spec-
trum spreading is effected by multiplying the data 𝑑(𝑡) by the spreading code 𝑐(𝑡). In this
case, both are assumed to be binary sequences taking on the values +1 and −1. The duration
of a data symbol is 𝑇

𝑏
, and the duration of a spreading-code symbol, called a chip period,

is 𝑇
𝑐
. There are usually many chips per bit, so that 𝑇

𝑐
≪ 𝑇

𝑏
. In this case, it follows that the

spectral bandwidth of the modulated signal is essentially dependent only on the inverse chip
period. The spreading code is chosen to have the properties of a random binary sequence;
an often-used choice for 𝑐(𝑡) is a PN sequence, as described in the previous section. Often,
however, a sequence generated using nonlinear feedback generation techniques is used for
security reasons. It is also advantageous, from the standpoint of security, to use the same clock
for both the data and spreading code so that the data changes sign coincident with a sign change
for the spreading code. This is not necessary for proper operation of the system, however.

Typical spectra for the system illustrated in Figure 10.23 are shown directly below the cor-
responding blocks. At the receiver, it is assumed that a replica of the spreading code is available
and is time-synchronized with the incoming code used to multiply the BPSK-modulated car-
rier. This synchronization procedure is composed of two steps, called acquisition and tracking.
A very brief discussion of methods for acquisition will be given later. For a fuller discussion
and analyses of both procedures, the student is referred to Peterson, Ziemer, and Borth (1995).

A rough approximation to the spectrum of a DSSS signal employing BPSK data modula-
tion can be obtained by representing the modulated, spread carrier as

𝑥
𝑐 (𝑡) = 𝐴𝑑 (𝑡) 𝑐(𝑡) cos(𝜔𝑐𝑡 + 𝜃) (10.133)

where it is assumed that 𝜃 is a random phase uniformly distributed in [0, 2𝜋) and 𝑑 (𝑡) and 𝑐(𝑡)
are independent, ±1-valued random binary sequences [if derived from a common clock, the
independence assumption for 𝑑 (𝑡) and 𝑐(𝑡) is not strictly valid]. With these assumptions, the
autocorrelation function for 𝑥

𝑐 (𝑡) is

𝑅
𝑥𝑐
(𝜏) = 𝐴

2

2
𝑅
𝑑
(𝜏)𝑅

𝑐
(𝜏) cos(𝜔

𝑐
𝜏) (10.134)

where 𝑅
𝑑
(𝜏) and 𝑅

𝑐
(𝜏) are the autocorrelation functions of the data and spreading code,

respectively. If they are modeled as random ‘‘coin-toss’’ sequences as considered in Example
7.6 and illustrated in Figure 7.6(a), their autocorrelation functions are given by

𝑅
𝑑
(𝜏) = Λ(𝜏∕𝑇

𝑏
) (10.135)

and26

𝑅
𝑐
(𝜏) = Λ(𝜏∕𝑇

𝑐
) (10.136)

respectively. Their corresponding power spectral densities are

𝑆
𝑑 (𝑡) = 𝑇𝑏sinc2(𝑇𝑏𝑓 ) (10.137)

26Note that since the spreading code is repeated, its autocorrelation function is periodic and, hence, its power spectrum
is composed of discrete impulses whose weights follow a sinc-squared envelope. The analysis used here is a simplified
one. See Peterson, Ziemer, and Borth (1995) for a more complete treatment.
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and

𝑆
𝑐 (𝑡) = 𝑇𝑐sinc2(𝑇𝑐𝑓 ) (10.138)

respectively, where the single-sided width of the main lobe of (10.137) is 𝑇 −1
𝑏

and that for
(10.138) is 𝑇 −1

𝑐
.

The power spectral density of 𝑥
𝑐 (𝑡) can be obtained by taking the Fourier transform of

(10.134):

𝑆
𝑥𝑐
(𝑓 ) = 𝐴

2

2
𝑆
𝑑 (𝑓 ) ∗ 𝑆𝑐(𝑓 ) ∗ ℑ[cos(𝜔

𝑐
𝜏)] (10.139)

where the asterisk denotes convolution. Since the spectral width of𝑆
𝑑
(𝑓 ) is much less than that

for 𝑆
𝑐
(𝑓 ), the convolution of these two spectra is approximately 𝑆

𝑐
(𝑓 ).27 Thus, the spectrum

of the DSSS-modulated signal is very closely approximated by

𝑆
𝑥𝑐
(𝑓 ) = 𝐴

2

4
[𝑆
𝑐
(𝑓 − 𝑓

𝑐
) + 𝑆

𝑐
(𝑓 + 𝑓

𝑐
)]

=
𝐴
2
𝑇
𝑐

4
{
sinc2[𝑇

𝑐
(𝑓 − 𝑓

𝑐
)] + sinc2[𝑇

𝑐
(𝑓 + 𝑓

𝑐
)]
}

(10.140)

The spectrum, as stated above, is approximately independent of the data spectrum and has a
null-to-null bandwidth around the carrier of 2∕𝑇

𝑐
Hz.

We next look at the error probability performance. First, assume a DSSS signal plus
additive white Gaussian noise is present at the receiver. Ignoring propagation delays, the
output of the local code multiplier at the receiver (see Figure 10.23) is

𝑧1 (𝑡) = 𝐴𝑑 (𝑡) 𝑐(𝑡)𝑐(𝑡 − Δ) cos(𝜔
𝑐
𝑡 + 𝜃) + 𝑛(𝑡)𝑐(𝑡 − Δ) (10.141)

where Δ is the misalignment of the locally generated code at the receiver with the code on the
received signal. Assuming perfect code synchronization (Δ = 0), the output of the coherent
demodulator is

𝑧2(𝑡) = 𝐴𝑑 (𝑡) + 𝑛′(𝑡) + double frequency terms (10.142)

where the local mixing signal is assumed to be 2 cos
(
𝜔
𝑐
𝑡 + 𝜃

)
for convenience, and

𝑛
′(𝑡) = 2𝑛(𝑡)𝑐(𝑡) cos(𝜔

𝑐
𝑡 + 𝜃) (10.143)

is a new Gaussian random process with zero mean. Passing 𝑧2(𝑡) through an integrate-and-
dump circuit, we have for the signal component at the output

𝑉0 = ±𝐴𝑇
𝑏

(10.144)

where the sign depends on the sign of the bit at the input. The noise component at the integrator
output is

𝑁
𝑔
=
∫

𝑇𝑏

0
2𝑛(𝑡)𝑐(𝑡) cos(𝜔

𝑐
𝑡 + 𝜃)𝑑𝑡 (10.145)

27Note that ∫ ∞
−∞ 𝑆𝑑 (𝑓 ) 𝑑𝑓 = 1 and, relative to 𝑆

𝑐 (𝑓 ), 𝑆𝑑 (𝑓 ) appears to act more and more like a delta function as
1
𝑇𝑏

≪
1
𝑇𝑐

.
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Since 𝑛(𝑡) has zero mean, 𝑁
𝑔
has zero mean. Its variance, which is the same as its second

moment, can be found by squaring the integral, writing it as an iterated integral, and taking the
expectation inside the double integral---a procedure that has been used several times before in
this chapter and the previous one. The result is

var (𝑁
𝑔
) = 𝐸(𝑁2

𝑔
) = 𝑁0𝑇𝑏 (10.146)

where𝑁0 is the single-sided power spectral density of the input noise. This, together with the
signal component of the integrator output, allows us to write down an expression similar to the
one obtained for the baseband receiver analysis carried out in Section 9.1 (the only difference
is that the signal power is 𝐴2∕2 here, whereas it was 𝐴2 for the baseband signal considered
there). The result for the probability of error is

𝑃
𝐸
= 𝑄

(√
𝐴2𝑇

𝑏
∕𝑁0

)
= 𝑄

(√
2𝐸

𝑏
∕𝑁0

)
(10.147)

With Gaussian noise alone as the interference at the receiver input, DSSS ideally performs the
same as BPSK without the spread-spectrum modulation.

10.4.2 Performance of DSSS in CW Interference Environments

Consider next a cw interference component of the form 𝑥
𝐼 (𝑡) = 𝐴𝐼 cos

[(
𝜔
𝑐
+ Δ𝜔

)
𝑡 + 𝜙

]
.

Now, the input to the integrate-and-dump detector, excluding double frequency terms, is

𝑧
′
2(𝑡) = 𝐴𝑑 (𝑡) + 𝑛

′(𝑡) + 𝐴
𝐼
cos(Δ𝜔𝑡 + 𝜃 − 𝜙) (10.148)

where 𝐴
𝐼
is the amplitude of the interference component, 𝜙 is its relative phase, and Δ𝜔 is

its offset frequency from the carrier frequency in rad/s. It is assumed that Δ𝜔 < 2𝜋∕𝑇
𝑐
. The

output of the integrate-and-dump detector is

𝑉
′
0 = ±𝐴𝑇

𝑏
+𝑁

𝑔
+𝑁

𝐼
(10.149)

The first two terms are the same as obtained before. The last term is the result of interference
and is given by

𝑁
𝐼
=
∫

𝑇𝑏

0
𝐴
𝐼
𝑐(𝑡) cos(Δ𝜔𝑡 + 𝜃 − 𝜙) 𝑑𝑡 (10.150)

Because of the multiplication by the wideband spreading code 𝑐(𝑡) and the subsequent inte-
gration, we approximate this term by an equivalent Gaussian random variable (the integral is
a sum of a large number of random variables, with each term due to a spreading code chip).
Its mean is zero, and for Δ𝜔 ≪ 2𝜋∕𝑇

𝑐
, its variance can be shown to be

var (𝑁
𝐼
) =

𝑇
𝑐
𝑇
𝑏
𝐴
2
𝐼

2
(10.151)

With this Gaussian approximation for𝑁
𝐼
, the probability of error can be shown to be

𝑃
𝐸
= 𝑄

⎛
⎜
⎜
⎝

√√√√𝐴2𝑇 2
𝑏

𝜎
2
𝑇

⎞
⎟
⎟
⎠

(10.152)
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where

𝜎
2
𝑇
= 𝑁0𝑇𝑏 +

𝑇
𝑐
𝑇
𝑏
𝐴
2
𝐼

2
(10.153)

is the total variance of the noise plus interference components at the integrator output (per-
missible because noise and interfence are statistically independent). The quantity under the
square root can be further manipulated as

𝐴
2
𝑇
2
𝑏

2𝜎2
𝑇

=
𝐴
2∕2

𝑁0∕𝑇𝑏 +
(
𝑇
𝑐
∕𝑇
𝑏

) (
𝐴
2
𝐼
∕2

)

=
𝑃
𝑠

𝑃
𝑛
+ 𝑃

𝐼
∕𝐺

𝑝

(10.154)

where
𝑃
𝑠
= 𝐴2∕2 is the signal power at the input.

𝑃
𝑛
= 𝑁0∕𝑇𝑏 is the Gaussian noise power in the bit-rate bandwidth.

𝑃
𝐼
= 𝐴2

𝐼
∕2 is the power of the interfering component at the input.

𝐺
𝑝
= 𝑇

𝑏
∕𝑇
𝑐
is called the processing gain of the DSSS system.

It is seen that the effect of the interference component is decreased by the processing gain
𝐺
𝑝
. Equation (10.154) can be rearranged as

𝐴
2
𝑇
2
𝑏

2𝜎2
𝑇

= SNR
1 + (SNR)(JSR)/𝐺

𝑝

(10.155)

where

SNR = 𝑃
𝑠
∕𝑃

𝑛
= 𝐴2

𝑇
𝑏
∕(2𝑁0) = 𝐸𝑏∕𝑁0 is the signal-to-noise power ratio.

JSR = 𝑃
𝐼
∕𝑃

𝑠
is the jamming-to-signal power ratio.

Figure 10.25 shows𝑃
𝐸
versus the SNR for several values of JSRwhere it is seen that the curves

approach a horizontal asymptote for SNR sufficiently large, with the asymptote decreasing
with decreasing JSR/𝐺

𝑝
.

10.4.3 Performance of Spread Spectrum in Multiple User Environments

An important application of spread spectrum systems is multiple-access communications
whichmeans that several usersmay access a common communication resource to communicate
with other users. If several users were at the same location communicating with a like number
users at another common location, the terminology used would be multiplexing (recall that
frequency- and time-division multplexing were discussed in Chapter 4). Since the users are
not assumed to be at the same location in the present context, the term multiple access is used.
There are various ways to effect multiple-access communications including frequency, time,
and code.

In frequency-division multiple access (FDMA), the channel resources are divided in fre-
quency, and each active user is assigned a subband of the frequency resource. In time-division
multiple access (TDMA), the communication resource is divided in time into contiguous
frames, which are composed of a series of slots, and each active user is assigned a slot. When
all subbands or slots are assigned in FDMA and TDMA, respectively, no more users can be
admitted to the system. In this sense, FDMA and TDMA are said to have hard capacity limits.
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for various jamming-to-signal ratios.

In the one remaining access system mentioned above, code-division multiple access
(CDMA), each user is assigned a unique spreading code, and all active users transmit simul-
taneously over the same band of frequencies. Another user who wants to receive information
from a given user then correlates the sum total of all these receptions with the spreading code
of the desired transmitting user and receives its transmissions assuming that the transmitter-
receiver pair is properly synchronized. If the set of codes assigned to the users is not orthogonal,
or if they are orthogonal but multiple delayed components arrive at a given receiving user due
to multipath, partial correlation with other users appears as noise in the detector of a particular
receiving user of interest. These partial correlations will eventually limit the total number of
users that can simultaneously access the system, but the maximum number is not fixed as in the
cases of FDMA and TDMA. It will depend on various system and channel parameters, such
as propagation conditions. In this sense, CDMA is said to have a soft capacity limit. (There is
the possibility that all available codes are used up before the soft capacity limit is reached.)

Several means for calculating the performance of a CDMA receivers have been published
in the literature over the past few decades.28 We take a fairly simplistic approach29 in that
the multiple-access interference is assumed sufficiently well represented by an equivalent
Gaussian random process. In addition, we make the usual assumption that power control is
used so that all users’ transmissions arrive at the receiver of the user of interest with the same

28See K. B. Letaief, ‘‘Efficient Evaluation of the Error Probabilities of Spread-Spectrum Multiple-Access Commu-
nications,’’ IEEE Transactions on Communications, 45: 239--246, February 1997.
29SeeM. B. Pursley, ‘‘Performance Evaluation of Phase-Coded Spread-SpectrumMultiple-Access Communication---
Part I: System Analysis,’’ IEEE Transactions on Communications, COM-25: 795--799, August 1977.
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power. Under these conditions it can be shown that the received bit error probability can be
approximated by

𝑃
𝐸
= 𝑄

(√
SNR

)
(10.156)

where

SNR =
(
𝐾 − 1
3𝑁

+
𝑁0
2𝐸

𝑏

)−1
(10.157)

in which 𝐾 is the number of active users and 𝑁 is the number of chips per bit (i.e., the
processing gain).

Figure 10.26 shows 𝑃
𝐸
versus𝐸

𝑏
∕𝑁0 for𝑁 = 255 and various numbers of users. It is seen

that an error floor is approached as 𝐸
𝑏
∕𝑁0 → ∞ because of the interference from other users.

For example, if 60 users are active and a 𝑃
𝐸
of 10−4 is desired, it cannot be achieved no matter

what 𝐸
𝑏
∕𝑁0 is used. This is one of the drawbacks of CDMA, and much research has gone

into combating this problem, for example, multiuser detection, where the presence of multiple
users is treated as a multi-hypothesis detection problem. Due to the overlap of signaling
intervals, multiple symbols must be detected and implementation of the true optimum receiver
is computationally infeasible for moderate to large numbers of users. Various approximations
to the optimum detector have been proposed and have been investigated.30

30See Verdu (1998).
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The situation is even worse if the received signals from the users have differing powers.
In this case, the strongest user saturates the receiver and the performances for the weaker users
are unacceptable. This is known as the near-far problem.

A word about accuracy of the curves shown in Figure 10.26 is in order. The Gaussian
approximation for multiple-access interference is almost always optimistic, with its accuracy
becoming better, the more users and the larger the processing gain (the conditions of the
central-limit theorem are more nearly satisfied then).

COMPUTER EXAMPLE 10.3

The MATLAB program given below evaluates the bit error probability for DSSS in a 𝐾-user environ-
ment. The program was used to plot Figure 10.26.

% file c9ce3.m
% Bit error probability for DSSS in multi-users
%
N = input(’Enter processing gain (chips per bit) ’);
K = input(’Enter vector of number of users ’);
clf
z dB = 0:.1:30;
z = 10.ˆ(z dB/10);
LK = length(K);
for n = 1:LK

KK = K(n);
SNR 1 = (KK-1)/(3*N)+1./(2*z);
SNR = 1./SNR 1;
Pdsss=qfn(sqrt(SNR));
semilogy(z dB,Pdsss),axis([min(z dB) max(z dB) 10ˆ(-8) 1]),...

xlabel(’{\itE b/N} 0, dB’),ylabel(’{\itP E}’),...
text(z dB(170), 1.1*Pdsss(170), [num2str(KK), ’ users’])
if n == 1

grid on
hold on

end
end
title([’Bit error probability for DSSS; number of chips per bit =

’,num2str(N)])
% End of script file

% This function computes the Gaussian Q-function
%
function Q=qfn(x)

Q = 0.5*erfc(x/sqrt(2));

■

10.4.4 Frequency-Hop Spread Spectrum

In the case of frequency-hop spread spectrum (FHSS), the modulated signal is hopped in a
pseudorandom fashion among a set of frequencies so that a potential eavesdropper does not
know in what band to listen or jam. Current FHSS systems may be classified as fast hop
or slow hop, depending on whether one (or less) or several data bits are included in a hop,
respectively. The data modulator for either is usually a noncoherent type such as FSK or
DPSK, since frequency synthesizers are typically noncoherent from hop to hop. Even if one
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goes to the expense of building a coherent frequency synthesizer, the channel may not preserve
the coherency property of the synthesizer output. At the receiver, as shown in Figure 10.24,
a replica of the hopping code is produced and synchronized with the hopping pattern of the
received signal and used to de-hop the received signal. Demodulation and detection of the
de-hopped signal that is appropriate for the particular modulation used is then performed.

EXAMPLE 10.5

A binary data source has a data rate of 10 kbps, and a DSSS communication system spreads the data with
a 127-chip short code system (i.e., a system where one code period is used per data bit). (1) What is the
approximate bandwidth of the DSSS/BPSK transmitted signal? (2) A FHSS/BFSK (noncoherent) system
is to be designed with the same transmit bandwidth as the DSSS/BPSK system. How many frequency
hop slots does it require?

S o l u t i o n

(1) The bandwidth efficiency of BPSK is 0.5, which gives a modulated signal bandwidth for the
unspread system of 20 kHz. The DSSS system has a transmit bandwidth of roughly 127 times this, or a
total bandwidth of 2.54 MHz. (2) The bandwidth efficiency of noncoherent BFSK is 0.25, which gives a
modulated signal bandwidth for the unspread system of 40 kHz. The number of frequency hops required
to give the same spread bandwidth as the DSSS system is therefore 2,540,000/40,000 = 63.5. Since
we can’t have a partial hop slot, this is rounded up to 64 hop slots giving a total FHSS bandwidth of
2.56 MHz.

■

10.4.5 Code Synchronization

Only a brief discussion of code synchronization will be given here. For detailed discussions
and analyses of such systems, the reader is referred to Peterson, Ziemer, and Borth (1995).31

Figure 10.27(a) shows a serial-search acquisition circuit for DSSS. A replica of the
spreading code is generated at the receiver and multiplied by the incoming spread-spectrum
signal (the carrier is assumed absent in Figure 10.27 for simplicity). Of course, the code epoch
is unknown, so an arbitrary local code delay relative to the incoming code is tried. If it is
within ±1

2 chip of the correct code epoch, the output of the multiplier will be mostly despread
data and its spectrum will pass through the bandpass filter whose bandwidth is of the order of
the data bandwidth. If the code delay is not correct, the output of the multiplier remains spread
and little power passes through the bandpass filter. The envelope of the bandpass filter output
is compared with a threshold---a value below threshold denotes an unspread condition at the
multiplier output and, hence, a delay that does not match the delay of the spreading code at
the receiver input, while a value above threshold indicates that the codes are approximately
aligned. If the latter condition holds, the search control stops the code search and a tracking
mode is entered. If the below-threshold condition holds, the codes are assumed to be not
aligned, so the search control steps to the next code delay (usually a half chip) and the process
is repeated. It is apparent that such a process can take a relatively long time to achieve lock.

31For an excellent tutorial paper on acquisition and tracking, see S. S. Rappaport and D.M. Grieco, ‘‘Spread-Spectrum
Signal Acquisition: Methods and Technology,’’ IEEE Communications Magazine, 22: 6--21, June 1984.
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Figure 10.27
Code acquisition circuits for (a) DSSS and (b) FHSS using serial search.

The mean time to acquisition is given by32

𝑇acq = (𝐶 − 1) 𝑇da
(
2 − 𝑃

𝑑

2𝑃
𝑑

)
+
𝑇
𝑖

𝑃
𝑑

(10.158)

where
𝐶 = code uncertainty region (the number of cells to be searched---usually the number of

half chips
𝑃
𝑑
= probability of detection

𝑃fa = probability of false alarm
𝑇
𝑖
= integration time (time to evaluate one cell)

𝑇da = 𝑇𝑖 + 𝑇fa𝑃fa
𝑇fa = time required to reject an incorrect cell (typically several times 𝑇

𝑖
)

32See Peterson, Ziemer, and Borth, Chapter 5.
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Other techniques are available that speed up the acquisition, but at the expense of more
hardware or special code structures.

A synchronization scheme for FHSS is shown in Figure 10.27(b). The discussion of its
operation would be similar to that for acquisition in DSSS, except that the correct frequency
pattern for despreading is sought.

EXAMPLE 10.6

Consider a DSSS system with code clock frequency of 3 MHz and a propagation delay uncertainty
of ±1.2 ms. Assume that 𝑇fa = 100𝑇

𝑖
and that 𝑇

𝑖
= 0.42 ms. Compute the mean time to acquire for

(a) 𝑃
𝑑
= 0.82 and 𝑃fa = 0.004 (threshold of 41); (b) 𝑃

𝑑
= 0.77 and 𝑃fa = 0.002 (threshold of 43);

(c) 𝑃
𝑑
= 0.72 and 𝑃fa = 0.0011 (threshold of 45).

S o l u t i o n

The propagation delay uncertainty corresponds to a value for 𝐶 of (one factor of 2 because of the
±1.2 ms and the other factor of 2 because of the 1/2-chip steps)

𝐶 = 2 × 2
(
1.2 × 10−3 s

) (
3 × 106chips/s

)
= 14, 400 half chips

The result for the mean time to acquisition becomes

𝑇acq = 14,399
(
𝑇
𝑖
+ 100𝑇

𝑖
𝑃fa

)
(
2 − 𝑃

𝑑

2𝑃
𝑑

)
+
𝑇
𝑖

𝑃
𝑑

=
[
14,399

(
1 + 100𝑃fa

)(2 − 𝑃
𝑑

2𝑃
𝑑

)
+ 1
𝑃
𝑑

]
𝑇
𝑖

With 𝑇
𝑖
= 0.42 ms and the values of 𝑃

𝑑
and 𝑃fa given above we obtain the following for the mean time

to acquire:
(a) 𝑇acq = 6.09 s; (b) 𝑇acq = 5.80 s; (c) 𝑇acq = 5.97 s. There appears to be an optimum threshold

setting.
■

10.4.6 Conclusion

From the preceding discussions and the block diagrams of the DS and FH spread-spectrum
systems, it should be clear that nothing is gained by using a spread-spectrum system in
terms of performance in an additive white Gaussian noise channel. Indeed, using such a
system may result in slightly more degradation than by using a conventional system, owing
to the additional operations required. The advantages of spread-spectrum systems accrue
in environments that are hostile to digital communications---environments such as those in
which multipath transmission or jamming of channels exist. In addition, since the signal power
is spread over a much wider bandwidth than it is in an ordinary system, it follows that the
average power density of the transmitted spread-spectrum signal is much lower than the power
density when the spectrum is not spread. This lower power density gives the sender of the
signal a chance to mask the transmitted signal by the background noise and thereby lower the
probability that anyone may intercept the signal.

One last point is perhaps worth making: It is knowledge of the structure of the signal that
allows the intended receiver to pull the received signal out of the noise. The use of correlation
techniques is indeed powerful.
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■ 10.5 MULTICARRIER MODULATION AND ORTHOGONAL
FREQUENCY-DIVISION MULTIPLEXING

One approach to combatting intersymbol interference, say, due to filtering or multipath im-
posed by the channel, and adapting themodulation scheme to the signal-to-noise characteristics
of the channel is termed multicarrier modulation (MCM). A special case of MCM is termed
orthogonal frequency-divisionmultiplexing (OFDM).MCM is actually a very old idea that has
enjoyed a resurgence of attention in recent years because of the intense interest in maximizing
transmission rates through twisted pair telephone circuits as one solution to the ‘‘last-mile
problem’’ mentioned in Chapter 1.33 For an easy-to-read overview on its application to so-
called digital subscriber lines (DSL), several references are available.34 Another area that
MCM has been applied with mixed success is to digital audio broadcasting, particularly in
Europe.35 An extensive tutorial article directed toward wireless communications, oriented to
OFDM, has been authored byWang and Giannakis.36 For a book dedicated to the broad scope
of MCM and OFDM performance, design, and application, see Bahai et al. (2004).

OFDM is included in the IEEE802.11 standard, known as WiFi, as the main modulation
(part a of this standard has CDMA as the modulation). OFDM is also the modulation specified
in the IEEE802.16 standard (referred to as WiMAX).37

The basic idea is the following for a channel that introduces intersymbol interference---
e.g., a multipath channel or a severely bandlimited one such as local area data distribution in a
telephone channel, which is typically implemented by means of twisted-pair wireline circuits.
For simplicity of illustration, consider a digital data transmission scheme that employs two
subcarriers of frequencies 𝑓1 and 𝑓2, each of which is BPSK-modulated by bits from a single
serial bit stream as shown in Figure 10.28(a). For example, the even-indexed bits from the
serial bit stream, denoted 𝑑1 in bipolar format, could modulate subcarrier 1 and the odd-
indexed bits, denoted 𝑑2, could modulate subcarrier 2, giving a transmitted signal in the 𝑛th
transmission interval of

𝑥 (𝑡) = 𝐴
[
𝑑1 (𝑡) cos

(
2𝜋𝑓1𝑡

)
+ 𝑑2 (𝑡) cos

(
2𝜋𝑓2𝑡

)]
, 2 (𝑛 − 1) 𝑇𝑏 ≤ 𝑡 ≤ 2𝑛𝑇

𝑏
(10.159)

Note that since every other bit is assigned to a given carrier, the symbol duration for the trans-
mitted signal through the channel is twice the bit period of the original serial bit stream. The
frequency spacing between subcarriers is assumed to be 𝑓2 − 𝑓1 ≥ 1∕ (2𝑇 ) where 𝑇 = 2𝑇

𝑏
in

this case.38 This is theminimum that the frequency separation can be in order for the subcarriers
to be coherently orthogonal---i.e., their productwhen integrated over an interval of𝑇 gives zero.

33See, for example, R.W. Chang and R. A. Gibby, ‘‘A Theoretical Study of Performance of an Orthogonal Multiplex-
ing Data Transmission Scheme,’’ IEEE Transactions on Communication Technology, COM-16: 529--540, August
1968.
34See, for example, J. A. C. Bingham, ‘‘Multicarrier Modulation for Data Transmission: An Idea Whose Time Has
Come,’’ IEEE Communications Magazine, 28: 5--14, May 1990.
35http://en.wikipedia.org/wiki/Digital audio broadcasting
36Z. Wang and G. B. Giannakis, ‘‘Wireless Multicarrier Communications,’’ IEEE Signal Processing Magazine, 17:
29--48, May 2000.
37WiFi alnd WiMAX address different regimes. The former is oriented to local area network (LAN) applications (a
few hundred meters), and the later addresses metropolitan area network (MAN) applications (up to 50 kilometers).
38With a frequency separation of 1∕𝑇 , MCM is usually referred to as orthogonal frequency-division multiplexing
(OFDM).
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Figure 10.28
Basic concepts of multicarrier modulation (MCM). (a) A simple two-tone MCM system. (b) A
specialization of MCM to orthogonal frequency-division multiplexing (OFDM) with FFT processing.

The received signal is mixed with cos
(
2𝜋𝑓1𝑡

)
and cos

(
2𝜋𝑓2𝑡

)
in separate parallel branches at

the receiver and each BPSK bit stream is detected separately. The separate parallel detected
bit streams are then reassembled into a single serial bit stream. Because the durations of the
symbols sent through the channel are twice the original bit durations of the serial bit stream at
the input, this system should be more resistant to any intersymbol interference introduced by
the channel than if the original serial bit stream were used to BPSK modulate a single carrier.

To generalize (10.159), consider 𝑁 subcarriers and 𝑁 data streams each of which are
𝑀-ary modulated (e.g., using PSK or QAM). Therefore, the composite modulated signal can
be represented as

𝑥 (𝑡) =
∞∑

𝑘=−∞

𝑁−1∑

𝑛=0

[
𝑥
𝑛 (𝑡 − 𝑘𝑇 ) cos

(
2𝜋𝑓

𝑛
𝑡
)
− 𝑦

𝑛 (𝑡 − 𝑘𝑇 ) sin
(
2𝜋𝑓

𝑛
𝑡
)]

= Re

[ ∞∑

𝑘=−∞

𝑁−1∑

𝑛=0
𝑑
𝑛 (𝑡 − 𝑘𝑇 ) exp

(
𝑗2𝜋𝑓

𝑛
𝑡
)
]

(10.160)

For example, if each subcarrier is QAM-modulated with the same number of bits, then
𝑑
𝑛 (𝑡) =

(
𝑥
𝑘, 𝑛

+ 𝑗𝑦
𝑘, 𝑛

)
Π
[
(𝑡 − 𝑇 ∕2) ∕𝑇

]
where, in accordance with the discussion following

(10.57), 𝑥
𝑘, 𝑛

, 𝑦
𝑘, 𝑛

𝜖

[
±𝑎,±3𝑎,… ,±

(√
𝑀 − 1

)
𝑎

]
. Thus, each subcarrier carries log2𝑀

bits of information for a total across all subcarriers of 𝑁 log2𝑀 bits each 𝑇 seconds. If
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derived from a serial bit stream where each bit is 𝑇
𝑏
seconds in duration, this means that the

relationship between 𝑇 and 𝑇
𝑏
is

𝑇 = 𝑁𝑇
𝑠
=

(
𝑁 log2𝑀

)
𝑇
𝑏
seconds (10.161)

where 𝑇
𝑠
=

(
log2𝑀

)
𝑇
𝑏
. Thus, it is clear that the symbol interval can be much longer than the

original serial data stream bit period, and can be made much longer than the time difference
between the first- and last-arriving multipath components of a multipath channel (this defines
the delay spread of the channel). Given a desired symbol duration, the data rate from (10.161) is

𝑅 = 1
𝑇
𝑏

=
𝑁 log2𝑀

𝑇
bps (10.162)

EXAMPLE 10.7

Consider a multipath channel with a delay spread of 10 𝜇s through which it is desired to transmit data at
a bit rate of 1 Mbps. Clearly this presents a severe intersymbol interference situation if the transmission
takes place serially. Design an MCM system having a symbol period that is at least a factor of ten greater
than the delay spread, thus resulting in multipath spread signal components spreading into adjacent
symbol intervals by only 10%.

S o l u t i o n

Using (10.161) with 𝑇 = 10 × 10 𝜇s and 𝑇
𝑏
= 1∕𝑅

𝑏
= 1∕106 = 10−6 s, we have

10 × 10 × 10−6 =
(
𝑁 log2𝑀

)
× 10−6

or

𝑁 log2𝑀 = 100

Several values of𝑀 with the corresponding values for𝑁 , the number of subcarriers, are given below:

𝑴 𝑵

2 100
4 50
8 34

16 25
32 20

Note that since we can’t have a fraction of a subcarrier, in the case of𝑀 = 8,𝑁 has been rounded
up. Usually a coherent modulation scheme such as 𝑀-ary PSK or 𝑀-ary QAM would be used. The
synchronization required for the subcarriers would most likely be implemented by inserting pilot signals
spaced in frequency and periodically in time.

■

Note that the powers of the individual subcarriers can be adjusted to fit the signal-to-noise
ratio characteristics of the channel. At frequencieswhere the signal-to-noise ratio of the channel
is low, we want a correspondingly low subcarrier power to be used and at frequencies where
the signal-to-noise ratio of the channel is high, we want a correspondingly high subcarrier
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power to be used; i.e., the preferred transmission band is where the signal-to-noise ratio is
largest (assuming total power is fixed).39

Since the subcarriers are orthogonal, the average bit error probability in an additive white
Gaussian noise background is the bit error probability of the individual subcarriers. If the
background noise is not white, then the bit error probabilities on the separate subcarriers must
be averaged to obtain the bit error probability of the system as a whole.

An advantage of MCM is that it can be implemented by means of the discrete Fourier
transform (DFT) or its fast version, the FFT as introduced in Chapter 2. Consider (10.160)
with just the data block at 𝑘 = 0 and a subcarrier frequency spacing of 1∕𝑇 = 1∕

(
𝑁𝑇

𝑠

)
Hz.

The baseband complex modulated signal is then

�̃�(𝑡) =
𝑁−1∑

𝑛=0
𝑑
𝑛 (𝑡) exp

[
𝑗2𝜋𝑛𝑡∕

(
𝑁𝑇

𝑠

)]
(10.163)

If this is sampled at epochs 𝑡 = 𝑘𝑇
𝑠
, then (10.163) becomes

�̃�
[
𝑘𝑇
𝑠

]
=
𝑁−1∑

𝑛=0
𝑑
𝑛
exp

[
𝑗2𝜋𝑛𝑘∕𝑁

]
, 𝑘 = 0, 1,… , 𝑁 − 1 (10.164)

which is recognized as the inverse DFT given in Chapter 2 (there is a factor 1∕𝑁 missing,
but this can be accommodated in the direct DFT).40 In the form of (10.163) or (10.164),
MCM is referred to as orthogonal frequency-division multiplexing (OFDM) and is illustrated
in Figure 10.28(b). The processing at the transmitter consists of the following steps:

1. Parse the incoming bit stream (assumed binary) into𝑁 blocks of log2𝑀 bits each;

2. Form the complex modulating samples, 𝑑
𝑛
= 𝑥

𝑛
+ 𝑗𝑦

𝑛
, 𝑛 = 0, 1,… , 𝑁 − 1;

3. Use these𝑁 blocks of bits as the input to an inverse DFT or FFT algorithm;

4. Serially read out the inverse DFT output, interpolate, and use as the modulating signal on
the carrier.

At the receiver, the inverse set of steps is performed. Note that the DFT at the receiver
ideally produces 𝑑0, 𝑑1,… , 𝑑

𝑁−1. Since noise and ISI are present with practical channels,
there will inevitably be errors. To combat the ISI, one of two things can be done: (1) A
blank time interval can be inserted following each OFDM symbol, allowing a space to protect
against the ISI. (2) An OFDM signal with a lengthened duration (greater than or equal to
the channel memory) in which an added prefix repeats the signal from the end of the current
symbol interval can be used (referred to as a cyclic prefix). It can be shown that the latter
procedure completely eliminates the ISI in OFDM.

39See G. David Forney, Jr., ‘‘Modulation and Coding for Linear Gaussian Channels,’’ IEEE Transactions on In-
formation Theory. 44: 2384--2415, October 1998 for more explanation on this ‘‘water pouring’’ procedure, as it is
known.
40This concept was reported in the paper S. B. Weinstein and Paul M. Ebert, ‘‘Data Transmission for Frequency
DivisionMultiplexingUsing theDiscrete Fourier Transform,’’ IEEETransactions onCommununications Technology,
CT19: 628--634, October 1971.
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EXAMPLE 10.8

Consider the IEEE802.16 wireless metropolitan area network (WMAN) standard, which has undergone
several revisions. Revision 802.11e employs OFDM with BPSK and QAM for the modulation methods
(physical layer parameters are given in Problem 10.41). Taking the largest value of 𝑀 = 64 used for
QAM, the largest number of subcarriers of𝑁 = 52, and the shortest FFT (symbol) interval 𝑇FFT = 3.2 𝜇s,
we have, from (10.162), the gross data rate

𝑅gross =
52 log2 64
3.2 𝜇s

= 97.5 Mbps

However, the standard claims only 54 Mbps. The two rates are aligned when we take into account that
only 48 out of 52 subcarriers carry data (four are pilot subcarriers); there is a 0.8 𝜇s guard interval
that makes the effective symbol interval 4 𝜇s, and a rate-3/4 channel code is used (more about this in
Chapter 12). Therefore, the effective data rate is

𝑅eff = 𝑅
(48
52

)(3.2
4

)(3
4

)

= (97.5 Mbps)
(12
13

)(4
5

)(3
4

)

= 54Mbps

which is what is claimed in the IEEE802.16 standard.
■

Asmight be expected, the true state of affairs for MCM or OFDM is not quite so simple or
desirable as outlined here. Some oversimplified features or disadvantages of MCM or OFDM
are the following:

1. To achieve full protection against intersymbol interference as hinted at above, coding
is necessary. With coding, it has been demonstrated that MCM affords about the same
performance as a well-designed serial data transmission system with equalization and
coding.41

2. The addition of several parallel subcarriers results in a transmitted signal with a highly
varying envelope, even if the separate subcarriers employ constant envelope modulation
such as PSK. This has implications regarding final power amplifier implementation at the
transmitter. Such amplifiers operate most efficiently in a nonlinear mode (class B or C
operation). Either the final power amplifier must operate linearly for MCM, with a penalty
of lower efficiency, or distortion of the transmitted signal and subsequent signal degradation
will take place.

3. The synchronization necessary for 𝑁 subcarriers may be more complex than for a single-
carrier system. Typically, a subset of the total number of subcarriers is used for synchro-
nization and channel estimation purposes.

4. Clearly, using MCM adds complexity in the data transmission process; whether this com-
plexity is outweighed by the faster processing speeds required of a serial transmission
scheme employing equalization is not clear (with the overall data rates the same, of course).

41See H. Sari, G. Karam, and I. Jeanclaude, ‘‘Transmission Techniques for Digital Terrestrial TV Broadcasting,’’
IEEE Communications Magazine, 33: 100--109, February 1995.
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■ 10.6 CELLULAR RADIO COMMUNICATION SYSTEMS

Cellular radio communications systems were developed in the United States by Bell Labora-
tories, Motorola, and other companies in the 1970s, and in Europe and Japan at about the same
time. Test systems were installed in the United States in Washington, D.C., and Chicago in
the late 1970s, and the first commerical cellular systems became operational in Japan in 1979,
in Europe in 1981, and in the United States in 1983. The first system in the United States was
designated AMPS, for Advanced Mobile Phone System, and proved to be very successful.
The AMPS system used analog frequency modulation and a channel spacing of 33 kHz. Other
standards used in Japan and Europe employed similar technology.

In the early 1990s, there was more demand for cellular telephones than available capacity
allowed so development of so-called second-generation (2G) systems began with the first
2G systems being fielded in the early 1990s. All 2G systems used digital transmission, but
with differing modulation and accessing schemes. The 2G European standard, called Global
System forMobile (GSM) Communications, the Japanese system, and one U.S. standard [U.S.
Digital Cellular (USDC) system] all employed time-division multiple access (TDMA), but
with differing bandwidths and number of users per frame. Another U.S. 2G standard, Interim
Standard 95 (IS-95 for short but later designated cdmaOne) used code-division multiple access
(CDMA). (See the discussion in Section 10.4.3, ‘‘Performance of Spread Spectrum inMultiple
User Environments’’ for definitions of TDMA, CDMA, and FDMA). A goal of 2G system
development in the United States was backward compatibility because of the large AMPS
infrastructure that had been installed with the first generation. Europe, on the other hand, had
several first-generation standards, depending on the country, and their goal with 2G was to
have a common standard across all countries. As a result, GSM was widely adopted, not only
in Europe but in much of the rest of the world.

From themid- to late-1990s work began on third-generation (3G) standards, and these sys-
temswere fielded in the early 2000s. A goal in standardizing 3G systemswas to have a common
worldwide standard, if possible, but this proved to be too optimistic so a family of standards
was adopted with one objective being to make migration from 2G systems as convenient as
possible. For example, the channel allocations for 3G are multiples of those used for 2G.

At the current time, fourth-generation (4G) systems are being developed and installed;
their distinguishing feature is that they are network based and oriented 100% towards data
transmission (voice is handled as Voice-over-Internet Protocol). With peak data rates of
100 Mbps for high mobility applications (e.g., trains and cars) and 1 Gbps for low mobility
applications (e.g., pedestrians and stationary users), they are anticipated to provide ubiquitous
communications for laptop computers, smartphones, high-definition mobile television, and
ultra-broadband Internet access. The CDMA spread-spectrum modulation employed in 3G
systems is being replaced by OFDM for 4G systems.

Wewill not provide a complete treatment of cellular radio communications. Indeed, entire
books have been written on the subject. What is intended, however, is to give enough of an
overview of the principles of implementation of these systems so that the reader may then
consult other references to become familiar with the details.42

42Textbooks dealing with cellular communcations are: Stuber (2001), Rappaport (1996), Mark and Zhuang (2003),
Goldsmith (2005), Tse and Viswanath (2005).

Also recommended as an overview is Gibson (2002) and (2013).
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Figure 10.29
Hexagonal grid system representing cells in a
cellular radio system; a reuse pattern of seven is
illustrated.

10.6.1 Basic Principles of Cellular Radio

Radio telephone systems had been in use before the introduction of cellular radio, but their
capacity was very limited because they were designed around the concept of a single base
station servicing a large area---often the size of a large metropolitan area. Cellular telephone
systems are based on the concept of dividing the geographic service area into a number of
cells and servicing the area with low-power base stations placed within each cell, usually the
geographic center. This allows the band of frequencies allocated for cellular radio use to be
reused over again a certain cell separation away, which depends on the accessing scheme
used. For example, with AMPS, the reuse distance was three, while for IS-95 (cdmaOne) it
was one. Another characteristic that the successful implementation of cellular radio depends
on is the attenuation of transmitted power with frequency. Recall that for free space, power
density decreases as the inverse square of the distance from the transmitter. Because of the
propagation characteristics of terrestrial radio propagation, the decrease of power with distance
is faster than an inverse square law, typically between the inverse third and fourth power of the
distance. Were this not the case, it can be shown that the cellular concept would not work. Of
course, because of the tessallation of the geographic area of interest into cells, it is necessary
for mobile user to be transfered from one base station to another as the mobile moves. This
procedure is called handoff or handover. Also note that it is necessary to have some way of
initializing a call to a given mobile and keeping track of it as it moves from base station to
base station. This is the function of a Mobile Switching Center (MSC). MSCs also interface
with the Public Switched Telephone Network (PSTN).

Consider Figure 10.29, which shows a typical cellular tessellation using hexagons. It is
emphasized that real cells are never hexagonal; indeed, some cells may have very irregular
shapes because of geographic features and illumination patterns by the transmit antenna.
However, hexagons are typically used in theoretical discussions of cellular radio because a
hexagon is one geometric shape that tessellates a plane and very closely approximates a circle
which is what we surmise the contours of equal transmit power consist of in a relatively flat
environment. Note that a seven cell frequency reuse pattern is indicated in Figure 10.29 via
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(1,3) (u,v)

(2,1)

1/   3

j = 1

i = 2

V

U

Figure 10.30
Hexagonal grid geometry showing coordinate directions;
a reuse pattern of seven is illustrated.

the integers given in each cell. That is, the band of frequencies assigned for the cellular system
is divided by the reuse factor and a different subband is used in each cell (i.e., hexagon) of the
reuse pattern.

Obviously there are only certain integers that work for reuse patterns, e.g., 1, 7, 12,…. A
convenient way to describe the frequency reuse pattern of an ideal hexagonal tessellation is to
use a nonorthogonal set of axes, U and V, intersecting at 60 degrees as shown in Figure 10.30.
The normalized grid spacing of one unit represents distance between adjacent base stations,
or hexagon centers. Thus, each hexagon (cell) center is at a point (𝑢, 𝑣) where 𝑢 and 𝑣 are
integers. Using this normalized scale, each hexagon vertex is

𝑅 = 1∕
√
3 (10.165)

from the hexagon center. It can be shown that the number of cells in an allowed frequency
reuse pattern is given by

𝑁 = 𝑖2 + 𝑖𝑗 + 𝑗2 (10.166)

where 𝑖 and 𝑗 take on integer values. Letting 𝑖 = 1 and 𝑗 = 2 (or vice versa), it is seen that
𝑁 = 7 aswe already know from the pattern identified in Figure 10.29. Putting in other integers,
the number of cells in various reuse patterns are as given in Table 10.13. Typical reuse patterns
are 1 (cdmaOne), 7 (AMPS), and 12 (GSM).

Another useful relationship is the distance between like-cell centers, 𝐷co, which can be
shown to be

𝐷co =
√
3𝑁𝑅 =

√
𝑁 (10.167)
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Table 10.13 Number of Cells in Various Reuse Patterns

Reuse Number of cells Normalized distance
coordinates in reuse pattern between repeat cells

𝒊 𝒋 𝑵

√
𝑵

1 0 1 1
1 1 3 1.732
1 2 7 2.646
2 2 12 3.464
1 3 13 3.606
2 3 19 4.359
1 4 21 4.583
2 4 28 5.292
1 5 31 5.568

which is an important consideration in computing cochannel interference---i.e., the inteference
from a second user that is using the same frequency assignment as a user of interest. For the
hexagonal structure used, this interference could be a factor of six larger than that due to a

single interfering user (not all cells at distance
√
𝑁 from a user of interest may have an active

call on that particular frequency). Note that there is a second ring of cells at 2
√
𝑁 that can

intefere with a user of interest, but these are usually considered to be negligible compared
with those within the first ring of intefering cells (and a third ring, etc.).

Assume a decrease in power with distance, 𝑟, from a base station of interest of the form

𝑃
𝑟 (𝑟) = 𝐾

(
𝑟0
𝑟

)𝛼
watts (10.168)

where 𝑟0 is a reference distance where the power is known to be 𝐾 watts. As mentioned
previously, the power law is typically in the range of 2.5 to 4 for terrestrial propagation, which
can be analytically shown to be a direct consequence of the earth’s surface acting as a partially
conducting reflector (other factors such as scattering from buildings and other large objects
also come into play, which accounts for the variation in 𝛼). In logarithmic terms, (10.168)
becomes

𝑃
𝑟, dBW (𝑟) = 𝐾dB + 10𝛼 log10 𝑟0 − 10𝛼 log10 𝑟 dBW (10.169)

Now consider reception by a mobile from a base station of interest, A, at distance 𝑑
𝐴

while at the same time being interfered with from a cochannel base station, B, at distance𝐷co
from A. We assume for simplicity that the mobile is on a line connecting A and B. Thus, using
(10.169), the signal-to-interference ratio (SIR) in decibels is

SIRdB = 𝐾dB + 10𝛼 log10 𝑟0 − 10𝛼 log10 𝑑𝐴
−
[
𝐾dB + 10𝛼 log10 𝑟0 − 10𝛼 log10

(
𝐷co − 𝑑𝐴

)]

= 10𝛼 log10
(
𝐷co − 𝑑𝐴
𝑑
𝐴

)

= 10𝛼 log10
(
𝐷co
𝑑
𝐴

− 1
)

dB (10.170)
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Clearly, as 𝑑
𝐴
→ 𝐷co∕2, the argument of the logarithm approaches 1 and the SIRdB approaches

0.As𝑑
𝐴
→ 𝑅 the SIRdB approaches its lowest value in that cell because it is at the cell boundary

(on a line between its base station and the cochannel base station) and will be switched to the
adjacent-cell base station if it moves further away.

We can also compute a worst-case SIR for a mobile of interest in a given cell by using
(10.170). If the mobile is using base station A as its source, the interference from the other
cochannel base stations in the reuse pattern is no worse than that from B (the mobile was
assumed to be on a line connecting A and B). Thus, the SIRdB is underbounded by

SIRdB,min = 10𝛼 log10
(
𝐷co
𝑑
𝐴

− 1
)
− 10 log10(6) dB (10.171)

= 10𝛼 log10
(
𝐷co
𝑑
𝐴

− 1
)
− 7.7815 dB (10.172)

because the interference is increased by at worst a factor of 6 (the number of cochannel
base stations due to the hexagonal tessellation). Note that this is the worst that the cochannel
interference can be because five of the cochannel base stations are further away from the
mobile on the line AB.

EXAMPLE 10.9

Suppose that a cellular system uses a modulation scheme that requires a channel spacing of 25 kHz and
an SIRdB,min = 20 dB for each channel. Assume a total bandwidth of 6 MHz for both base-to-mobile
(forward link) and mobile-to-base (reverse link) communications. Assume that the channel provides
a propagation power law of 𝛼 = 3.5. Find the following: (a) the total number of users that can be
accommodated within the reuse pattern; (b) the minimum reuse factor, 𝑁 ; (c) the maximum number of
users per cell; (d) the efficiency in terms of voice circuits per base station per MHz of bandwidth.

S o l u t i o n

(a) The total bandwidth divided by the user channel bandwidth gives 6 × 106∕25 × 103 = 240 channels.
Half of these are reserved for the downlink and half for the uplink, giving 240/2 = 120 total users in the
reuse pattern. (b) The SIRdB,min condition (10.172) gives

20 = 10 (3.5) log10
(
𝐷co

𝑅
− 1

)
− 7.7815 dB

which gives, using (10.167),

𝐷co

𝑅
= 7.2201 =

√
3𝑁

or

𝑁 = 17.38

Checking Table 10.14, we take the next largest allowed value of𝑁 = 19 (𝑖 = 2 and 𝑗 = 3). (c) Dividing
the total number of users by the number of cells in the reuse pattern, we obtain ⌊120∕19⌋ = 6 for the
maximum number of users per cell, where the notation ⌊ ⌋ means the largest interger not exceeding the
bracketed quantity. The efficiency is

𝜂
𝑣
= 6 circuits

6MHz
= 1 voice circuit per base station per MHz

■
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EXAMPLE 10.10

Repeat Example 10.11 if SIRdB,min = 14 dB is allowed.

S o l u t i o n

Part (a) remains the same; part (b) becomes

14 = 10 (3.5) log10
(
𝐷co

𝑅
− 1

)
− 7.7815 dB

which gives

𝐷co

𝑅
= 5.1908 =

√
3𝑁

or

𝑁 = 8.98

which, from Table 10.15, translates to an allowed value of𝑁 = 12 (𝑖 = 2 and 𝑗 = 2); (c) the maximum
number of users per cell is ⌊120∕12⌋ = 10; (d) the efficiency is

𝜂
𝑣
= 10 circuits

6MHz
= 1.67 voice circuits per base station per MHz

■

10.6.2 Channel Perturbations in Cellular Radio

In addition to the Gaussian noise present in every communication link and the cochannel
interference crudely analyzed above, another important source of degradation is fading. As
the mobile moves, the signal strength varies drastically because of multiple transmission paths.
This fading can be characterized in terms of a Doppler spectrum, which is determined by the
motion of the mobile (and to some small degree, the motion of the surroundings such as wind
blowing trees or motion of reflecting vehicles). Another characteristic of the received fading
signal is delay spread due to the differing propagation distances of the multipath components.
As signaling rates increase, this becomes a more serious source of degradation. Equalization,
as discussed in Chapter 9, can be used to compensate for it to some degree. Diversity can also
be used to combat signal fading. In 2G, 3G, and 4G, this takes the form of coding. For CDMA,
diversity can be added in the form of simultaneous reception from two different base stations
when the mobile is near cell boundaries. Other combinations of simultaneous transmissions43

and receptions in a rich multipath environment are being proposed for 4G systems and beyond
to significantly increase capacity. Also used in some CDMA systems (cdmaOne, for example)
is a method called RAKE, which essentally detects the separate multipath components and
puts them back together in a constructive fashion.

As progress is made in research, other means of combating detrimental channel effects
have been considered for future cellular systems. An example is multiuser detection to

43S. M. Alamouti, ‘‘A Simple Transmit Diversity Technique for Wireless Communications,’’ IEEE Journal on
Selected Areas in Commununications, 16: 1451--1458, October 1998.

Also see the books by Paulraj, Nabar, and Gore (2003) and Tse and Viswanath (2005).
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combat the cross-correlation noise due to other users in CDMA systems. This treats other
users as sources, which are detected and subtracted from the signal before the user of interest
is detected.44

Another scheme that has been intensely researched as a means to extend the capacity
of cellular systems is smart antennas. This area entails any scheme where directivity of the
antenna is used to increase the capacity of the system.45

A somewhat related area to that of smart antennas is space-time coding. These are codes
that provide redundancy in both space and time. Space-time codes thereby exploit the channel
redundancy in two dimensions and achieve more capacity than if the memory implicit in the
channel is not made use of at all or if only one dimension is used.46

10.6.3 Multiple-Input Multiple-Output (MIMO) Systems---Protection
Against Fading

If multiple antennas are used at the transmitter and a single one at the receiver, a system is
referred to as a multiple-input single-output (MISO) system; a system with a single transmit
antenna and multiple receive antennas is referred to a single-input multiple-output (SIMO)
system; a system with multiple transmit and receive antennas is denoted as a multiple-input,
multiple-output (MIMO) system. In multipath environments, multiple antenna systems allow
a trade-off between multiplexing and diversity.

To see what performance improvement can be realized with an MIMO system, we briefly
describe and characterize the Alamouti approach,47 which, as originally described in the
literature, is a two-input single-output system. It provides dual diversity without any loss in
rate in comparison to a single-input single-output system. The approach is as follows.

In a given symbol period, two signals are simultaneously transmitted from two antennas
(assumed sufficiently spaced so as to provide independent channels) to a single receive
antenna. In the first symbol period, the signal transmitted from antenna 1 is 𝑠0 and the signal
transmitted from antenna 2 is 𝑠1. In the next symbol period, −𝑠∗1 is transmitted from antenna
1 and 𝑠∗0 is transmitted from antenna 2 (complex envelope notation is being used, thereby
allowing for two-dimensional signal constellations). The path from transmit antenna 1 to the
receive antenna is characterized by a random gain ℎ0 (assumed complex, in general), and the
path from transmit antenna 2 to the receive antenna is characterized by a random gain ℎ1. The
received signals, 𝑟0 and 𝑟1, are written as

𝑟0 = ℎ0𝑠0 + ℎ1𝑠1 + 𝑛0
𝑟1 = −ℎ0𝑠∗1 + ℎ1𝑠

∗
0 + 𝑛1 (10.173)

where 𝑛0 and 𝑛1 are Gaussian noise components. Conjugating the second equation, we can
write these equations in matrix form as

𝐫 = 𝐇
𝑎
𝐬 + 𝐧 (10.174)

44See Verdu (1998).
45See Liberti and Rappaport (1999).
46A. F. Naguib, V. Tarokh, N. Seshadri, and A. R. Calderbank, ‘‘A Space-Time Coding Modem for High-Data-Rate
Wireless Communications,’’ IEEE Journal on Selected Areas in Commununications, 16: 1459--1478, October 1998.

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, ‘‘Space-Time Block Coding for Wireless Communications:
Performance Results,’’ IEEE Journal on Selected Areas in Commununications, 17: 451--460, March 1999.
47The development here closely follows that of H. Bolcskei and A. J. Paulraj, ‘‘Multiple-Input Multiple-Output
(MIMO) Wireless Systems,’’ Chapter 90 in Gibson (2002).
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where 𝐫 =
[
𝑟0 𝑟

∗
1
]𝑇
, 𝐬 =

[
𝑠0 𝑠1

]𝑇
, 𝐧 =

[
𝑛0 𝑛

∗
1
]𝑇

(superscript 𝑇 denotes transpose), and

𝐇
𝑎
=

[
ℎ0 ℎ1
ℎ
∗
1 −ℎ∗0

]
(10.175)

is the channel matrix that is orthogonal (that is, the matrix product of 𝐇
𝑎
with the conjugate

transpose of𝐇
𝑎
, denoted𝐇𝐻

𝑎
, produces a diagonal matrix). At the receiver, the first processing

step is to multiply the received vector by 𝐇𝐻
𝑎
, which yields

�̂� = 𝐇𝐻
𝑎
𝐫 =

[
||ℎ0||

2 + ||ℎ1||
2 0

0 ||ℎ0||
2 + ||ℎ1||

2

]

𝐬 +𝐇𝐻
𝑎
𝐧 (10.176)

Thus, the estimates for the symbols are given by

�̂�0 =
(
||ℎ0||

2 + ||ℎ1||
2
)
𝑠0 + �̃�0

�̂�1 =
(
||ℎ0||

2 + ||ℎ1||
2
)
𝑠1 + �̃�1 (10.177)

where �̃�0 = ℎ∗0𝑛0 + ℎ1𝑛
∗
1 and �̃�1 = ℎ∗1𝑛0 − ℎ0𝑛

∗
1. The final step is to detect the individual

symbols by implementing a minimum Euclidian distance algorithm (this implements what is
referred to as maximum likelihood detection, which is discussed in Chapter 11).

Typical detection performance for antipodal signaling (e.g., BPSK) is shown in Fig-
ure 10.31, which was obtained by simulation. Also shown is performance of BPSK in Rayleigh
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Figure 10.31
Bit error performance of an Alamouti diversity system compared with no diversity; also shown is the
performance of a 2-transmit 2-receive diversity system.
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fading without MISO. A third curve shows the performance of 2-transmit 2-receive diversity.
The bit error probability curves shown in Figure 10.31 are optimistic in that the channel gains,
ℎ0 and ℎ1, have been asssumed to be estimated at the receiver perfectly. Estimation error,
which is unavoidable, will degrade performance. With the perfect channel estimation, the
improvement provided is over 25 dB in SNR at a bit error rate of 10−3.

It is emphasized that the model given above is general and is not limited to BPSK
modulation as for the results presented in Figure 10.31. For a paper giving results for
OFDM with QAM modulation with Alamouti coding, the reader is referred to Krondorf and
Fettweis.48 Numerical and simulation results are presented for receiver impairments including
carrier frequency offset and receiver I/Q imbalance; also characterized are degradations due
to outdated channel state information due to time selective channel properties and channel
estimation error.

10.6.4 Characteristics of 1G and 2G Cellular Systems

Space does not allow much more than a cursory glance at the technical characteristics of first-
and second-generation (1G and 2G) cellular radio systems---in particular, AMPS, GSM, and
CDMA (referred to as IS-95 in the past, where the ‘‘IS’’ stands for ‘‘Interim Standard,’’ but
now officially designated as cdmaOne). As of February 18, 2008, carriers in the United States
were no longer required to support AMPS and companies such as AT&T and Verizon have
discontinued this service permanently.

Second-generation cellular radio provides one of themost successful practical applications
of many aspects of communications theory, including speech coding, modulation, channel
coding, diversity techniques, and equalization. With the digital format used for 2G cellular,
both voice and some data (limited to about 20 kbps) could be handled. Note that, while the
accessing technique for GSM is said to be TDMA and that for cdmaOne is CDMA, both use
FDMA in addition with 200-kHz frequency spacing used for GSM and 1.25-MHz spacing
used for cdmaOne.

For complete details, the standard for each may be consulted. Before doing so, however,
the reader is warned that these amount to thousands of pages in each case. Table 10.14
summarizes some of the most pertinent features of these three systems. For further details, see
some of the books referred to previously.

10.6.5 Characteristics of cdma2000 and W-CDMA

As previously stated, in the mid- to late 1990s, work was begun by various standards bodies on
third-generation (3G) cellular radio. The implementation of 3G cellular providesmore capacity
than 2G for voice in addition to much higher data capacity. At present, within a family of
standards, there are twomain competing standards for 3G, both using CDMA accessing. These
are wideband CDMA (W-CDMA) promoted by Europe and Japan (harmonized with GSM
characteristics), and cdma2000, which is based on IS-95 principles.

48M. Krondorf and G. Fettweis, ‘‘Numerical Performance Evaluation for Alamouti Space Time Coded OFDM under
Receiver Impairments,’’ IEEE Transactions on Commununications, 8: 1446--1455, March 2009.
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Table 10.14 Characteristics of First- and Second-Generation Cellular Radio Standards𝟒𝟗

AMPS GSM IS-95 (cdmaOne)

Frequency band (MHz)
Uplink: 824--849 890--915 (1710--1785) 824--849
Downlink: 869--894 935--960 (1805--1880) 869--894

Gross bit rate NA 22.8 kbps Variable: 19.2, 9.6, 4.8, 2.4 kbps
Carrier separation 30 kHz 200 kHz 1.25 MHz
No. channels/carrier 1 8 61 (64 Walsh codes; 3 sync, etc.)
Accessing technique FDMA TDMA-FDMA CDMA-FDMA
Frame duration NA 4.6 ms with 0.58 ms slots 20 ms

User modulation FM
GMSK, 𝐵𝑇 = 0.3

Binary, diff. encoded
BPSK, downlink (DL)

64-ary orthog, uplink (UL)
DL/UL pairing 2 channels 2 slots 2 codes
Cell reuse pattern 7 12 1

Cochan. interf. protec. ≤15 dB ≤12 dB
NA(adjacent cells use different

segments of long code)

Error correct. coding NA
Rate- 1

2
convolutional

Constraint length 5

Rate- 1
2
convol., DL

Rate- 1
3
convol., UL

Both constr. length 9

Diversity methods NA
Freq. hop, 216.7 hops/s

Equalization

Wideband signal
Interleaving

RAKE

Speech repre. Analog
Residual pulse excited,
linear prediction coder

Code-excited vocoder

Speech coder rate NA 13 kbps 9.6 kbps max

cdma2000

The most basic version of this wireless interface standard is referred to as 1×RTT for ‘‘1 times
Radio Transmission Standard.’’ Channelization still utilizes 1.25 MHz frequency bandwidth
as with cdmaOne, but increased capacity is achieved by increasing the number of user codes
from 64 to 128 Walsh codes and changing the data modulation to QPSK on the forward link
(BPSK in cdmaOne) and BPSK on the reverse link (64-ary orthogonal in cdmaOne). Spreading
modulation is QPSK (balanced on the downlink and dual channel on the uplink). Accommoda-
tion of data is facilitated throughmedia and link access control protocols and quality-of-service
(QoS) control, whereas no special provisions for data are present in cdmaOne. Data rates from
1.8 to 1036.8 kbps can be accommodated through varying cyclic redundancy check (CRC)
bits, repetition, and deletions (at the highest data rate). Synchronization with the long code
(common to each cell) in cdma2000 is facilitated by timing derived from GPS to localize
where the long-code epoch is within a given cell.

A higher data-rate variation uses three 1×RTT channels on three carriers, which may,
but do not have to, use contiguous frequency slots. This is in a sense multicarrier modulation
except that each carrier is spread in addition to the data modulation (in MCM as described in
Section 10.5 the subcarriers were assumed to only have data modulation).

49Chapter 79 of Gibson (2002).
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W-CDMA

W-CDMA (wideband code division multiple access), as its name implies, is also based on
CDMA access. It is the transmission protocol used by the Japanese NTT DoComo to provide
high-speed wireless transmission (termed Freedom of Mobile Multimedia Access or FOMA),
and the most common wideband wireless transmission technology offered under the European
Universal Mobile Telecommunications System (UMTS). Radio channels are 5 MHz wide
and QPSK spreading is employed on both forward and reverse links in a slotted frame format
(16 slots per frame for FOMA and 15 slots per frame for UMTS). Unlike cdma2000, it supports
intercell asynchronous operation, with cell-to-cell handover being facilitated by a two-step
synchronization process. Data rates from 7.5 to 5740 kbps can be accommodated by varying
the spreading factor and assigning multiple codes (for the highest data rate).

10.6.6 Migration to 4G

At the beginning of the 2010 decade, 4G systems were in the process of being deployed.
The International Telecommunications Union (ITU) originally defined 4G as being capable of
delivering over 100 Mbps (October 2010), then later (December 2010) defined 4G as giving
a substantial improvement over 3G technologies. Later specifications from the ITU (January
2012) set the bar for 4G at gigabit speeds when stationary and 100 Mbps rates for mobile
users.50 While the ITU adopts recommendations for new technologies, they do not develop
standards but, rather, rely on the work of other bodies such as the IEEE, the WiMAX Forum,
and the Third-Generation Partnership Project (3GPP).

Currently two forms for 4G are being installed in the U.S. Long-Term Evolution (LTE)
Advanced is the 4G wireless broadband technology developed by the 3GPP, an industry trade
group standardizing the follow on to GSM (2G). LTE represents the next step in a progression
from GSM to the Universal Mobile Telecommunications System (UMTS). UMTS encom-
passes the 3G technologies based on GSM. The world’s first publically available LTE service
was launched by TeliaSonera in Oslo and Stockholm on December 2009. The other compet-
ing wireless technology was Ultra Mobile Broadband (UMB) promoted by Qualcom, among
other companies (the so-designated 3GPP2 trade group), but in November 2008 Qualcom
announced it was ending development of the technology, favoring LTE instead.

Another competing approach to 4G is based on the IEEE 802.16 WiMAX standard.
Both the LTE and WiMAX-based approaches utilize OFDM modulation and employ MIMO
antenna technology. Both are Internet protocol based rather the circuit-switched technology of
2G and 3G. Varying channel degradations are combated by employing adaptive modulation,
coding, and MIMO antennas.

LTE, as installed by Verizen in 28 U.S. cities in February 2011 uses the 700 MHz band
and has a peak theoretical speed of over 100 Mbps. The WiMAX-based implementation, as
installed by Sprint and Clearwire in 62 U.S. cities in 2011, operates in the 2.5 GHz band and
has a peak download speed of 128 Mbps.51

51http://www.computerworld.com/s/article/9207642/4G shootout Verizon LTE vs. Sprint WiMax

50‘‘ITU confirms official ‘true 4G’ standards,’’ January 23, 2012, http://www.rethink-wireless.com.
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Further Reading

In addition to the references given in Chapter 9, see Peterson, Ziemer, and Borth (1995) for further
treatment of spread spectrum. A comprehensive reference on digital modulation topics is Proakis (2001),
and an authorative reference on spread spectrum is Simon et al. (1994).

Summary

1. When dealing with 𝑀-ary digital communications
systems, with 𝑀 ≥ 2 it is important to distinguish be-
tween a bit and a symbol or character. A symbol conveys
log2(𝑀) bits. We must also distinguish between bit error
probability and symbol error probability.

2. 𝑀-ary schemes based on quadrature multiplex-
ing include quadrature phase-shift keying (QPSK), offset
QPSK (OQPSK), and minimum-shift keying (MSK). All
have a bit error rate performance that is essentially the
same as binary BPSK if precoding is used to ensure that
only one bit error results from mistaking a given phase for
an adjacent phase.

3. MSK can be produced by quadrature modulation or
by serial modulation. In the latter case, MSK is produced
by filtering BPSKwith a properly designed conversion fil-
ter. At the receiver, serial MSK can be recovered by first
filtering it with a bandpass matched filter and perform-
ing coherent demodulation with a carrier at 𝑓

𝑐
+ 1∕4𝑇

𝑏

(i.e., at the carrier plus a quarter data rate). Serial
MSK performs identically to quadrature-modulated MSK
and has advantageous implementation features at high
data rates.

4. Gaussian MSK (GMSK) is produced by passing the
±1-valued data stream (NRZ format) through a filter with
Gaussian frequency response (and Gaussian impulse re-
sponse), scaled by 2𝜋𝑓

𝑑
where 𝑓

𝑑
is the deviation constant

in Hz/V, to produce the excess phase of an FM-modulated
carrier. A GMSK spectrum has lower sidelobes than or-
dinary MSK at the expense of degradation in bit error
probability due to the intersymbol interference introduced
by the filtering of the data signal. GMSK was used in one
of the second-generation standards for cellular radio.

5. It is convenient to view 𝑀-ary data modulation in
terms of signal space. Examples of data formats that can
be considered in this way are 𝑀-ary PSK, quadrature-
amplitude modulation (QAM), and 𝑀-ary FSK. For the
former two modulation schemes, the dimensionality of the
signal space stays constant as more signals are added; for
the latter, it increases directly as the number of signals
added. A constant-dimensional signal space means signal
points are packed closer as the number of signal points is

increased, thus degrading the error probability; the band-
width remains essentially constant. In the case of FSK,
with increasing dimensionality as more signals are added,
the signal points are not compacted, and the error prob-
ability decreases for a constant signal-to-noise ratio; the
bandwidth increases with an increasing number of signals,
however.

6. Communication systems may be compared on the
basis of power and bandwidth efficiency. A rough mea-
sure of BW is null-to-null of the main lobe of the transmit-
ted signal spectrum. For 𝑀-ary PSK, QAM, and DPSK
power efficiency decreases with increasing𝑀 (i.e., as𝑀
increases a larger value of 𝐸

𝑏
∕𝑁0 is required to provide

a given value of bit error probability) and bandwidth effi-
ciency increases (i.e, the larger𝑀 , the smaller the required
bandwidth for a given bit rate). For𝑀-ary FSK (both co-
herent and noncoherent), the opposite is true. This behavior
may be explained with the aid of signal space concepts---
the signal space for𝑀-ary PSK,QAM, andDPSK remains
constant at two dimensions versus𝑀 (one-dimensional for
𝑀 = 2), whereas for𝑀-ary FSK it increases linearly with
𝑀 . Thus, from a power efficiency standpoint the signal
points are crowded together more as 𝑀 increases in the
former cases, whereas they are not in the latter case.

7. A convenient measure of bandwidth occupancy for
digital modulation is in terms of out-of-band power or
power-containment bandwidth. An ideal brickwall con-
tainment bandwidth that passes 90% of the signal power
is approximately 1∕𝑇

𝑏
Hz for QPSK, OQPSK, and MSK,

and about 2∕𝑇
𝑏
Hz for BPSK.

8. The different types of synchronization that may be
necessary in a digital modulation system are carrier (only
for coherent systems), symbol or bit, and possibly word.
Carrier and symbol synchronization can be carried out by
an appropriate nonlinearity followed by a narrowband fil-
ter or phase-lock loop. Alternatively, appropriate feedback
structures may be used.

9. A pseudo-noise (PN) sequence resembles a random
‘‘coin-toss’’ sequence but can be generated easily with
linear feedback shift-register circuits. A PN sequence has
a narrow correlation peak for zero delay and low side-
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lobes for nonzero delay, a property that makes it ideal for
synchronization of words or measurement of range.

10. Spread-spectrum communications systems are use-
ful for providing resistance to jamming, to provide ameans
for masking the transmitted signal from unwanted inter-
ceptors, to provide resistance to multipath, to provide a
way for more than one user to use the same time-frequency
allocation, and to provide range-measuring capability.

11. The two major types of spread-spectrum systems are
direct-sequence spread-spectrum (DSSS) and frequency-
hop spread-spectrum (FHSS). In the former, a spreading
code with rate much higher than the data rate multiplies
the data sequence, thus spreading the spectrum, while for
FHSS, a synthesizer driven by a pseudorandom code gen-
erator provides a carrier that hops around in a pseudo-
random fashion. A combination of these two schemes,
referred to as hybrid spread spectrum, is also another pos-
sibility.

12. Spread spectrum performs identically to whatever
data-modulation scheme is employed without the spec-
trum spreading as long as the background is additive white
Gaussian noise and synchronization is perfect.

13. The performance of a spread-spectrum system in in-
terference is determined in part by its processing gain,
which can be defined as the ratio of bandwidth of the
spread system to that for an ordinary system employing
the same type of data modulation as the spread-spectrum
system. For DSSS the processing gain is the ratio of
the data bit duration to the spreading code bit (or chip)
duration.

14. An additional level of synchronization, referred to
as code synchronization, is required in a spread-spectrum

system. The serial search method is perhaps the simplest
in terms of hardware and to explain, but it is relatively
slow in achieving synchronization.

15. Multicarrier modulation (MCM) is a modulation
scheme where the data to be transmitted is multiplexed
on several subcarriers that are summed before transmis-
sion. Each transmitted symbol is thereby longer by a factor
of the number of subcarriers used than would be the case
if the data were transmitted serially on a single carrier.
This makes MCMmore resistant to multipath than a serial
transmission system, assuming both to be operating with
the same data rate.

16. A special case of MCM wherein the subcarri-
ers are spaced by 1∕𝑇 where 𝑇 is the symbol dura-
tion is called orthogonal frequency-division multiplexing
(OFDM). OFDM is often implemented by means of the
inverse discrete Fourier transform (DFT), or inverse fast
Fourier transform (FFT) at the transmitter and by a DFT
(or FFT) at the receiver. It finds extensive use in wireless
local area networks.

17. Cellular radio provides an example of a commu-
nications technology that has been accepted faster and
more widely by the public then first anticipated. First-
generation systems were fielded in the early 1980s and
used analog modulation. Second-generation (2G) systems
were fielded in the mid-1990s. The introduction of third-
generation (3G) systems started around the year 2000. All
2G and 3G systems utilize digital modulation, with many
based on code division multiple access. At the current
time, fourth-generation (4G) systems are being installed
in selected locations.

Drill Problems

10.1 Compare QPSK, OQPSK, and MSK in as many
ways you can think of.

10.2

(a) Compare 𝑀-ary PSK and DPSK with regard to
power and bandwidth efficiency.

(b) Compare 𝑀-ary coherent FSK and noncoher-
ent FSK with regard to power and bandwidth
efficiency.

10.3 What are three types of synchronization required
in a communication system?

10.4 Compare𝑀-ary PSK andQAM in terms of power
and bandwidth efficiency.

10.5 Pseudo-noise sequences can be generated simply
of almost any length. Name some disadvantages that pre-
vent them from being universally used.

10.6 List three reasons for using spread spectrum.

10.7 The JSR unexpectantly increases in a spread spec-
trum system by 10 dB. What means can be used to combat
this?

10.8 For a serial-search code acquisition system, what
determines the amount of search time required to acquire
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the code? If the uncertainty of the code epoch doubles from
that assumed in the design of the synchronization system,
what will happen to the synchronization time?

10.9 What is a major use of OFDM? What advantages
does it provide?

10.10 An OFDM system is designed to combat multi-
path having delay spread 𝜏

𝑚
. QPSK is used as the data

modulation. If the delay spread doubles, tell how the sys-
tem should be redesigned in order to provide the same
protection to the multipath.

10.11 While free-space propagation of electromagnetic
waves is typically characterized by an inverse square-law

decrease in power density with distance from the source,
what is the range of power law decrease for cellular ra-
dio? Explain why the difference from free-space pro-
pagation.

10.12 What are two gross characterizations of the type
of multipath typically found in cellular radio systems.

10.13 Tell what the abbreviation MIMO stands for and
what advantages accrue from its employment.

10.14 Tell what the abbreviations 1G, 2G, 3G, and
4G mean and the approximate dates of their imple-
mentation.

Problems

Section 10.1

10.1 An 𝑀-ary communication system transmits at a
rate of 2000 symbols per second. What is the equivalent
bit rate in bits per second for 𝑀 = 4? 𝑀 = 8? 𝑀 = 16?
𝑀 = 32?𝑀 = 64? Show a plot of bit rate versus log2𝑀 .

10.2 A serial bit stream, proceeding at a rate of 10 kbps
from a source, is given as

110110 010111 011011 (spacing for clarity)

Number the bits from left to right starting with 1 and
going through 18 for the right-most bit. Associate the odd-
indexed bits with 𝑑1 (𝑡) and the even-indexed bits with
𝑑2 (𝑡) in Figure 10.1.

(a) What is the symbol rate for 𝑑1 or 𝑑2?

(b) What are the successive values of 𝜃
𝑖
given by

(10.2) assumingQPSKmodulation?Atwhat time
intervals may 𝜃

𝑖
switch?

(c) What are the successive values of 𝜃
𝑖
given by

(10.2) assuming OQPSK modulation? At what
time intervals may 𝜃

𝑖
switch values?

10.3 QPSK is used to transmit data through a chan-
nel that adds Gaussian noise with power spectral density
𝑁0 = 10−11 V2/Hz. What are the values of the quadrature-
modulated carrier amplitudes required to give 𝑃

𝐸, symbol =
10−4 for the following data rates?

(a) 5 kbps

(b) 10 kbps

(c) 50 kbps

(d) 100 kbps

(e) 0.5 Mbps

(f) 1 Mbps

10.4 Show that the noise components 𝑁1 and 𝑁2 for
QPSK, given by Equations (10.6) and (10.8), are uncorre-
lated; that is, show that 𝐸

[
𝑁1𝑁2

]
= 0. (Explain why 𝑁1

and𝑁2 are zero mean.)

10.5 AQPSKmodulator produces a phase-imbalanced
signal of the form

𝑥
𝑐
(𝑡) = 𝐴𝑑1 (𝑡) cos

(
2𝜋𝑓

𝑐
𝑡 + 𝛽

2

)

−𝐴𝑑2 (𝑡) sin
(
2𝜋𝑓

𝑐
𝑡 − 𝛽

2

)

(a) Show that the integrator outputs of Figure 10.2,
instead of (10.5) and (10.7), are now given by

𝑉
′
1 = 1

2
𝐴𝑇

𝑠

(
±cos 𝛽

2
± sin 𝛽

2

)

𝑉
′
2 = 1

2
𝐴𝑇

𝑠

(
± sin 𝛽

2
± cos 𝛽

2

)

where the ± signs depend on whether the data
bits 𝑑1 (𝑡) and 𝑑2 (𝑡) are +1 or −1.

(b) Show that the probability of error per quadrature
channel is

𝑃
′
𝐸, quad chan = 1

2
𝑄

⎡
⎢
⎢
⎣

√
2𝐸

𝑏

𝑁0

(
cos 𝛽

2
+ sin 𝛽

2

)⎤
⎥
⎥
⎦

+1
2
𝑄

⎡
⎢
⎢
⎣

√
2𝐸

𝑏

𝑁0

(
cos 𝛽

2
− sin 𝛽

2

)⎤
⎥
⎥
⎦

Hint: For no phase imbalance, the correlator
outputs were 𝑉1, 𝑉2 = ±1

2
𝐴𝑇

𝑠
= ±𝐴𝑇

𝑏
giving
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𝐸
𝑏
= 𝑉 2

1 ∕𝑇𝑏 = 𝑉
2
2 ∕𝑇𝑏 and

𝑃
𝐸, quad chan = 𝑄

⎡
⎢
⎢
⎣

√
2𝐸

𝑏

𝑁0

⎤
⎥
⎥
⎦

With phase imbalance, the best- andworst-case
values for 𝐸′

𝑏
are

𝐸
′
𝑏
= 𝐸

𝑏

(
cos 𝛽

2
+ sin 𝛽

2

)2

and

𝐸
′
𝑏
= 𝐸

𝑏

(
cos 𝛽

2
− sin 𝛽

2

)2

These occur with equal probability.

(c) Plot 𝑃
𝐸

given by (10.16) and the above re-
sult for 𝑃 ′

𝐸, quad chan on the same plot for 𝛽 =
0, 2.5, 5, 7.5, and 10 degrees. Estimate and plot
the degradation in 𝐸𝑏

𝑁0
, expressed in dB, due to

phase imbalance at a symbol error probability of
10−4 and 10−6 from these curves.

10.6

(a) ABPSK system and a QPSK system are designed
to transmit at equal rates; that is, two bits are
transmitted with the BPSK system for each sym-
bol (phase) in the QPSK system. Compare their
symbol error probabilities versus 𝐸

𝑠
∕𝑁0 (note

that 𝐸
𝑠
for the BPSK system is 2𝐸

𝑏
).

(b) A BPSK system and a QPSK system are de-
signed to have equal transmission bandwidths.
Compare their symbol error probabilities ver-
sus SNR (note that for this to be the case, the
symbol durations of both must be the same; i.e.,
𝑇
𝑠,BPSK = 2𝑇

𝑏
= 𝑇

𝑠,QPSK).

(c) On the basis of parts (a) and (b), what do you
conclude about the deciding factor(s) in choos-
ing BPSK versus QPSK?

10.7 Given the serial data sequence

101011 010010 100110 110011

associate every other bit with the upper and lower data
streams of the block diagrams of Figures 10.2 and 10.4.
Draw on the same time scale (one below the other) the
quadrature waveforms for the following data modulation
schemes: QPSK, OQPSK, MSK type I, and MSK type II.

10.8 Sketch excess phase tree and phase trellis dia-
grams for each of the cases of Problem 10.7. Show as

a heavy line the actual path through the tree and trellis
diagrams represented by the data sequence given.

10.9 Derive Equation (10.25) for the spectrum of an
MSK signal by multiplying |𝐺 (𝑓 )|2, given by (10.23),
times 𝑆BPSK (𝑓 ), given by (10.24). That is, show that serial
modulation of MSK works from the standpoint of spectral
arguments. (Hint: Work only with the positive-frequency
portions of (10.23) and (10.24) to produce the first term of
(10.25); similarly work with the negative-frequency por-
tions to produce the second term of (10.25). In so doing
you are assuming negligible overlap between positive- and
negative-frequency portions.)

10.10 AnMSKsystemhas a carrier frequency of 10MHz
and transmits data at a rate of 50 kbps.

(a) For the data sequence 1010101010… , what is
the instantaneous frequency?

(b) For the data sequence 0000000000… , what is
the instantaneous frequency?

10.11 Show that (10.26) and (10.27) are Fourier trans-
form pairs.

10.12

(a) Sketch the signal space with decision regions for
16-ary PSK [see (10.47)].

(b) Use the bound (10.50) to write down and plot the
symbol error probability versus 𝐸

𝑏
∕𝑁0.

(c) On the same axes, compute and plot the bit error
probability assuming that Gray encoding is used.

10.13

(a) Using (10.93) and appropriate bounds for
𝑃
𝐸, symbol, obtain 𝐸𝑏∕𝑁0 required for achieving
𝑃
𝐸, bit = 10−4 for𝑀-ary PSKwith𝑀 = 8, 16, 32.

(b) Repeat for QAM for the same 𝑀 values using
(10.63).

10.14 Derive the three equations numbered (10.60)
through (10.62) for𝑀-QAM.

10.15 By substituting (10.60) through (10.62) into
(10.59), collecting all like-argument terms in the 𝑄-
function, and neglecting squared 𝑄-function terms, show
that the symbol error probability for 16-QAM reduces to
(10.63).

10.16 Show that for𝑀-ary QAM

𝑎 =

√
3𝐸

𝑠

2 (𝑀 − 1)
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where 𝐸
𝑠
is the symbol energy averaged over the con-

stellation of𝑀 signals, which is (10.58). The summation
formulas

𝑚∑

𝑖=1
𝑖 = 𝑚 (𝑚 + 1)

2
and

𝑚∑

𝑖=1
𝑖
2 = 𝑚 (𝑚 + 1) (2𝑚 + 1)

6

will prove useful.

10.17

(a) Using (10.95), (10.96), and (10.67), obtain
𝐸
𝑏
∕𝑁0 required for achieving 𝑃

𝐸, bit = 10−3 for
𝑀-ary coherent FSK for𝑀 = 2, 4, 8, 16, 32. Pro-
gram your calculator to do an iterative solution
or use MATLAB.

(b) Using (10.95), (10.96), and (10.68), repeat for
noncoherent𝑀-ary FSK for𝑀 = 2, 4, 8, 16, 32.

10.18 Demonstrate that (10.89) is equivalent to
(10.68).

10.19 A channel of bandwidth 1 MHz with 𝑁0 = 10−9
W/Hz is available through which it is desired to transmit
data with an𝑀-ary communication system at 4 Mbps.

(a) What are candidate modulation schemes?

(b) For a bit error probability of at most 10−6 what
are the required received signal powers for the
candidate schemes?

(c) What is your choice of modulation scheme based
on simplicity of implementation?

10.20 A channel of bandwidth 4 MHz is available
through which it is desired to communicate at a data rate
of 1 Mbps.

(a) Find the largest value of 𝑀 , which is a power
of 2, for 𝑀-ary coherent FSK such that this is
possible.

(b) Find the value of 𝐸
𝑏
∕𝑁0 in dB necessay to pro-

vide 𝑃
𝑏
= 10−4 for the allowed value of𝑀 found

in part (a).

(c) Repeat part a for𝑀-ary noncoherent FSK.

(d) Find the value of 𝐸
𝑏
∕𝑁0 in dB necessay to pro-

vide 𝑃
𝑏
= 10−4 for the allowed value of𝑀 found

in part (c).

(e) Comment on the price paid for the simplic-
ity of not having to establish a coherent refer-
ence at the receiver in order to use noncoherent
modulation.

Section 10.2

10.21 On the basis of 90% power-containment band-
width, give the required transmission bandwidth to achieve
a bit rate of 50 kbps for

(a) BPSK

(b) QPSK or OQPSK

(c) MSK

(d) 16-QAM

10.22 Generalize the results for power-containment
bandwidth for quadrature-modulation schemes given in
Section 10.2 to 𝑀-ary PSK. (Is it any different than
the result for QAM?) With appropriate reinterpretation
of the abscissa of Figure 10.21 and using the 90% power-
containment bandwidth, obtain the required transmission
bandwidth to support a bit rate of 100 kbps for

(a) 8-PSK

(b) 16-PSK

(c) 32-PSK

10.23 Note that from (10.116) and (10.122) that the 10%
out-of-band power RF bandwidth for QPSK is

𝐵10% OOB,QPSK = 2
(

1
2𝑇

𝑏

)
= 𝑅

𝑏
Hz

where 1∕2𝑇
𝑏
is the first zero of sinc

(
2𝑇

𝑏
𝑓
)
. From (10.117)

we therefore conclude that for𝑀-ary QAM

𝐵10% OOB,QAM = 2

(
1

(
log2𝑀

)
𝑇
𝑏

)

=
2𝑅

𝑏

log2𝑀
Hz

Consider a channel of 20-kHz bandwidth. What data rate
is supported by QAM for:

(a) 𝑀 = 4;
(b) 𝑀 = 16;
(c) 𝑀 = 64;
(d) 𝑀 = 256?

10.24 Assume that a data stream 𝑑 (𝑡) consists of a ran-
dom (coin-toss) sequence of +1s and −1s each of which
is 𝑇 seconds in duration. The autocorrelation function for
such a sequence is

𝑅
𝑑
(𝜏) =

⎧
⎪
⎨
⎪
⎩

1 − |𝜏|
𝑇
,

|𝜏|
𝑇

≤ 1

0, otherwise
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(a) Find and sketch the power spectral density for an
ASK-modulated signal given by

𝑠ASK(𝑡) =
1
2
𝐴 [1 + 𝑑 (𝑡)] cos(𝜔

𝑐
𝑡 + 𝜃)

where 𝜃 is a uniform random variable in (0, 2𝜋].
(b) Use the result of Problem 9.21(a) to compute

and sketch the power spectral density of a PSK-
modulated signal given by

𝑠PSK(𝑡) = 𝐴 sin
[
𝜔
𝑐
𝑡 + cos−1 𝑚𝑑 (𝑡) + 𝜃

]

for the three cases 𝑚 = 0, 0.5, and 1.

10.25 Derive the Fourier transform pair given by
(10.120).

Section 10.3

10.26 Draw the block diagram of an 𝑀-power law
circuit for synchronizing a local carrier for 8-PSK.
Assume that 𝑓

𝑐
= 10 MHz and 𝑇

𝑠
= 0.1 ms. Care-

fully label all blocks, and give critical frequencies and
bandwidths.

10.27 Plot 𝜎2
𝜙
versus 𝑧 for the various cases given in Ta-

ble 10.7. Assume 10% of the signal power is in the carrier
for the PLL and all signal power is in the modulation for
the Costas and data estimation loops. Assume values of
𝐿 = 100, 10, 5.
10.28 Find the difference in dB between (10.125) and
(10.126). That is, find the ratio 𝜎2

𝜖, SL∕𝜎
2
𝜖, AV expressed in

dB.

10.29 Consider the marker code C8 of Table 9.8. Find
the Hamming distance between all possible shifts of it
and the received sequence 10110 10110 00011 101011
(spaces for clarity). Is there a unique match to within
ℎ = 1 and this received sequence? If so, at what delay does
it occur?

10.30 Fill in all the steps in going from (10.131) to
(10.132).

10.31 An 𝑚-sequence is generated by a continuously
running feedback shift-resister with a clock rate of 10
kHz. Assume that the shift register has six stages and
that the feedback connection is the proper one to gen-
erate a maximal length sequence. Answer the following
questions:

(a) How long is the sequence before it repeats?

(b) What is the period of the generated sequence in
milliseconds?

(c) Provide a sketch of the autocorrelation function
of the generated sequence. Provide critical di-
mensions.

(d) What is the spacing between spectral lines in the
power spectrum of this sequence?

(e) What is the height of the spectral line at zero fre-
quency? How is this related to the DC level of
the 𝑚-sequence?

(f) At what frequency is the first null in the envelope
of the power spectrum?

10.32 For a PN sequence of length 27 − 1 = 127 two
possible feedback connections are 𝑥4 ⊕ 𝑥7 and 𝑥6 ⊕ 𝑥7.

(a) Draw a block diagram of the feedback shift reg-
ister for the connection 𝑥4 ⊕ 𝑥7.

(b) Compute the PN sequence corresponding to the
connection 𝑥4 ⊕ 𝑥7.

(c) Draw a block diagram of the feedback shift reg-
ister for the connection 𝑥6 ⊕ 𝑥7.

(d) Compute the PN sequence corresponding to the
connection 𝑥6 ⊕ 𝑥7.

10.33 The aperiodic autocorrelation function of a binary
code is of interest in some synchronization applications.
In computing it, the code is not assumed to periodically re-
peat itself, but (10.130) is applied only to the overlapping
part. For example, with the 3-chip Barker code of Table
9.12 the computation is as follows:

𝑵
𝑨
−𝑵

𝑼

𝑵
𝑨
−𝑵

𝑼

𝑵

Barker code 1 1 0
Delay = 0 1 1 0 3 1
Delay = 1 1 1 0 0 0
Delay = 2 1 1 0 −1 −1∕3

For negative delays, we need not perform the calcu-
lation because autocorrelation functions are even.

(a) Find the aperiodic autocorrelation functions of all
the Barker sequences given in Table 9.12. What
are the magnitudes of their maximum nonzero-
delay autocorrelation values?
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(b) Compute the aperiodic autocorrelation function
of a 15-bit PN sequence. What is the magnitude
of its maximum nonzero-delay autocorrelation
values? Note from Table 10.5 that this is not a
Barker sequence.

Section 10.4

10.34 Show that the variance of𝑁
𝑔
as given by (10.145)

is𝑁0𝑇𝑏.

10.35 Show that the variance of𝑁
𝐼
as given by (10.150)

is approximated by the result given by (10.151). [Hint:
You will have to make use of the fact that 𝑇 −1

𝑐
Λ(𝜏∕𝑇

𝑐
) is

approximately a delta function for small 𝑇
𝑐
.]

10.36 A DSSS system employing BPSK data modula-
tion operates with a data rate of 10 kbps. A processing
gain of 1000 (30 dB) is desired.

(a) Find the required chip rate.

(b) What is the RF transmission bandwidth required
(null-to-null)?

(c) An SNR of 10 dB is employed. What is 𝑃
𝐸
for

the following, JSRs? 5 dB; 10 dB; 15 dB; 30 dB.

10.37 Consider a DSSS system employing BPSK data
modulation. 𝑃

𝐸
= 10−5 is desired with 𝐸

𝑏
∕𝑁0 → ∞. For

the following JSRs tell what processing gain,𝐺
𝑝
, will give

the desired 𝑃
𝐸
. If none, so state.

(a) JSR = 30 dB; (b) JSR = 25 dB; (c) JSR = 20 dB.

10.38 Compute the number of users that can be sup-
ported at a maximum bit error probability of 10−3 in a
multiuser DSSS system with a code length of 𝑛 = 255.
[Hint: Take the limit as 𝐸

𝑏
∕𝑁0 → ∞ in (10.157) and set

the resulting expression for 𝑃
𝐸
= 10−3; then solve for𝑁 .]

10.39 Repeat Example 10.6 with everything the same
except for a propagation delay uncertainty of ±1.5ms and
a false-alarm penalty of 𝑇fa = 100𝑇

𝑖
.

Section 10.5

10.40

(a) Consider a multipath channel with a delay spread
of 5 microseconds through which it is desired to
transmit data at 500 kbps. Design an MCM sys-
tem that has a symbol period at least a factor of
ten greater than the delay spread if themodulation
to be used on each subcarrier is QPSK.

(b) If an inverse FFT is to be used to implement this
as an OFDM system, what size inverse FFT is
necessary assuming that the FFT size is to be an
integer power of 2?

10.41 Given the following parameter values from the
IEEE802.16 standard:

Modulation Coding rate

BPSK 1/2
BPSK 3/4
QPSK 1/2
QPSK 3/4
16-QAM 1/2
16-QAM 3/4
64-QAM 2/3
64-QAM 3/4

Value: Value: Value:
20-MHz 10-MHz 5-MHz
Chan. Chan. Chan.

Parameter Spacing Spacing Spacing

No. Data Subcarriers 48 48 48
No. Pilot Subcarriers 4 4 4
FFT/IFFT Period: 𝜇s 3.2 6.4 12.8
Guard Interval: 𝜇s 0.8 1.6 3.2

Find effective data rates in Mbps for every case. That
is, for each modulation/coding rate combination consider
each channel spacing.

Section 10.6

10.42 Rework Examples 10.11 and 10.12 for an attenu-
ation exponent of 𝛼 = 4.
10.43 Rework Example 10.11 with everything the same,
except assume SIRdB,min = 10 dB.
10.44

(a) Show that the distance from a hexagon cell cen-

ter to a vertex is 1∕
√
3 if adjacent cell centers are

1 unit apart.

(b) Show that the distance between cochannel cell
centers is 𝐷co =

√
𝑁 in a hexagonal geometry.
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Computer Exercises

10.1 Use MATLAB to plot curves of 𝑃
𝑏

versus
𝐸
𝑏
∕𝑁0, 𝑀 = 2, 4, 8, 16, and 32, for

(a) 𝑀-ary coherent FSK (use the upper-bound ex-
pression as an approximation to the actual error
probability)

(b) 𝑀-ary noncoherent FSK

Compare your results with Figures 10.15(a) and (b).

10.2 Use MATLAB to plot out-of-band power for 𝑀-
ary PSK, QPSK (or OQPSK), and MSK. Compare with
Figure 10.16. Use trapz to do the required numerical
integration.

10.3 Use MATLAB to plot curves like those shown in
Figure 10.25. Use fzero in MATLAB to find the pro-

cessing gain required to give a desired probability of bit
error for a given JSR and SNR. Note that your program
should check to see if the desired bit error probability is
possible for the given JSR and SNR.

10.4 Write a MATLAB simulation of GMSK that will
simulate themodulatedwaveform. From this, compute and
plot the power spectral density of the modulated wave-
form. Include the special case of ordinary MSK in your
simulation so that you can compare the spectra of GMSK
andMSK for several𝐵𝑇

𝐵
products.Hint: Do a ‘‘help psd’’

to find out how to use the power spectral density estimator
in MATLAB to estimate and plot the power spectra of the
simulated GMSK and MSK waveforms.

10.5 Write a MATLAB simulation for an Alamouti type
of MISO diversity system.
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CHAPTER11

OPTIMUM RECEIVERS AND
SIGNAL-SPACE CONCEPTS

For the most part, this book has been concerned with the analysis of communication systems.

An exception occurred in Chapter 9, where we sought the best receiver in terms of minimum

probability of error for binary digital signals of known shape. In this chapter we deal with the

optimization problem; that is, we wish to find the communication system for a given task that

performs the best, within a certain class, of all possible systems. In taking this approach, we are

faced with three basic problems:

1. What is the optimization criterion to be used?

2. What is the optimum structure for a given problem under this optimization criterion?

3. What is the performance of the optimum receiver?

We will consider the simplest type of problem of this nature possible, that of fixed transmitter and

channel structure with only the receiver to be optimized.

We have two purposes for including this subject in our study of information transmission
systems. First, in Chapter 1 we stated that the application of probabilistic systems analysis
techniques coupled with statistical optimization procedures has led to communication systems
distinctly different in character from those of the early days of communications. The material
in this chapter will, we hope, give you an indication of the truth of this statement, particularly
when you see that some of the optimum structures considered here are building blocks of
systems analyzed in earlier chapters. Additionally, the signal-space techniques to be further
developed later in this chapter provide a unification of the performance results for the analog
and digital communication systems that we have obtained so far.

■ 11.1 BAYES OPTIMIZATION

11.1.1 Signal Detection versus Estimation

Based on our considerations in Chapters 9 and 10, we see that it is perhaps advantageous to
separate the signal-reception problem into two domains. The first of these we shall refer to as
detection, for we are interested merely in detecting the presence of a particular signal, among

564
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other candidate signals, in a noisy background. The second is referred to as estimation, in
which we are interested in estimating some characteristic of a signal that is assumed to be
present in a noisy environment. The signal characteristic of interest may be a time-independent
parameter such as a constant (random or nonrandom) amplitude or phase or an estimate (past,
present, or future value) of the waveform itself (or a function of the waveform). The former
problem is usually referred to as parameter estimation. The latter is referred to as filtering. We
see that demodulation of analog signals (AM, DSB, and so on), if approached in this fashion,
would be a signal-filtering problem.1

While it is often advantageous to categorize signal-reception problems as either detection
or estimation, both are usually present in practical cases of interest. For example, in the
detection of phase-shift-keyed signals, it is necessary to have an estimate of the signal phase
available to perform coherent demodulation. In some cases, we may be able to ignore one of
these aspects, as in the case of noncoherent digital signaling, in which signal phase was of
no consequence. In other cases, the detection and estimation operations may be inseparable.
However, we will look at signal detection and estimation as separate problems in this chapter.

11.1.2 Optimization Criteria

In Chapter 9, the optimization criterion that was employed to find the matched-filter receiver
for binary signals wasminimum average probability of error. In this chapter we will generalize
this idea somewhat and seek signal detectors or estimators that minimize average cost. Such
devices will be referred to as Bayes receivers for reasons that will become apparent later.

11.1.3 Bayes Detectors

To illustrate the use of minimum average cost optimization criteria to find optimum receiver
structures, we will first consider detection. For example, suppose we are faced with a situation
in which the presence or absence of a constant signal of value 𝑘 > 0 is to be detected in the
presence of an additive Gaussian noise component𝑁 (for example, as would result by taking
a single sample of a signal-plus-noise waveform). Thus, we may hypothesize two situations
for the observed data 𝑍:

Hypothesis 1 (𝐻1): 𝑍 = 𝑁 (noise alone) 𝑃 (𝐻1 true) = 𝑝0
Hypothesis 2 (𝐻2): 𝑍 = 𝑘 +𝑁 (signal plus noise) 𝑃 (𝐻2 true) = 1 − 𝑝0

Assuming the noise to have zero mean and variance 𝜎2
𝑛
we may write down the pdf’s of

𝑍 given hypotheses𝐻1 and𝐻2, respectively. Under hypothesis𝐻1, 𝑍 is Gaussian with zero
mean and variance 𝜎2

𝑛
. Thus,

𝑓
𝑍
(𝑧|𝐻1) =

𝑒
−𝑧2∕2𝜎2

𝑛

√
2𝜋𝜎2

𝑛

(11.1)

Under hypothesis 𝐻2, since the mean is 𝑘,

𝑓
𝑍
(𝑧|𝐻2) =

𝑒
−(𝑧−𝑘)2∕2𝜎2

𝑛

√
2𝜋𝜎2

𝑛

(11.2)

1See Van Trees (1968), Vol. 1, for a consideration of filtering theory applied to optimal demodulation.
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Figure 11.1
Conditional pdfs for a two-hypothesis detection problem.

These conditional pdf’s are illustrated in Figure 11.1. We note in this example that 𝑍, the
observed data, can range over the real line −∞ < 𝑍 < ∞. Our objective is to partition this
one-dimensional observation space into two regions (𝑅1 and 𝑅2) such that if 𝑍 falls into
𝑅1, we decide hypothesis 𝐻1 is true, while if 𝑍 is in 𝑅2, we decide 𝐻2 is true. We wish to
accomplish this in such a manner that the average cost of making a decision is minimized. It
may happen, in some cases, that 𝑅1 or 𝑅2 or both will consist of multiple segments of the real
line. (See Problem 11.2.)

Taking a general approach to the problem, we note that four a priori costs are required,
since there are four types of decisions that we can make. These costs are

𝑐11---the cost of deciding in favor of 𝐻1 when 𝐻1 is actually true

𝑐12---the cost of deciding in favor of 𝐻1 when 𝐻2 is actually true

𝑐21---the cost of deciding in favor of 𝐻2 when 𝐻1 is actually true

𝑐22---the cost of deciding in favor of 𝐻2 when 𝐻2 is actually true

Given that𝐻1was actually true, the conditional average cost ofmaking a decision,𝐶(𝐷|𝐻1), is

𝐶(𝐷|𝐻1) = 𝑐11𝑃 [decide 𝐻1|𝐻1 true] + 𝑐21𝑃 [decide 𝐻2|𝐻1 true] (11.3)

In terms of the conditional pdf of 𝑍 given 𝐻1, we may write

𝑃 [decide 𝐻1|𝐻1 true] =
∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 (11.4)

and

𝑃 [decide 𝐻2|𝐻1 true] =
∫
𝑅2

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 (11.5)

where the one-dimensional regions of integration are as yet unspecified.
We note that𝑍 must lie in either 𝑅1 or 𝑅2, since we are forced to make a decision. Thus,

𝑃 [decide 𝐻1|𝐻1 true] + 𝑃 [decide 𝐻2|𝐻1 true] = 1 (11.6)

or, if expressed in terms of the conditional pdf 𝑓
𝑍
(𝑧|𝐻1), we obtain

∫
𝑅2

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 = 1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 (11.7)
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Thus, combining (11.3) through (11.6), the conditional average cost given 𝐻1, 𝐶(𝐷|𝐻1),
becomes

𝐶(𝐷|𝐻1) = 𝑐11
∫
𝑅1

𝑓
𝑍
(𝑧 ∣ 𝐻1)𝑑𝑧 + 𝑐21

[
1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧

]
(11.8)

In a similar manner, the average cost of making a decision given that 𝐻2 is true, 𝐶(𝐷|𝐻2),
can be written as

𝐶(𝐷|𝐻2) = 𝑐12𝑃 [decide 𝐻1|𝐻2 true] + 𝑐22𝑃 [decide 𝐻2|𝐻2 true]

= 𝑐12
∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧 + 𝑐22

∫
𝑅2

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

= 𝑐12
∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧 + 𝑐22

[
1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

]
(11.9)

To find the average cost without regard to which hypothesis is actually true, we must
average (11.8) and (11.9) with respect to the prior probabilities of hypotheses 𝐻1 and 𝐻2,
𝑝0 = 𝑃 [𝐻1 true] and 𝑞0 = 1 − 𝑝0 = 𝑃 [𝐻2 true]. The average cost of making a decision is then

𝐶(𝐷) = 𝑝0𝐶(𝐷|𝐻1) + 𝑞0𝐶(𝐷|𝐻2) (11.10)

Substituting (11.8) and (11.9) into (11.10) and collecting terms, we obtain

𝐶(𝐷) = 𝑝0

{
𝑐11

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 + 𝑐21

[
1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧

]}

+ 𝑞0

{
𝑐12

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧 + 𝑐22

[
1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

]}
(11.11)

for the average cost, or risk, in making a decision. Collection of all terms under a common
integral that involves integration over 𝑅1 results in

𝐶(𝐷)=[𝑝0𝑐21+𝑞0𝑐22]+
∫
𝑅1

{[𝑞0(𝑐12−𝑐22)𝑓𝑍 (𝑧|𝐻2)]−[𝑝0(𝑐21−𝑐11)𝑓𝑍 (𝑧|𝐻1)]}𝑑𝑧 (11.12)

The first term in brackets represents a fixed cost once 𝑝0, 𝑞0, 𝑐21, and 𝑐22 are specified. The
value of the integral is determined by those points that are assigned to 𝑅1. Since wrong
decisions should be more costly than right decisions, it is reasonable to assume that 𝑐12 >

𝑐22 and 𝑐21 > 𝑐11. Thus, the two bracketed terms within the integral are positive because
𝑞0, 𝑝0, 𝑓𝑍 (𝑧|𝐻2), and 𝑓

𝑍
(𝑧|𝐻1) are probabilities. Hence, all values of 𝑧 that give a larger

value for the second term in brackets within the integral than for the first term in brackets
should be assigned to 𝑅1 because they contribute a negative amount to the integral. Values of
𝑧 that give a larger value for the first bracketed term than for the second should be assigned
to 𝑅2. In this manner, 𝐶(𝐷) will be minimized. Mathematically, the preceding discussion can
be summarized by the pair of inequalities

𝑞0(𝑐12 − 𝑐22)𝑓𝑍 (𝑍|𝐻2)
𝐻2
≷

𝐻1

𝑝0(𝑐21 − 𝑐11)𝑓𝑍 (𝑧|𝐻1)

or

𝑓
𝑍
(𝑍|𝐻2)

𝑓
𝑍
(𝑧|𝐻1)

𝐻2
≷

𝐻1

𝑝0(𝑐21 − 𝑐11)
𝑞0(𝑐12 − 𝑐22)

(11.13)
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which are interpreted as follows: If an observed value for 𝑍 results in the left-hand ratio of
pdfs being greater than the right-hand ratio of constants, choose 𝐻2; if not, choose 𝐻1. The
left-hand side of (11.13), denoted by Λ(𝑍),

Λ (𝑍) ≜
𝑓
𝑍
(𝑍|𝐻2)

𝑓
𝑍
(𝑍|𝐻1)

(11.14)

is called the likelihood ratio (note that Λ as used here is not the triangle function as defined in
Chapter 2). The right-hand side of (11.13)

𝜂 ≜
𝑝0(𝑐21 − 𝑐11)
𝑞0(𝑐12 − 𝑐22)

(11.15)

is called the threshold of the test. Thus, the Bayes criterion of minimum average cost has
resulted in a test of the likelihood ratio, which is a random variable, against the threshold
value 𝜂. Note that the development has been general, in that no reference has been made to
the particular form of the conditional pdfs in obtaining (11.13). We now return to the specific
example that resulted in the conditional pdfs of (11.1) and (11.2).

EXAMPLE 11.1

Consider the pdfs of (11.1) and (11.2). Let the costs for a Bayes test be 𝑐11 = 𝑐22 = 0 and 𝑐21 = 𝑐12.

a. Find Λ(𝑍).
b. Write down the likelihood ratio test for 𝑝0 = 𝑞0 =

1
2
.

c. Compare the result of part (b) with the case 𝑝0 =
1
4
and 𝑞0 =

3
4
.

S o l u t i o n

a. The likelihood ratio is given by

Λ (𝑍) =
exp
[
− (𝑍 − 𝑘)2 ∕2𝜎2

𝑛

]

exp
(
−𝑍2∕2𝜎2

𝑛

) = exp
[
2𝑘𝑍 − 𝑘

2

2𝜎
𝑛

]
(11.16)

b. For this case 𝜂 = 1, which results in the test

exp
[
2𝑘𝑍 − 𝑘

2

2𝜎2
𝑛

]
𝐻2
≷

𝐻1

1 (11.17)

Taking the natural logarithm of both sides [this is permissible because ln(𝑥) is a monotonic function
of 𝑥] and simplifying, we obtain

𝑍

𝐻2
≷

𝐻1

𝑘

2
(11.18)

which states that if the noisy received data are less than half the signal amplitude, the decision that
minimizes risk is that the signal was absent, which is reasonable.

c. For this situation, 𝜂 = 1
3
, and the likelihood ratio test is

exp
[
(2𝑘𝑍 − 𝑘

2)∕2𝜎2
𝑛

] 𝐻2
≷

𝐻1

1
3

(11.19)

or, simplifying,

𝑍

𝐻2
≷

𝐻1

𝑘

2
−

𝜎
2
𝑛

𝑘
ln 3 (11.20)
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Since is was assumed that 𝑘 > 0, the second term on the right-hand side is positive and the optimum
threshold is clearly reduced from the value resulting from signals having equal prior probabilities.
Thus, if the prior probability of a signal being present in the noise is increased, the optimum threshold
is decreased so that the signal-present hypothesis (𝐻2) will be chosen with higher probability.

■

11.1.4 Performance of Bayes Detectors

Since the likelihood ratio is a function of a random variable, it is itself a random variable.
Thus, whether we compare the likelihood ratio Λ(𝑍) with the threshold 𝜂 or we simplify the
test to a comparison of𝑍 with a modified threshold as in Example 10.1, we are faced with the
prospect of making wrong decisions. The average cost of making a decision, given by (11.12),
can be written in terms of the conditional probabilities of making wrong decisions, of which
there are two.2 These are given by

𝑃
𝐹
=
∫
𝑅2

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 (11.21)

and

𝑃
𝑀

=
∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

= 1 −
∫
𝑅2

𝑓
𝑍

(
𝑧|𝐻2
)
𝑑𝑧 = 1 − 𝑃

𝐷
(11.22)

The subscripts 𝐹 ,𝑀, and 𝐷 stand for ‘‘false alarm,’’ ‘‘missed detection,’’ and ‘‘correct
detection,’’ respectively, a terminology that grew out of the application of detection theory to
radar. (It is implicitly assumed that hypothesis𝐻2 corresponds to the signal-present hypothesis
and that hypothesis𝐻1 corresponds to noise alone, or signal absent, when this terminology is
used.) When (11.21) and (11.22) are substituted into (11.12), the risk per decision becomes

𝐶(𝐷) = 𝑝0𝑐21 + 𝑞0𝑐22 + 𝑞0(𝑐12 − 𝑐22)𝑃𝑀
− 𝑝0(𝑐21 − 𝑐11)(1 − 𝑃

𝐹
) (11.23)

Thus, it is seen that if the probabilities 𝑃
𝐹
and 𝑃

𝑀
(or 𝑃

𝐷
) are available, the Bayes risk can

be computed.
Alternative expressions for 𝑃

𝐹
and 𝑃

𝑀
can be written in terms of the conditional pdfs of

the likelihood ratio given𝐻1 and𝐻2 as follows: Given that𝐻2 is true, an erroneous decision
is made if

Λ (𝑍) < 𝜂 (11.24)

for the decision, according to (11.13), is in favor of 𝐻1. The probability of inequality (11.24)
being satisfied, given 𝐻2 is true, is

𝑃
𝑀

=
∫

𝜂

0
𝑓Λ(𝜆|𝐻2) 𝑑𝜆 (11.25)

2As will be apparent soon, the probability of error introduced in Chapter 9 can be expressed in terms of 𝑃
𝑀

and 𝑃
𝐹
.

Thus, these conditional probabilities provide a complete performance characterization of the detector.
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where 𝑓Λ(𝜆|𝐻2) is the conditional pdf of Λ(𝑍) given that 𝐻2 is true. The lower limit of the
integral in (11.25) is 𝜂 = 0, since Λ(𝑍) is nonnegative, being the ratio of pdfs. Similarly,

𝑃
𝐹
=
∫

𝜂

0
𝑓Λ(𝜆|𝐻1) 𝑑𝜆 (11.26)

because, given 𝐻1, an error occurs if

Λ (𝑍) > 𝜂 (11.27)

[The decision is in favor of𝐻2 according to (11.13).] The conditional probabilities 𝑓Λ(𝜆|𝐻2)
and 𝑓Λ(𝜆|𝐻1) can be found, in principle at least, by transforming the pdfs 𝑓

𝑍
(𝑧|𝐻2) and

𝑓
𝑍
(𝑧|𝐻1) in accordance with the transformation of random variables defined by (11.14).

Thus, two ways of computing 𝑃
𝑀

and 𝑃
𝐹
are given by using either (11.21) and (11.22) or

(11.25) and (11.26). Often, however, 𝑃
𝑀

and 𝑃
𝐹
are computed by using a monotonic function

of Λ(𝑍) that is convenient for the particular situation being considered, as in Example 9.2.
A plot of 𝑃

𝐷
= 1 − 𝑃

𝑀
versus 𝑃

𝐹
is called the operating characteristic of the likelihood

ratio test, or the receiver operating characteristic (ROC). It provides all the information
necessary to evaluate the risk through (11.23), provided the costs 𝑐11, 𝑐12, 𝑐21, and 𝑐22 are
known. To illustrate the calculation of an ROC, we return to the example involving detection
of a constant in Gaussian noise.

EXAMPLE 11.2

Consider the conditional pdfs of (11.1) and (11.2). For an arbitrary threshold 𝜂, the likelihood ratio test
of (11.13), after taking the natural logarithm of both sides, reduces to

2𝑘𝑍 − 𝑘
2

2𝜎2
𝑛

𝐻2
≷

𝐻1

ln 𝜂 or
𝑍

𝜎
𝑛

𝐻2
≷

𝐻1

(
𝜎
𝑛

𝑘

)
ln 𝜂 + 𝑘

2𝜎
𝑛

(11.28)

Defining the new random variable 𝑋 ≜ 𝑍∕𝜎
𝑛
and the parameter 𝑑 ≜ 𝑘∕𝜎

𝑛
, we can further simplify the

likelihood ratio test to

𝑋

𝐻2
≷

𝐻1

𝑑
−1 ln 𝜂 + 1

2
𝑑 (11.29)

Expressions for 𝑃
𝐹
and 𝑃

𝑀
can be found once 𝑓

𝑋
(𝑥|𝐻1) and 𝑓

𝑋
(𝑥|𝐻2) are known. Because 𝑋 is

obtained from 𝑍 by scaling by 𝜎
𝑛
, we see from (11.1) and (11.2) that

𝑓
𝑋
(𝑥|𝐻1) =

𝑒
−𝑥2∕2
√
2𝜋

and 𝑓
𝑋
(𝑥|𝐻2) =

𝑒
−(𝑥−𝑑)2∕2
√
2𝜋

(11.30)

That is, under either hypothesis 𝐻1 or hypothesis 𝐻2, 𝑋 is a unity variance Gaussian random variable.
These two conditional pdfs are shown in Figure 11.2. A false alarm occurs if, given 𝐻1,

𝑋 > 𝑑
−1 ln 𝜂 + 1

2
𝑑 (11.31)

The probability of this happening is

𝑃
𝐹
=

∫

∞

𝑑−1 ln 𝜂+𝑑∕2
𝑓
𝑋
(𝑥 ∣ 𝐻1) 𝑑𝑥

=
∫

∞

𝑑−1 ln 𝜂+𝑑∕2

𝑒
−𝑥2∕2
√
2𝜋

𝑑𝑥 = 𝑄
(
𝑑
−1 ln 𝜂 + 𝑑∕2

)
(11.32)
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Figure 11.2
Conditional probability density functions and decision regions for the problem of detecting a constant
signal in zero-mean Gaussian noise.

which is the area under 𝑓
𝑋
(𝑥|𝐻1) to the right of 𝑑−1 ln 𝜂 + 1

2
𝑑 in Figure 11.2. Detection occurs if,

given 𝐻2,

𝑋 > 𝑑
−1 ln 𝜂 + 1

2
𝑑 (11.33)

The probability of this happening is

𝑃
𝐷
=

∫

∞

𝑑−1 ln 𝜂+𝑑∕2
𝑓
𝑋
(𝑥|𝐻2) 𝑑𝑥

=
∫

∞

𝑑−1 ln 𝜂+𝑑∕2

𝑒
−(𝑥−𝑑)2∕2
√
2𝜋

𝑑𝑥 = 𝑄
(
𝑑
−1 ln 𝜂 − 𝑑∕2

)
(11.34)

Thus, 𝑃
𝐷

is the area under 𝑓
𝑋
(𝑥|𝐻2) to the right of 𝑑

−1 ln 𝜂 + 𝑑∕2 in Figure 11.2. Note that for
𝜂 = 0, ln 𝜂 = −∞ and the detector always chooses 𝐻2 (𝑃𝐹

= 1). For 𝜂 = ∞, ln 𝜂 = ∞ and the detector
always chooses 𝐻1 (𝑃𝐷

= 𝑃
𝐹
= 0).

■

COMPUTER EXAMPLE 11.1

The ROC is obtained by plotting 𝑃
𝐷
versus 𝑃

𝐹
for various values of 𝑑, as shown in Figure 11.3. The

curves are obtained by varying 𝜂 from 0 to ∞. This is easily accomplished using the simple MATLAB
code that follows.

% file: c11ce1
clear all;
d = [0 0.3 0.6 1 2 3]; % vector of d values
eta = logspace(-2,2); % values of eta
lend = length(d); % number of d values
hold on % hold for multiple plots
for j=1:lend % begin loop

dj = d(j); % select jth value of d
af = log(eta)/dj + dj/2; % argument of Q for Pf
ad = log(eta)/dj - dj/2; % argument of Q for Pd
pf = qfn(af); % compute Pf
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Figure 11.3
Receiver operating characteristic for
detecting a constant signal in zero-mean
Gaussian noise.

pd = qfn(ad); % compute Pd
plot(pf,pd) % plot curve

end
hold off % plots completed
axis square % proper aspect ratio
xlabel(’Probability of False Alarm’)
ylabel(’Probability of Detection’)

% End of script file

In the preceding program, the Gaussian 𝑄-function is computed using the MATLAB function

function out=qfn(x)
% Gaussian Q-Function
%

out=0.5*erfc(x/sqrt(2));

■

11.1.5 The Neyman-Pearson Detector

The design of a Bayes detector requires knowledge of the costs and a priori probabilities. If
these are unavailable, a simple optimization procedure is to fix 𝑃

𝐹
at some tolerable level,

say 𝛼, and maximize 𝑃
𝐷
(or minimize 𝑃

𝑀
) subject to the constraint 𝑃

𝐹
≤ 𝛼. The resulting

detector is known as the Neyman-Pearson detector. It can be shown that the Neyman-Pearson
criterion leads to a likelihood ratio test identical to that of (11.13), except that the threshold
𝜂 is determined by the allowed value of probability of false alarm 𝛼. This value of 𝜂 can be
obtained from the ROC for a given value of 𝑃

𝐹
, for it can be shown that the slope of a curve

of an ROC at a particular point is equal to the value of the threshold 𝜂 required to achieve the
𝑃
𝐷
and 𝑃

𝐹
of that point.3

3Van Trees (1968), Vol. 1.
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11.1.6 Minimum Probability of Error Detectors

From (11.12) it follows that if 𝑐11 = 𝑐22 = 0 (zero cost for making right decision) and 𝑐12 =
𝑐21 = 1 (equal cost for making either type of wrong decision), then the risk reduces to

𝐶 (𝐷) =
[
1 −

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧

]
+ 𝑞0

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

= 𝑝0
∫
𝑅2

𝑓
𝑍
(𝑧|𝐻1) 𝑑𝑧 + 𝑞0

∫
𝑅1

𝑓
𝑍
(𝑧|𝐻2) 𝑑𝑧

= 𝑝0𝑃𝐹
+ 𝑞0𝑃𝑀

(11.35)

where we have used (11.7), (11.21), and (11.22). However, (11.35) is the probability of making
a wrong decision, averaged over both hypotheses, which is the same as the probability of error
used as the optimization criterion in Chapter 9. Thus, Bayes receivers with this special cost
assignment are minimum-probability-of-error receivers.

11.1.7 The Maximum a Posteriori (MAP) Detector

Letting 𝑐11 = 𝑐22 = 0 and 𝑐21 = 𝑐12 in (11.13), we can rearrange the equation in the form
𝑓
𝑍
(𝑍|𝐻2)𝑃 (𝐻2)
𝑓
𝑍
(𝑍)

𝐻2
≷

𝐻1

𝑓
𝑍
(𝑍|𝐻1)𝑃 (𝐻1)
𝑓
𝑍
(𝑍)

(11.36)

where the definitions of 𝑝0 and 𝑞0 have been substituted, both sides of (11.13) have been
multiplied by 𝑃 (𝐻2), and both sides have been divided by

𝑓
𝑍
(𝑍) ≜ 𝑓

𝑍
(𝑧|𝐻1)𝑃 (𝐻1) + 𝑓

𝑍
(𝑧|𝐻2)𝑃 (𝐻2) (11.37)

Using Bayes rule, as given by (6.10), (11.36) becomes

𝑃 (𝐻2|𝑍)
𝐻2
≷

𝐻1

𝑃 (𝐻1|𝑍) (𝑐11 = 𝑐22 = 0; 𝑐12 = 𝑐21) (11.38)

Equation (11.38) states that the most probable hypothesis, given a particular observation 𝑍,
is to be chosen in order to minimize the risk, which, for the special cost assignment assumed,
is equal to the probability of error. The probabilities 𝑃 (𝐻1|𝑍) and 𝑃 (𝐻2|𝑍) are called
a posteriori probabilities, for they give the probability of a particular hypothesis after the
observation of 𝑍, in contrast to 𝑃 (𝐻1) and 𝑃 (𝐻2), which give us the probabilities of the
same events before observation of 𝑍. Because the hypothesis corresponding to the maximum
a posteriori probability is chosen, such detectors are referred to as maximum a posteriori
(MAP) detectors. Minimum-probability-of-error detectors and MAP detectors are therefore
equivalent.

11.1.8 Minimax Detectors

The minimax decision rule corresponds to the Bayes decision rule, where the a priori prob-
abilities have been chosen to make the Bayes risk a maximum. For further discussion of this
decision rule, see van Trees (1968).

11.1.9 The M-ary Hypothesis Case

The generalization of the Bayes decision criterion to𝑀 hypotheses, where𝑀 > 2, is straight-
forward but unwieldy. For the 𝑀-ary case, 𝑀2 costs and 𝑀 a priori probabilities must be

www.it-ebooks.info

http://www.it-ebooks.info/


574 Chapter 11 ∙ Optimum Receivers and Signal-Space Concepts

given. In effect,𝑀 likelihood ratio tests must be carried out in making a decision. If attention
is restricted to the special cost assignment used to obtain the MAP detector for the binary
case (that is, right decisions cost zero and wrong decisions are all equally costly), then a
MAP decision rule results that is easy to visualize for the 𝑀-hypothesis case. Generaliz-
ing from (11.38), we have the MAP decision rule for the 𝑀-hypothesis case: Compute the
𝑀 posterior probabilities 𝑃 (𝐻

𝑖
|𝑍), 𝑖 = 1, 2,… ,𝑀, and choose as the correct hypothesis the

one corresponding to the largest posterior probability. This decision criterion will be used
when 𝑀-ary signal detection is considered.

11.1.10 Decisions Based on Vector Observations

If, instead of a single observation𝑍, we have𝑁 observations𝑍 ≜ (𝑍1, 𝑍2,… , 𝑍
𝑁
), all of the

preceding results hold with the exception that the𝑁-fold joint pdfs of𝑍, given𝐻1 and𝐻2, are
to be used. If𝑍1, 𝑍2,… , 𝑍

𝑁
are conditionally independent, these joint pdfs are easily written

down, since they are simply the𝑁-fold products of themarginal pdfs of𝑍1, 𝑍2,… , 𝑍
𝑁
, given

𝐻1 and 𝐻2. We will make use of this generalization when the detection of arbitrary finite
energy signals in white Gaussian noise is discussed. We will find the optimumBayes detectors
for such problems by resolving the possible transmitted signals into a finite dimensional signal
space. In the next section we discuss vector space representation of signals.

■ 11.2 VECTOR SPACE REPRESENTATION OF SIGNALS

Recall that any vector in three-dimensional space can be expressed as a linear combination of
any three linearly independent vectors. Such a set of three linearly independent vectors is said
to span three-dimensional vector space and is referred to as a basis-vector set for the space. A
basis set of unit-magnitude, mutually perpendicular vectors is called an orthonormal basis set.

Two geometrical concepts associated with vectors are magnitude of a vector and angle
between two vectors. Both are described by the scalar (or dot) product of any two vectors A
and B having magnitudes 𝐴 and 𝐵, defined as

𝐀 ⋅ 𝐁 = 𝐴𝐵 cos 𝜃 (11.39)

where 𝜃 is the angle between A and B. Thus,

𝐴 =
√
𝐀 ⋅ 𝐀 and cos 𝜃 = 𝐀 ⋅ 𝐁

𝐴𝐵
(11.40)

Generalizing these concepts to signals, we can express a signal 𝑥(𝑡)with finite energy in an
interval (𝑡0, 𝑡0 + 𝑇 ) in terms of a complete set4 of orthonormal basis functions 𝜙1(𝑡), 𝜙2(𝑡),…
as the series

𝑥(𝑡) =
∞∑

𝑛=1
𝑋

𝑛
𝜙
𝑛
(𝑡) (11.41)

4A complete set of functions is one that is extensive enough to represent any function included in the domain of
consideration. For example, in considering periodic functions and their representation in terms of Fourier series, the
set of sines and cosines of frequencies that are harmonics of the fundamental frequency is extensive enough, but if
one member of this set is left out (a constant, for example), it is no longer able to represent an arbitrary periodic
function (one having nonzero DC value, for example).
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where

𝑋
𝑛
=
∫

𝑡0+𝑇

𝑡0

𝑥(𝑡)𝜙∗
𝑛
(𝑡) 𝑑𝑡 (11.42)

and

∫

𝑡0+𝑇

𝑡0

𝜙
𝑚
(𝑡)𝜙∗

𝑛
(𝑡) 𝑑𝑡 =

{1, 𝑛 = 𝑚

0, 𝑛 ≠ 𝑚
(the orthonormality condition) (11.43)

This representation provides an alternative representation for 𝑥(𝑡) as the infinite dimensional
vector (𝑋1, 𝑋2,…).

To set up a geometric structure on such a vector space, which will be referred to as
signal space, we must first establish the linearity of the space by listing a consistent set of
properties involving the members of the space and the operations between them. Second,
we must establish the geometric structure of the space by generalizing the concept of scalar
product, thus providing generalizations for the concepts of magnitude and angle.

11.2.1 Structure of Signal Space

We begin with the first task. Specifically, a collection of signals composes a linear signal
space  , if, for any pair of signals 𝑥(𝑡) and 𝑦(𝑡) in  , the operations of addition (commutative
and associative) of two signals and multiplication of a signal by a scalar are defined and obey
the following axioms:

Axiom 1. The signal 𝛼1𝑥(𝑡) + 𝛼2𝑦(𝑡) is in the space for any two scalars 𝛼1 and 𝛼2 (establishes
 as linear).

Axiom 2. 𝛼[𝑥(𝑡) + 𝑦(𝑡)] = 𝛼𝑥(𝑡) + 𝛼𝑦(𝑡) for any scalar 𝛼.

Axiom 3. 𝛼1[𝛼2𝑥(𝑡)] = (𝛼1𝛼2)𝑥(𝑡)
Axiom 4. The product of 𝑥(𝑡) and the scalar 1 reproduces 𝑥(𝑡).
Axiom 5. The space contains a unique zero element such that

𝑥(𝑡) + 0 = 𝑥(𝑡)

Axiom 6. To each 𝑥(𝑡) there corresponds a unique element −𝑥(𝑡) such that

𝑥(𝑡) + [−𝑥(𝑡)] = 0

In writing relations such as the preceding, it is convenient to suppress the independent variable
𝑡, and this will be done from now on.

11.2.2 Scalar Product

The second task, that of establishing the geometric structure, is accomplished by defining
the scalar product, denoted (𝑥, 𝑦), as a scalar-valued function of two signals 𝑥(𝑡) and 𝑦(𝑡) (in
general complex functions), with the following properties:

Property 1. (𝑥, 𝑦) = (𝑦, 𝑥)∗

Property 2. (𝛼𝑥, 𝑦) = 𝛼(𝑥, 𝑦)
Property 3. (𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧)
Property 4. (𝑥, 𝑥) > 0 unless 𝑥 ≡ 0, in which case (𝑥, 𝑥) = 0
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The particular definition used for the scalar product depends on the application and the
type of signals involved. Because we wish to include both energy and power signals in our
future considerations, at least two definitions of scalar product are required. If 𝑥(𝑡) and 𝑦(𝑡)
are both of the same class, a convenient choice is

(𝑥, 𝑦) = lim
𝑇 ′→∞∫

𝑇
′

−𝑇 ′
𝑥 (𝑦) 𝑦∗ (𝑡) 𝑑𝑡 (11.44)

for energy signals and

(𝑥, 𝑦) = lim
𝑇 ′→∞

1
2𝑇 ′ ∫

𝑇
′

−𝑇 ′
𝑥 (𝑦) 𝑦∗ (𝑡) 𝑑𝑡 (11.45)

for power signals. In (11.44) and (11.45) 𝑇 ′ has been used to avoid confusion with the signal
observation interval 𝑇 . In particular, for 𝑥(𝑡) = 𝑦(𝑡), we see that (11.44) is the total energy
contained in 𝑥(𝑡) and (11.45) corresponds to the average power. We note that the coefficients
in the series of (11.41) can be written as

𝑋
𝑛
=
(
𝑥, 𝜙

𝑛

)
(11.46)

If the scalar product of two signals 𝑥(𝑡) and 𝑦(𝑡) is zero, they are said to be orthogonal, just as
two ordinary vectors are said to be orthogonal if their dot product is zero.

11.2.3 Norm

The next step in establishing the structure of a linear signal space is to define the length, or
norm ‖𝑥‖, of a signal. A particularly suitable choice, in view of the preceding discussion, is

‖𝑥‖ = (𝑥, 𝑥)1∕2 (11.47)

More generally, the norm of a signal is any nonnegative real number satisfying the following
properties:

Property 1. ‖𝑥‖ = 0 if and only if 𝑥 ≡ 0
Property 2. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (known as the triangle inequality)

Property 3. ‖𝛼𝑥‖ = |𝛼| ‖𝑥‖, where 𝛼 is a scalar

Clearly, the choice ‖𝑥‖ = (𝑥, 𝑥)1∕2 satisfies these properties, and we will employ it from now
on. A measure of the distance between, or dissimilarity of, two signals 𝑥 and 𝑦 is provided by
the norm of their difference ‖𝑥 − 𝑦‖.

11.2.4 Schwarz’s Inequality

An important relationship between the scalar product of two signals and their norms is
Schwarz’s inequality, which was used in Chapter 9 without proof. For two signals 𝑥(𝑡) and
𝑦(𝑡), it can be written as

|(𝑥, 𝑦)| ≤ ‖𝑥‖ ‖𝑦‖ (11.48)

with equality if and only if 𝑥 or 𝑦 is zero or if 𝑥(𝑡) = 𝛼𝑦(𝑡) where 𝛼 is a scalar.
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To prove (11.48), we consider the nonnegative quantity ‖𝑥 + 𝛼𝑦‖2 where 𝑎 is as yet an
unspecified constant. Expanding it by using the properties of the scalar product, we obtain

‖𝑥 + 𝛼𝑦‖2 = (𝑥 + 𝛼𝑦, 𝑥 + 𝛼𝑦)

= (𝑥, 𝑥) + 𝛼
∗(𝑥, 𝑦) + 𝛼(𝑥, 𝑦)∗ + |𝛼|2 (𝑦, 𝑦)

= ‖𝑥‖2 + 𝛼
∗(𝑥, 𝑦) + 𝛼(𝑥, 𝑦)∗ + |𝛼|2 ‖𝑦‖2 (11.49)

Choosing 𝛼 = −(𝑥, 𝑦)∕ ‖𝑦‖2, which is permissible since 𝛼 is arbitrary, we find that the last
two terms of (11.49) cancel, yielding

‖𝑥 + 𝛼𝑦‖2 = ‖𝑥‖2 − |(𝑥, 𝑦)|
2

‖𝑦‖2
(11.50)

Since ‖𝑥 + 𝛼𝑦‖2 is nonnegative, rearranging (11.50) gives Schwarz’s inequality. Furthermore,
noting that ‖𝑥 + 𝛼𝑦‖ = 0 if and only if 𝑥 + 𝛼𝑦 = 0, we establish a condition under which
equality holds in (11.48). Equality also holds, of course, if one or both signals are identically
zero.

EXAMPLE 11.3

A familiar example of a space that satisfies the preceding properties is ordinary two-dimensional vector
space. Consider two vectors with real components,

𝐀1 = 𝑎1 �̂� + 𝑏1𝑗 and 𝐀2 = 𝑎2 �̂� + 𝑏2𝑗 (11.51)

where �̂� and 𝑗 are the usual orthogonal unit vectors. The scalar product is taken as the vector dot product

(𝐀1,𝐀2) = 𝑎1𝑎2 + 𝑏1𝑏2 = 𝐀1 ⋅ 𝐀2 (11.52)

and the norm is taken as

‖‖𝐀1
‖‖ = (𝐀1,𝐀1)1∕2 =

√
𝑎
2
1 + 𝑏

2
1 (11.53)

which is just the length of the vector. Addition is defined as vector addition,

𝐀1 + 𝐀2 = (𝑎1 + 𝑎2)̂𝑖 + (𝑏1 + 𝑏2)𝑗 (11.54)

which is commutative and associative. The vector 𝐂 ≜ 𝛼1𝐀1 + 𝛼2𝐀2, where 𝛼1 and 𝛼2 are real constants,
is also a vector in two-space (Axiom 1). The remaining axioms follow as well, with the zero element
being 0�̂� + 0𝑗.

The properties of the scalar product are satisfied by the vector dot product. The properties of the
norm also follow, with Property 2 taking the form

√
(𝑎1 + 𝑎2)2 + (𝑏1 + 𝑏2)2 ≤

√
𝑎
2
1 + 𝑏

2
1 +
√

𝑎
2
2 + 𝑏

2
2 (11.55)

which is simply a statement that the length of the hypotenuse of a triangle is shorter than the sum of the
lengths of the other two sides---hence, the name triangle inequality. Schwarz’s inequality squared is

(
𝑎1𝑎2 + 𝑏1𝑏2

)2
≤
(
𝑎
2
1 + 𝑏

2
1

) (
𝑎
2
2 + 𝑏

2
2

)
(11.56)

which simply states that ||𝐀1 ⋅ 𝐀2
||
2 is less than or equal to the length squared of 𝐀1 times the length

squared of 𝐀2.
■

www.it-ebooks.info

http://www.it-ebooks.info/


578 Chapter 11 ∙ Optimum Receivers and Signal-Space Concepts

11.2.5 Scalar Product of Two Signals in Terms of Fourier Coefficients

Expressing two energy or power signals 𝑥(𝑡) and 𝑦(𝑡) in the form given in (11.41), we may
show that

(𝑥, 𝑦) =
∞∑

𝑚=1
𝑋

𝑚
𝑌
∗
𝑚

(11.57)

Letting 𝑦 = 𝑥 results in Parseval’s theorem, which is

‖𝑥‖2 =
∞∑

𝑛=1

||𝑋𝑚
||
2 (11.58)

To indicate the usefulness of the shorthand vector notation just introduced, we will carry out
the proof of (11.57) and (11.58) using it. Let 𝑥(𝑡) and 𝑦(𝑡) be written in terms of their respective
orthonormal expansions:

𝑥(𝑡) =
∞∑

𝑚=1
𝑋

𝑚
𝜙
𝑚
(𝑡) and 𝑦(𝑡) =

∞∑

𝑛=1
𝑌
𝑛
𝜙
𝑛
(𝑡) (11.59)

where, in terms of the scalar product,

𝑋
𝑚
= (𝑥, 𝜙

𝑚
) and 𝑌

𝑛
= (𝑦, 𝜙

𝑛
) (11.60)

Thus,

(𝑥, 𝑦) =

(
∑

𝑚

𝑋
𝑚
𝜙
𝑚
,

∑

𝑛

𝑌
𝑛
𝜙
𝑛

)

=
∑

𝑚

𝑋
𝑚

(

𝜙
𝑚
,

∑

𝑛

𝑌
𝑛
𝜙
𝑛

)

(11.61)

by virtue of Properties 2 and 3 of the scalar product. Applying Property 1, we obtain

(𝑥, 𝑦) =
∑

𝑚

𝑋
𝑚

(
∑

𝑛

𝑌
𝑛
𝜙
𝑛
, 𝜙

𝑚

)∗

=
∑

𝑚

𝑋
𝑚

[
∑

𝑛

𝑌
∗
𝑛

(
𝜙
𝑛
, 𝜙

𝑚

)∗
]

(11.62)

the last step of which follows by virtue of another application of Properties 2 and 3. But the

𝜙
𝑛
s are orthonormal; that is, (𝜙

𝑛
, 𝜙

𝑚
) = 𝛿

𝑛𝑚
=
{1, 𝑚 = 𝑛

0, 𝑚 ≠ 𝑛
, where 𝛿

𝑛𝑚
is the Kronecker delta.

Thus,

(𝑥, 𝑦) =
∑

𝑚

𝑋
𝑚

[
∑

𝑛

𝑌
∗
𝑛
𝛿
𝑛𝑚

]

=
∑

𝑚

𝑋
𝑚
𝑌
∗
𝑚

(11.63)

which proves (11.57); (11.58) follows by setting 𝑦 = 𝑥 in (11.57).

EXAMPLE 11.4

Consider a signal 𝑥(𝑡) = sin𝜋𝑡, 0 ≤ 𝑡 ≤ 2, and a squarewave approximation to it 𝑥
𝑎
(𝑡) = 2

𝜋
Π (𝑡) −

2
𝜋
Π (𝑡 − 1) = 2

𝜋
𝜙1 (𝑡) −

2
𝜋
𝜙2 (𝑡), where we define 𝜙1 (𝑡) = Π (𝑡) and 𝜙2 (𝑡) = Π (𝑡 − 1) [note that 𝜙1 (𝑡)

and 𝜙2 (𝑡) are orthonormal]. It is readily demonstrated that
(
𝑥, 𝜙1
)
= 2

𝜋
and
(
𝑥, 𝜙2
)
= − 2

𝜋
.

Both 𝑥 and 𝑥
𝑎
are in the signal space consisting of all finite energy signals. All the addition and

multiplication properties for signal space hold for 𝑥 and 𝑥
𝑎
. Because we are considering finite energy
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signals, the scalar product defined by (11.44) applies. The scalar product of 𝑥 and 𝑥
𝑎
is

(𝑥, 𝑥
𝑎
) =

∫

2

0
sin𝜋𝑡

[ 2
𝜋
𝜙1 (𝑡) −

2
𝜋
𝜙2 (𝑡)
]
𝑑𝑡

=
( 2
𝜋

)2
−
( 2
𝜋

)(
− 2
𝜋

)
= 2
( 2
𝜋

)2
(11.64)

The norm of their difference squared is

‖‖𝑥 − 𝑥
𝑎
‖‖
2 = (𝑥 − 𝑥

𝑎
, 𝑥 − 𝑥

𝑎
)

=
∫

2

0

[
sin𝜋𝑡 − 2

𝜋
𝜙1(𝑡) +

2
𝜋
𝜙2(𝑡)
]2

𝑑𝑡

= 1 − 8
𝜋2 (11.65)

which is just the minimum integral-squared error between 𝑥 and 𝑥
𝑎
.

The norm squared of 𝑥 is

‖𝑥‖2 =
∫

2

0
sin2 𝜋𝑡 𝑑𝑡 = 1 (11.66)

and the norm squared of 𝑥
𝑎
is

‖‖𝑥𝑎
‖‖
2 =

∫

2

0

[ 2
𝜋
𝜙1(𝑡) −

2
𝜋
𝜙2(𝑡)
]2

𝑑𝑡 = 2
( 2
𝜋

)2
(11.67)

which follows since 𝜙1(𝑡) and 𝜙2(𝑡) are orthonormal over the period of integration. Thus, Schwarz’s
inequality for this case is

|||
(
𝑥, 𝑥

𝑎

) ||| ≤ ‖𝑥‖
1∕2 ‖‖𝑥𝑎

‖‖
1∕2

⇒ 2
( 2
𝜋

)2
< 1 ⋅
√
2
( 2
𝜋

)
(11.68)

which is equivalent to

√
2 <

1
2
𝜋 (11.69)

Since 𝑥 is not a scalar multiple of 𝑥
𝑎
, we must have strict inequality.

■

11.2.6 Choice of Basis Function Sets---The Gram--Schmidt Procedure

The question naturally arises as to how we obtain suitable basis sets. For energy or power
signals, with no further restrictions imposed, we require infinite sets of functions. Suffice it
to say that many suitable choices exist, depending on the particular problem and the interval
of interest. These include not only the sines and cosines, or complex exponential functions,
of harmonically related frequencies, but also the Legendre functions, Hermite functions, and
Bessel functions, to name only a few. All these are complete.

A technique referred to as the Gram--Schmidt procedure is often useful for obtaining
basis sets, especially in the consideration of𝑀-ary signal detection. This procedure will now
be described.
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Consider the situation in which we are given a finite set of signals 𝑠1(𝑡), 𝑠2(𝑡),… , 𝑠
𝑀
(𝑡)

defined on some interval (𝑡0, 𝑡0 + 𝑇 ), and our interest is in all signals that may be written as
linear combinations of these signals:

𝑥(𝑡) =
𝑀∑

𝑛=1
𝑋

𝑛
𝑠
𝑛
(𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇 (11.70)

The set of all such signals forms an 𝑀-dimensional signal space if the 𝑠
𝑛
(𝑡)s are linearly

independent [that is, no 𝑠
𝑛
(𝑡) can be written as a linear combination of the rest]. If the 𝑠

𝑛
(𝑡)s

are not linearly independent, the dimension of the space is less than𝑀 . An orthonormal basis
for the space can be obtained by using the Gram--Schmidt procedure, which consists of the
following steps:

1. Set 𝑣1 (𝑡) = 𝑠1 (𝑡) and 𝜙1(𝑡) = 𝑣1 (𝑡) ∕ ‖‖𝑣1‖‖ .
2. Set 𝑣2(𝑡) = 𝑠2(𝑡) − (𝑠2, 𝜙1)𝜙1 and 𝜙2(𝑡) = 𝑣2(𝑡)∕ ‖‖𝑣2‖‖ [𝑣2(𝑡) is the component of 𝑠2(𝑡) that

is linearly independent of 𝑠1 (𝑡)].
3. Set 𝑣3(𝑡) = 𝑠3(𝑡) − (𝑠3, 𝜙2)𝜙2(𝑡) − (𝑠3, 𝜙1)𝜙1(𝑡) and 𝜙3(𝑡) = 𝑣3(𝑡)∕ ‖‖𝑣3‖‖ [𝑣3(𝑡) is the com-

ponent of 𝑠3(𝑡) linearly independent of 𝑠1 (𝑡) and 𝑠2(𝑡)].
4. Continue until all the 𝑠

𝑛
(𝑡)s have been used. If the 𝑠

𝑛
(𝑡)s are not linearly independent, then

one or more steps will yield 𝑣
𝑛
(𝑡)’s for which ‖‖𝑣𝑛‖‖ = 0. These signals are omitted whenever

they occur so that a set of 𝐾 orthonormal functions is finally obtained where 𝐾 ≤ 𝑀 .

The resulting set forms an orthonormal basis set for the space since, at each step of the
procedure, we ensure that

(
𝜙
𝑛
, 𝜙

𝑚

)
= 𝛿

𝑛𝑚
(11.71)

where 𝛿
𝑛𝑚

is the Kronecker delta defined above (11.63), and we use all signals in forming the
orthonormal set.

EXAMPLE 11.5

Consider the set of three finite-energy signals

𝑠1(𝑡) = 1, 0 ≤ 𝑡 ≤ 1
𝑠2(𝑡) = cos 2𝜋𝑡, 0 ≤ 𝑡 ≤ 1
𝑠3(𝑡) = cos2 𝜋𝑡, 0 ≤ 𝑡 ≤ 1

(11.72)

We desire an orthonormal basis for the signal space spanned by these three signals.

S o l u t i o n

We let 𝑣1 (𝑡) = 𝑠1(𝑡) and compute

𝜙1 (𝑡) =
𝑣1 (𝑡)
‖‖𝑣1‖‖

= 1, 0 ≤ 𝑡 ≤ 1 (11.73)

Next, we compute

(
𝑠2, 𝜙1

)
=
∫

1

0
1 cos 2𝜋𝑡 𝑑𝑡 = 0 (11.74)
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and we set

𝑣2(𝑡) = 𝑠2(𝑡) − (𝑠2, 𝜙1)𝜙1 = cos 2𝜋𝑡, 0 ≤ 𝑡 ≤ 1 (11.75)

The second orthonormal function is found from

𝜙2(𝑡) =
𝑣2
‖‖𝑣2‖‖

=
√
2 cos 2𝜋𝑡, 0 ≤ 𝑡 ≤ 1 (11.76)

To check for another orthonormal function, we require the scalar products

(𝑠3, 𝜙2) =
∫

1

0

√
2 cos 2𝜋𝑡 cos2 𝜋𝑡 𝑑𝑡 = 1

4

√
2 (11.77)

and

(𝑠3, 𝜙1) =
∫

1

0
cos2 𝜋𝑡 𝑑𝑡 = 1

2
(11.78)

Thus

𝑣3(𝑡) = 𝑠3(𝑡) − (𝑠3, 𝜙2)𝜙2 − (𝑠3, 𝜙1)𝜙1

= cos2 𝜋𝑡 −
(1
4

√
2
)√

2 cos 2𝜋𝑡 − 1
2
= 0 (11.79)

so that the space is two-dimensional.
■

11.2.7 Signal Dimensionality as a Function of Signal Duration

The sampling theorem, proved in Chapter 2, provides a means of representing strictly bandlim-
ited signals, with bandwidth 𝑊 , in terms of the infinite basis function set sinc(𝑓

𝑠
𝑡 − 𝑛), 𝑛 =

0,±1,±2,⋯. Because sinc(𝑓
𝑠
𝑡 − 𝑛) is not time-limited, we suspect that a strictly bandlimited

signal cannot also be of finite duration (that is, time-limited). However, practically speaking,
a time-bandwidth dimensionality can be associated with a signal provided the definition of
bandlimited is relaxed. The following theorem, given without proof, provides an upper bound
for the dimensionality of time-limited and bandwidth-limited signals.5

Dimensionality Theorem

Let {𝜙
𝑘
(𝑡)} denote a set of orthogonal waveforms, all of which satisfy the following require-

ments:

1. They are identically zero outside a time interval of duration 𝑇 , for example, |𝑡| ≤ 1
2𝑇 .

2. None has more than 1
12 of its energy outside the frequency interval −𝑊 < 𝑓 < 𝑊 .

Then the number of waveforms in the set {𝜙
𝑘
(𝑡)} is conservatively overbounded by 2.4𝑇𝑊

when 𝑇𝑊 is large.

5This theorem is taken from Wozencraft and Jacobs (1965), p. 294, where it is also given without proof. However, a
discussion of the equivalence of this theorem to the original ones due to Shannon and to Landau and Pollak is also
given.
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EXAMPLE 11.6

Consider the orthogonal set of waveforms

𝜙
𝑘
(𝑡) = Π

[
𝑡 − 𝑘𝜏

𝜏

]

=

{
1, 1

2
(2𝑘 − 1)𝜏 ≤ 𝑡 ≤

1
2
(2𝑘 + 1)𝜏, 𝑘 = 0,±1,±2,±𝐾

0, otherwise

where (2𝐾 + 1)𝜏 = 𝑇 . The Fourier transform of 𝜙
𝑘
(𝑡) is

Φ
𝑘
(𝑓 ) = 𝜏sinc (𝜏𝑓 ) 𝑒−𝑗2𝜋𝑘𝜏𝑓 (11.80)

The total energy in 𝜙
𝑘
(𝑡) is 𝜏, and the energy for |𝑓 | ≤ 𝑊 is

𝐸
𝑊

=
∫

𝑊

−𝑊
𝜏
2sinc2 (𝜏𝑓 ) 𝑑𝑓

= 2𝜏
∫

𝜏𝑊

0
sinc2 (𝑣) 𝑑𝑣 (11.81)

where the substitution 𝑣 = 𝜏𝑓 has been made in the integral and the integration is carried out only over
positive values of 𝑣, owing to the evenness of the integrand. The total pulse energy is 𝐸 = 𝜏 so the ratio
of energy in a bandwidth 𝑊 to total energy is

𝐸
𝑊

𝐸
= 2

∫

𝜏𝑊

0
sinc2 (𝑣) 𝑑𝑣 (11.82)

This integral cannot be integrated in closed form, so we integrate it numerically using the MATLAB
program below:6

% ex11 6
%
for tau W = 1:.1:1.5

v = 0:0.01:tau W;
y = (sinc(v)).ˆ2;
EW E = 2*trapz(v, y);
disp([tau W, EW E])

end

The results for 𝐸
𝑊
∕𝐸 versus 𝜏𝑊 are given below:

𝝉𝑾 𝑬
𝑾
∕𝑬

1.0 0.9028
1.1 0.9034
1.2 0.9066
1.3 0.9130
1.4 0.9218
1.5 0.9311

6The integral can be expressed in terms of the sine-integral function, which is tabulated. See Abramowitz and Stegun,
1972.
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We want to choose 𝜏𝑊 such that 𝐸
𝑊
∕𝐸 ≥

11
12

= 0.9167. Thus, 𝜏𝑊 = 1.4 will ensure that none of the

𝜙
𝑘
(𝑡)s has more than 1

12
of its energy outside the frequency interval −𝑊 < 𝑓 < 𝑊 .

Now 𝑁 = 2𝐾 + 1 = [𝑇 ∕𝜏] orthogonal waveforms occupy the interval
(
−1

2
𝑇 ,

1
2
𝑇

)
where [ ] sig-

nifies the integer part of 𝑇 ∕𝜏. Letting 𝜏 = 1.4𝑊 −1, we obtain

𝑁 =
[
𝑇𝑊

1.4

]
= [0.714𝑇𝑊 ] (11.83)

which satisfies the bound given by the theorem.
■

■ 11.3 MAP RECEIVER FOR DIGITAL DATA TRANSMISSION

We now apply the detection theory and signal-space concepts just developed to digital data
transmission. We will consider examples of coherent and noncoherent systems.

11.3.1 Decision Criteria for Coherent Systems in Terms of Signal Space

In the analysis of QPSK systems in Chapter 10, the received signal plus noise was resolved
into two components by the correlators comprising the receiver. This made the calculation of
the probability of error simple. The QPSK receiver essentially computes the coordinates of
the received signal plus noise in a signal space. The basis functions for this signal space are
cos𝜔

𝑐
𝑡 and sin𝜔

𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇 , with the scalar product defined by

(𝑥1, 𝑥2) =
∫

𝑇

0
𝑥1(𝑡)𝑥2(𝑡) 𝑑𝑡 (11.84)

which is a special case of (11.44). These basis functions are orthogonal if 𝜔
𝑐
𝑇 is an integer

multiple of 2𝜋, but are not normalized.
Recalling the Gram-Schmidt procedure, we see how this viewpoint might be generalized

to 𝑀 signals 𝑠1 (𝑡) , 𝑠2(𝑡),… , 𝑠
𝑀
(𝑡) that have finite energy but are otherwise arbitrary. Thus,

consider an𝑀-ary communication system, depicted in Figure 11.4, wherein one of𝑀 possible

∑

Information source: 

One of M possible 

messages every T
seconds

Modulator: Message 

mi associated with 

signal si(t), T seconds 

long

Receiver: Observes 

y(t) for T seconds.

Guesses at trans. 

signal each T seconds.

mi
i = 1, 2, . . ., M

si(t) y(t)

Transmitted signal:

si(t)
i = 1, 2, . . ., M

White Gaussian

noise: n(t)
1
2

PSD = N0

Best Guess

(Min. PE): miˆ

Figure 11.4
𝑀-ary communication system.
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T
( )dt∫

t = T

Z1

1 (t)ϕ

T
( )dt∫

t = T

Z2

2 (t)ϕ

T
( )dt∫

t = T

ZK

K (t)ϕ

Signal

coordinates

for signal

only at

input

Decisiony(t)

×

×

×

Figure 11.5
Receiver structure for resolving signals into 𝐾-dimensional signal space.

signals of known form 𝑠
𝑗
(𝑡) associated with a message 𝑚

𝑖
is transmitted each 𝑇 seconds. The

receiver is to be constructed such that the probability of error in deciding which message was
transmitted is minimized; that is, it is a MAP receiver. For simplicity, we assume that the
messages are produced by the information source with equal a priori probability.

Ignoring the noise for the moment, we note that the 𝑖th signal can be expressed as

𝑠
𝑖
(𝑡) =

𝐾∑

𝑗=1
𝐴
𝑖𝑗
𝜙
𝑗
(𝑡), 𝑖 = 1, 2,… ,𝑀, 𝐾 ≤ 𝑀 (11.85)

where the 𝜙
𝑗
(𝑡)s are orthonormal basis functions chosen according to the Gram-Schmidt

procedure. Thus,

𝐴
𝑖𝑗
=
∫

𝑇

0
𝑠
𝑖
(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡 = (𝑠

𝑖
, 𝜙

𝑗
) (11.86)

and we see that the receiver structure shown in Figure 11.5, which consists of a bank of
correlators, can be used to compute the generalized Fourier coefficients for 𝑠

𝑖 (𝑡). Thus, we
can represent each possible signal as a point in a𝐾-dimensional signal space with coordinates
(𝐴

𝑖1, 𝐴𝑖2,… , 𝐴
𝑖𝐾
), for 𝑖 = 1, 2,… ,𝑀 .

Knowing the coordinates of 𝑠
𝑖 (𝑡) is as good as knowing 𝑠𝑖 (𝑡), since it is uniquely specified

through (11.85). The difficulty is, of course, that we receive the signals in the presence of
noise. Thus, instead of the receiver providing us with the actual signal coordinates, it provides
us with noisy coordinates (𝐴

𝑖1 +𝑁1, 𝐴𝑖2 +𝑁2,… , 𝐴
𝑖𝐾

+𝑁
𝐾
), where

𝑁
𝑗
≜
∫

𝑇

0
𝑛(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡 = (𝑛, 𝜙

𝑗
) (11.87)

We refer to the vector 𝐙 having components

𝑍
𝑗
≜ 𝐴

𝑖𝑗
+𝑁

𝑗
, 𝑗 = 1, 2,… , 𝐾 (11.88)
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Noise vector, (N1, N2, N3)

N3

N2

N1

Signal vector, (Ai1, Ai2, Ai3)

Ai3

Ai3

Ai1

Ai2

Observed data vector, Z

1 (t)ϕ

3 (t)ϕ

2 (t)ϕ

Figure 11.6
A three-dimensional observation space.

as the data vector, and the space of all possible data vectors as the observation space.
Figure 11.6 illustrates a typical situation for 𝐾 = 3.

The decision-making problem we are therefore faced with is one of associating sets of
noisy signal points with each possible transmitted signal point in a manner that will minimize
the average error probability. That is, the observation space must be partitioned into𝑀 regions
𝑅

𝑖
, one associated with each transmitted signal, such that if a received data point falls into

region 𝑅𝓁 , the decision ‘‘𝑠𝓁(𝑡) transmitted’’ is made with minimum probability of error.
In Section 11.l , the minimum-probability-of-error detector was shown to correspond to

a MAP decision rule. Thus, letting hypothesis 𝐻𝓁 be ‘‘signal 𝑠𝓁(𝑡) transmitted,’’ we want to
implement a receiver that computes

𝑃 (𝐻𝓁|𝑍1, 𝑍2,… , 𝑍
𝐾
), 𝓁 = 1, 2,… ,𝑀 (11.89)

and chooses the largest.7 To compute the posterior probabilities of (11.89), we use Bayes rule
and assume that

𝑃 (𝐻1) = 𝑃 (𝐻2) = ⋯ = 𝑃 (𝐻
𝑀
) (11.90)

7Capital letters are used to denote components of data vectors because they represent coordinates of an observation
that is random.
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Application of Bayes rule results in

𝑃 (𝐻𝓁|𝑧1,… , 𝑧
𝐾
) =

𝑓
𝑍
(𝑧1,… , 𝑧

𝐾
|𝐻𝓁)𝑃 (𝐻𝓁)

𝑓
𝑍
(𝑧1,… , 𝑧

𝐾
)

(11.91)

However, since the factors 𝑃 (𝐻𝓁) and 𝑓
𝑍
(𝑧1,… , 𝑧

𝐾
) do not depend on 𝓁, the detector can

compute 𝑓
𝑍
(𝑧1,… , 𝑧

𝐾
∣ 𝐻𝓁) and choose the 𝐻𝓁 corresponding to the largest. The 𝑍

𝑗
’s

given by (11.88) are the results of linear operations on a Gaussian process and are therefore
Gaussian random variables. All that is required to write their joint pdf, given 𝐻𝓁 , are their
means, variances, and covariances. Their means, given hypothesis 𝐻𝓁 , are

𝐸{𝑍
𝑗
|𝐻𝓁} = 𝐸{𝐴𝓁𝑗 +𝑁

𝑗
} = 𝐴𝓁𝑗 +

∫

𝑇

0
𝐸{𝑛(𝑡)}𝜙

𝑗
(𝑡) 𝑑𝑡

= 𝐴𝓁𝑗 , 𝑗 = 1, 2,… , 𝐾 (11.92)

Their variances, given hypothesis 𝐻𝓁 , are

var {𝑍
𝑗
∣ 𝐻𝓁} = 𝐸

{[(
𝐴𝓁𝑗 +𝑁

𝑗

)
− 𝐴𝓁𝑗

]2} = 𝐸

{
𝑁

2
𝑗

}

= 𝐸

{

∫

𝑇

0
𝑛(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡

∫

𝑇

0
𝑛
(
𝑡
′)
𝜙
𝑗

(
𝑡
′)

𝑑𝑡
′
}

=
∫

𝑇

0 ∫

𝑇

0
𝐸
{
𝑛(𝑡)𝑛
(
𝑡
′)}

𝜙
𝑗
(𝑡)𝜙

𝑗

(
𝑡
′)

𝑑𝑡 𝑑𝑡
′

=
∫

𝑇

0 ∫

𝑇

0

𝑁0
2

𝛿
(
𝑡 − 𝑡

′)
𝜙
𝑗
(𝑡)𝜙

𝑗

(
𝑡
′)

𝑑𝑡 𝑑𝑡
′

=
∫

𝑇

0

𝑁0
2

𝜙
𝑗 (𝑡) 𝑑𝑡 =

1
2
𝑁0, 𝑗 = 1, 2,… , 𝐾 (11.93)

where the orthonormality of the 𝜙
𝑗
s has been used. In a similar manner, it can be shown that

the covariance of𝑍
𝑗
and𝑍

𝑘
, for 𝑗 ≠ 𝑘, is zero. Thus,𝑍1, 𝑍2, .., 𝑍𝐾

are uncorrelated Gaussian
random variables and, hence, are statistically independent. Thus,

𝑓
𝑍
(𝑧1,… , 𝑧

𝐾
|𝐻𝓁) =

𝐾∏

𝑗=1

exp
[
−
(
𝑧
𝑗
− 𝐴𝓁𝑗

)2 ∕𝑁0

]

√
𝜋𝑁0

= 1
(
𝜋𝑁0
)𝐾∕2 exp

[

−
𝐾∑

𝑗=1

(
𝑧
𝑗
− 𝐴𝓁𝑗

)2 ∕𝑁0

]

=
exp
{
− ‖‖𝑧 − 𝑠𝓁

‖‖
2 ∕𝑁0

}

(
𝜋𝑁0
)𝐾∕2 (11.94)

where

𝑧 = 𝑧(𝑡) =
𝐾∑

𝑗=1
𝑧
𝑗
𝜙
𝑗
(𝑡) (11.95)
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and

𝑠𝓁(𝑡) =
𝐾∑

𝑗=1
𝐴𝓁𝑗𝜙𝑗

(𝑡) (11.96)

Except for a factor independent of 𝓁 (11.94) is the posterior probability 𝑃 (𝐻𝓁|𝑧1,… , 𝑧
𝐾
)

as obtained by applying Bayes rule. Hence, choosing 𝐻𝓁 corresponding to the maximum
posterior probability is the same as choosing the signal with coordinates 𝐴𝓁1, 𝐴𝓁2,… , 𝐴𝓁𝐾
so as to maximize (11.94) or, equivalently, so as to minimize the exponent. But ‖‖𝑧 − 𝑠𝓁

‖‖ is
the distance between 𝑧(𝑡) and 𝑠𝓁(𝑡). Thus, it has been shown that the decision criterion that
minimizes the average probability of error is to choose as the transmitted signal the one whose
signal point is closest to the received data point in observation space, distance being defined
as the square root of the sum of the squares of the differences of the data and signal vector
components. That is, choose 𝐻𝓁 such that8

(Distance)2 = 𝑑
2 =

𝐾∑

𝑗=1
(𝑍

𝑗
− 𝐴𝓁𝑗)2 (11.97)

= ‖‖𝑧 − 𝑠𝓁
‖‖
2 = minimum, 𝓁 = 1, 2,… ,𝑀

which is exactly the operation to be performed by the receiver structure of Figure 11.5. We
illustrate this procedure with the following example.

EXAMPLE 11.7

In this example we consider𝑀-ary coherent FSK in terms of signal space. The transmitted signal set is

𝑠
𝑖
(𝑡) = 𝐴 cos

{
2𝜋
[
𝑓
𝑐
+ (𝑖 − 1)Δ𝑓

]
𝑡
}
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
(11.98)

where

Δ𝑓 = 𝑚

2𝑇
𝑠

, 𝑚 an integer, 𝑖 = 1, 2,… ,𝑀

Formathematical simplicity, we assume that 𝑓
𝑐
𝑇
𝑠
is an integer. The orthonormal basis set can be obtained

by applying the Gram-Schmidt procedure. Choosing

𝑣1 (𝑡) = 𝑠1 (𝑡) = 𝐴 cos(2𝜋𝑓
𝑐
𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠
(11.99)

we have

‖‖𝑣1‖‖
2 =

∫

𝑇𝑠

0
𝐴

2 cos2(2𝜋𝑓
𝑐
𝑡) 𝑑𝑡 =

𝐴
2
𝑇
𝑠

2
(11.100)

so that

𝜙1 (𝑡) =
𝑣1
‖‖𝑣1‖‖

=

√
2
𝑇
𝑠

cos(2𝜋𝑓
𝑐
𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠
(11.101)

8Again, 𝑍
𝑗
is the 𝑗th coordinate of an observation 𝑧(𝑡) that is random; (11.97) is referred to as a decision rule.
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It can be shown in a straightforward fashion that (𝑠2, 𝜙1) = 0 if Δ𝑓 = 𝑚∕(2𝑇
𝑠
), so that the second

orthonormal function is

𝜙2(𝑡) =

√
2
𝑇
𝑠

cos
[
2𝜋
(
𝑓
𝑐
+ Δ𝑓

)
𝑡
]
, 0 ≤ 𝑡 ≤ 𝑇

𝑠
(11.102)

and similarly for 𝑀 − 2 other orthonormal functions up to 𝜙
𝑀
(𝑡). Thus, the number of orthonormal

functions is the same as the number of possible signals; the 𝑖th signal can be written in terms of the 𝑖th
orthonormal function as

𝑠
𝑖
(𝑡) =
√
𝐸

𝑠
𝜙

𝑖
(𝑡) (11.103)

We let the received signal-plus-noise waveform be represented as 𝑦(𝑡). When projected into the obser-
vation space, 𝑦(𝑡) has 𝑀 coordinates, the 𝑖th one of which is given by

𝑍
𝑖
=
∫

𝑇𝑠

0
𝑦(𝑡)𝜙

𝑖
(𝑡) 𝑑𝑡 (11.104)

where 𝑦(𝑡) = 𝑠
𝑖
(𝑡) + 𝑛(𝑡). If 𝑠𝓁(𝑡) is transmitted, the decision rule (11.97) becomes

𝑑
2 =

𝑀∑

𝑗=1

(
𝑍

𝑗
−
√
𝐸

𝑠
𝛿𝓁𝑗

)2
= minimum over 𝓁 = 1, 2,… ,𝑀 (11.105)

Taking the square root and writing the sum out, this can be expressed as

𝑑 =
√

𝑍
2
1 +𝑍

2
2 +⋯ +

(
𝑍𝓁 −

√
𝐸

𝑠

)2
+⋯ +𝑍

2
𝑀

= minimum (11.106)

For two dimensions (binary FSK), the signal points lie on the two orthogonal axes at a distance
√
𝐸

𝑠

out from the origin. The decision space consists of the first quadrant, and the optimum (minimum error
probability) partition is a line at 45 degrees bisecting the right angle made by the two coordinate axes.

For 𝑀-ary FSK transmission, an alternative way of viewing the decision rule can be obtained by
squaring the 𝓁th term in (11.105) so that we have

𝑑
2 =

∞∑

𝑛=1
𝑍

2
𝑗
+ 𝐸

𝑠
− 2
√
𝐸

𝑠
𝑍𝓁 = minimum (11.107)

Since the sums over 𝑗 and 𝐸
𝑠
are independent of 𝓁, 𝑑2 can be minimized with respect to 𝓁 by choosing

as the possible transmitted signal, the one that will maximize the last term; that is, the decision rule
becomes choose the possible transmitted signal 𝑠𝓁(𝑡) such that

√
𝐸

𝑠
𝑍𝓁 = maximum (11.108)

or

𝑍𝓁 =
∫

𝑇

0
𝑦 (𝑡)𝜙𝓁 (𝑡) 𝑑𝑡 = maximum with respect to 𝓁 (11.109)

In other words, we look at the output of the bank of correlators shown in Figure 11.5 at time 𝑡 = 𝑇
𝑠
and

choose the one with the largest output as corresponding to the most probable transmitted signal.
■
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11.3.2 Sufficient Statistics

To show that (11.97) is indeed the decision rule corresponding to a MAP criterion, we must
clarify one point. In particular, the decision is based on the noisy signal

𝑧(𝑡) =
𝐾∑

𝑗=1
𝑍

𝑗
𝜙
𝑗
(𝑡) (11.110)

Because of the noise component 𝑛(𝑡), this is not the same as 𝑦(𝑡), since an infinite set of
basis functions would be required to represent all possible 𝑦(𝑡)s. However, we may show that
only 𝐾 coordinates, where 𝐾 is the signal-space dimension, are required to provide all the
information that is relevant to making a decision.

Assuming a complete orthonormal set of basis functions, 𝑦(𝑡) can be expressed as

𝑦(𝑡) =
∞∑

𝑗=1
𝑌
𝑗
𝜙
𝑗
(𝑡) (11.111)

where the first 𝐾 of the 𝜙
𝑗
s are chosen using the Gram--Schmidt procedure for the given

signal set. Given that hypothesis 𝐻𝓁 is true, the 𝑌
𝑗
s are given by

𝑌
𝑗
=

{
𝑍

𝑗
= 𝐴𝓁𝑗 +𝑁

𝑗
, 𝑗 = 1, 2,… , 𝐾

𝑁
𝑗
, 𝑗 = 𝐾 + 1, 𝐾 + 2

(11.112)

where 𝑍
𝑗
, 𝐴𝓁𝑗 , and𝑁

𝑗
are as defined previously. Using a procedure identical to the one used

in obtaining (11.92) and (11.93), we can show that

𝐸
{
𝑌
𝑗

}
=
{

𝐴𝓁𝑗 , 𝑗 = 1, 2,… , 𝐾

0, 𝑗 > 𝐾
(11.113)

var {𝑌
𝑗
} = 1

2
𝑁0, all 𝑗 (11.114)

with cov{𝑌
𝑗
𝑌
𝑘
} = 0, 𝑗 ≠ 𝑘. Thus, the joint pdf of 𝑌1, 𝑌2,… , given 𝐻𝓁 , is of the form

𝑓
𝑌

(
𝑦1, 𝑦2,… , 𝑦

𝐾
,… |𝐻𝓁

)
= 𝐶 exp

{

− 1
𝑁0

[
𝐾∑

𝑗=1

(
𝑦
𝑗
− 𝐴𝓁𝑗

)2 +
∞∑

𝑗=𝐾+1
𝑦
2
𝑗

]}

= 𝐶 exp

(

− 1
𝑁0

∞∑

𝑗=𝐾+1
𝑦
2
𝑗

)

𝑓
𝑍

(
𝑦1,… , 𝑦

𝐾
, ∣ 𝐻𝓁

)
(11.115)

where 𝐶 is a constant. Since this pdf factors, 𝑌
𝐾+1, 𝑌𝐾+2,… are independent of 𝑌1, 𝑌2,… , 𝑌

𝐾

and the former provide no information for making a decision because they do not depend on
𝐴𝓁𝑗 , 𝑗 = 1, 2, … , 𝐾 . Thus, 𝑑2 given by (11.107) is known as a sufficient statistic.
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11.3.3 Detection of 𝑀-ary Orthogonal Signals

As a more complex example of the use of signal-space techniques, let us consider an 𝑀-ary
signaling scheme for which the signal waveforms have equal energies and are orthogonal over
the signaling interval. Thus,

∫

𝑇𝑠

0
𝑠
𝑖 (𝑡) 𝑠𝑗(𝑡) 𝑑𝑡 =

{
𝐸
𝑠
, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗, 𝑖 = 1, 2,… ,𝑀
(11.116)

where 𝐸
𝑠
is the energy of each signal in (0, 𝑇

𝑠
).

A practical example of such a signaling scheme is the signal set for𝑀-ary coherent FSK
given by (11.98). The decision rule for this signaling scheme was considered in Example
10.7. It was found that 𝐾 = 𝑀 orthonormal functions are required, and the receiver shown
in Figure 11.5 involves 𝑀 correlators. The output of the 𝑗th correlator at time 𝑇

𝑠
is given by

(11.88). The decision criterion is to choose the signal point 𝑖 = 1, 2,… ,𝑀 such that 𝑑2 given
by (11.97) is minimized or, as shown in Example 11.7, such that

𝑍𝓁 =
∫

𝑇𝑠

0
𝑦(𝑡)𝜙𝓁(𝑡) 𝑑𝑡 = maximum with respect to 𝓁 (11.117)

That is, the signal is chosen that has the maximum correlation with the received signal plus
noise. To compute the probability of symbol error, we note that

𝑃
𝐸
=

𝑀∑

𝑖=1
𝑃
[
𝐸|𝑠

𝑖 (𝑡) sent
]
𝑃
[
𝑠
𝑖
(𝑡) sent

]

= 1
𝑀

𝑀∑

𝑖=1
𝑃
[
𝐸|𝑠

𝑖 (𝑡) sent
]

(11.118)

where each signal is assumed a priori equally probable. We may write

𝑃
[
𝐸|𝑠

𝑖 (𝑡) sent
]
= 1 − 𝑃

𝑐𝑖
(11.119)

where 𝑃
𝑐𝑖
is the probability of a correct decision given that 𝑠

𝑖
(𝑡) was sent. Since a correct

decision results only if

𝑍
𝑗
=
∫

𝑇𝑠

0
𝑦(𝑡)𝑠

𝑗
(𝑡) 𝑑𝑡 <

∫

𝑇𝑠

0
𝑦(𝑡)𝑠

𝑖 (𝑡) 𝑑𝑡 = 𝑍
𝑖

(11.120)

for all 𝑗 ≠ 𝑖, we may write 𝑃
𝑐𝑖
as

𝑃
𝑐𝑖
= 𝑃 (all 𝑍

𝑗
< 𝑍

𝑖
, 𝑗 ≠ 𝑖) (11.121)

If 𝑠
𝑖 (𝑡) is transmitted, then

𝑍
𝑖
=
∫

𝑇𝑠

0

[√
𝐸
𝑠
𝜙
𝑖
(𝑡) + 𝑛(𝑡)

]
𝜙
𝑖
(𝑡) 𝑑𝑡

=
√
𝐸
𝑠
+𝑁

𝑖
(11.122)

where

𝑁
𝑖
=
∫

𝑇𝑠

0
𝑛(𝑡)𝜙

𝑖
(𝑡) 𝑑𝑡 (11.123)
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Since 𝑍
𝑗
= 𝑁

𝑗
, 𝑗 ≠ 𝑖, given 𝑠

𝑖 (𝑡) was sent, it follows that (11.121) becomes

𝑃
𝑐𝑖
= 𝑃 (all 𝑁

𝑗
<

√
𝐸
𝑠
+𝑁

𝑖
, 𝑗 ≠ 𝑖) (11.124)

Now 𝑁
𝑖
is a Gaussian random variable (a linear operation on a Gaussian process) with

zero mean and variance

var [𝑁
𝑖
] = 𝐸

{[

∫

𝑇𝑠

0
𝑛(𝑡)𝜙

𝑗
(𝑡) 𝑑𝑡
]2}

=
𝑁0
2

(11.125)

Furthermore, 𝑁
𝑖
and 𝑁

𝑗
, for 𝑖 ≠ 𝑗, are independent, since

𝐸[𝑁
𝑖
𝑁

𝑗
] = 0 (11.126)

Given a particular value of 𝑁
𝑖
, (11.124) becomes

𝑃
𝑐𝑖
(𝑁

𝑖
) =

𝑀∏

𝑗≠1
𝑗=1

𝑃 [𝑁
𝑗
<

√
𝐸
𝑠
+𝑁

𝑖
]

=

(

∫

√
𝐸𝑠+𝑛𝑖

−∞

𝑒
−𝑛2

𝑗
∕𝑁0

√
𝜋𝑁0

𝑑𝑛
𝑗

)𝑀−1

(11.127)

which follows because the pdf of 𝑁
𝑗
is 𝑛
(
0,
√
𝑁0∕2

)
. Averaged over all possible values of

𝑁
𝑖
, (11.127) gives

𝑃
𝑐𝑖
=
∫

∞

−∞

𝑒
−𝑛2

𝑖
∕𝑁0

√
𝜋𝑁0

(

∫

√
𝐸𝑠+𝑛𝑖

−∞

𝑒
−𝑛2

𝑗
∕𝑁0

√
𝜋𝑁0

𝑑𝑛
𝑗

)𝑀−1

𝑑𝑛
𝑖

= (𝜋)−𝑀∕2
∫

∞

−∞
𝑒
−𝑦2
(

∫

√
𝐸𝑠∕𝑁0+𝑦

−∞
𝑒
−𝑥2

𝑑𝑥

)𝑀−1

𝑑𝑦 (11.128)

where the substitutions 𝑥 = 𝑛
𝑗
∕
√
𝑁0 and 𝑦 = 𝑛

𝑖
∕
√
𝑁0 have been made. Since 𝑃

𝑐𝑖
is indepen-

dent of 𝑖, it follows that the probability of error is

𝑃
𝐸
= 1 − 𝑃

𝑐𝑖
(11.129)

With (11.128) substituted into (11.129), a nonintegrable 𝑀-fold integral for 𝑃
𝐸
results,

and one must resort to numerical integration to evaluate it.9 Curves showing 𝑃
𝐸

versus
𝐸
𝑠
∕(𝑁0 log2 𝑀) are given in Figure 11.7 for several values of𝑀 . We note a rather surprising

behavior: As𝑀 → ∞, error-free transmission can be achieved as long as 𝐸
𝑠
∕(𝑁0 log2 𝑀) >

ln 2 = −1.59 dB. This error-free transmission is achieved at the expense of infinite bandwidth,
however, since𝑀 → ∞means that an infinite number of orthonormal functions are required.
We will discuss this behavior further in Chapter 12.

9See Lindsey and Simon (1973), pp. 199ff, for tables giving 𝑃
𝐸
.
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Figure 11.7
Probability of symbol error for
coherent detection of 𝑀-ary
orthogonal signals.

11.3.4 A Noncoherent Case

To illustrate the application of signal-space techniques to noncoherent digital signaling, let us
consider the following binary hypothesis situation:

𝐻1 ∶ 𝑦(𝑡) = 𝐺

√
2𝐸∕𝑇 cos(𝜔1𝑡 + 𝜃) + 𝑛(𝑡)

𝐻2 ∶ 𝑦(𝑡) = 𝐺

√
2𝐸∕𝑇 cos(𝜔2𝑡 + 𝜃) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇 (11.130)

where 𝐸 is the energy of the transmitted signal in one bit period and 𝑛(𝑡) is white Gaussian
noise with double-sided power spectral density 1

2𝑁0. It is assumed that ||𝜔1 − 𝜔2|| ∕2𝜋 ≫ 𝑇
−1

so that the signals are orthogonal. Except for 𝐺 and 𝜃, which are assumed to be random
variables, this problem would be a special case of the 𝑀-ary orthogonal signaling case just
considered. (Recall also the consideration of coherent and noncoherent FSK in Chapter 8.)

The random variables 𝐺 and 𝜃 represent random gain and phase perturbations introduced
by a fading channel. The channel is modeled as introducing a random gain and phase shift
during each bit interval. Because the gain and phase shift are assumed to remain constant
throughout a bit interval, this channel model is called slowly fading. We assume that 𝐺 is
Rayleigh and 𝜃 is uniform in (0, 2𝜋) and that 𝐺 and 𝜃 are independent.

Expanding (11.130), we obtain

𝐻1 ∶ 𝑦(𝑡) =
√
2𝐸∕𝑇

(
𝐺1 cos𝜔1𝑡 + 𝐺2 cos𝜔1𝑡

)
+ 𝑛(𝑡)

𝐻2 ∶ 𝑦(𝑡) =
√
2𝐸∕𝑇

(
𝐺1 cos𝜔2𝑡 + 𝐺2 cos𝜔2𝑡

)
+ 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇 (11.131)
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where 𝐺1 = 𝐺 cos 𝜃 and 𝐺2 = −𝐺 sin 𝜃 are independent, zero-mean, Gaussian random vari-
ables (recall Example 6.15). We denote their variances by 𝜎

2. Choosing the orthonormal
basis set

𝜙1 (𝑡) =
√
2𝐸∕𝑇 cos𝜔1𝑡

𝜙2 (𝑡) =
√
2𝐸∕𝑇 sin𝜔1𝑡

𝜙3 (𝑡) =
√
2𝐸∕𝑇 cos𝜔2𝑡

𝜙4 (𝑡) =
√
2𝐸∕𝑇 sin𝜔2𝑡

⎫
⎪
⎪
⎬
⎪
⎪
⎭

0 ≤ 𝑡 ≤ 𝑇 (11.132)

the term 𝑦(𝑡) can be resolved into a four-dimensional signal space, and decisions may be based
on the data vector

𝐙 = (𝑍1, 𝑍2, 𝑍3, 𝑍4) (11.133)

where

𝑍
𝑖
=
(
𝑦, 𝜙

𝑖

)
=
∫

𝑇

0
𝑦 (𝑡)𝜙𝑖 (𝑡) 𝑑𝑡 (11.134)

Given hypothesis 𝐻1, we obtain

𝑍
𝑖
=

{√
𝐸𝐺

𝑖
+𝑁

𝑖
, 𝑖 = 1, 2

𝑁
𝑖
, 𝑖 = 3, 4

(11.135)

and given hypothesis 𝐻2, we obtain

𝑍
𝑖
=

{
𝑁

𝑖
, 𝑖 = 1, 2

√
𝐸𝐺

𝑖−2 +𝑁
𝑖
, 𝑖 = 3, 4

(11.136)

where

𝑁
𝑖
= (𝑛, 𝜙

𝑖
) =

∫

𝑇

0
𝑛(𝑡)𝜙

𝑖 (𝑡) 𝑑𝑡, 𝑖 = 1, 2, 3, 4 (11.137)

are independent Gaussian random variables with zero mean and variance 1
2𝑁0. Since 𝐺1 and

𝐺2 are also independent Gaussian random variables with zero mean and variance 𝜎2, the joint
conditional pdfs of 𝑍, given 𝐻1 and 𝐻2, are the products of the respective marginal pdfs. It
follows that

𝑓
𝑍
(𝑧1, 𝑧2, 𝑧3, 𝑧4|𝐻1) =

exp
[
−(𝑧21 + 𝑧

2
2)∕(2𝐸𝜎

2 +𝑁0)
]
exp
[
−(𝑧23 + 𝑧

2
4)∕𝑁0

]

𝜋2
(
2𝐸𝜎2 +𝑁0

)
𝑁0

(11.138)

and

𝑓
𝑍
(𝑧1, 𝑧2, 𝑧3, 𝑧4|𝐻2) =

exp
[
−(𝑧21 + 𝑧

2
2)∕𝑁0

]
exp
[
−(𝑧23 + 𝑧

2
4)∕(2𝐸𝜎

2 +𝑁0)
]

𝜋2
(
2𝐸𝜎2 +𝑁0

)
𝑁0

(11.139)

The decision rule that minimizes the probability of error is to choose the hypothesis
𝐻𝓁 corresponding to the largest posterior probability 𝑃 (𝐻𝓁|𝑧1, 𝑧2, 𝑧3, 𝑧4). But these proba-
bilities differ from (11.138) and (11.139) only by a constant that is independent of 𝓁. For a
particular observation 𝐙 = (𝑍1, 𝑍2, 𝑍3, 𝑍4), the decision rule is

𝑓
𝑍
(𝑍1, 𝑍2, 𝑍3, 𝑍4|𝐻1)

𝐻2
≷

𝐻1

𝑓
𝑍
(𝑍1, 𝑍2, 𝑍3, 𝑍4|𝐻2) (11.140)
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Figure 11.8
Optimum receiver structures for detection of binary orthogonal signals in Rayleigh fading.
(a) Implementation by correlator and squarer. (b) Implementation by matched filter and
envelope detector.

which, after substitution from (11.138) and (11.139) and simplification, reduces to

𝑅
2
2 ≜ 𝑍

2
3 +𝑍

2
4

𝐻2
≷

𝐻1

𝑍
2
1 +𝑍

2
2 ≜ 𝑅

2
1 (11.141)

The optimum receiver corresponding to this decision rule is shown in Figure 11.8.

To find the probability of error, we note that both𝑅1 ≜
√

𝑍
2
1 +𝑍

2
2 and𝑅2 ≜

√
𝑍

2
3 +𝑍

2
4

are Rayleigh random variables under either hypothesis. Given 𝐻1 is true, an error results if
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𝑅2 > 𝑅1, where the positive square root of (11.141) has been taken. From Example 6.15, it
follows that

𝑓
𝑅1

(
𝑟1|𝐻1

)
=

𝑟1𝑒
−𝑟21∕
(
2𝐸𝜎

2+𝑁0
)

𝐸𝜎2 + 1
2𝑁0

, 𝑟1 > 0 (11.142)

and

𝑓
𝑅2

(
𝑟2|𝐻1

)
=

2𝑟2𝑒
−𝑟22∕𝑁0

𝑁0
, 𝑟2 > 0 (11.143)

The probability that 𝑅2 > 𝑅1, averaged over 𝑅1, is

𝑃
(
𝐸|𝐻1

)
=
∫

∞

0

[

∫

∞

𝑟1

𝑓
𝑅2

(
𝑟2|𝐻1

)
𝑑𝑟2

]
𝑓
𝑅1

(
𝑟1|𝐻1

)
𝑑𝑟1

= 1
2

1
1 + 1

2

(
2𝜎2𝐸∕𝑁0

) (11.144)

where 2𝜎2𝐸 is the average received-signal energy. Because of the symmetry involved, it
follows that 𝑃 (𝐸|𝐻1) = 𝑃 (𝐸|𝐻2) and that

𝑃
𝐸
= 𝑃
(
𝐸|𝐻1

)
= 𝑃
(
𝐸|𝐻2

)
(11.145)

The probability of error is plotted in Figure 11.9, along with the result from Chapter 9
for constant-amplitude noncoherent FSK (Figure 9.30). Whereas the error probability for
nonfading, noncoherent FSK signaling decreases exponentially with the signal-to-noise ratio,
the fading channel results in an error probability that decreases only inversely with signal-to-
noise ratio.

One way to combat this degradation due to fading is to employ diversity transmission; that
is, the transmitted signal power is divided among several independently fading transmission
paths with the hope that not all of them will fade simultaneously. Several ways of achieving
diversity were mentioned in Chapter 9.

10–3

10–2

10–1
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P
E

SNR (dB)
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20151050
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Figure 11.9
Comparison of 𝑃

𝐸
versus SNR for Rayleigh and fixed

channels with noncoherent FSK signaling.
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■ 11.4 ESTIMATION THEORY

We now consider the second type of optimization problem discussed in the introduction to this
chapter---the estimation of parameters from random data. After introducing some background
theory here, we will consider several applications of estimation theory to communication
systems in Section 11.5.

In introducing the basic ideas of estimation theory, we will exploit several parallels with
detection theory. As in the case of signal detection, we have available a noisy observation
𝑍 that depends probabilistically on a parameter of interest 𝐴.10 For example, 𝑍 could be the
sum of an unknown dc voltage𝐴 and an independent noise component𝑁 ∶ 𝑍 = 𝐴 +𝑁. Two
different estimation procedures will be considered. These are Bayes estimation andmaximum-
likelihood (ML) estimation. For Bayes estimation,𝐴 is considered to be random with a known
a priori pdf 𝑓

𝐴
(𝑎), and a suitable cost function is minimized to find the optimum estimate of

𝐴. Maximum-likelihood estimation can be used for the estimation of nonrandom parameters
or a random parameter with an unknown a priori pdf.

11.4.1 Bayes Estimation

Bayes estimation involves theminimization of a cost function, as in the case of Bayes detection.
Given an observation 𝑍, we seek the estimation rule (or estimator) �̂�(𝑍) that assigns a value
�̂� to 𝐴 such that the cost function 𝐶[𝐴, �̂�(𝑍)] is minimized. Note that 𝐶 is a function of
the unknown parameter 𝐴 and the observation 𝑍. Clearly, as the absolute error |𝐴 − �̂�(𝑍)|
increases, 𝐶[𝐴, �̂�(𝑍)] should increase, or at least not decrease; that is, large errors should be
more costly than small errors. Two useful cost functions are the squared-error cost function,
defined by

𝐶[𝐴, �̂�(𝑍)] = [𝐴 − �̂�(𝑍)]2 (11.146)

and the uniform cost function, defined by

𝐶[𝐴, �̂�(𝑍)] =
{1, |𝐴 − �̂�(𝑍)| > Δ > 0

0, otherwise
(11.147)

where Δ is a suitably chosen constant. For each of these cost functions, we wish to find the
decision rule �̂�(𝑍) that minimizes the average cost 𝐸 {𝐶[𝐴, �̂�(𝑍)]} = 𝐶[𝐴, �̂�(𝑍)]. Because
both 𝐴 and 𝑍 are random variables, the average cost, or risk, is given by

𝐶[𝐴, �̂�(𝑍)] =
∫

∞

−∞ ∫

∞

−∞
𝐶[𝐴, �̂�(𝑍)]𝑓

𝐴𝑍 (𝑎, 𝑧) 𝑑𝑎 𝑑𝑧

=
∫

∞

−∞ ∫

∞

−∞
𝐶[𝐴, �̂�(𝑍)]𝑓

𝑍∣𝐴 (𝑧|𝑎) 𝑓𝐴 (𝑎) 𝑑𝑧 𝑑𝑎 (11.148)

where 𝑓
𝐴𝑍 (𝑎, 𝑧) is the joint pdf of 𝐴 and 𝑍 and 𝑓

𝑍∣𝐴 (𝑧|𝑎) is the conditional pdf of 𝑍 given
𝐴. The latter can be found if the probabilistic mechanism that produces 𝑍 from 𝐴 is known.

10For simplicity, we consider the single-observation case first and generalize to vector observations later.
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For example, if𝑍 = 𝐴 +𝑁 , where𝑁 is a zero-mean Gaussian random variable with variance
𝜎
2
𝑛
, then

𝑓
𝑍∣𝐴 (𝑧|𝑎) =

exp
[
− (𝑧 − 𝑎)2 ∕2𝜎2

𝑛

]

√
2𝜋𝜎2

𝑛

(11.149)

Returning to theminimization of the risk, we find itmore advantageous to express (11.148)
in terms of the conditional pdf 𝑓

𝐴∣𝑍 (𝑎 ∣ 𝑧), which can be done by means of Bayes’ rule, to
obtain

𝐶[𝐴, �̂�(𝑍)] =
∫

∞

−∞
𝑓
𝑍 (𝑧)
{

∫

∞

−∞
𝐶[𝑎, �̂�(𝑍)]𝑓

𝑍∣𝐴 (𝑧|𝑎) 𝑑𝑎
}

𝑑𝑧 (11.150)

where

𝑓
𝑍
(𝑧) =

∫

∞

−∞
𝑓
𝑍∣𝐴 (𝑧|𝑎) 𝑓𝐴 (𝑎) 𝑑𝑎 (11.151)

is the pdf of𝑍. Since 𝑓
𝑍
(𝑧) and the inner integral in (11.150) are nonnegative, the risk can be

minimized by minimizing the inner integral for each 𝑧. The inner integral in (11.150) is called
the conditional risk.

This minimization is accomplished for the squared-error cost function, (11.146), by
differentiating the conditional risk with respect to �̂� for a particular observation 𝑍 and setting
the result equal to zero. The resulting differentiation yields

𝜕

𝜕�̂� ∫

∞

−∞
[𝑎 − �̂� (𝑍)]2 𝑓𝐴∣𝑍 (𝑎 ∣ 𝑍) 𝑑𝑎 = −2

∫

∞

−∞
𝑎𝑓

𝐴∣𝑍 (𝑎|𝑍) 𝑑𝑎

+2�̂� (𝑍)
∫

∞

−∞
𝑓
𝐴∣𝑍 (𝑎|𝑍) 𝑑𝑎 (11.152)

which, when set to zero, results in

�̂�
𝑠𝑒 (𝑍) =

∫

∞

−∞
𝑎𝑓

𝐴∣𝑍 (𝑎|𝑍) 𝑑𝑎 (11.153)

where the fact that ∫ ∞
−∞ 𝑓

𝐴∣𝑍 (𝑎|𝑍) 𝑑𝑎 = 1 has been used. A second differentiation shows that
this is a minimum. Note that �̂�

𝑠𝑒 (𝑍), the estimator for a squared-error cost function, is the
mean of the pdf of𝐴 given the observation𝑍, or the conditional mean. The values that �̂�

𝑠𝑒 (𝑍)
assume, �̂�, are random since the estimator is a function of the random variable 𝑍.

In a similar manner, we can show that the uniform cost function results in the condition

𝑓
𝐴∣𝑍 (𝐴|𝑍)|||𝐴=�̂�MAP(𝑍)

= maximum (11.154)

forΔ in (11.147) infinitesimally small. That is, the estimation rule, or estimator, that minimizes
the uniform cost function is the maximum of the conditional pdf of 𝐴 given 𝑍, or the
a posteriori pdf. Thus, this estimator will be referred to as the maximum a posteriori (MAP)
estimate. Necessary, but not sufficient, conditions that the MAP estimate must satisfy are

𝜕

𝜕𝐴
𝑓
𝐴∣𝑍 (𝐴|𝑍)|||𝐴=�̂�MAP(𝑍)

= 0 (11.155)

and
𝜕

𝜕𝐴
ln 𝑓

𝐴∣𝑍 (𝐴|𝑍)|||𝐴=�̂�MAP(𝑍)
= 0 (11.156)
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where the latter condition is especially convenient for a posteriori pdfs of exponential type,
such as Gaussian.

Often the MAP estimate is employed because it is easier to obtain than other estimates,
even though the conditional-mean estimate, given by (11.153), ismore general, as the following
theorem indicates.

Theorem

If, as a function of 𝑎, the a posteriori pdf 𝑓
𝐴∣𝑍 (𝑎|𝑍) has a single peak, about which it is

symmetrical, and the cost function has the properties

𝐶 (𝐴, �̂�) = 𝐶 (𝐴 − �̂�) (11.157)

𝐶(𝑥) = 𝐶(−𝑥) ≥ 0 (symmetrical) (11.158)

𝐶(𝑥1) ≥ 𝐶(𝑥2) for ||𝑥1|| ≥ ||𝑥2|| (convex) (11.159)

then the conditional-mean estimator is the Bayes estimate.11

11.4.2 Maximum-Likelihood Estimation

We now seek an estimation procedure that does not require a priori information about the
parameter of interest. Such a procedure is maximum-likelihood (ML) estimation. To explain
this procedure, consider the MAP estimation of a random parameter 𝐴 about which little is
known. This lack of information about 𝐴 is expressed probabilistically by assuming the prior
pdf of 𝐴, 𝑓

𝐴
(𝑎), to be broad compared with the posterior pdf, 𝑓

𝐴∣𝑍 (𝑎|𝑍). If this were not the
case, the observation 𝑍 would be of little use in estimating 𝐴. Since the joint pdf of 𝐴 and 𝑍

is given by

𝑓
𝐴𝑍

(𝑎, 𝑧) = 𝑓
𝐴∣𝑍 (𝑎|𝑧) 𝑓𝑍 (𝑧) (11.160)

the joint pdf, regarded as a function of 𝑎, must be peaked for at least one value of 𝑎. By the
definition of conditional probability, we also may write (11.160) as

𝑓
𝑍𝐴

(𝑧, 𝑎) = 𝑓
𝑍∣𝐴 (𝑧|𝑎) 𝑓𝐴(𝑎)

= 𝑓
𝑍∣𝐴 (𝑧|𝑎) (times a constant) (11.161)

where the approximation follows by virtue of the assumption that little is known about 𝐴,
thus, implying that 𝑓

𝐴
(𝑎) is essentially constant. The ML estimate of 𝐴 is defined as

𝑓
𝑍∣𝐴 (𝑍|𝐴)|||𝐴=�̂�ML(𝑍)

= maximum (11.162)

But, from (11.160) and (11.161), the ML estimate of a parameter corresponds to the MAP
estimate if little a priori information about the parameter is available. From (11.162), it follows
that the ML estimate of a parameter 𝐴 is the value of 𝐴 most likely to have resulted in the
observation 𝑍; hence, the name ‘‘maximum likelihood.’’ Since the prior pdf of 𝐴 is not
required to obtain an ML estimate, it is a suitable estimation procedure for random parameters
whose prior pdf is unknown. If a deterministic parameter is to be estimated, 𝑓

𝑍∣𝐴 (𝑧 ∣ 𝐴) is
regarded as the pdf of 𝑍 with 𝐴 as a parameter.

11Van Trees (1968), pp. 60--61.
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From (11.155) and (11.156) it follows that the ML estimate can be found from the
necessary, but not sufficient, conditions

𝜕𝑓
𝑍∣𝐴 (𝑍|𝐴)
𝜕𝐴

|||||𝐴=�̂�ML(𝑍)
= 0 (11.163)

and

𝑙 (𝐴) =
𝜕 ln 𝑓

𝑍∣𝐴 (𝑍|𝐴)
𝜕𝐴

|||||𝐴=�̂�ML(𝑍)
= 0 (11.164)

When viewed as a function of 𝐴, 𝑓
𝑍∣𝐴 (𝑍|𝐴) is referred to as the likelihood function.

Both (11.163) and (11.164) will be referred to as likelihood equations.
From (11.156) and Bayes’ rule, it follows that the MAP estimate of a random parameter

satisfies
[
𝑙 (𝐴) + 𝜕

𝜕𝐴
ln𝑓

𝐴 (𝐴)
]||||𝐴=�̂�ML(𝑍)

= 0 (11.165)

which is useful when finding both the ML and MAP estimates of a parameter.

11.4.3 Estimates Based on Multiple Observations

If a multiple number of observations are available, say𝐙 ≜ (𝑍1, 𝑍2,… , 𝑍
𝐾
), on which to base

the estimate of a parameter, we simply substitute the 𝐾-fold joint conditional pdf 𝑓𝐙∣𝐴 (𝐳|𝐴)
into (11.163) and (11.164) to find the ML estimate of 𝐴. If the observations are independent,
when conditioned on 𝐴, then

𝑓𝐙∣𝐴 (𝐳|𝐴) =
𝐾∏

𝑘=1
𝑓
𝑍𝑘∣𝐴
(
𝑧
𝑘
|𝐴
)

(11.166)

where 𝑓
𝑍𝑘∣𝐴
(
𝑧
𝑘
|𝐴
)
is the pdf of the 𝑘th observation 𝑍

𝑘
given the parameter 𝐴. To find

𝑓
𝐴∣𝐙 (𝐴|𝐳) for MAP estimation, we use Bayes’ rule.

EXAMPLE 11.8

To illustrate the estimation concepts just discussed, consider the estimation of a constant-level random
signal 𝐴 embedded in Gaussian noise 𝑛(𝑡) with zero mean and variance 𝜎2

𝑛
:

𝑧(𝑡) = 𝐴 + 𝑛(𝑡) (11.167)

We assume 𝑧(𝑡) is sampled at time intervals sufficiently spaced so that the samples are independent. Let
these samples be represented as

𝑍
𝑘
= 𝐴 +𝑁

𝑘
, 𝑘 = 1, 2,… , 𝐾 (11.168)

Thus, given 𝐴, the 𝑍
𝑘
s are independent, each having mean 𝐴 and variance 𝜎

2
𝑛
. Hence, the conditional

pdf of 𝐙 ≜ (𝑍1, 𝑍2,… , 𝑍
𝐾
) given 𝐴 is

𝑓𝐙∣𝐴 (𝐳|𝐴) =
𝐾∏

𝑘=1

exp
[
−
(
𝑧
𝑘
− 𝐴
)2 ∕2𝜎2

𝑛

]

√
2𝜋𝜎2

𝑛

=
exp
[
−
∑𝐾

𝑘=1

(
𝑧
𝑘
− 𝐴
)2 ∕22

𝑛

]

(
2𝜋𝜎2

𝑛

)𝐾∕2 (11.169)
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We will assume two possibilities for 𝐴:

1. It is Gaussian with mean 𝑚
𝐴
and variance 𝜎2

𝐴
.

2. Its pdf is unknown.

In the first case, we will find the conditional mean and the MAP estimates for 𝐴. In the second case, we
will compute the ML estimate.

Case 1

If the pdf of 𝐴 is

𝑓
𝐴
(𝑎) =

exp
[
−
(
𝑎 − 𝑚

𝐴

)2 ∕2𝜎2
𝐴

]

√
2𝜋𝜎2

𝐴

(11.170)

its posterior pdf is, by Bayes’ rule,

𝑓
𝐴∣𝐙 (𝑎|𝐳) =

𝑓𝐙∣𝐴 (𝐳 ∣ 𝑎) 𝑓𝐴
(𝑎)

𝑓𝐙 (𝑧)
(11.171)

After some algebra, it can be shown that

𝑓
𝐴∣𝐙 (𝑎|𝐳) =

(
2𝜋𝜎2

𝑝

)−1∕2
exp
⎛
⎜
⎜
⎜
⎝

−
{
𝑎 − 𝜎

2
𝑝

[(
𝐾𝑚

𝑠
∕𝜎2

𝑛

)
+
(
𝑚

𝐴
∕𝜎2

𝐴

)]}2

2𝜎2
𝑝

⎞
⎟
⎟
⎟
⎠

(11.172)

where

1
𝜎2
𝑝

= 𝐾

𝜎2
𝑛

+ 1
𝜎
2
𝐴

(11.173)

and the sample mean is

𝑚
𝑠
= 1

𝐾

𝐾∑

𝑘=1
𝑍

𝑘
(11.174)

Clearly, 𝑓
𝐴∣𝐙 (𝑎|𝐳) is a Gaussian pdf with variance 𝜎2

𝑝
and mean

𝐸 {𝐴|𝐙} = 𝜎
2
𝑝

(
𝐾𝑚

𝑠

𝜎2
𝑛

+
𝑚

𝐴

𝜎
2
𝐴

)

=
𝐾𝜎

2
𝐴
∕𝜎2

𝑛

1 +𝐾𝜎
2
𝐴
∕𝜎2

𝑛

𝑚
𝑠
+ 1

1 +𝐾𝜎
2
𝐴
∕𝜎2

𝑛

𝑚
𝐴

(11.175)

Since the maximum value of a Gaussian pdf is at the mean, this is both the conditional-mean estimate
(squared-error cost function, among other convex cost functions) and the MAP estimate (square-well
cost function). The conditional variance var {𝐴|𝐙} is 𝜎2

𝑝
. Because it is not a function of 𝐙, it follows

that the average cost, or risk, which is

𝐶[𝐴, �̂�(𝑍)] =
∫

∞

−∞
var {𝐴|𝐳} 𝑓𝐳 (𝐳) 𝑑𝐳 (11.176)

is just 𝜎2
𝑝
. From the expression for 𝐸 {𝐴|𝐙}, we note an interesting behavior for the estimate of 𝐴, or

�̂�(𝑍). As 𝐾𝜎
2
𝐴
∕𝜎2

𝑛
→ ∞,

�̂�(𝑍) → 𝑚
𝑠
= 1

𝐾

𝐾∑

𝑘=1
𝑍

𝑘
(11.177)
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which says that as the ratio of signal variance to noise variance becomes large, the optimum estimate for
𝐴 approaches the sample mean. On the other hand, as 𝐾𝜎

2
𝐴
∕𝜎2

𝑛
→ 0 (small signal variance and/or large

noise variance), �̂�(𝐙) → 𝑚
𝐴
, the a priorimean of 𝐴. In the first case, the estimate is weighted in favor of

the observations; in the latter, it is weighted in favor of the known signal statistics. From the form of 𝜎2
𝑝
,

we note that, in either case, the quality of the estimate increases as the number of independent samples
of 𝑧(𝑡) increases.

Case 2

The ML estimate is found by differentiating ln𝑓𝐙∣𝐴 (𝐳|𝐴) with respect to 𝐴 and setting the result equal
to zero. Performing the steps, the ML estimate is found to be

�̂�ML (𝐙) =
1
𝐾

𝐾∑

𝑘=1
𝑍

𝑘
(11.178)

We note that this corresponds to the MAP estimate if 𝐾𝜎
2
𝐴
∕𝜎2

𝑛
→ ∞ (that is, if the a priori pdf of 𝐴 is

broad compared with the a posteriori pdf).
The variance of �̂�ML (𝐙) is found by recalling that the variance of a sum of independent random

variables is the sum of the variances. The result is

𝜎
2
ML =

𝜎
2
𝑛

𝐾
> 𝜎

2
𝑝

(11.179)

Thus, the prior knowledge about 𝐴, available through 𝑓
𝐴
(𝑎), manifests itself as a smaller variance for

the Bayes estimates (conditional-mean and MAP) than for the ML estimate.
■

11.4.4 Other Properties of ML Estimates

Unbiased Estimates

An estimate �̂�(𝐙) is said to be unbiased if

𝐸{�̂�(𝐙)|𝐴} = 𝐴 (11.180)

This is clearly a desirable property of any estimation rule. If 𝐸{�̂�(𝐙)|𝐴} − 𝐴 = 𝐵 ≠ 0, 𝐵 is
referred to as the bias of the estimate.

The Cramer--Rao Inequality

In many cases it may be difficult to compute the variance of an estimate for a nonrandom
parameter. A lower bound for the variance of an unbiased ML estimate is provided by the
following inequality:

var {�̂�(𝐙)} ≥

(

𝐸

{[
𝜕 ln 𝑓𝐙∣𝐴 (𝐙|𝑎)

𝜕𝑎

]2})−1

(11.181)

or, equivalently,

var {�̂�(𝐙)} ≥

(

−𝐸

{
𝜕
2 ln𝑓𝐙∣𝐴 (𝐙|𝑎)

𝜕𝑎2

})−1

(11.182)

where the expectation is only over 𝐙. These inequalities hold under the assumption that
𝜕𝑓𝐙∣𝐴∕𝜕𝑎 and 𝜕

2
𝑓𝐙∣𝐴∕𝜕𝑎2 exist and are absolutely integrable. A proof is furnished by Van

Trees (1968). Any estimate satisfying (11.181) or (11.182) with equality is said to be efficient.
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A sufficient condition for equality in (11.181) or (11.182) is that

𝜕 ln 𝑓𝐙∣𝐴 (𝐙|𝑎)
𝜕𝑎

= [�̂�(𝐙) − 𝑎] 𝑔 (𝑎) (11.183)

where, 𝑔(⋅) is a function only of 𝑎. If an efficient estimate of a parameter exists, it is the
maximum-likelihood estimate.

11.4.5 Asymptotic Qualities of ML Estimates

In the limit, as the number of independent observations becomes large, ML estimates can
be shown to be Gaussian, unbiased, and efficient. In addition, the probability that the ML
estimate for 𝐾 observations differs by a fixed amount 𝜖 from the true value approaches zero
as 𝐾 → ∞; an estimate with such behavior is referred to as consistent.

EXAMPLE 11.9

Returning to Example 9.8, we can show that �̂�ML (𝐙) is an efficient estimate. We have already shown
that 𝜎2

ML = 𝜎
2
𝑛
∕𝐾 . Using (11.182), we differentiate in 𝑓𝐙∣𝐴 once to obtain

𝜕 ln𝑓𝐙∣𝐴

𝜕𝑎
= 1

𝜎2
𝑛

𝐾∑

𝑘=1

(
𝑍

𝑘
− 𝑎
)

(11.184)

A second differentiation gives

𝜕
2 ln 𝑓𝐙∣𝐴

𝜕𝑎2
= −𝐾

𝜎2
𝑛

(11.185)

and (11.182) is seen to be satisfied with equality.
■

■ 11.5 APPLICATIONS OF ESTIMATION THEORY TO COMMUNICATIONS

We now consider two applications of estimation theory to the transmission of analog data.
The sampling theorem introduced in Chapter 2 was applied in Chapter 4 in the discussion
of several systems for the transmission of continuous-waveform messages via their sample
values. One such technique is PAM, in which the sample values of the message are used to
amplitude-modulate a pulse-type carrier. We will apply the results of Example 11.8 to find
the performance of the optimum demodulator for PAM. This is a linear estimator because
the observations are linearly dependent on the message sample values. For such a system, the
only way to decrease the effect of noise on the demodulator output is to increase the SNR of
the received signal, since output and input SNR are linearly related.

Following the consideration of PAM, we will derive the optimum ML estimator for the
phase of a signal in additive Gaussian noise. This will result in a phase-lock loop structure.
The variance of the estimate in this case will be obtained for high-input SNR by applying
the Cramer-Rao inequality. For low SNRs, the variance is difficult to obtain because this is
a problem in nonlinear estimation; that is, the observations are nonlinearly dependent on the
parameter being estimated.
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The transmission of analog samples by pulse-position modulation (PPM) or some other
modulation scheme could also be considered. An approximate analysis of its performance for
low input SNRs would show the threshold effect of nonlinear modulation schemes and the
implications of the trade-off that is possible between bandwidth and output SNR. This effect
was seen previously in Chapter 8 when the performance of PCM in noise was considered.

11.5.1 Pulse-Amplitude Modulation (PAM)

In PAM, the message 𝑚(𝑡) of bandwidth 𝑊 is sampled at 𝑇 -second intervals, where
𝑇 ≤ 1∕2𝑊 , and the sample values 𝑚

𝑘
= 𝑚(𝑡

𝑘
) are used to amplitude-modulate a pulse train

composed of time-translates of the basic pulse shape 𝑝(𝑡), which is assumed zero for 𝑡 ≤ 0 and
𝑡 ≥ 𝑇0 < 𝑇 . The received signal plus noise is represented as

𝑦(𝑡) =
𝐾∑

𝑘=−∞
𝑚
𝑘
𝑝(𝑡 − 𝑘𝑇 ) + 𝑛(𝑡) (11.186)

where 𝑛(𝑡) is white Gaussian noise with double-sided power spectral density 1
2𝑁0.

Considering the estimation of a single sample at the receiver, we observe

𝑦(𝑡) = 𝑚0𝑝(𝑡) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇 (11.187)

For convenience, if we assume that ∫ 𝑇0
0 𝑝

2(𝑡) 𝑑𝑡 = 1, it follows that a sufficient statistic is

𝑍0 =
∫

𝑇0

0
𝑦 (𝑡) 𝑝 (𝑡) 𝑑𝑡

= 𝑚0 +𝑁 (11.188)

where the noise component is

𝑁 =
∫

𝑇0

0
𝑛(𝑡)𝑝(𝑡) 𝑑𝑡 (11.189)

Having no prior information about 𝑚0, we apply ML estimation. Following procedures
used many times before, we can show that 𝑁 is a zero-mean Gaussian random variable with
variance 1

2𝑁0. The ML estimation of𝑚0 is therefore identical to the single-observation case of
Example 11.8, and the best estimate is simply 𝑍0. As in the case of digital data transmission,
this estimator could be implemented by passing 𝑦(𝑡) through a filter matched to 𝑝(𝑡), observing
the output amplitude prior to the next pulse, and then setting the filter initial conditions to
zero. Note that the estimator is linearly dependent on 𝑦(𝑡).

The variance of the estimate is equal to the variance of 𝑁 , or 1
2𝑁0. Thus, the SNR at the

output of the estimator is

(SNR)0 =
2𝑚2

0
𝑁0

= 2𝐸
𝑁0

(11.190)

where 𝐸 = ∫
𝑇0
0 𝑚

2
0𝑝

2(𝑡) 𝑑𝑡 is the average energy of the received signal sample. Thus, the only
way to increase (SNR)0 is by increasing the energy per sample or by decreasing 𝑁0.
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11.5.2 Estimation of Signal Phase: The PLL Revisited

We now consider the problem of estimating the phase of a sinusoidal signal 𝐴 cos(𝜔
𝑐
𝑡 + 𝜃)

in white Gaussian noise 𝑛(𝑡) of double-sided power spectral density 1
2𝑁0. Thus, the observed

data are

𝑦(𝑡) = 𝐴 cos(𝜔
𝑐
𝑡 + 𝜃) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇 (11.191)

where 𝑇 is the observation interval. Expanding 𝐴 cos(𝜔
𝑐
𝑡 + 𝜃) as

𝐴 cos𝜔
𝑐
𝑡 cos 𝜃 − 𝐴 sin𝜔

𝑐
𝑡 sin 𝜃

we see that a suitable set of orthonormal basis functions for representing the data is

𝜙1(𝑡) =
√

2
𝑇
cos𝜔

𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇 (11.192)

and

𝜙2(𝑡) =
√

2
𝑇
sin𝜔

𝑐
𝑡, 0 ≤ 𝑡 ≤ 𝑇 (11.193)

Thus, we base our decision on

𝑧(𝑡) =
√

𝑇

2
𝐴 cos 𝜃 𝜙1(𝑡) −

√
𝑇

2
𝐴 sin 𝜃 𝜙2(𝑡) +𝑁1𝜙1(𝑡) +𝑁2𝜙2(𝑡) (11.194)

where

𝑁
𝑖
=
∫

𝑇

0
𝑛(𝑡)𝜙

𝑖
(𝑡) 𝑑𝑡, 𝑖 = 1, 2 (11.195)

Because 𝑦(𝑡) − 𝑧(𝑡) involves only noise, which is independent of 𝑧(𝑡), it is not relevant to
making the estimate. Thus, we may base the estimate on the vector

𝐙 ≜
(
𝑍1, 𝑍2

)
=

(√
𝑇

2
𝐴 cos 𝜃 +𝑁1,−

√
𝑇

2
𝐴 sin 𝜃 +𝑁2

)

(11.196)

where

𝑍
𝑖
=
(
𝑦 (𝑡) , 𝜙𝑖 (𝑡)

)
=
∫

𝑇

0
𝑦(𝑡)𝜙

𝑖
(𝑡) 𝑑𝑡, (11.197)

The likelihood function 𝑓𝐳∣𝜃(𝑧1, 𝑧2 ∣ 𝜃) is obtained by noting that the variance of 𝑍1 and

𝑍2 is simply 1
2𝑁0, as in the PAM example. Thus, the likelihood function is

𝑓𝐳∣𝜃(𝑧1, 𝑧2|𝜃)=
1

𝜋𝑁0
exp
⎧
⎪
⎨
⎪
⎩

− 1
𝑁0

⎡
⎢
⎢
⎣

(

𝑧1−
√

𝑇

2
𝐴 cos 𝜃

)2

+

(

𝑧2+
√

𝑇

2
𝐴 sin 𝜃

)2⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(11.198)

which reduces to

𝑓𝐳∣𝜃(𝑧1, 𝑧2|𝜃) = 𝐶 exp

[

2
√

𝑇

2
𝐴

𝑁0

(
𝑧1 cos 𝜃 − 𝑧2 sin 𝜃

)
]

(11.199)
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where the coefficient 𝐶 contains all factors that are independent of 𝜃. The logarithm of the
likelihood function is

ln𝑓𝐳∣𝜃(𝑧1, 𝑧2|𝜃) = ln𝐶 +
√
2𝑇 𝐴

𝑁0

(
𝑧1 cos 𝜃 − 𝑧2 sin 𝜃

)
(11.200)

which, when differentiated and set to zero, yields a necessary condition for the maximum-
likelihood estimate of 𝜃 in accordance with (11.164). The result is

−𝑍1 sin 𝜃 −𝑍2 cos 𝜃||𝜃=�̂�ML
= 0 (11.201)

where 𝑍1 and 𝑍2 signify that we are considering a particular (random) observation. But

𝑍1 = (𝑦, 𝜙1) =
√

2
𝑇 ∫

𝑇

0
𝑦(𝑡) cos𝜔

𝑐
𝑡 𝑑𝑡 (11.202)

and

𝑍2 = (𝑦, 𝜙2) =
√

2
𝑇 ∫

𝑇

0
𝑦(𝑡) sin𝜔

𝑐
𝑡 𝑑𝑡 (11.203)

Therefore, (11.201) can be put in the form

− sin �̂�ML
∫

𝑇

0
𝑦(𝑡) cos𝜔

𝑐
𝑡 𝑑𝑡 − cos �̂�ML

∫

𝑇

0
𝑦(𝑡) sin𝜔

𝑐
𝑡 𝑑𝑡 = 0

or

∫

𝑇

0
𝑦(𝑡) sin

(
𝜔
𝑐
𝑡 + �̂�ML

)
𝑑𝑡 = 0 (11.204)

This equation can be interpreted as the feedback structure shown in Figure 11.10. Except for
the integrator replacing a loop filter, this is identical to the phase-locked loop discussed in
Chapter 3.

A lower bound for the variance of �̂�ML is obtained from the Cramer--Rao inequality.
Applying (11.182), we have for the first differentiation, from (11.200),

𝜕 ln 𝑓𝐳∣𝜃
𝜕𝜃

=
√
2𝑇 𝐴

𝑁0
(−𝑍1 sin 𝜃 −𝑍2 cos 𝜃) (11.205)

and for the second,

𝜕
2 ln 𝑓𝐳∣𝜃
𝜕𝜃2

=
√
2𝑇 𝐴

𝑁0
(−𝑍1 cos 𝜃 +𝑍2 sin 𝜃) (11.206)

T
( )dt∫

VCO: Kv

y(t)

0

∫

sin ( ct + ML)ω θ̂

ML =θ̂
T
vnull( ) dλ λ1

Kv

vnull

Note: For  constant,

loop is locked when

vnull = 0.

θ
×

Figure 11.10
ML estimator for phase.
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Substituting into (11.182), we have

var
{
�̂�ML (𝑍)

}
≥

1
√
2𝑇

𝑁0
𝐴

(
𝐸
{
𝑍1
}
cos 𝜃 − 𝐸

{
𝑍2
}
sin 𝜃
)−1

(11.207)

The expectations of 𝑍1 and 𝑍2 are

𝐸
{
𝑍

𝑖

}
=
∫

𝑇

0
𝐸{𝑦(𝑡)}𝜙

𝑖
(𝑡) 𝑑𝑡

=
∫

𝑇

0

√
𝑇

2
𝐴
[
(cos 𝜃)𝜙1 (𝑡) − (sin 𝜃)𝜙2(𝑡)

]
𝜙
𝑖
(𝑡) 𝑑𝑡

=
⎧
⎪
⎨
⎪
⎩

√
𝑇

2𝐴 cos 𝜃, 𝑖 = 1

−
√

𝑇

2𝐴 sin 𝜃, 𝑖 = 2
(11.208)

where we have used (11.194). Substitution of these results into (11.207) results in

var
{
�̂�ML (𝑍)

}
≥

1
√
2𝑇

𝑁0
𝐴

[√
𝑇

2
𝐴
(
cos2 𝜃 + sin2 𝜃

)
]−1

=
𝑁0

𝐴2𝑇
(11.209)

Noting that the average signal power is 𝑃
𝑠
= 1

2𝐴
2 and defining 𝐵

𝐿
= (2𝑇 )−1 as the equivalent

noise bandwidth12 of the estimator structure, we may write (11.209) as

var
{
�̂�ML
}
≥

𝑁0𝐵𝐿

𝑃
𝑠

(11.210)

which is identical to the result given without proof in Table 10.5. As a result of the nonlinearity
of the estimator, we can obtain only a lower bound for the variance. However, the bound
becomes better as the SNR increases. Furthermore, because ML estimators are asymptotically
Gaussian, we can approximate the conditional pdf of �̂�ML, 𝑓�̂�ML∣𝜃 (𝛼|𝜃), as Gaussian with mean

𝜃 (�̂�ML is unbiased) and variance given by (11.209).

Further Reading

Two, by now, classic textbooks on detection and estimation theory at the graduate level are Van Trees
(1968) andHelstrom (1968). Both are excellent in their ownway, Van Trees being somewhat wordier and
containing more examples than Helstrom, which is closely written but nevertheless very readable. More
recent treatments on detection and estimation theory are Poor (1994), Scharf (1990), and McDonough
and Whalen (1995).

At about the same level as the above books is the book by Wozencraft and Jacobs (1965), which
was the first book in the United States to use the signal-space concepts exploited by Kotelnikov (1959)
in his doctoral dissertation in 1947 to treat digital signaling and optimal analog demodulation.

12The equivalent noise bandwidth of an ideal integrator of integration duration 𝑇 is (2𝑇 )−1 Hz.
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Summary

1. Two general classes of optimization problems are
signal detection and parameter estimation. Although both
detection and estimation are often involved simultaneously
in signal reception, from an analysis standpoint, it is easiest
to consider them as separate problems.

2. Bayes detectors are designed to minimize the av-
erage cost of making a decision. They involve testing a
likelihood ratio, which is the ratio of the a posteriori (pos-
terior) probabilities of the observations, against a thresh-
old, which depends on the a priori (prior) probabilities
of the two possible hypotheses and costs of the various
decision/hypothesis combinations. The performance of a
Bayes detector is characterized by the average cost, or risk,
ofmaking a decision.More useful inmany cases, however,
are the probabilities of detection and false alarm 𝑃

𝐷
and

𝑃
𝐹
in terms of which the risk can be expressed, provided

the a priori probabilities and costs are available. A plot
of 𝑃

𝐷
versus 𝑃

𝐹
is referred to as the receiver operating

characteristic (ROC).

3. If the costs and prior probabilities are not available,
a useful decision strategy is the Neyman--Pearson detec-
tor, which maximizes 𝑃

𝐷
while holding 𝑃

𝐹
below some

tolerable level. This type of receiver also can be reduced to
a likelihood ratio test in which the threshold is determined
by the allowed false-alarm level.

4. It was shown that a minimum-probability-of-error
detector (that is, the type of detector considered in
Chapter 9) is really a Bayes detector with zero costs for
making right decisions and equal costs for making either
type of wrong decision. Such a receiver is also referred to
as a maximum a posteriori (MAP) detector, since the deci-
sion rule amounts to choosing as the correct hypothesis the
one corresponding to the largest a posteriori probability
for a given observation.

5. The introduction of signal-space concepts allowed
the MAP criterion to be expressed as a receiver structure
that chooses as the transmitted signal whose location in
signal space is closest to the observed data point. Two
examples considered were coherent detection of 𝑀-ary

orthogonal signals and noncoherent detection of binary
FSK in a Rayleigh fading channel.

6. For 𝑀-ary orthogonal signal detection, zero prob-
ability of error can be achieved as 𝑀 → ∞ provided the
ratio of energy per bit to noise spectral density is greater
than −1.6 dB. This perfect performance is achieved at the
expense of infinite transmission bandwidth, however.

7. For the Rayleigh fading channel, the probability of
error decreases only inversely with signal-to-noise ratio
rather than exponentially, as for the nonfading case. A
way to improve performance is by using diversity.
8. Bayes estimation involves theminimization of a cost

function, as for signal detection. The squared-error cost
function results in the a posteriori conditional mean of
the parameter as the optimum estimate, and a square-well
cost function with infinitely narrow well results in the
maximum of the a posteriori pdf of the data, given the
parameter, as the optimum estimate (MAP estimate). Be-
cause of its ease of implementation, the MAP estimate
is often employed even though the conditional-mean esti-
mate is more general, in that it minimizes any symmetrical,
convex-upward cost function as long as the posterior pdf
is symmetrical about a single peak.

9. A maximum-likelihood (ML) estimate of a param-
eter 𝐴 is that value for the parameter, �̂�, which is most
likely to have resulted in the observed data 𝐴 and is the
value of 𝐴 corresponding to the absolute maximum of the
conditional pdf of𝑍 given𝐴. TheML andMAP estimates
of a parameter are identical if the a priori pdf of 𝐴 is uni-
form. Since the a priori pdf of 𝐴 is not needed to obtain
an ML estimate, this is a useful procedure for estimation
of parameters whose prior statistics are unknown or for
estimation of nonrandom parameters.

10. The Cramer--Rao inequality gives a lower bound for
the variance of an ML estimate. In the limit, ML estimates
have many useful asymptotic properties as the number
of independent observations becomes large. In particular,
they are asymptotically Gaussian, unbiased, and efficient
(satisfy the Cramer--Rao inequality with equality).

Drill Problems

11.1 Name the three things that must be known in order
to design a Bayes receiver.

11.2

(a) What is the decision strategy of the Neyman-
Pearson detector?

(b) How is it implemented?

11.3 What ingredients go into defining a signal
space?

11.4 What does the Gram-Schmidt procedure accom-
plish?
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11.5 Why use the signal-space approach for analysis
of digital communication systems?

11.6 Contrast the Bayes and maximum-likelihood es-
timation procedures.

11.7 Name three characteristics of maximum-
likelihood estimators in the limit of large sample sizes.

11.8 Explain the principle of using a sufficient statistic
in making a decision or estimating a parameter.

11.9 What is the usefulness of the Cramer-Rao
inequality?

11.10 What is an efficient estimate?

Problems

Section 11.1

11.1 Consider the hypotheses

𝐻1 ∶ 𝑍 = 𝑁 and 𝐻2 ∶ 𝑍 = 𝑆 +𝑁

where𝑆 and𝑁 are independent random variables with the
pdfs

𝑓
𝑆
(𝑥) = 2𝑒−2𝑥𝑢(𝑥) and 𝑓

𝑁
(𝑥) = 10𝑒−10𝑥𝑢(𝑥)

(a) Show that

𝑓
𝑍
(𝑧|𝐻1) = 10𝑒−10𝑥𝑢(𝑥)

and

𝑓
𝑍
(𝑧|𝐻2) = 2.5

(
𝑒
−2𝑥 − 𝑒

−10𝑧)
𝑢(𝑥)

(b) Find the likelihood ratio Λ(𝑍).
(c) If 𝑃 (𝐻1) =

1
3
, 𝑃 (𝐻2) =

2
3
, 𝑐12 = 𝑐21 = 7, and

𝑐11 = 𝑐22 = 0, find the threshold for a Bayes test.
(d) Show that the likelihood ratio test for part (c) can

be reduced to

𝑍

𝐻2
≷

𝐻1

𝛾

Find the numerical value of 𝛾 for the Bayes test
of part (c).

(e) Find the risk for the Bayes test of part (c).

(f) Find the threshold for a Neyman-Pearson test
with 𝑃

𝐹
less than or equal to 10−3. Find 𝑃

𝐷
for

this threshold.

(g) Reducing the Neyman-Pearson test of part (f) to
the form

𝑍

𝐻2
≷

𝐻1

𝛾

find 𝑃
𝐹
and 𝑃

𝐷
for arbitrary 𝛾 . Plot the ROC.

11.2 Consider a two-hypothesis decision problem
where

𝑓
𝑍
(𝑧|𝐻1) =

exp
(
−1

2
𝑧
2
)

√
2𝜋

and 𝑓
𝑍
(𝑧|𝐻2) =

1
2
exp (− |𝑧|)

(a) Find the likelihood ratio Λ(𝑍).
(b) Letting the threshold 𝜂 be arbitrary, find the deci-

sion regions𝑅1 and𝑅2 illustrated in Figure 11.1.
Note that both 𝑅1 and 𝑅2 cannot be connected
regions for this problem; that is, one of them will
involve a multiplicity of line segments.

11.3 Assume that data of the form𝑍 = 𝑆 +𝑁 are ob-
served where 𝑆 and𝑁 are independent, Gaussian random
variables representing signal and noise, respectively, with
zero means and variances 𝜎2

𝑠
and 𝜎

2
𝑛
. Design a likelihood

ratio tests for each of the following cases. Describe the
decision regions in each case and explain your results.

(a) 𝑐11 = 𝑐22 = 0; 𝑐21 = 𝑐12; 𝑝0 = 𝑞0 =
1
2

(b) 𝑐11 = 𝑐22 = 0; 𝑐21 = 𝑐12; 𝑝0 =
1
4
; 𝑞0 =

3
4

(c) 𝑐11 = 𝑐22 = 0; 𝑐21 =
1
2
𝑐12; 𝑝0 = 𝑞0 =

1
2

(d) 𝑐11 = 𝑐22 = 0; 𝑐21 = 2𝑐12; 𝑝0 = 𝑞0 =
1
2

Hint: Note that under either hypothesis, 𝑍 is a zero-mean
Gaussian random variable. Consider what the variances
are under hypothesis 𝐻1 and 𝐻2, respectively.

11.4 Referring to Problem 10.3, find general expres-
sions for the probabilities of false alarm and detection for
each case. Assume that 𝑐12 = 1 in all cases. Numerically
evaluate them for the cases where 𝜎

2
𝑛
= 9 and 𝜎

2
𝑠
= 16.

Evaluate the risk.

Section 11.2

11.5 Show that ordinary three-dimensional vector
space satisfies the properties listed in the subsection enti-
tled ‘‘Structure of Signal Space’’ in Section 11.2, where
𝑥(𝑡) and 𝑦(𝑡) are replaced by vectors A and B.
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x2

t
–1

–1

1

1

0

21

x1

t
–1 0

1

x3

t
–1 10

Figure 11.11

11.6 For the following vectors in 3-space with 𝑥, 𝑦, 𝑧

components as given, evaluate their magnitudes and the
cosine of the angle between them (̂𝑖, 𝑗, and �̂� are the
orthogonal unit vectors along the 𝑥, 𝑦, and 𝑧 axes, respec-
tively):

(a) 𝐀 =�̂� + 3𝑗 + 2�̂�; 𝐁 = 𝟓�̂� + 𝑗 + 3�̂�;
(b) 𝐀 = 𝟔�̂� + 2𝑗 + 4�̂�; 𝐁 = 𝟐�̂� + 2𝑗 + 2�̂�;
(c) 𝐀 = 𝟒�̂� + 3𝑗 + �̂�; 𝐁 = 𝟑�̂� + 4𝑗 + 5�̂�;
(d) 𝐀 = 𝟑�̂� + 3𝑗 + 2�̂�; 𝐁 = −�̂� − 2𝑗 + 3�̂�.

11.7 Show that the scalar-product definitions given by
(11.44) and (11.45) satisfy the properties listed in the sub-
section entitled ‘‘Scalar Product’’ in Section 10.2.

11.8 Using the appropriate definition, (11.44) or
(11.45), calculate (𝑥1, 𝑥2) for each of the following pairs
of signals:

(a) 𝑒
−|𝑡|

, 2𝑒−3𝑡𝑢(𝑡)
(b) 𝑒

−(4+𝑗3)𝑡
𝑢 (𝑡) , 2𝑒−(3+𝑗5)𝑡𝑢(𝑡)

(c) cos 2𝜋𝑡, cos 4𝜋𝑡
(d) cos 2𝜋𝑡, 5𝑢(𝑡)

11.9 Let 𝑥1(𝑡) and 𝑥2(𝑡) be two real-valued signals.
Show that the square of the norm of the signal 𝑥1(𝑡) + 𝑥2(𝑡)
is the sum of the square of the norm of 𝑥1(𝑡) and the
square of the norm of 𝑥2(𝑡), if and only if 𝑥1(𝑡) and 𝑥2(𝑡)
are orthogonal; that is, ‖‖𝑥1 + 𝑥2

‖‖
2 = ‖‖𝑥1

‖‖
2 + ‖‖𝑥2

‖‖
2 if and

only if (𝑥1, 𝑥2) = 0. Note the analogy to vectors in three-
dimensional space: the Pythagorean theorem applies only
to vectors that are orthogonal or perpendicular (zero dot
product).

11.10 Evaluate ‖‖𝑥1
‖‖, ‖‖𝑥2

‖‖, ‖‖𝑥3
‖‖, (𝑥2, 𝑥1), and (𝑥3, 𝑥1)

for the signals in Figure 11.11. Use these numbers to
construct a vector diagram and graphically verify that
𝑥3 = 𝑥1 + 𝑥2.

11.11 Verify Schwarz’s inequality for

𝑥1 (𝑡) =
𝑁∑

𝑛=1
𝑎
𝑛
𝜙

𝑛
(𝑡) and 𝑥2 (𝑡) =

𝑁∑

𝑛=1
𝑏
𝑛
𝜙

𝑛
(𝑡)

where the 𝜙
𝑛
(𝑡)s are orthonormal and the 𝑎

𝑛
s and 𝑏

𝑛
s are

constants.

11.12 Verify Schwarz’s inequality for the 3-space vec-
tors of Problem 11.6.

11.13

(a) Use the Gram--Schmidt procedure to find a set of
orthonormal basis functions corresponding to the
signals given in Figure 11.12.

(b) Express 𝑠1, 𝑠2, and 𝑠3 in terms of the orthonormal
basis set found in part (a).

11.14 Use the Gram--Schmidt procedure to find a set
of orthonormal basis vectors corresponding the the vec-
tor space spanned by the vectors 𝑥1 = 3�̂� + 2𝑗 − �̂�, 𝑥2 =
−2�̂� + 5𝑗 + �̂�, 𝑥3 = 6�̂� − 2𝑗 + 7�̂�, and 𝑥4 = 3�̂� + 8𝑗 − 3�̂�.
11.15 Consider the set of signals

𝑠
𝑖
(𝑡) =

{√
2𝐴 cos

(
2𝜋𝑓

𝑐
𝑡 + 1

4
𝑖𝜋

)
, 0 ≤ 𝑓

𝑐
𝑡 ≤ 𝑁

0, otherwise

where 𝑁 is an integer and 𝑖 = 0, 1, 2, 3, 4, 5, 6, 7.

s1 (t)

t

1

0 1 2 3

s2 (t)

t

1

0 1 2 3

s3 (t)

t

1

0 1 2 3

Figure 11.12
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(a) Find an orthonormal basis set for the space
spanned by this set of signals.

(b) Draw a set of coordinate axes, and plot the lo-
cations of 𝑠

𝑖
(𝑡), 𝑖 = 1, 2,… , 8, after expressing

each one as a generalized Fourier series in terms
of the basis set found in part (a).

11.16

(a) Using the Gram--Schmidt procedure, find an or-
thonormal basis set corresponding to the signals

𝑥1 (𝑡) = exp (−𝑡) 𝑢 (𝑡)

𝑥2 (𝑡) = exp (−2𝑡) 𝑢 (𝑡)

𝑥3 (𝑡) = exp (−3𝑡) 𝑢 (𝑡)

(b) See if you can find a general formula for
the basis set for the signal set 𝑥1 (𝑡) =
exp (−𝑡) 𝑢 (𝑡) , … , 𝑥

𝑛
(𝑡) = exp (−𝑛𝑡) 𝑢 (𝑡) where

𝑛 is an arbitrary integer.

11.17

(a) Find a set of orthonormal basis functions for the
signals given below which are defined on the in-
terval −1 ≤ 𝑡 ≤ 1 ∶

𝑥1 (𝑡) = 𝑡

𝑥2 (𝑡) = 𝑡
2

𝑥3 (𝑡) = 𝑡
3

𝑥4 (𝑡) = 𝑡
4

(b) Attempt to provide a general result for 𝑥
𝑛
(𝑡) =

𝑡
𝑛
, −1 ≤ 𝑡 ≤ 1.

11.18 Use the Gram--Schmidt procedure to find an or-
thonormal basis for the signal set given below. Express
each signal in terms of the orthonormal basis set found.

𝑠1 (𝑡) = 1, 0 ≤ 𝑡 ≤ 2

𝑠2 (𝑡) = cos (𝜋𝑡) , 0 ≤ 𝑡 ≤ 2

𝑠3 (𝑡) = sin (𝜋𝑡) , 0 ≤ 𝑡 ≤ 2

𝑠4 (𝑡) = sin2 (𝜋𝑡) , 0 ≤ 𝑡 ≤ 2

11.19 Rework Example 11.6 for half-cosine pulses given
by

𝜙
𝑘
(𝑡) = Π

[
𝑡 − 𝑘𝜏

𝜏

]
cos
[
𝜋

(
𝑡 − 𝑘𝜏

𝜏

)]
,

𝑘 = 0,±1,±2,±𝐾

Section 11.3

11.20 For 𝑀-ary PSK, the transmitted signal is of the
form

𝑠
𝑖
(𝑡) = 𝐴 cos(2𝜋𝑡 + 𝑖𝜋∕2),

𝑖 = 0, 1, 2, 3, for 0 ≤ 𝑡 ≤ 1

𝑠
𝑖
(𝑡) = 𝐴 cos

[
4𝜋𝑡 + (𝑖 − 4)𝜋∕2

]
,

𝑖 = 4, 5, 6, 7 for 0 ≤ 𝑡 ≤ 1

(a) Find a set of basis functions for this signaling
scheme. What is the dimension of the signal
space? Express 𝑠

𝑖
(𝑡) in terms of these basis func-

tions and the signal energy, 𝐸 = 𝐴
2∕2.

(b) Sketch a block diagram of the optimum (mini-
mum 𝑃

𝐸
) receiver.

(c) Write down an expression for the probability of
error. Do not attempt to integrate it.

11.21 Consider (11.128) for𝑀 = 2. Express𝑃
𝐸
as a sin-

gle 𝑄-function. Show that the result is identical to binary,
coherent FSK.

11.22 Consider vertices-of-a-hypercube signaling, for
which the 𝑖th signal is of the form

𝑠
𝑖
(𝑡) =
√

𝐸
𝑠

𝑛

𝑛∑

𝑘=1
𝛼
𝑖𝑘
𝜙

𝑘
(𝑡), 0 ≤ 𝑡 ≤ 𝑇

in which the coefficients 𝛼
𝑖𝑘
are permuted through the val-

ues +1 and −1, 𝐸
𝑠
is the signal energy, and the 𝜙

𝑘
s are

orthonormal. Thus,𝑀 = 2𝑛, where 𝑛 = log2 𝑀 is an inte-
ger. For𝑀 = 8, 𝑛 = 3, the signal points in signal space lie
on the vertices of a cube in three-space.

(a) Sketch the optimum partitioning of the observa-
tion space for 𝑀 = 8.

(b) Show that for 𝑀 = 8 the symbol error pro-
bability is

𝑃
𝐸
= 1 − 𝑃 (𝐶)

where

𝑃 (𝐶) =
⎡
⎢
⎢
⎣
1 −𝑄

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

3𝑁0

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

3

(c) Show that for 𝑛 arbitrary the probability of sym-
bol error is

𝑃
𝐸
= 1 − 𝑃 (𝐶)
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where

𝑃 (𝐶) =
⎡
⎢
⎢
⎣
1 −𝑄

⎛
⎜
⎜
⎝

√
2𝐸

𝑠

𝑛𝑁0

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

𝑛

(d) Plot 𝑃
𝐸
versus𝐸

𝑠
∕𝑁0 for 𝑛 = 1, 2, 3, 4. Compare

with Figure 11.7 𝑛 = 1 or 2.
Note that with the 𝜙

𝑘
(𝑡)s chosen as cosinu-

soids of frequency spacing 1∕𝑇
𝑠
hertz vertices-of-

a-hypercube modulation is the same as OFDM as
described in Chapter 10 with BPSK modulation
on the subcarriers.

11.23

(a) Referring to the signal set defined by (11.98),
show that the minimum possible Δ𝑓 = Δ𝜔∕2𝜋
such that (𝑠

𝑖
, 𝑠

𝑗
) = 0 is Δ𝑓 = 1∕(2𝑇

𝑠
).

(b) Using the result of part (a), show that for a
given time-bandwidth product 𝑊 𝑇

𝑠
the maxi-

mum number of signals for𝑀-ary FSK signaling
is given by𝑀 = 2𝑊 𝑇

𝑠
, where𝑊 is the transmis-

sion bandwidth and 𝑇
𝑠
is the signal duration. Use

null-to-null bandwidth. Thus, 𝑊 = 𝑀∕
(
2𝑇

𝑠

)
.

(Note that this is smaller than the result justi-
fied in Chapter 10 because a wider tone spacing
was used there.)

(c) For vertices-of-a-hypercube signaling, described
in Problem 11.22, show that the number of
signals grows with 𝑊 𝑇

𝑠
as 𝑀 = 22𝑊 𝑇𝑠 . Thus,

𝑊 = log2 𝑀∕
(
2𝑇

𝑠

)
, which grows slower with

𝑀 than does FSK.

11.24 Go through the steps in deriving (11.144).

11.25 This problem develops the simplex signal-
ing set.13 Consider 𝑀 orthogonal signals, 𝑠

𝑖
(𝑡) , 𝑖 =

0, 1, 2,… ,𝑀 − 1 each with energy 𝐸
𝑠
. Compute the av-

erage of the signals

𝑎 (𝑡) ≜ 1
𝑀

𝑀−1∑

𝑖=0
𝑠
𝑖
(𝑡)

and define a new signal set

𝑠
′
𝑖
(𝑡) = 𝑠

𝑖
(𝑡) − 𝑎 (𝑡) , 𝑖 = 0, 1, 2,… ,𝑀 − 1

(a) Show that the energy of each signal in the new
set is

𝐸
′
𝑠
= 𝐸

𝑠

(
1 − 1

𝑀

)

(b) Show that the correlation coefficient between
each signal and another is

𝜌
𝑖𝑗
= − 1

𝑀 − 1
, 𝑖, 𝑗 = 0, 1,… ,𝑀 − 1; 𝑖 ≠ 𝑗

(c) Given that the probability of symbol error for an
𝑀-ary orthogonal signal set is

𝑃
𝑠,othog =1−

∫

∞

−∞

⎧
⎪
⎨
⎪
⎩

𝑄

⎡
⎢
⎢
⎣
−
⎛
⎜
⎜
⎝
𝑣+

√
2𝐸

𝑠

𝑁0

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

𝑀−1

𝑒
−𝑣2∕2
√
2𝜋

𝑑𝑣

write down an expression for the symbol-error
probability of the simplex signal set where, from
(F.9), 𝑄 (−𝑥) = 1 −𝑄 (𝑥).

(d) Simplify the expression found in part (c) using the
union bound result for the probability of error for
an orthogonal signaling set given by (10.67) . Plot
the symbol-error probability for 𝑀 = 2, 4, 8, 16
and compare with that for coherent 𝑀-ary FSK.

11.26 Generalize the fading problemof binary noncoher-
ent FSK signaling to the𝑀-ary case. Let the 𝑖th hypothesis
be of the form

𝐻
𝑖
∶ 𝑦(𝑡) = 𝐺

𝑖

√
2𝐸

𝑖

𝑇
𝑠

cos(𝜔
𝑖
𝑡 + 𝜃

𝑖
) + 𝑛(𝑡)

𝑖 = 1, 2,… ,𝑀 ; 0 ≤ 𝑡 ≤ 𝑇
𝑠

where 𝐺
𝑖
is Rayleigh, 𝜃

𝑖
is uniform in (0, 2𝜋), 𝐸

𝑖
is the

energy of the unperturbed 𝑖th signal of duration 𝑇
𝑠
, and

|||𝜔𝑖
− 𝜔

𝑗

|||≫ 𝑇
−1
𝑠

, for 𝑖 ≠ 𝑗, so that the signals are orthog-
onal. Note that 𝐺

𝑖
cos 𝜃

𝑖
and −𝐺

𝑖
sin 𝜃

𝑖
are Gaussian with

mean zero; assume their variances to be 𝜎2.

(a) Find the likelihood ratio test and show that the op-
timum correlation receiver is identical to the one
shown in Figure 11.8(a) with 2𝑀 correlators,
2𝑀 squarers, and 𝑀 summers where the sum-
mer with the largest output is chosen as the best
guess (minimum 𝑃

𝐸
) for the transmitted signal if

all 𝐸
𝑖
’s are equal. How is the receiver structure

modified if the 𝐸
𝑖
’s are not equal?

(b) Write down an expression for the probability of
symbol error.

11.27 Investigate the use of diversity to improve the
performance of binary noncoherent FSK signaling over
the flat-fading Rayleigh channel. Assume that the signal
energy 𝐸

𝑠
is divided equally among 𝑁 subpaths, all of

13See Simon, M. K., S. M. Hinedi, and W. C. Lindsey, 1995, pp. 204--205.
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∑

∑

System of

Figure 9.8 (a)

System of

Figure 9.8 (a)

System of

Figure 9.8 (a)

Subpath

No. N

Subpath

No. 1

Subpath

No. 2

R1, 1
2

Y1

Y2

R2, 1
2

R1, 2
2

R2, 2
2

R1, N
2

R2, N
2

Choose

largest

Figure 11.13

which fade independently. For equal SNRs in all paths, the
optimum receiver is shown in Figure 11.13.

(a) Referring to Problem 6.37 of Chapter 6, show
that 𝑌1 and 𝑌2 are chi-squared random variables
under either hypothesis.

(b) Show that the probability of error is of the form

𝑃
𝐸
= 𝛼

𝑁

𝑁−1∑

𝑗=0

(
𝑁 + 𝑗 − 1

𝑗

)
(1 − 𝛼)𝑗

where

𝛼 =
1
2
𝑁0

𝜎2𝐸′ +𝑁0
= 1

2
1

1 + 1
2

(
2𝜎2𝐸′∕𝑁0

) , 𝐸′ =
𝐸

𝑠

𝑁

(c) Plot 𝑃
𝐸

versus SNR ≜ 2𝜎2
𝐸

𝑠
∕𝑁0 for 𝑁 =

1, 2, 3,… , and show that an optimum value of
𝑁 exists that minimizes 𝑃

𝐸
for a given SNR.

Section 11.4

11.28 Let an observed random variable 𝑍 depend on a
parameter 𝜆 according to the conditional pdf

𝑓
𝑍∣Λ (𝑧 ∣ 𝜆) =

{
𝜆𝑒

−𝜆𝑧
, 𝑧 ≥ 0, 𝜆 > 0

0, 𝑧 < 0

The a priori pdf of 𝜆 is

𝑓Λ (𝜆) =

{
𝛽
𝑚

Γ(𝑚)
𝑒
−𝛽𝜆

𝜆
𝑚−1

, 𝜆 ≥ 0

0, 𝜆 < 0

where 𝛽 and 𝑚 are parameters and Γ(𝑚) is the gamma
function. Assume that 𝑚 is a positive integer.

(a) Find 𝐸 {𝜆} and var {𝜆} before any observations
are made; that is, find the mean and variance of
𝜆 using 𝑓Λ (𝜆).

(b) Assume one observation is made. Find
𝑓Λ∣𝑍
(
𝜆|𝑧1
)

and hence the minimum mean-

squared error (conditional-mean) estimate of
𝜆 and the variance of the estimate. Compare with
part (a). Comment on the similarity of 𝑓Λ (𝜆) and
𝑓Λ∣𝑍
(
𝜆|𝑧1
)
.

(c) Making use of part (b), find the posterior pdf of
𝜆 given two observations 𝑓Λ∣𝒁

(
𝜆|𝑧1, 𝑧2

)
. Find

the minimum mean-squared error estimate of
𝜆 based on two observations and its variance.
Compare with parts (a) and (b), and comment.

(d) Generalize the preceding to the case in which 𝐾

observations are used to estimate 𝜆.

(e) Does the MAP estimate equal the minimum
mean-squared error estimate?

11.29 For which of the cost functions and posterior pdfs
shown in Figure 11.14 will the conditional mean be the
Bayes estimate? Tell why or why not in each case.

11.30 Show that the variance of �̂�ML (𝐙) given by
(11.178) is the result given by (11.179).

11.31 Given 𝐾 independent measurements
(𝑍1, 𝑍2,… , 𝑍

𝐾
) of a noise voltage 𝑍(𝑡) at the RF

filter output of a receiver:

(a) If 𝑍(𝑡) is Gaussian with mean zero and var{𝜎2
𝑛
},

what is the ML estimate of the noise variance?

(b) Calculate the expected value and variance of this
estimate as functions of the true variance.

(c) Is this an unbiased estimator?

(d) Give a sufficient statistic for estimating the vari-
ance of 𝑍.

11.32 Generalize the estimation of a sample of a PAM
signal, expressed by (11.207), to the case where the sample
value 𝑚0 is a zero-mean Gaussian random variable with
variance 𝜎2

𝑚
.
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a

fA Z

fA Z

0
x

C(x)

0

x

C(x)

0
a

0

(a)

(b)

fA Z

x

C(x)

0 0

(c)

fA Z

x

C(x)

0
a

0

(d)

x = A – â Figure 11.14

11.33 Consider the reception of a BPSK signal in noise
with unknown phase, 𝜃, to be estimated. The two hypothe-
ses may be expressed as

𝐻1 ∶ 𝑦(𝑡) = 𝐴 cos(𝜔
𝑐
𝑡 + 𝜃) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠

𝐻2 ∶ 𝑦(𝑡) = −𝐴 cos(𝜔
𝑐
𝑡 + 𝜃) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠

where𝐴 is a constant and 𝑛(𝑡) is white Gaussian noise with
single-sided power spectral density𝑁0, and the hypotheses
are equally probable [𝑃 (𝐻1) = 𝑃 (𝐻2)].

(a) Using 𝜙1 and 𝜙2 as given by (11.164) as basis
functions, write expressions for

𝑓𝐙∣𝜃,𝐻𝑖

(
𝑧1, 𝑧2|𝜃,𝐻𝑖

)
, 𝑖 = 1, 2

(b) Noting that

𝑓𝐙∣𝜃,
(
𝑧1, 𝑧2|𝜃

)
=

2∑

𝑖=1
𝑃
(
𝐻

𝑖

)
𝑓𝐙∣𝜃,𝐻𝑖

(
𝑧1, 𝑧2|𝜃,𝐻𝑖

)

show that the ML estimator can be realized as the
structure shown in Figure 11.15 by employing
(11.164). Under what condition(s) is this struc-
ture approximated by a Costas loop?

(c) Apply the Cramer--Rao inequality to find an ex-
pression for var

{
�̂�ML
}
. Compare with the result

in Table 10.1.

11.34 Assume a biphasemodulated signal inwhiteGaus-
sian noise of the form

𝑦(𝑡) =
√
2𝑃 sin(𝜔

𝑐
𝑡 ± cos−1 𝑚 + 𝜃) + 𝑛(𝑡), 0 ≤ 𝑡 ≤ 𝑇

𝑠

where the ± signs are equally probable and 𝜃 is to be
estimated by a maximum-likelihood procedure. In the pre-
ceding equation,

𝑇
𝑠
= signaling interval

𝑃 = average signal power

𝜔
𝑐
= carrier frequency (rad/s)

𝑚 = modulation constant

𝜃 = RF phase (rad)

Let the double-sided power spectral density of 𝑛(𝑡) be
1
2
𝑁0.

(a) Show that the signal portion of 𝑦(𝑡) can be
written as

𝑆(𝑡)=
√
2𝑃𝑚 sin(𝜔

𝑐
𝑡+𝜃) ±

√
2𝑃
√
1−𝑚2 cos(𝜔

𝑐
𝑡+𝜃)

Write in terms of the orthonormal functions 𝜙1
and 𝜙2, given by (11.192) and (11.193).
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VCO

tanh ( )
Ts

( )dt∫
0

K1

Ts
( )dt∫

0
K2

cos ( ct + ML)ω θ̂

sin ( ct + ML)ω θ̂

y(t)

1
2

π

K2×

×

×

Figure 11.15

(b) Show that the likelihood function can be written as

𝐿 (𝜃) =
2𝑚
√
2𝑃

𝑁0 ∫

𝑇𝑠

0
𝑦 (𝑡) sin

(
𝜔

𝑐
𝑡 + 𝜃
)
𝑑𝑡

+ ln cosh
⎡
⎢
⎢
⎢
⎣

2
√

2𝑃
(
1−𝑚2

)

𝑁0 ∫

𝑇𝑠

0
𝑦 (𝑡) cos

(
𝜔

𝑐
𝑡+𝜃
)
𝑑𝑡

⎤
⎥
⎥
⎥
⎦

(c) Draw a block diagram of the ML estimator for
𝜃 and compare with the block diagram shown in
Figure 11.15.

11.35 Given that the impulse response of an ideal inte-
grator over 𝑇 seconds is ℎ (𝑡) = 1

𝑇
[𝑢 (𝑡) − 𝑢 (𝑡 − 𝑇 )]where

𝑢 (𝑇 ) is the unit-step function, show that its equivalent
noise bandwidth is 𝐵

𝑁,idealint =
1
2𝑇

hertz.

Hint:You may apply (7.108) using the expression for ℎ (𝑡)
directly or find the frequency response function𝐻 (𝑓 ) and
then find the equivalent noise bandwidth using (7.106).

Computer Exercises

11.1 In practical communications systems and radar sys-
temswe desire that the system operate with a probability of
detection that is nearly one and a probability of false alarm
that is only slightly greater than zero. For this case we have
interest in a very small portion of the total receiver operat-
ing characteristic. With this in mind, make the necessary
changes in the MATLAB program of Computer Example
10.1 so that the region of interest for practical operation is
displayed. This region of interest is defined as 𝑃

𝐷
≥ 0.95

and 𝑃
𝐹
≤ 0.01. Determine the values of the parameter

𝑑 that give operation in this region.

11.2 Write a computer program to make plots of 𝜎2
𝑝
ver-

sus 𝐾 , the number of observations, for fixed ratios of
𝜎
2
𝐴
∕𝜎2

𝑛
, thus verifying the conclusions drawn at the end of

Example 10.8.

11.3 Write a computer simulation of the PLL estima-
tion problem. Do this by generating two independent
Gaussian random variables to form 𝑍1 and 𝑍2 given by
(11.196). Thus, for a given 𝜃 form the left-hand side of

(11.201). Call the first value 𝜃0. Estimate the next value of
𝜃, call it 𝜃1, from the algorithm.

𝜃1 = 𝜃0 + 𝜖 tan−1
(
𝑍2,0

𝑍1,0

)

where 𝑍1,0 and 𝑍2,0 are the first values of 𝑍1 and 𝑍2 gen-
erated and 𝜖 is a parameter to be varied (choose the first
value to be 0.01). Generate two new values of 𝑍1 and 𝑍2
(call them 𝑍1,1 and 𝑍2,1) and form the next estimate
according to

𝜃2 = 𝜃1 + 𝜖 tan−1
(
𝑍2,1

𝑍1,1

)

Continue in this fashion, generating several values of
𝜃
𝑖
. Plot the 𝜃

𝑖
s versus 𝑖, the sequence index, to determine

if they seem to converge toward zero phase. Increase the
value of 𝜖 by a factor of 10 and repeat. Can you relate the
parameter 𝜖 to a phase-lock loop parameter (see Chapter
4)? This is an example of Monte Carlo simulation.
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CHAPTER12

INFORMATION THEORY AND CODING

Information theory provides a different, and more general, perspective for evaluating the perfor-

mance of a communication system in that the performance can be compared with the theoretically

best system for a given bandwidth and SNR. Significant insight into the performance characteris-

tics of a communication system can often be gained through the study of information theory. More

explicitly, information theory provides a quantitative measure of the information contained in

message signals and allows us to determine the capability of a system to transfer this information

from source to destination. Coding, a major application area of information theory, will be briefly

presented in this chapter. We make no attempt in this chapter to be complete or rigorous. Rather

we present an overview of basic ideas and illustrate these ideas through simple examples. We hope

that students who study this chapter will be motivated to study these topics in more detail.

Information theory provides us with the performance characteristics of an ideal, or optimum,

communication system. The performance of an ideal system provides a meaningful basis against

which to compare the performance of the realizable systems studied in previous chapters. Perfor-

mance characteristics of ideal systems illustrate the gain in performance that can be obtained by

implementing more complicated transmission and detection schemes.

Motivation for the study of information theory is provided by Shannon’s coding theorem,
which can be stated as follows: If a source has an information rate less than the channel
capacity, there exists a coding procedure such that the source output can be transmitted over
the channelwith an arbitrarily small probability of error. This is a very powerful result. Shannon
tells us that transmission and reception can be accomplished with negligible error, even in the
presence of noise. An understanding of this process called coding and an understanding of its
impact on the design and performance of communication systems require an understanding of
several basic concepts of information theory.

We will see that there are two basic applications of coding. The first of these is referred to
as source coding. Through the use of source coding, redundancy can be removed frommessage
signals so that each transmitted symbol carries maximum information. In addition, through
the use of channel, or error-correcting, coding, systematic redundancy can be induced into the
transmitted signal so that errors caused by imperfect practical channels can be corrected.

615
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■ 12.1 BASIC CONCEPTS

Consider a hypothetical classroom situation occurring early in a course at the end of a class
period. The professor makes one of the following statements to the class:

A. I shall see you next period.

B. My colleague will lecture next period.

C. Everyone gets an A in the course, and there will be no more class meetings.

What is the relative information conveyed to the students by each of these statements,
assuming that there had been no previous discussion on the subject? Obviously, there is
little information conveyed by statement (A), since the class would normally assume that
their regular professor would lecture; that is, the probability 𝑃 (𝐴) of the regular professor
lecturing is nearly unity. Intuitively, we know that statement (B) contains more information,
and the probability of a colleague lecturing 𝑃 (𝐵) is relatively low. Statement (C) contains a
vast amount of information for the entire class, and most would agree that such a statement
has a very low probability of occurrence in a typical classroom situation. It appears that the
lower the probability of a statement, or event, the greater is the information conveyed by that
statement. Stated another way, the students’ surprise on hearing a statement appears to be a
good measure of the information contained in that statement. Information is defined consistent
with this intuitive example.

12.1.1 Information

Let 𝑥
𝑗
be an event that occurs with probability 𝑝(𝑥

𝑗
). If we are told that event 𝑥

𝑗
has occurred,

we say that we have received

𝐼(𝑥
𝑗
) = log

𝑎

(
1

𝑝(𝑥
𝑗
)

)
= − log

𝑎
𝑝(𝑥

𝑗
) (12.1)

units of information. This definition is consistent with the previous example since 𝐼(𝑥
𝑗
)

increases as 𝑝(𝑥
𝑗
) decreases. Note that 𝐼(𝑥

𝑗
) is nonnegative since 0 ≤ 𝑝(𝑥

𝑗
) ≤ 1. The base of

the logarithm in (12.1) is arbitrary and determines the units by which information is measured.
R. V. Hartley,1 who first suggested the logarithmic measure of information in 1928, used
logarithms to the base 10 since tables of base 10 logarithms were widely available, and the
resulting measure of information was the hartley. Today it is standard to use logarithms to the
base 2, and the unit of information is the binary unit, or bit. If logarithms to the base 𝑒 are
used, the corresponding unit is the nat, or natural unit.

There are several reasons for us to adopt the base 2 logarithm to measure information. The
simplest random experiment that one can imagine is an experiment with two equally likely
outcomes. Flipping an unbiased coin is a common example. Knowledge of each outcome has
associated with it one bit of information since the logarithm base is 2 and the probability of
each outcome is 0.5. Since the digital computer is a binary machine, each logical 0 and each
logical 1 has associated with it one bit of information, assuming that each of these logical
states are equally likely.

1See Hartley, 1928.
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EXAMPLE 12.1

Consider a random experiment with 64 equally likely outcomes. The information associated with each
outcome is

𝐼(𝑥
𝑗
) = − log2

( 1
64

)
= log2(64) = 6 𝑏𝑖𝑡𝑠 (12.2)

where 𝑗 ranges from 1 to 64. The information is associated with each outcome is greater than one
bit, since the random experiment generates more than two equally likely outcomes, and therefore, the
probability of each outcome is less than one-half.

■

12.1.2 Entropy

In general, the average information associated with the outcomes of an experiment is of
interest rather than the information associatedwith a particular output. The average information
associated with a discrete random variable 𝑋 is defined as the entropy 𝐻(𝑋). Thus,

𝐻(𝑋) = 𝐸{𝐼(𝑥
𝑗
)} = −

𝑛∑

𝑗=1
𝑝(𝑥

𝑗
) log2 𝑝(𝑥𝑗) (12.3)

where 𝑛 is the total number of possible outcomes. Entropy can be regarded as average uncer-
tainty and therefore achieves a maximum when all outcomes are equally likely.

EXAMPLE 12.2

For a binary source let 𝑝(1) = 𝛼 and 𝑝(0) = 1 − 𝛼. From (12.3), the entropy is

𝐻(𝛼) = −𝛼 log2 (𝛼) − (1 − 𝛼) log2(1 − 𝛼) (12.4)

This is shown in Figure 12.1. We note that if 𝛼 = 1
2
, each symbol is equally likely, and our uncertainty,

and therefore the entropy, is a maximum. If 𝛼 ≠
1
2
, one of the two symbols becomes more likely than

the other. Therefore, uncertainty, and consequently the entropy, decreases. If 𝛼 is equal to zero or one,
our uncertainty is zero, since we know exactly which symbol will occur.

1.0

0.5

10.750.250 0.5

E
n
tr

o
p
y

α

Figure 12.1
Entropy of a binary source.

■

From Example 12.2 we conclude, at least for the special case illustrated in Figure 12.1,
that the entropy function has a maximum, which occurs when all probabilities are equal. This
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fact is of sufficient importance to warrant a more complete derivation. Assume that a chance
experiment has 𝑛 possible outcomes and that 𝑝

𝑛
is a dependent variable depending on the other

probabilities. Thus,

𝑝
𝑛
= 1 − (𝑝1 + 𝑝2 +⋯ + 𝑝

𝑘
+⋯ + 𝑝

𝑛−1) (12.5)

where 𝑝
𝑗
is concise notation for 𝑝(𝑥

𝑗
). The entropy associated with the chance experiment is

𝐻 = −
𝑛∑

𝑗=1
𝑝
𝑖
log2 𝑝𝑖 (12.6)

In order to find the maximum value of entropy, the entropy is differentiated with respect to
𝑝
𝑘
, holding all probabilities constant except 𝑝

𝑘
and 𝑝

𝑛
. This gives the relationship between 𝑝

𝑘

and 𝑝
𝑛
that yields the maximum value of 𝐻 . Since all derivatives are zero except the ones

involving 𝑝
𝑘
and 𝑝

𝑛
,

𝑑𝐻

𝑑𝑝
𝑘

= 𝑑

𝑑𝑝
𝑘

(−𝑝
𝑘
log2 𝑝𝑘 − 𝑝

𝑛
log2 𝑝𝑛) (12.7)

Using (12.5) and

𝑑

𝑑𝑥
log

𝑎
𝑢 = 1

𝑢
log

𝑎
𝑒
𝑑𝑢

𝑑𝑥
(12.8)

gives

𝑑𝐻

𝑑𝑝
𝑘

= −𝑝
𝑘

1
𝑝
𝑘

log2 𝑒 − log2 𝑝𝑘 + 𝑝
𝑛

1
𝑝
𝑛

log2 𝑒 + log2 𝑝𝑛 (12.9)

or

𝑑𝐻

𝑑𝑝
𝑘

= log2
𝑝
𝑛

𝑝
𝑘

(12.10)

which is zero if 𝑝
𝑘
= 𝑝

𝑛
. Since 𝑝

𝑘
is arbitrary, all probabilities 𝑝

𝑖
= 𝑝

𝑛
, 𝑖 =1, 2, ..., (𝑛 − 1).

Therefore,

𝑝1 = 𝑝2 = ⋯ = 𝑝
𝑛
= 1

𝑛
(12.11)

To show that the preceding condition yields a maximum and not a minimum, note that when
𝑝1 = 1 and all other probabilities are zero, the entropy is zero. From (12.6), the case where all
probabilities are equal yields 𝐻 = log2 (𝑛).

12.1.3 Discrete Channel Models

Throughoutmost of this chapterwewill assume the communications channel to bememoryless.
For such channels, the channel output at a given time is a function of the channel input at
that time and is not a function of previous channel inputs. Discrete memoryless channels are
completely specified by the set of conditional probabilities that relate the probability of each
output state to the input probabilities. An example illustrates the technique. A diagram of a
channel with two inputs and three outputs is illustrated in Figure 12.2. Each possible input-to-
output path is indicated along with a conditional probability 𝑝

𝑖𝑗
, which is concise notation for

𝑝(𝑦
𝑗
∣ 𝑥

𝑖
). Thus, 𝑝

𝑖𝑗
is the conditional probability of output 𝑦

𝑗
given input 𝑥

𝑗
and is called a
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Figure 12.2
Channel diagram for discrete channel with two
inputs and three outputs.

channel transition probability. The complete set of transition probabilities defines the channel.
In this chapter, the transition probabilities are assumed constant. However, in many commonly
encountered situations, the transition probabilities are time varying. An example is the wireless
mobile channel in which the transmitter--receiver distance is changing with time.

We can see from Figure 12.2 that the channel is completely specified by the set of
transition probabilities. Accordingly, the memoryless channel illustrated in Figure 12.2 can
be defined by the matrix of transition probabilities [𝑃 (𝑌 ∣ 𝑋)], where

[𝑃 (𝑌 ∣ 𝑋)] =
[
𝑝(𝑦1 ∣ 𝑥1) 𝑝(𝑦2 ∣ 𝑥1) 𝑝(𝑦3 ∣ 𝑥1)
𝑝(𝑦1 ∣ 𝑥2) 𝑝(𝑦2 ∣ 𝑥2) 𝑝(𝑦3 ∣ 𝑥3)

]
(12.12)

Since each channel input results in some output, each row of [𝑃 (𝑌 ∣ 𝑋)] must sum to unity.
We refer to the matrix of transition probabilities as the channel matrix.

The channel matrix is useful in deriving the output probabilities given the input probabil-
ities. For example, if the input probabilities 𝑃 (𝑋) are represented by the row matrix

[𝑃 (𝑋)] = [𝑝(𝑥1) 𝑝(𝑥2)] (12.13)

then

[𝑃 (𝑌 )] = [𝑝(𝑦1) 𝑝(𝑦2) 𝑝(𝑦3)] (12.14)

which is computed by

[𝑃 (𝑌 )] = [𝑃 (𝑋)][𝑃 (𝑌 ∣ 𝑋)] (12.15)

If [𝑃 (𝑋)] is written as a diagonal matrix, (12.15) yields a matrix [𝑃 (𝑋, 𝑌 )]. Each element in
thematrix has the form 𝑝(𝑥

𝑖
)𝑝(𝑦

𝑗
∣ 𝑥

𝑖
) or 𝑝(𝑥

𝑗
, 𝑦

𝑗
). This matrix is known as the joint probability

matrix, and the term 𝑝(𝑥
𝑗
, 𝑦

𝑗
) is the joint probability of transmitting 𝑥

𝑖
and receiving 𝑦

𝑗
.

EXAMPLE 12.3

Consider the binary input-output channel shown in Figure 12.3. The matrix of transition probabilities is

[𝑃 (𝑌 ∣ 𝑋)] =

[
0.7 0.3
0.4 0.6

]

(12.16)

If the input probabilities are 𝑃 (𝑥1) = 0.5 and 𝑃 (𝑥2) = 0.5, the output probabilities are

[𝑃 (𝑌 )] = [0.5 0.5]

[
0.7 0.3
0.4 0.6

]

= [0.55 0.45] (12.17)
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Figure 12.3
Binary channel.

and the joint probability matrix for the channel is

[𝑃 (𝑋, 𝑌 )] =

[
0.5 0
0 0.5

][
0.7 0.3
0.4 0.6

]

=

[
0.35 0.15
0.2 0.3

]

(12.18)

■

Many communication systems make use of multiple hop architectures. These systems can
often be represented by the cascade combination of two or more binary channels. This is illus-
trated in Figure 12.4(a). The two binary channels can be combined as shown in Figure 12.4(b).
The extension to 𝑁-hop systems (𝑁 > 2) is obvious.

By determining all possible paths from 𝑥
𝑖
to 𝑧

𝑗
, it is clear that the following probabilities

define the overall channel illustrated in Figure 12.4(b):

𝑝11 = 𝛼1𝛽1 + 𝛼2𝛽3 (12.19)

𝑝12 = 𝛼1𝛽2 + 𝛼2𝛽4 (12.20)

𝑝21 = 𝛼3𝛽1 + 𝛼4𝛽3 (12.21)

𝑝22 = 𝛼3𝛽2 + 𝛼4𝛽4 (12.22)

x1

x2

x1

p11

p12

p21

p22

x2

z1

z2

z1

z2

y2

y1

Channel 1 Channel 2
(a)

(b)

α4

α3

α2

α1 β1

β2

β3

β4

Figure 12.4
Two-hop communications
system. (a) Two-hop system.
(b) Composite system.
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Thus, the overall channel matrix

[𝑃 (𝑍 ∣ 𝑋)] =
[
𝑝11 𝑝12
𝑝21 𝑝22

]
(12.23)

can be represented by the matrix multiplication

[𝑃 (𝑍 ∣ 𝑋)] =
[
𝛼1 𝛼2
𝛼3 𝛼4

] [
𝛽1 𝛽2
𝛽3 𝛽4

]
(12.24)

For a two-hop communications system, the right-hand side of the preceding expression is
simply the uplink channel matrix multiplied by the downlink channel matrix.

12.1.4 Joint and Conditional Entropy

Using the input probabilities 𝑝(𝑥
𝑖
), the output probabilities 𝑝(𝑦

𝑗
), the transition probabilities

𝑝(𝑦
𝑗
∣ 𝑥

𝑖
), and the joint probabilities 𝑝(𝑥

𝑖
, 𝑦

𝑗
), we can define several different entropy functions

for a channel with 𝑛 inputs and 𝑚 outputs. These are

𝐻(𝑋) = −
𝑛∑

𝑖=1
𝑝(𝑥

𝑖
) log2 𝑝(𝑥𝑖

) (12.25)

𝐻(𝑌 ) = −
𝑚∑

𝑗=1
𝑝(𝑦

𝑗
) log2 𝑝(𝑦𝑗) (12.26)

𝐻(𝑌 ∣ 𝑋) = −
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) log2 𝑝(𝑦𝑗 ∣ 𝑥𝑖

) (12.27)

and

𝐻(𝑋, 𝑌 ) = −
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑖
) log2 𝑝(𝑥𝑖

, 𝑦
𝑗
) (12.28)

An important and useful entropy, 𝐻(𝑋 ∣ 𝑌 ) is defined as

𝐻(𝑋 ∣ 𝑌 ) = −
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) log2 𝑝(𝑥𝑖

∣ 𝑦
𝑗
) (12.29)

These entropies are easily interpreted.𝐻(𝑋) is the average uncertainty of the source, whereas
𝐻(𝑌 ) is the average uncertainty of the received symbol. Similarly, 𝐻(𝑋 ∣ 𝑌 ) is a measure
of our average uncertainty of the transmitted symbol after we have received a symbol. The
function 𝐻(𝑌 ∣ 𝑋) is the average uncertainty of the received symbol given that 𝑋 was
transmitted. The joint entropy 𝐻(𝑋, 𝑌 ) is the average uncertainty of the communication
system as a whole.

Two important and useful relationships, which can be obtained directly from the previ-
ously defined entropies, are

𝐻(𝑋, 𝑌 ) = 𝐻(𝑋 ∣ 𝑌 ) +𝐻(𝑌 ) (12.30)
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and

𝐻(𝑋, 𝑌 ) = 𝐻(𝑌 ∣ 𝑋) +𝐻(𝑋) (12.31)

These are easily derived using the properties of the logarithm.

12.1.5 Channel Capacity

Consider for a moment an observer at the channel output. The observer’s average uncertainty
concerning the channel input will have value𝐻(𝑋) before the reception of an output, and this
average uncertainty of the input will typically decrease when the output is received. In other
words, 𝐻(𝑋 ∣ 𝑌 ) ≤ 𝐻(𝑋). The decrease in the average uncertainty of the transmitted signal
when the output is received is a measure of the average information transmitted through the
channel. This is defined as mutual information 𝐼(𝑋; 𝑌 ). Thus,

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌 ) (12.32)

It follows from (12.30) and (12.31) that we can also write (12.32) as

𝐼(𝑋; 𝑌 ) = 𝐻(𝑌 ) −𝐻(𝑌 ∣ 𝑋) (12.33)

It should be observed that mutual information is a function of the source probabilities as well
as of the channel transition probabilities.

It is easy to show mathematically that

𝐻(𝑋) ≥ 𝐻(𝑋 ∣ 𝑌 ) (12.34)

by showing that

𝐻(𝑋 ∣ 𝑌 ) −𝐻(𝑋) = −𝐼(𝑋; 𝑌 ) ≤ 0 (12.35)

Substitution of (12.29) for 𝐻(𝑋 ∣ 𝑌 ) and (12.25) for 𝐻(𝑋) allows us to write −𝐼(𝑋; 𝑌 ) as

−𝐼(𝑋; 𝑌 ) = −
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) log2

[
𝑝(𝑥

𝑖
)

𝑝(𝑥
𝑖
∣ 𝑦

𝑗
)

]
(12.36)

Since

log2(𝑥) =
ln(𝑥)
ln(2)

(12.37)

and

𝑝(𝑥
𝑖
)

𝑝(𝑥
𝑖
∣ 𝑦

𝑗
)
=

𝑝(𝑥
𝑖
)𝑝(𝑦

𝑗
)

𝑝(𝑥
𝑖
, 𝑦

𝑗
)

(12.38)

we can write −𝐼(𝑋; 𝑌 ) as

−𝐼(𝑋; 𝑌 ) = 1
ln(2)

𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) ln

[
𝑝(𝑥

𝑖
)𝑝(𝑦

𝑗
)

𝑝(𝑥
𝑖
, 𝑦

𝑗
)

]
(12.39)

In order to carry the derivation further, we need the often used inequality

ln 𝑥 ≤ 𝑥 − 1 (12.40)
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which we can easily derive by considering the function

𝑓 (𝑥) = ln(𝑥) − (𝑥 − 1) (12.41)

The derivative of 𝑓 (𝑥)
𝑑𝑓

𝑑𝑥
= 1

𝑥
− 1 (12.42)

is equal to zero at 𝑥 = 1. It follows that 𝑓 (1) = 0 is the maximum value of 𝑓 (𝑥), since we can
make 𝑓 (𝑥) less than zero by choosing 𝑥 sufficiently large (> 1).

Using the inequality (12.40) in (12.39) results in

−𝐼(𝑋; 𝑌 ) ≤ 1
ln(2)

𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
)
[
𝑝(𝑥

𝑖
)𝑝(𝑦

𝑗
)

𝑝(𝑥
𝑖
, 𝑦

𝑗
)

− 1
]

(12.43)

which yields

−𝐼(𝑋; 𝑌 ) ≤ 1
ln(2)

[
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
)𝑝(𝑦

𝑗
) −

𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
)

]

(12.44)

Since both the double sums equal 1, we have the desired result

−𝐼(𝑋; 𝑌 ) ≤ 0 or 𝐼(𝑋; 𝑌 ) ≥ 0 (12.45)

We have therefore shown that mutual information is always nonnegative and, consequently,
𝐻(𝑋) ≥ 𝐻(𝑋 ∣ 𝑌 ). This is actually obvious. If we are given 𝑌 , it would not be reasonable to
assume that our information concerning the source would be reduced.

The channel capacity 𝐶 is defined as the maximum value of mutual information, which
is the maximum average information per symbol that can be transmitted through the channel
for each channel use. Thus,

𝐶 = max[𝐼(𝑋; 𝑌 )] (12.46)

The units of capacity are bits per channel use since transmission of each symbol in a data
stream constitutes one use of the channel. The capacity is a measure of the number of bits
that are delivered to the output with that channel use. The maximization is with respect to
the source probabilities, since the transition probabilities are fixed by the channel. However,
the channel capacity is a function of only the channel transition probabilities, since the
maximization process eliminates the dependence on the source probabilities. The following
examples illustrate the method.

EXAMPLE 12.4

The channel capacity of the discrete noiseless channel illustrated in Figure 12.5 is easily determined.
We start with

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌 )

and write

𝐻(𝑋 ∣ 𝑌 ) = −
𝑛∑

𝑖=1

𝑚∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) log2 𝑝(𝑥𝑖

∣ 𝑦
𝑗
) (12.47)
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Noiseless channel.

For the noiseless channel, all 𝑝(𝑥
𝑖
, 𝑦

𝑗
) and 𝑝(𝑥

𝑖
∣ 𝑦

𝑗
) are zero unless 𝑖 = 𝑗. For 𝑖 = 𝑗, 𝑝(𝑥

𝑖
∣ 𝑦

𝑗
) is unity.

Thus, 𝐻(𝑋 ∣ 𝑌 ) is zero for the noiseless channel, and

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) (12.48)

We have seen that the entropy of a source is maximum if all source symbols are equally likely. Thus,

𝐶 =
𝑛∑

𝑖=1

1
𝑛
log2 𝑛 = log2 𝑛 (12.49)

■

EXAMPLE 12.5

An important and useful channel model is the binary symmetric channel (BSC) illustrated in Figure
12.6. We determine the capacity by maximizing

𝐼(𝑋; 𝑌 ) = 𝐻(𝑌 ) −𝐻(𝑌 ∣ 𝑋)

where

𝐻(𝑌 ∣ 𝑋) = −
2∑

𝑖=1

2∑

𝑗=1
𝑝(𝑥

𝑖
, 𝑦

𝑗
) log2 𝑝(𝑦𝑗 ∣ 𝑥𝑖

) (12.50)

Using the probabilities defined in Figure 12.6, we obtain

𝐻(𝑌 ∣ 𝑋) = −𝛼𝑝 log2 𝑝 − (1 − 𝛼)𝑝 log2 𝑝

−𝛼𝑞 log2 𝑞 − (1 − 𝛼)𝑞 log2 𝑞 (12.51)

or

𝐻(𝑌 ∣ 𝑋) = −𝑝 log2 𝑝 − 𝑞 log2 𝑞 (12.52)

Thus,

𝐼(𝑋; 𝑌 ) = 𝐻(𝑌 ) + 𝑝 log2 𝑝 + 𝑞 log2 𝑞 (12.53)

x1P(x1) = α

P(x1) = 1 – α x2

y1

y2

p

p

q

q

Figure 12.6
Binary symmetric channel.
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Figure 12.7
Capacity of a binary symmetric
channel.

which is maximum when 𝐻(𝑌 ) is maximum. Since the system output is binary, 𝐻(𝑌 ) is a maximum
when each output has a probability of 1

2
. Note that for a BSC equally likely outputs result from equally

likely inputs. Since the maximum value of 𝐻(𝑌 ) for a binary channel is unity, the channel capacity is

𝐶 = 1 + 𝑝 log2 𝑝 + 𝑞 log2 𝑞 = 1 −𝐻(𝑝) (12.54)

where 𝐻(𝑝) is defined in (12.4).
The capacity of a BSC is sketched in Figure 12.7. As expected, if 𝑝 = 0 or 1, the channel output is

completely determined by the channel input, and the capacity is 1 bit per symbol. If 𝑝 is equal to 0.5, an
input symbol yields either output symbol with equal probability, and the capacity is zero.

■

It is worth noting that the capacity of the channel illustrated in Figure 12.5 is most easily
found by starting with (12.32), while the capacity of the channel illustrated in Figure 12.6
is most easily found starting with (12.33). Choosing the appropriate expression for 𝐼(𝑋; 𝑌 )
can often save considerable effort. It sometimes takes insight and careful study of a problem
to choose the expression for 𝐼(𝑋; 𝑌 ) that yields the capacity with minimum computational
effort.

The error probability 𝑃
𝐸
of a binary symmetric channel is easily computed. From

𝑃
𝐸
=

2∑

𝑖=1
𝑝(𝑒 ∣ 𝑥

𝑖
)𝑝(𝑥

𝑖
) (12.55)

where 𝑝(𝑒 ∣ 𝑥
𝑖
) is the error probability given input 𝑥

𝑖
, we have

𝑃
𝐸
= 𝑞𝑝(𝑥1) + 𝑞𝑝(𝑥2) = 𝑞[𝑝(𝑥1) + 𝑝(𝑥2)] (12.56)

Thus,

𝑃
𝐸
= 𝑞

which states that the unconditional error probability 𝑃
𝐸

is equal to the conditional error
probability 𝑝(𝑦

𝑗
∣ 𝑥

𝑖
), 𝑖 ≠ 𝑗.

In Chapter 9 we showed that 𝑃
𝐸
is a decreasing function of the energy of the received

symbols. Since the symbol energy is the received power multiplied by the symbol period,
it follows that if the transmitter power is fixed, the error probability can be reduced by
decreasing the source rate. This can be accomplished by removing the redundancy at the
source through a process called source coding.
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EXAMPLE 12.6

In Chapter 9 we showed that for binary coherent FSK systems, the probability of symbol error is the
same for each transmitted symbol. Thus, a BSC model is a suitable model for FSK transmission. In this
example we determine the channel matrix assuming that the transmitter power is 1000W, the attenuation
in the channel from transmitter to receiver input is 30 dB, the source rate 𝑟 is 10,000 symbols per second,
and that the noise power spectral density 𝑁0 is 2 × 10−5 W/Hz. Since the channel attenuation is 30 dB,
the signal power 𝑃

𝑅
at the input to the receiver is

𝑃
𝑅
= (1000)(10−3) = 1 W (12.57)

This corresponds to a received energy per symbol of

𝐸
𝑠
= 𝑃

𝑅
𝑇 = 1

10, 000
= 10−4 J (12.58)

In Chapter 9 we saw that the error probability for a coherent FSK receiver is

𝑃
𝐸
= 𝑄

(√
𝐸

𝑠

𝑁0

)

(12.59)

which, with the given values, yields 𝑃
𝐸
= 0.0127. Thus, the channel matrix is

[𝑃 (𝑌 ∣ 𝑋)] =

[
0.9873 0.0127
0.0127 0.9873

]

(12.60)

It is interesting to compute the change in the channel matrix resulting from a moderate reduction in
source symbol rate with all other parameters held constant. If the source symbol rate is reduced 25% to
7500 symbols per second, the received energy per symbol becomes

𝐸
𝑠
= 1

7500
= 1.333 × 10−4 J (12.61)

With the other given parameters, the symbol error probability becomes 𝑃
𝐸
= 0.0049, which yields the

channel matrix

[𝑃 (𝑌 ∣ 𝑋)] =

[
0.9951 0.0049
0.0049 0.9951

]

(12.62)

Thus, the 25% reduction in source symbol rate results in an improvement of the system symbol error
probability by a factor of almost 3. In Section 12.3 we will investigate a technique that often allows the
source symbol rate to be reduced without reducing the source information rate.

■

■ 12.2 SOURCE CODING

We determined in the preceding section that the information from a source producing symbols
according to some probability scheme could be described by the entropy𝐻(𝑋). Since entropy
has units of bits per symbol, we also must know the symbol rate in order to specify the source
information rate in bits per second. In other words, the source information rate 𝑅

𝑠
is given by

𝑅
𝑠
= 𝑟𝐻(𝑋) bps (12.63)

where 𝐻(𝑋) is the source entropy in bits per symbol and 𝑟 is the symbol rate in symbols per
second.
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Figure 12.8
Transmission scheme.

Let us assume that this source is the input to a channel with capacity 𝐶 bits per symbol or
SC bits per second, where𝑆 is the available symbol rate for the channel. An important theorem
of information theory, Shannon’s noiseless coding theorem, as is stated as follows: Given a
channel and a source that generates information at a rate less than the channel capacity,
it is possible to code the source output in such a manner that it can be transmitted through
the channel. A proof of this theorem is beyond the scope of this introductory treatment of
information theory and can be found in any of the standard information theory textbooks.2

However, we demonstrate the theorem by a simple example.

12.2.1 An Example of Source Coding

Let us consider a discrete binary source that has two possible outputs 𝐴 and 𝐵 that have
probabilities 0.9 and 0.1, respectively. Assume also that the source rate 𝑟 is 3.5 symbols per
second. The source output is input to a binary channel that can transmit a binary 0 or 1 at
a rate of 2 symbols per second with negligible error, as shown in Figure 12.8. Thus, from
Example 12.5 with 𝑝 = 1, the channel capacity is 1 bit per symbol, which, in this case, is an
information rate of 2 bits per second.

It is clear that the source symbol rate is greater than the channel capacity, so the source
symbols cannot be placed directly into the channel. However, the source entropy is

𝐻(𝑋) = −0.1 log2 0.1 − 0.9 log2 0.9 = 0.469 bits/symbol (12.64)

which corresponds to a source information rate of

𝑟𝐻(𝑋) = 3.5(0.469) = 1.642 bps (12.65)

Thus, the information rate is less than the channel capacity, so transmission is possible.
Transmission is accomplished by the process called source coding, whereby code words

are assigned to 𝑛-symbol groups of source symbols. The shortest code word is assigned to the
most probable group of source symbols, and the longest code word is assigned to the least
probable group of source symbols. Thus, source coding decreases the average symbol rate,
which allows the source to be matched to the channel. The 𝑛-symbol groups of source symbols
are known as the order 𝑛 extension of the original source.

Table 12.1 illustrates the first-order extension of the original source. Clearly, the symbol
rate at the coder output is equal to the symbol rate of the source. Thus, the symbol rate at the
channel input is still larger than the channel can accommodate.

2See for example, Gallager, 1968.
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Table 12.1 First-Order Source Extension

Source symbol Symbol probability 𝑷 (⋅) Code word 𝒍
𝒊

𝑷 (⋅)𝒍
𝒊

𝐴 0.9 0 1 0.9
𝐵 0.1 1 1 0.1

�̄� = 1.0

The second-order extension of the original source is formed by taking the source symbols
𝑛 = 2 at a time, as illustrated in Table 12.2. The average wordlength �̄� is

�̄� =
2𝑛∑

𝑖=1
𝑝(𝑥

𝑖
)𝑙
𝑖
= 1.29 (12.66)

where 𝑝(𝑥
𝑖
) is the probability of the 𝑖th symbol of the extended source and 𝑙

𝑖
is the length

of the code word corresponding to the 𝑖th symbol. Since the source is binary, there are 2𝑛
symbols in the extended source output, each of length 𝑛. Thus, for the second-order extension

�̄�

𝑛
= 1

𝑛

∑
𝑃 (⋅)𝑙

𝑖
= 1.29

2
= 0.645 code symbols/source symbol (12.67)

and the symbol rate at the coder output is

𝑟
�̄�

𝑛
= 3.5(0.645) = 2.258 code symbols/second (12.68)

which is still greater than the 2 symbols per second that the channel can accept. It is clear that
the symbol rate has been reduced, and this provides motivation to try again.

Table 12.3 shows the third-order source extension. For this case, the source symbols are
grouped three at a time. The average wordlength �̄� is 1.598, and

�̄�

𝑛
= 1

𝑛

∑
𝑃 (⋅)𝑙

𝑖
= 1.598

3
= 0.533 code symbols/source symbol (12.69)

The symbol rate at the coder output is

𝑟
�̄�

𝑛
= 3.5(0.533) = 1.864 code symbols/second (12.70)

This rate can be accepted by the channel, and therefore transmission is possible using the
third-order source extension.

Table 12.2 Second-Order Source Extension

Source symbol Symbol probability 𝑷 (⋅) Code word 𝒍
𝒊

𝑷 (⋅)𝒍
𝒊

𝐴𝐴 0.81 0 1 0.81
𝐴𝐵 0.09 10 2 0.18
𝐵𝐴 0.09 110 3 0.27
𝐵𝐵 0.01 111 3 0.03
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Table 12.3 Third-Order Source Extension

Source symbol Symbol probability 𝑷 (⋅) Code word 𝒍
𝒊

𝑷 (⋅)𝒍
𝒊

𝐴𝐴𝐴 0.729 0 1 0.729
𝐴𝐴𝐵 0.081 100 3 0.243
𝐴𝐵𝐴 0.081 101 3 0.243
𝐵𝐴𝐴 0.081 110 3 0.243
𝐴𝐵𝐵 0.009 11100 5 0.045
𝐵𝐴𝐵 0.009 11101 5 0.045
𝐵𝐵𝐴 0.009 11110 5 0.045
𝐵𝐵𝐵 0.001 11111 5 0.005

It is worth noting in passing that if the source symbols appear at a constant rate, the code
symbols at the coder output do not appear at a constant rate. As is apparent in Table 12.3, the
source output AAA results in a single symbol at the coder output, whereas the source output
BBB results in five symbols at the coder output. Thus, symbol buffering must be provided at
the coder output if the symbol rate into the channel is to be constant.

Figure 12.9 shows the behavior of �̄�∕𝑛 as a function of 𝑛. We see that �̄�∕𝑛 always exceeds
the source entropy and converges to the source entropy for large 𝑛. This is a fundamental result.

To illustrate the method used to select the code words in this example, we consider the
general problem of source coding.

1.0

0.8

0.6

0.4

0.2

0
43210

n

H(X)

L/n

0.469

Figure 12.9
Behavior of 𝐿∕𝑛.
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Table 12.4 Instantaneous and Noninstantaneous Codes

Source symbols Code 1 noninstantaneous Code 2 instantaneous

𝑥1 0 0
𝑥2 01 10
𝑥3 011 110
𝑥4 0111 1110

12.2.2 Several Definitions

Before we discuss in detail the method of deriving code words, we pause to make a few
definitions that will clarify our work. Each code word is constructed from an alphabet that is a
collection of symbols used for communication through a channel. For example, a binary code
word is constructed from a two-symbol alphabet, wherein the two symbols are usually taken
as 0 and 1. The wordlength of a code word is the number of symbols in the code word.

There are several major subdivisions of codes. For example, a code can be either block or
nonblock. A block code is one in which each block of source symbols is coded into a fixed-
length sequence of code symbols. A uniquely decipherable code is a block code in which the
code words may be deciphered without using spaces. These codes can be further classified as
instantaneous or noninstantaneous, according to whether it is possible to decode each word
in sequence without reference to succeeding code symbols. Alternatively, noninstantaneous
codes require reference to succeeding code symbols, as illustrated in Table 12.4. It should be
remembered that a noninstantaneous code can be uniquely decipherable.

A useful measure of goodness of a source code is the code efficiency, which is defined as
the ratio of theminimum averagewordlength of the codewords �̄�min to the averagewordlength
of the code word �̄�. Thus,

Eff iciency =
�̄�min

�̄�
=

�̄�min∑𝑛

𝑖=1 𝑝(𝑥𝑖
)𝑙
𝑖

(12.71)

where 𝑝(𝑥
𝑖
) is the probability of the 𝑖th source symbol and 𝑙

𝑖
is the length of the code word

corresponding to the 𝑖th source symbol. It can be shown that the minimum average wordlength
is given by

�̄�min =
𝐻(𝑋)
log2 𝐷

(12.72)

where 𝐻(𝑋) is the entropy of the message ensemble being coded and 𝐷 is the number of
symbols in the code alphabet. This yields

Eff iciency = 𝐻(𝑋)
�̄� log2 𝐷

(12.73)

or

Eff iciency = 𝐻(𝑋)
�̄�

(12.74)

for a binary alphabet. Note that if the efficiency of a code is 100%, the average wordlength �̄�

is equal to the entropy, 𝐻(𝑋), as implied by Figure 12.9.
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12.2.3 Entropy of an Extended Binary Source

In many problems of practical interest, the efficiency is improved by coding the order 𝑛

source extension. This is exactly the scheme used in the preceding example of source coding.
Computation of the efficiency of each of the three schemes used involves calculating the
efficiency of the extended source. The efficiency can, of course, be calculated directly, using
the symbol probabilities of the extended source, but there is an easier method.

The entropy of the order 𝑛 extension of a discrete memoryless source, denoted𝐻(𝑋𝑛), is
given by

𝐻(𝑋𝑛) = 𝑛𝐻(𝑋) (12.75)

This is easily shown by representing a message sequence from the output of the order 𝑛 source
extension as (𝑖1, 𝑖2,… , 𝑖

𝑛
), where 𝑖

𝑘
can take on one of two states with probability 𝑝

𝑖𝑘
. The

entropy of the order 𝑛 extension of the source is

𝐻(𝑋𝑛) = −
2∑

𝑖1=1

2∑

𝑖2=1
⋯

2∑

𝑖𝑛=1

(
𝑝
𝑖1
𝑝
𝑖2
⋯ 𝑝

𝑖𝑛

)
log2

(
𝑝
𝑖1
𝑝
𝑖2
⋯ 𝑝

𝑖𝑛

)
(12.76)

which can be written

𝐻(𝑋𝑛) = −
2∑

𝑖1=1

2∑

𝑖2=1
⋯

2∑

𝑖𝑛=1

(
𝑝
𝑖1
𝑝
𝑖2
⋯ 𝑝

𝑖𝑛

)(
log2 𝑝

𝑖1
+ log2 𝑝

𝑖2
⋯ log2 𝑝

𝑖𝑛

)
(12.77)

The preceding yields

𝐻(𝑋𝑛) = −
2∑

𝑖1=1
𝑝
𝑖1
log2 𝑝

𝑖1

( 2∑

𝑖2=1
𝑝
𝑖2

2∑

𝑖3=1
𝑝
𝑖3
⋯

2∑

𝑖𝑛=1
𝑝
𝑖𝑛

)

−

( 2∑

𝑖1=1
𝑝
𝑖1

) 2∑

𝑖2=1
𝑝
𝑖2
log2 𝑝

𝑖2

( 2∑

𝑖3=1
𝑝
𝑖3

2∑

𝑖4=1
𝑝
𝑖4
⋯

2∑

𝑖𝑛=1
𝑝
𝑖𝑛

)

⋯

−

( 2∑

𝑖1=1
𝑝
𝑖1

2∑

𝑖2=1
𝑝
𝑖2
⋯

2∑

𝑖𝑛−2=1
𝑝
𝑖𝑛−2

) 2∑

𝑖𝑛−1=1
𝑝
𝑖𝑛−1

log2 𝑝
𝑖𝑛−1

( 2∑

𝑖𝑛=1
𝑝
𝑖𝑛

)

−

( 2∑

𝑖1=1
𝑝
𝑖1

2∑

𝑖2=1
𝑝
𝑖2
⋯

2∑

𝑖𝑛−1=1
𝑝
𝑖𝑛−1

) 2∑

𝑖𝑛=1
𝑝
𝑖𝑛
log2 𝑝

𝑖𝑛
(12.78)

Since all of the terms in parentheses are equal to 1, we have

𝐻(𝑋𝑛) = −
𝑛∑

𝑘=1

2∑

𝑖𝑘

𝑝
𝑖𝑘
log2 𝑝𝑖𝑘 = −

𝑛∑

𝑘=1
𝐻(𝑋) (12.79)

and, therefore, the entropy of the extended binary source is

𝐻(𝑋𝑛) = 𝑛𝐻(𝑋) (12.80)
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X1                         0.2500                  00                  2 (0.25)          = 0.50

X2                         0.2500                  01                  2 (0.25)          = 0.50

A A'
X3                         0.1250                  100                3 (0.125)        = 0.375

X4                         0.1250                  101                3 (0.125)        = 0.375

X5                         0.0625                  1100              4 (0.0625)      = 0.25

X6                         0.0625                  1101              4 (0.0625)      = 0.25

X7                         0.0625                  1110              4 (0.0625)      = 0.25

X8                         0.0625                  1111              4 (0.0625)      = 0.25

Average word length = 2.75

(Probability)(Length)Code wordProbabilitySource words Figure 12.10
Shannon--Fano source coding.

The efficiency of the extended source is therefore given by

Eff iciency = 𝑛𝐻(𝑋)
�̄�

(12.81)

If efficiency tends to 100% as 𝑛 approaches infinity, it follows that �̄�∕𝑛 tends to the entropy
of the extended source. This is exactly the observation made from Figure 12.9.

12.2.4 Shannon--Fano Source Coding

There are several methods of coding a source output so that an instantaneous code results. We
consider two such methods here. First, we consider the Shannon--Fano method. Shannon-Fano
coding is not frequently used since it does not guarantee that a code with the shortest average
wordlength (optimun) is generated. However, the Shannon--Fano technique very easy to apply
and usually yields source codes having reasonably high efficiency. In the next subsection we
consider the Huffman source coding technique, which yields the source code having the
shortest average wordlength for a given source entropy.

Assume that we are given a set of source outputs that are to be represented in binary form.
These source outputs are first ranked in order of nonincreasing probability of occurrence, as
illustrated in Figure 12.10. The set is then partitioned into two sets (indicated by line 𝐴-𝐴′)
that are as close to equiprobable as possible, and 0s are assigned to the upper set and ls to the
lower set, as seen in the first column of the code words. This process is continued, each time
partitioning the sets with as nearly equal probabilities as possible, until further partitioning is
not possible. This scheme will give a 100% efficient code if the partitioning always results
in equiprobable sets; otherwise, the code will have an efficiency less than 100%. For this
particular example,

Eff iciency = 𝐻(𝑋)
�̄�

= 2.75
2.75

= 1 (12.82)

since equiprobable partitioning is possible.

12.2.5 Huffman Source Coding

Huffman coding results in an optimum code in the sense that the Huffman code has
the minimum average wordlength for a source of given entropy. The Huffman technique
therefore yields the code having the highest efficiency. We shall illustrate the Huffman coding
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Figure 12.11
Example of Huffman source coding.

procedure using the same source output of eight messages previously used to illustrate the
Shannon--Fano coding procedure.

Figure 12.11 illustrates the Huffman coding procedure. The source output consists of
messages 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, and 𝑋8. They are listed in order of nonincreasing
probability, as was done for Shannon--Fano coding. The first step of the Huffman procedure
is to combine the two source messages having the lowest probability, 𝑋7 and 𝑋8.

The upper message,𝑋7, is assigned a binary 0 as the last symbol in the code word, and the
lower message,𝑋8, is assigned a binary 1 as the last symbol in the code word. The combination
of 𝑋7 and 𝑋8 can be viewed as a composite message having a probability equal to the sum of
the probabilities of𝑋7 and𝑋8, which in this case is 0.1250, as shown. This composite message
is denoted𝑋′

4. After this initial step, the new set of messages, denoted𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6,
and 𝑋

′
4 are arranged in order of nonincreasing probability. Note that 𝑋′

4 could be placed at
any point between 𝑋2 and 𝑋5, although it was given the name 𝑋′

4 because it was placed after
𝑋4. The same procedure is then applied once again. The messages 𝑋5 and 𝑋6 are combined.
The resulting composite message is combined with 𝑋

′
4. This procedure is continued as far as

possible. The resulting tree structure is then traced in reverse to determine the code words.
The resulting code words are shown in Figure 12.11.

The code words resulting from the Huffman procedure are different from the code words
resulting from the Shannon--Fano procedure because at several points the placement of com-
posite messages resulting from previous combinations was arbitrary. The assignment of binary
0s or binary ls to the upper or lower messages was also arbitrary. Note, however, that the aver-
age wordlength is the same for both procedures. This must be the case for the example chosen
because the Shannon--Fano procedure yielded 100% efficiency and the Huffman procedure
can be no worse. There are cases in which the two procedures do not result in equal average
wordlengths.
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The Huffman coding procedure is an example of lossless coding since the original se-
quence of binary symbols may be exactly recovered from the sequence of code words. There
are many examples of lossless coding. One such example is run-length coding, which will be
considered in a later section of the chapter.

■ 12.3 COMMUNICATION IN NOISY ENVIRONMENTS: BASIC IDEAS

We now turn our attention to methods for achieving reliable communication in the presence
of noise by combating the effects of that noise. We undertake our study with a promise from
Claude Shannon of considerable success.

Shannon’s Theorem (Fundamental theorem of Information Theory)
Given a discrete memoryless channel (each symbol is perturbed by noise independently of all
other symbols) with capacity 𝐶 and a source with positive rate𝑅, where𝑅 < 𝐶 , there exists a
code such that the output of the source can be transmitted over the channel with an arbitrarily
small probability of error.

Thus, Shannon’s theorem predicts essentially error-free transmission in the presence of
noise. Unfortunately, the theorem tells us only of the existence of codes and tells nothing of
how to construct these codes.

Before we start our study of constructing codes for noisy channels, we will take a minute
to discuss the continuous channel. This detour will yield insight that will prove useful.

In Chapter 9 we discussed the AWGN channel and observed that, assuming that thermal
noise is the dominating noise source, the AWGN channel model is applicable over a wide
range of temperatures and channel bandwidths. Determination of the capacity of the AWGN
channel is a relatively simple task and the derivation is given in most information theory
textbooks (see Further Reading at the end of the chapter). The capacity, in bits per second, of
the AWGN channel is given by

𝐶𝑐
= 𝐵 log2

(
1 + 𝑆

𝑁

)
(12.83)

where 𝐵 is the channel bandwidth in Hz and 𝑆∕𝑁 is the signal-to-noise power ratio. This par-
ticular formulation is known as the Shannon--Hartley law. The subscript is used to distinguish
(12.83) from (12.46). Capacity, as expressed by (12.46), has units of bits per symbol, while
(12.83) has units of bits per second.

The trade-off between bandwidth and SNR can be seen from the Shannon--Hartley law.
For infinite SNR,which is the noiseless case, the capacity is infinite for any nonzero bandwidth.
We will show, however, that the capacity cannot be made arbitrarily large by increasing
bandwidth if noise is present.

In order to understand the behavior of the Shannon--Hartley law for the large-bandwidth
case, it is desirable to place (12.83) in a slightly different form. The energy per bit 𝐸

𝑏
is equal

to the bit time 𝑇
𝑏
multiplied by the signal power 𝑆. At capacity, the bit rate 𝑅

𝑏
is equal to the

capacity. Thus, 𝑇
𝑏
= 1∕𝐶

𝑐
s/bit. This yields, at capacity,

𝐸
𝑏
= 𝑆𝑇

𝑏
= 𝑆

𝐶
𝑐

(12.84)
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The total noise power in bandwidth 𝐵 is given by

𝑁 = 𝑁0𝐵 (12.85)

where 𝑁0 is the single-sided noise power spectral density in watts per Hz. The SNR can
therefore be expressed as

𝑆

𝑁
=

𝐸
𝑏

𝑁0

𝐶
𝑐

𝐵
(12.86)

This allows the Shannon--Hartley law to be written in the equivalent form

𝐶
𝑐

𝐵
= log2

(
1 +

𝐸
𝑏

𝑁0

𝐶
𝑐

𝐵

)
(12.87)

Solving for 𝐸
𝑏
∕𝑁0 yields

𝐸
𝑏

𝑁0
= 𝐵

𝐶
𝑐

(2𝐶𝑐∕𝐵 − 1) (12.88)

This expression establishes performance of the ideal system. For the case in which 𝐵 ≫ 𝐶
𝑐

2𝐶𝑐∕𝐵 = 𝑒
(𝐶𝑐∕𝐵) ln 2 ≅ 1 +

𝐶
𝑐

𝐵
ln 2 (12.89)

where the approximation 𝑒
𝑥 ≅ 1 + 𝑥, |𝑥| ≪ 1, has been used. Substitution of (12.89) into

(12.88) gives

𝐸
𝑏

𝑁0
≅ ln 2 = −1.6 dB 𝐵 ≫ 𝐶

𝑐
(12.90)

Thus, for the ideal system, in which𝑅
𝑏
= 𝐶

𝑐
,𝐸

𝑏
∕𝑁0 approaches the limiting value of−1.6 dB

as the bandwidth grows without bound.
A plot of 𝐸

𝑏
∕𝑁0, expressed in decibels, as a function of 𝑅

𝑏
∕𝐵 is illustrated in Figure

12.12. The ideal system is defined by 𝑅
𝑏
= 𝐶

𝑐
and corresponds to (12.88). There are two

regions of interest. The first region, for which𝑅
𝑏
< 𝐶

𝑐
, is the region in which arbitrarily small

error probabilities can be obtained. Clearly this is the region in which we wish to operate. The
other region, for which 𝑅

𝑏
> 𝐶

𝑐
, does not allow the error probability to be made arbitrarily

small.
An important trade-off can be deduced from Figure 12.12. If the bandwidth factor 𝑅

𝑏
∕𝐵

is large so that the bit rate is much greater than the bandwidth, then a significantly larger value
of 𝐸

𝑏
∕𝑁0 is necessary to ensure operation in the 𝑅

𝑏
< 𝐶

𝑐
region than is the case if 𝑅

𝑏
∕𝐵 is

small. Stated another way, assume that the source bit rate is fixed at𝑅
𝑏
bits per second and the

available bandwidth is large so that 𝐵 ≫ 𝑅
𝑏
. For this case, operation in the 𝑅

𝑏
< 𝐶

𝑐
region

requires only that 𝐸
𝑏
∕𝑁0 is slightly greater than −1.6 dB. The required signal power is

𝑆 ≅ 𝑅
𝑏
(ln 2)𝑁0𝑊 (12.91)

This is the minimum signal power for operation in the 𝑅
𝑏
< 𝐶

𝑐
region. Therefore, operation

in this region is desired for power-limited operation.
Now assume that bandwidth is limited so that 𝑅

𝑏
≫ 𝐵. Figure 12.12 shows that a much

larger value of 𝐸
𝑏
∕𝑁0 is necessary for operation in the 𝑅

𝑏
< 𝐶

𝑐
region. Thus, the required

signal power ismuch greater than that given by (12.91). This is referred to as bandwidth-limited
operation.
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= 𝐶
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relationship for AWGN

channel.

The preceding paragraphs illustrate that, at least in the AWGN channel---where the
Shannon--Hartley law applies, a trade-off exists between power and bandwidth. This trade-off
is of fundamental importance in the design of communication systems.

Realizing that we can theoretically achieve perfect system performance, even in the
presence of noise, we start our search for system configurations that yield the performance
promised by Shannon’s theorem. Actually one such system was analyzed in Chapter 11. Or-
thogonal signals were chosen for transmission through the channel, and a correlation receiver
structure was chosen for demodulation. The system performance is illustrated in Figure 11.7.
Shannon’s bound is clearly illustrated.

While there are a number of techniques that can be used for combating the effects of
noise, so that performance more closer to Shannon’s limit is achieved, the most commonly
used technique is forward error correction. The two major classifications of codes for forward
error correction are block codes and convolutional codes. The following two sections treat
these techniques.

■ 12.4 COMMUNICATION IN NOISY CHANNELS: BLOCK CODES

Consider a source that produces a serial stream of binary symbols at a rate of 𝑅
𝑠
symbols per

second. Assume that these symbols are grouped into blocks 𝑇 seconds long, so that each block
contains 𝑅

𝑠
𝑇 = 𝑘 source or information symbols. To each of these 𝑘-symbol blocks is added

redundant check symbols to produce a code word 𝑛 symbols long. In a properly designed
block code, the 𝑛 − 𝑘 check symbols provide sufficient information to the decoder to allow
for the correction (or detection) of one or more errors that may occur in the transmission of
the 𝑛 symbol code word through the noisy channel. A coder that operates in this manner is
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said to produce an (𝑛, 𝑘) block code. An important parameter of block codes is the code rate,
which is defined as

𝑅
𝑠
= 𝑘

𝑛
(12.92)

since 𝑘 bits of information are transmitted with each block of 𝑛 symbols. A design goal is to
achieve the required error-correcting capability with the highest possible rate.

Codes can either correct or merely detect errors, depending on the amount of redundancy
contained in the check symbols. Codes that can correct errors are known as error-correcting
codes. Codes that can only detect errors are also useful. As an example, when an error is
detected but not corrected, a feedback channel can be used to request a retransmission of the
code word found to be in error. We will discuss error-detection and feedback channels in a
later section. If errors are more serious than a lost code word, the code word found to be in
error can simply be discarded without requesting retransmission.

12.4.1 Hamming Distances and Error Correction

An understanding of how codes can detect and correct errors can be gained from a geometric
point of view. A binary code word is a sequence of 1s and 0s that is 𝑛 symbols in length. The
Hamming weight 𝑤(𝑠

𝑗
) of code word 𝑠

𝑗
is defined as the number of ls in that code word. The

Hamming distance 𝑑(𝑠
𝑖
, 𝑠

𝑗
) or 𝑑

𝑖𝑗
between code words 𝑠

𝑖
and 𝑠

𝑗
is defined as the number of

positions in which 𝑠
𝑖
and 𝑠

𝑗
differ. It follows that Hamming distance can be written in terms

of Hamming weight as

𝑑
𝑖𝑗
= 𝑤(𝑠

𝑖
⊕ 𝑠

𝑗
) (12.93)

where the symbol ⊕ denotes modulo-2 addition, which is binary addition without a carry.

EXAMPLE 12.7

In this example, the Hamming distance between 𝑠1 = 101101 and 𝑠2 = 001100 is determined. Since

101101⊕ 001100 = 100001

we have

𝑑12 = 𝑤(100001) = 2

which simply means that 𝑠1 and 𝑠2 differ in 2 positions.
■

A geometric representation of two code words is shown in Figure 12.13. The Cs represent
two code words that are distance 5 apart. The code word on the left is the reference code
word. The first ‘‘x’’ to the right of the reference represents a binary sequence distance 1 from
the reference code word, where distance is understood to denote the Hamming distance. The
second ‘‘x’’ to the right of the reference code word is distance 2 from the reference, and so
on. Assuming that the two code words shown are the closest in Hamming distance of all the
code words for a given code, the code is then a distance 5 code. Figure 12.13 illustrates the
concept of a minimum-distance decoding, in which a given received sequence is assigned to
the code word closest, in Hamming distance, to the received sequence. A minimum-distance
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Geometric repersentation of two code words illustrating
non-code word sequencies.

decoder will therefore assign the received sequences to the left of the vertical line to the code
word on the left and the received sequences to the right of the vertical line to the code word
on the right, as shown.

We deduce that a minimum-distance decoder can always correct as many as 𝑒 errors,
where 𝑒 is the largest integer not to exceed 𝑑

𝑚
− 1where 𝑑

𝑚
is the minimum distance between

code words. It follows that if 𝑑
𝑚
is odd, all received words can be assigned to a code word.

However, if 𝑑
𝑚
is even, a received sequence can lie halfway between two code words. For this

case, errors are detected that cannot be corrected.

EXAMPLE 12.8

A code consists of eight code words [0001011, 1110000, 1000110, 1111011, 0110110, 1001101,
0111101, 0000000]. If 1101011 is received, the decoded code word is the code word closest in Hamming
distance to 1101011. The calculations are

𝑤(0001011⊕ 1101011) = 2 𝑤(0110110⊕ 1101011) = 5

𝑤(1110000⊕ 1101011) = 4 𝑤(1001101⊕ 1101011) = 3

𝑤(1000110⊕ 1101011) = 4 𝑤(0111101⊕ 1101011) = 4

𝑤(1111011⊕ 1101011) = 1 𝑤(0000000⊕ 1101011) = 5

The the decoded code word is therefore 1111011.
■

12.4.2 Single-Parity-Check Codes

A simple code capable of detecting, but not capable of correcting, single errors is formed by
adding one check symbol to each block of 𝑘 information symbols. This yields a (𝑘 + 1, 𝑘)
code. Thus, the rate is 𝑘∕(𝑘 + 1). The added symbol is called a parity-check symbol, and it
is added so that the Hamming weight of all code words is either odd or even. If the received
word contains an even number of errors, the decoder will not detect the errors. If the number
of errors is odd, the decoder will detect that an odd number of errors, most likely one, has
been made.
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12.4.3 Repetition Codes

The simplest code that allows for correction of errors consists of transmitting each symbol 𝑛
times, which results in 𝑛 − 1 check symbols. This technique produces an (𝑛, 1) code having
two code words; one of all 0s and one of all 1s. A received word is decoded as a 0 if the
majority of the received symbols are 0s and as a 1 if the majority are ls. This is equivalent
to minimum-distance decoding, wherein 1

2 (𝑛 − 1) errors can be corrected. Repetition codes
have great error-correcting capability if the symbol error probability is low but have the
disadvantage of having low rate. For example, if the information rate of the source is 𝑅 bits
per symbol, the rate 𝑅

𝑐
out of the coder is

𝑅
𝑐
= 𝑘

𝑛
𝑅 = 1

𝑛
𝑅 bits/symbol (12.94)

The process of repetition coding for a rate 1
3 repetition code is illustrated in detail in Fig-

ure 12.14. The encoder maps the data symbols 0 and 1 into the corresponding code words
000 and 111. There are eight possible received sequences, as shown. The mapping from the
transmitted sequence to the received sequence is random, and the statistics of the mapping are
determined by the channel characteristics derived in Chapters 9 and 10. The decoder maps the
received sequence into one of the two code words by a minimum Hamming distance decoding
rule. Each decoded code word corresponds to a data symbol, as shown.

EXAMPLE 12.9

In this example we investigate the error-correcting capability of a repetition code having a code rate of
1
3
. Assume that the code is used with a BSC with a conditional error probability equal to (1 − 𝑝), that is,

𝑃 (𝑦
𝑗
∣ 𝑥

𝑖
) = 1 − 𝑝, 𝑖 ≠ 𝑗 (12.95)
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Each source 0 is encoded as 000, and each source 1 is encoded as 111. An error is made if two or three
symbols undergo a change in passing through the channel. Assuming that the source outputs are equally
likely, the error probability 𝑃

𝑒
becomes

𝑝
𝑒
= 3(1 − 𝑝)2𝑝 + (1 − 𝑝)3 (12.96)

For 1 − 𝑝 = 0.1, 𝑃
𝑒
= 0.028, implying an improvement factor of slightly less than 4. For 1 − 𝑝 = 0.01,

the improvement factor is approximately 33. Thus, the code performs best when 1 − 𝑝 is small.
We will see later that this simple example can be misleading since the error probability, 𝑝, with

coding is not equal to the error probability, 𝑝, without coding. The example implies that performance
increases as 𝑛, the Hamming distance between the code words, becomes larger. However, as 𝑛 increases,
the code rate decreases. In most cases of practical interest, the information rate must be maintained
constant, which, for this example, requires that three code symbols be transmitted for each bit of
information. An increase in redundancy results in an increase in symbol rate for a given information rate.
Thus, coded symbols are transmitted with less energy than uncoded symbols. This changes the channel
matrix so that 𝑝 with coding is greater than 𝑝 without coding. We will consider this effect in more detail
in Computer Examples 12.1 and 12.2.

■

12.4.4 Parity-Check Codes for Single Error Correction

Repetition codes and single-parity-check codes are examples of codes that have either high
error-correction capability or high information rate, but not both. Only codes that have a
reasonable combination of these characteristics are practical for use in digital communication
systems. We now examine a class of parity-check codes that satisfies these requirements.

A general code word having 𝑘 information symbols and 𝑟 parity-check symbols can be
written in the form

𝑎1 𝑎2⋯ 𝑎
𝑘

𝑐1 𝑐2⋯ 𝑐
𝑟

where 𝑎
𝑖
is the 𝑖th information symbol and 𝑐

𝑗
is the 𝑗th check symbol. The wordlength 𝑛 =

𝑘 + 𝑟. The problem is selecting the 𝑟 parity-check symbols so that good error-correcting
properties are obtained along with a satisfactory code rate.

There is another desirable property of good codes. That is, decoders must be easily im-
plemented. This, in turn, requires that the code has a simple structure. Keep in mind that 2𝑘
different codewords can be constructed from information sequences of length 𝑘. Since the code
words are of length 𝑛, there are 2𝑛 possible received sequences. Of these 2𝑛 possible received
sequences, 2𝑘 represent valid code words and the remaining 2𝑛 − 2𝑘 represent received se-
quences containing errors resulting from noise or other channel impairments. Shannon showed
that for 𝑛 ≫ 𝑘, one can simply randomly assign one of the 2𝑛 sequences of length 𝑛 to each
of the 2𝑘 information sequences and, most of the time, a ‘‘good’’ code will result. The coder
then consists of a table with these assignments. The difficulty with this strategy is that the
code words lack structure and therefore table lookup is required for decoding. Table lookup
is not desirable for most applications since it is slow and usually requires excessive memory.
We now examine a structured technique for assigning information sequences to 𝑛-symbol
code words.

www.it-ebooks.info

http://www.it-ebooks.info/


12.4 Communication in Noisy Channels: Block Codes 641

Codes for which the first 𝑘 symbols of the code word are the information symbols are
called systematic codes. The 𝑟 = 𝑛 − 𝑘 parity-check symbols are chosen to satisfy the 𝑟 linear
equations

0 = ℎ11𝑎1 ⊕ ℎ12𝑎2 ⊕⋯⊕ ℎ1𝑘𝑎𝑘 ⊕ 𝑐1

0 = ℎ21𝑎1 ⊕ ℎ22𝑎2 ⊕⋯⊕ ℎ2𝑘𝑎𝑘 ⊕ 𝑐2

⋮ ⋮ ⋮

0 = ℎ
𝑟1𝑎1 ⊕ ℎ

𝑟2𝑎2 ⊕⋯⊕ ℎ
𝑟𝑘
𝑎
𝑘
⊕ 𝑐

𝑟
(12.97)

Equation (12.97) can be written as

[𝐻][𝑇 ] = [0] (12.98)

where [𝐻] is called the parity-check matrix

[𝐻] =

⎡
⎢
⎢
⎢
⎢
⎣

ℎ11 ℎ12 ⋯ ℎ1𝑘 1 0 ⋯ 0
ℎ21 ℎ22 ⋯ ℎ2𝑘 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

ℎ
𝑟1 ℎ

𝑟2 ⋯ ℎ
𝑟𝑘

0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎦

(12.99)

and [𝑇 ] is the code-word vector

[𝑇 ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎
𝑘

𝑐1
⋮

𝑐
𝑟

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.100)

Now let the received sequence of length 𝑛 be denoted [𝑅]. If

[𝐻][𝑅] ≠ [0] (12.101)

we know that [𝑅] is not a code word, i.e., [𝑅] ≠ [𝑇 ], and at least one error has been made in
the transmission of 𝑛 symbols through the channel. If

[𝐻][𝑅] = [0] (12.102)

we know that [𝑅] is a valid code word and, since the probability of symbol error on the channel
is assumed small, the received sequence is most likely the transmitted code word.

The first step in the coding is to write [𝑅] in the form

[𝑅] = [𝑇 ]⊕ [𝐸] (12.103)

where [𝐸] represents the error pattern of length 𝑛 induced by the channel. The decoding
problem essentially reduces to determining [𝐸], since the code word can be reconstructed
from [𝑅] and [𝐸]. The structure induced by (12.97) defines the decoder.
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As the first step in computing [𝐸], we multiply the received word [𝑅] by the parity-check
matrix [𝐻]. The product is denoted [𝑆]. This yields

[𝑆] = [𝐻][𝑅] = [𝐻][𝑇 ]⊕ [𝐻][𝐸] (12.104)

Since [𝐻][𝑇 ] = [0], we have

[𝑆] = [𝐻][𝐸] (12.105)

The matrix [𝑆] is known as the syndrome. Note that we cannot solve (12.105) directly since
[𝐻] is not a square matrix and, therefore, the inverse of [𝐻] does not exist.

Assuming that a single error has taken place, the error vector will be of the form

[𝐸] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

1
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Multiplying [𝐸] by [𝐻] on the left-hand side shows that the syndrome is the 𝑖th column of
the matrix [𝐻], where the error is in the 𝑖th position. The following example illustrates this
method. Note that since the probability of symbol error on the channel is assumed small, the
error vector having the smallest Hamming weight is the most likely error vector. Error patterns
containing single errors are therefore the most likely.

EXAMPLE 12.10

A code has the parity-check matrix

[𝐻] =
⎡
⎢
⎢
⎢
⎣

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

⎤
⎥
⎥
⎥
⎦

(12.106)

Assuming that 111011 is received, we determine if an error has been made and determine the decoded
code word. The first step is to compute the syndrome. Remembering that all operations are modulo 2,
this gives

[𝑆] = [𝐻][𝑅] =
⎡
⎢
⎢
⎢
⎣

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎥
⎦

(12.107)

Therefore, we see that an error has been made. Since the syndrome is the third column of the parity-check
matrix, the third symbol of the received word is assumed to be in error. Thus, the decoded code word is
110011. This can be proved by showing that 110011 has a zero syndrome.

■
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We now pause to examine the parity-check code in more detail. It follows from (12.97)
and (12.99) that the parity checks can be written as

⎡
⎢
⎢
⎢
⎢
⎣

𝑐1
𝑐2
⋮

𝑐
𝑟

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

ℎ11 ℎ12 ⋯ ℎ1𝑘
ℎ21 ℎ22 ⋯ ℎ2𝑘
⋮ ⋮ ⋱ ⋮

ℎ
𝑟1 ℎ

𝑟2 ⋯ ℎ
𝑟𝑘

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎
𝑘

⎤
⎥
⎥
⎥
⎥
⎦

(12.108)

Thus, the code-word vector [𝑇 ] can be written

[𝑇 ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎
𝑘

𝑐1
⋮

𝑐
𝑟

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1
ℎ11 ℎ12 ⋯ ℎ1𝑘
⋮ ⋮ ⋱ ⋮

ℎ
𝑟1 ℎ

𝑟2 ⋯ ℎ
𝑟𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎
𝑘

⎤
⎥
⎥
⎥
⎥
⎦

(12.109)

or

[𝑇 ] = [𝐺][𝐴] (12.110)

where [𝐴] is the vector of 𝑘 information symbols,

[𝐴] =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎
𝑘

⎤
⎥
⎥
⎥
⎥
⎦

(12.111)

and [𝐺], which is called the generator matrix, is

[𝐺] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮

0 0 ⋯ 1
ℎ11 ℎ12 ⋯ ℎ1𝑘
⋮ ⋮ ⋮ ⋮

ℎ
𝑟1 ℎ

𝑟2 ⋯ ℎ
𝑟𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.112)
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The relationship between the generator matrix [𝐺] and the parity-check matrix [𝐻] is apparent
if we compare (12.99) and (12.112). If the 𝑚 by 𝑚 identity matrix is identified by [𝐼

𝑚
] and the

matrix [𝐻
𝑝
] is defined by

[𝐻
𝑝
] =

⎡
⎢
⎢
⎢
⎢
⎣

ℎ11 ℎ12 ⋯ ℎ1𝑘
ℎ21 ℎ22 ⋯ ℎ2𝑘
⋮ ⋮ ⋱ ⋮

ℎ
𝑟1 ℎ

𝑟2 ⋯ ℎ
𝑟𝑘

⎤
⎥
⎥
⎥
⎥
⎦

(12.113)

it follows that the generator matrix is given by

[𝐺] =
⎡
⎢
⎢
⎢
⎣

𝐼
𝑘

⋯

𝐻
𝑝

⎤
⎥
⎥
⎥
⎦

(12.114)

and that the parity-check matrix is given by

[𝐻] = [𝐻
𝑝
⋮ 𝐼

𝑟
] (12.115)

which establishes the relationship between the generator and parity-check matrices for sys-
tematic codes.

Codes defined by (12.112) are referred to as linear codes, since the 𝑘 + 𝑟 code-word
symbols are formed as a linear combination of the 𝑘 information symbols. It is also worthwhile
to note that if two different information sequences are summed to give a third sequence, then
the code word for the third sequence is the sum of the two code words corresponding to the
original two information sequences. This is easily shown. If two information sequences are
summed, the resulting vector of information symbols is

[𝐴3] = [𝐴1]⊕ [𝐴2] (12.116)

The code word corresponding to [𝐴3] is

[𝑇3] = [𝐺][𝐴3] = [𝐺]{[𝐴1]⊕ [𝐴2]} = [𝐺][𝐴1]⊕ [𝐺][𝐴2] (12.117)

Since

[𝑇1] = [𝐺][𝐴1] (12.118)

and

[𝑇2] = [𝐺][𝐴2] (12.119)

it follows that

[𝑇3] = [𝑇1]⊕ [𝑇2] (12.120)

Codes that satisfy this property are known as group codes.

12.4.5 Hamming Codes

A Hamming code is a particular parity-check code having distance 3. Since the code has dis-
tance 3, all single errors can be corrected. The parity-check matrix for the code has dimensions
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2𝑛−𝑘 − 1 by 𝑛 − 𝑘 and is very easy to construct. If the 𝑖th column of the matrix [𝐻] is the
binary representation of the number 𝑖, this code has the interesting property in that, for a single
error, the syndrome is the binary representation of the position in error.

EXAMPLE 12.11

The parity-check matrix for a (7, 4) code is easily determined. Assuming that the 𝑖th column of the
matrix [𝐻] is the binary representation of 𝑖, we have

[𝐻] =
⎡
⎢
⎢
⎢
⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎥
⎥
⎥
⎦

(12.121)

(Note that this is not a systematic code.) For the received word 1110001, the syndrome is

[𝑆] = [𝐻][𝑅] =
⎡
⎢
⎢
⎢
⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎥
⎦

(12.122)

Thus, the error is in the seventh position, and the decoded code word is 1110000.
We note in passing that for the (7, 4) Hamming code, the parity checks are in the first, second, and

fourth positions in the code words, since these are the only columns of the parity-check matrix containing
only one nonzero element. The columns of the parity-check matrix can be permuted without changing
the distance properties of the code. Therefore, the systematic code equivalent to (12.121) is obtained by
interchanging columns 1 and 7, columns 2 and 6, and columns 4 and 5.

■

12.4.6 Cyclic Codes

The preceding subsections dealt primarily with the mathematical properties of parity-check
codes, and the implementation of parity-check coders and decoders was not discussed. Indeed,
if we were to examine the implementation of these devices, we would find that, in general,
fairly complex hardware configurations are required. However, there is a class of parity-check
codes, known as cyclic codes, that are easily implemented using feedback shift registers. A
cyclic code derives its name from the fact that a cyclic permutation of any code word produces
another code word. For example, if 𝑥1𝑥2⋯ 𝑥

𝑛−1𝑥𝑛
is a code word, so is 𝑥

𝑛
𝑥1𝑥2⋯ 𝑥

𝑛−1. In
this section we examine not the underlying theory of cyclic codes but the implementation of
coders and decoders. We will accomplish this by means of an example.

An (𝑛, 𝑘) cyclic code can easily be generated with an 𝑛 − 𝑘 stage shift register with
appropriate feedback. The register illustrated in Figure 12.15 produces a (7, 4) cyclic code.
The switch is initially in position 𝐴, and the shift register stages initially contain all zeros.
The 𝑘 = 4 information symbols are then shifted into the coder. As each information symbol
arrives, it is routed to the output and added to the value of 𝑆2 ⊕𝑆3. The resulting sum is then
placed into the first stage of the shift register. Simultaneously, the contents of 𝑆1 and 𝑆2 are
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+
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Figure 12.15
Coder for (7,4) cyclic code.

shifted to 𝑆2 and 𝑆3, respectively. After all information symbols have arrived, the switch is
moved to position 𝐵, and the shift register is shifted 𝑛 − 𝑘 = 3 times to clear it. On each shift,
the sum of 𝑆2 and 𝑆3 appears at the output. This sum added to itself produces a 0, which is fed
into 𝑆1. After 𝑛 − 𝑘 shifts, a code word has been generated that contains 𝑘 = 4 information
symbols and 𝑛 − 𝑘 = 3 parity-check symbols. It also should be noted that the register contains
all 0s so that the coder is ready to receive the next 𝑘 = 4 information symbols.

All 2𝑘 = 16 code words that can be generated with the example coder are also illustrated
in Figure 12.15. The 𝑘 = 4 information symbols, which are the first four symbols of each
code word, were shifted into the coder beginning with the left-hand symbol. Also shown in
Figure 12.15 are the contents of the register and the output symbol after each shift for the
code word 1101.

The decoder for the (7, 4) cyclic code is illustrated in Figure 12.16. The upper register is
used for storage, and the lower register and feedback arrangement are identical to the feedback
shift register used in the coder. Initially, switch𝐴 is closed and switch𝐵 is open. The 𝑛 received
symbols are shifted into the two registers. If there are no errors, the lower register will contain
all 0s when the upper register is full. The switch positions are then reversed, and the code
word that is stored in the upper register is shifted out. This operation is illustrated in Figure
12.16 for the received word 1101001.

If, after the received word is shifted into the decoder, the lower register does not contain
all 0s, an error has been made. The error is corrected automatically by the decoder, since,
when the incorrect symbol appears at the output of the shift register, a 1 appears at the output
of the AND gate. This 1 inverts the upper register output and is produced by the sequence 100
in the lower register. The operation is illustrated in Figure 12.16.
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Decoder for (7,4) cyclic code.

12.4.7 The Golay Code

The (23,12) Golay code has distance 7 and is therefore capable of correcting three errors in a
block of 23 symbols. The rate is close to, but slightly greater than, 1

2 . Adding an additional
parity symbol to the (23, 12) Golay code yields the (24, 12) extended Golay code, which
has distance 8. This allows correction of some, but not all, received sequences having four
errors with a slight reduction in rate. The slight reduction in rate, however, has advantages.
Since the rate of the extended Golay code is exactly 1

2 , the symbol rate through the channel
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Table 12.5 Short List of BCH Codes

Rate ≈1/2 codes Rate ≈3/4 codes

𝒏 𝒌 𝒆 Rate 𝒏 𝒌 𝒆 Rate

7 4 1 0.5714 15 11 1 0.7333
15 7 2 0.4667 31 21 2 0.6774
31 16 3 0.5161 63 45 3 0.7143
63 30 6 0.4762 127 99 4 0.7795
127 64 10 0.5039 255 191 8 0.7490
255 131 18 0.5137 511 385 14 0.7534
511 259 30 0.5068 1023 768 26 0.7507

is precisely twice the information rate. This factor of two difference between symbol rate and
information rate frequently simplifies the design of timing circuits. The design of codes capable
of correcting multiple errors is beyond the scope of this text. We will, however, compare the
performance of the (23, 12) Golay code in an AWGN environment to the performance of a
Hamming code in an example to follow.

12.4.8 Bose--Chaudhuri--Hocquenghem (BCH) Codes and Reed
Solomon Codes

BCH codes are very flexible in that they can provide a variety of code rates with a given
block length. This is illustrated in Table 12.5, which is a very brief list of a few BCH codes
having code rates of approximately 1

2 and 3
4 .
3 These codes are cyclic codes and therefore

both coding and decoding can be accomplished using simple shift-register configurations as
described previously.

The Reed--Solomon code is a nonbinary code closely related to the BCH code. The code is
nonbinary in that each information symbol carries 𝑚 bits of information rather than 1 bit as in
the case of the binary code. The Reed--Solomon code is especially well suited for controlling
burst errors and is part of the recording and playback standard for audio compact disk (CD)
devices.4

12.4.9 Performance Comparison Techniques

In comparing the relative performance of coded and uncoded systems for block codes, the
basic assumption will be that the information rate is the same for both systems. Assume that
a word is defined as a block of 𝑘 information symbols. Coding these 𝑘 information symbols
yields a code word containing 𝑛 > 𝑘 symbols but 𝑘 bits of information. The time required for
transmission of a word, 𝑇

𝑤
, will be the same for both the coded and uncoded cases under the

3Tables giving acceptable values of 𝑛, 𝑘, and 𝑒 for BCH codes are widely available. An extensive table for 𝑛 ≤ 1023
can be found in Lin and Costello (2004).
4For those wishing to experiment with Reed--Solomon codes, the MATLAB Communications Toolbox contains a
routine for constructing the generator matrix for Reed--Solomon codes.
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equal-information-rate assumption. Since 𝑛 > 𝑘, the symbol rate will be higher for the coded
system than for the uncoded system. If constant transmitter power is assumed, it follows that
the energy per transmitted symbol is reduced by the factor 𝑘∕𝑛 when coding is used. The
use of coding therefore results in a higher probability of symbol error. We must determine if
coding can overcome this increase in symbol error probability to the extent that a significant
decrease in error probability can be obtained.

Assume that 𝑞
𝑢
and 𝑞

𝑐
represent the probability of symbol error for the uncoded and coded

systems, respectively. Also assume that 𝑃
𝑒𝑢

and 𝑃
𝑒𝑐

are the word error probabilities for the
uncoded and coded systems. The word error probability for the uncoded system is computed
by observing that an uncoded word is in error if any of the 𝑘 symbols in that word are in error.
The probability that a symbol will be received correctly is (1 − 𝑞

𝑢
), and since all symbol errors

are assumed independent, the probability that all 𝑘 symbols in a word are received correctly
is (1 − 𝑞

𝑢
)𝑘. Thus, the uncoded word error probability is given by

𝑃
𝑒𝑢

= 1 − (1 − 𝑞
𝑢
)𝑘 (12.123)

For the system using forward error correction, one or more symbol errors can possibly be
corrected by the decoder, depending upon the code used. If the code is capable of correcting
up to 𝑒 errors in a 𝑛-symbol code word, the probability of word error 𝑃

𝑒𝑐
is equal to the

probability that more than 𝑒 errors are present in the received code word. Thus,

𝑃
𝑒𝑐

=
𝑛∑

𝑖=𝑒+1

(
𝑛

𝑖

)
(1 − 𝑞

𝑐
)𝑛−𝑖𝑞𝑖

𝑐
(12.124)

where, as always,
(
𝑛

𝑖

)
= 𝑛!

𝑖!(𝑛 − 𝑖)!
(12.125)

The preceding equation for 𝑃
𝑒𝑐
, (12.124), assumes that the code is a perfect code. A perfect

code is a code in which 𝑒 or fewer errors in an 𝑛-symbol code word are always corrected
and a decoding failure always occurs if more than 𝑒 errors are made in the transmission of an
𝑛-symbol code word. The only known perfect binary codes are the Hamming codes, for which
𝑒 = 1, and the (23,12) Golay code, for which 𝑒 = 3 as previously discussed. If the code is not
a perfect code, one or more received sequences for which more than 𝑒 errors occur can be
corrected. In this case (12.124) is a worst-case performance bound. This bound is often tight,
especially for high SNR.

Comparing word error probabilities is only useful for those cases in which the 𝑛-symbol
words, uncoded and coded, each carry an equal number of information bits. Comparing codes
having different numbers of information bits per code word, or comparing codes having
different error correcting capabilities, require that we compare codes on the basis of bit
error probability. Exact calculation of the bit error probability from the channel symbol error
probability is often a difficult task and is dependent on the code generator matrix. However,
Torrieri5 derived both lower and upper bounds for the bit error probability of block codes.

5See D. J. Torreri, Principles of Secure Communication Systems (2nd ed.), Artech House, 1992, Norwood, MA, or
D. J. Torreri, ‘‘The Information Bit Error Rate for Block Codes,’’ IEEE Transactions on Communications, COM-32
(4), April 1984.
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These bounds are quite tight over most ranges of the channel SNR. The Torreri result expresses
the bit error probability as

𝑝
𝑏
= 𝑞

2(𝑞 − 1)

[
𝑑∑

𝑖=𝑒+1

𝑑

𝑛

(
𝑛

𝑖

)
𝑃

𝑖

𝑠
(1 − 𝑃

𝑠
)𝑛−𝑖 + 1

𝑛

𝑛∑

𝑖=𝑑+1
𝑖

(
𝑛

𝑖

)
𝑃

𝑖

𝑠
(1 − 𝑃

𝑠
)𝑛−𝑖

]

(12.126)

where 𝑃
𝑠
is the channel symbol error probability, 𝑒 is the number of correctable errors per

code word, 𝑑 is the distance (𝑑 = 2𝑒 + 1), and 𝑞 is the size of the code alphabet. For binary
codes 𝑞 = 2 and for nonbinary codes, such as the Reed--Solomon codes, 𝑞 = 2𝑚.

In the coding examples to follow in the following section, we make use of (12.126). A
MATLAB program is therefore developed to carry out the calculations required to map the
symbol-error probabilities to bit-error probabilities as follows:

%File: ser2ber.m
function [ber] = ser2ber(q,n,d,t,ps)
lnps = length(ps); %length of error vector
ber = zeros(1,lnps); %initialize output vector
for k=1:lnps %iterate error vector

ser = ps(k); %channel symbol error rate
sum1 = 0; sum2 = 0; %initialize sums
for i=(t+1):d

term = nchoosek(n,i)*(serˆi)*((1-ser))ˆ(n-i);
sum1 = sum1+term;

end
for i=(d+1):n

term = i*nchoosek(n,i)*(serˆi)*((1-ser)ˆ(n-i));
sum2 = sum2+term;

end
ber(k) = (q/(2*(q-1)))*((d/n)*sum1+(1/n)*sum2);

end

%End of function file.

12.4.10 Block Code Examples

The performances of a number of the coding techniques discussed in the preceding section are
now considered.

COMPUTER EXAMPLE 12.1

In this example we investigate the effectiveness of a (7,4) single error-correcting code by comparing the
word error probabilities for the coded and uncoded systems. The symbol error probabilities will also be
determined. Assume that the code is used with a BPSK transmission system. As shown in Chapter 9, the
symbol error probability for BPSK in an AWGN environment is

𝑞 = 𝑄

(√
2𝑧

)
(12.127)

where 𝑧 is the SNR 𝐸
𝑠
∕𝑁0. The symbol energy 𝐸

𝑠
is the transmitter power 𝑆 times the word time 𝑇

𝑤

divided by 𝑘, since the total energy in each word is distributed among 𝑘 information symbols. Thus, the
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symbol error probability without coding is given by

𝑞
𝑢
= 𝑄

⎛
⎜
⎜
⎝

√
2𝑆𝑇

𝑤

𝑘𝑁0

⎞
⎟
⎟
⎠

(12.128)

Assuming equal word rates for both the coded and uncoded system gives

𝑞
𝑐
= 𝑄

√
2𝑆𝑇

𝑤

𝑛𝑁0
(12.129)

for the coded symbol error probability, since the energy available for 𝑘 information symbols must be
spread over 𝑛 > 𝑘 symbols when coding is used. It follows that the symbol error probability is increased
by the use of coding as previously discussed. However, we shall show that the error-correcting capability
of the code can overcome the increased symbol error probability and indeed yield a net gain in word
error probability for certain ranges of the SNR. The uncoded word error probability for the (7,4) code is
given by (12.123) with 𝑘 = 4. Thus,

𝑃
𝑒𝑢
= 1 −

(
1 − 𝑞

𝑢

)4
(12.130)

Since this code can correct single errors, 𝑒 = 1. Therefore, the word error probability for the coded case,
from Equation (12.124)

𝑃
𝑒𝑐
=

7∑

𝑖=2

(
7
𝑖

)(
1 − 𝑞

𝑐

)7−𝑖
𝑞
𝑖

𝑐
(12.131)

The MATLAB program for performing the calculations outlined in the preceding two expressions
follows.

%File: c12ce1.m
n = 7; k = 4; t = 1; %code parameters
zdB = 0:0.1:14; %set STw/No in dB
z = 10.ˆ(zdB/10); %STw/No
lenz = length(z); %length of vector
qc = Q(sqrt(2*z/n)); %coded symbol error prob.
qu = Q(sqrt(2*z/k)); %uncoded symbol error prob.
peu = 1-((1-qu).ˆk); %uncoded word error prob.
pec = zeros(1,lenz); %initialize
for j=1:lenz

pc = qc(j); %jth symbol error prob.
s = 0; %initialize
for i=(t+1):n

termi = (pcˆi)*((1-pc)ˆ(n-i));
s = s+nchoosek(n,i)*termi;
pec(1,j) = s; %coded word error probability

end
end
qq = [qc’,qu’,peu’,pec’];
semilogy(zdB’,qq)
xlabel(‘STw/No in dB’) %label x axis
ylabel(‘Probability’) %label y

% End script file.

The word-error probabilities for the coded and uncoded systems are illustrated in Figure 12.17. The
curves are plotted as a function of𝑆𝑇

𝑤
∕𝑁0, which isword energy divided by the noise power spectral den-

sity. Note that coding has little effect on system performance unless the value of 𝑆𝑇
𝑤
∕𝑁0 is in the neigh-

borhood of 11 dB or above. Also, the improvement afforded by a (7, 4) code is modest unless 𝑆𝑇
𝑤
∕𝑁0
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Figure 12.17
Comparison of uncoded and coded systems assuming a (7, 4) Hamming code.

is large, in which case system performance may be satisfactory without coding. However, in many
applications, even small performance improvements are very important. Also, illustrated in Figure 12.17
are the uncoded and coded symbol error probabilities 𝑞

𝑢
and 𝑞

𝑐
, respectively. The effect of spreading the

available energy per word over a larger number of symbols is evident.
■

COMPUTER EXAMPLE 12.2

In this example we examine the performance of repetition codes in two different channels. Both cases
utilize FSKmodulation and a noncoherent receiver structure. In the first case, an additive white Gaussian
noise (AWGN) channel is assumed. The second case assumes a Rayleigh fading channel. Distinctly
different results will be obtained.

Case 1---The AWGN Channel
As was shown in Chapter 9 the error probability for a noncoherent FSK system in an AWGN

channel is given by

𝑞
𝑢
= 1

2
𝑒
−𝑧∕2 (12.132)

where 𝑧 is the ratio of signal power to noise power at the output of the receiver bandpass filter having
bandwidth 𝐵

𝑇
. Thus, 𝑧 is given by

𝑧 = 𝐴
2

2𝑁0𝐵𝑇

(12.133)

where𝑁0𝐵𝑇
is the noise power in the signal bandwidth 𝐵

𝑇
. The performance of the system is illustrated

by the 𝑛 = 1 curve in Figure 12.18. When an 𝑛-symbol repetition code is used with this system, the
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Performance of repetition codes on AWGN and Rayleigh fading channels.

symbol error probability is given by

𝑞
𝑐
= 1

2
𝑒
−𝑧∕2𝑛 (12.134)

This result occurs since coding a single information symbol (bit) as 𝑛 repeated code symbols requires
spreading the available energy per bit over 𝑛 symbols. The symbol duration with coding is reduced
by a factor 𝑛 compared to the symbol duration without coding. Equivalently, the signal bandwidth is
increased by a factor of 𝑛 with coding. Thus, with coding 𝐵

𝑇
in 𝑞

𝑢
is replaced by 𝑛𝐵

𝑇
to give 𝑞

𝑐
. The

word error probability is given by (12.124) with

𝑒 = 1
2
(𝑛 − 1) (12.135)

Since each code word carries one bit of information, the word error probability is equal to the bit error
probability for the repetition code.

The performance of a noncoherent FSK system with an AWGN channel with rate 1
3
and 1

7
repetition

codes is illustrated in Figure 12.18. It should be noted that system performance is degraded through
the use of repetition coding. This result occurs because the increase in symbol error probability with
coding is greater than can be overcome by the error-correcting capability of the code. This same result
occurs with coherent FSK and BPSK as well as with ASK, illustrating that the low rate of the repetition
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code prohibits its effective use in systems in which the dependence of symbol error probability on the
signal-to-noise ratio is essentially exponential.

Case 2---The Rayleigh Fading Channel
An example of a system in which repetition coding can be used effectively is an FSK system

operating in a Rayleigh fading environment. Such a system was analyzed in Chapter 10. We showed that
the symbol error probability can be written as

𝑞
𝑢
= 1

2
1

1 + 𝐸𝑎

2𝑁0

(12.136)

in which 𝐸
𝑎
is the average received energy per symbol (or bit). The use of a repetition code spreads the

energy 𝐸
𝑎
over the 𝑛 symbols in a code word. Thus, with coding,

𝑞
𝑐
= 1

2
1

1 + 𝐸𝑎

2𝑛𝑁0

(12.137)

As in Case 1, the decoded bit error probability is given by (12.124) with 𝑒 given by (12.135). The
Rayleigh fading results are also shown in Figure 12.18 for rate 1, 1

3
, and 1

7
repetition codes, where, for

this case, the signal-to-noise ratio 𝑧 is 𝐸
𝑎
∕𝑁0. We see that the repetition code improves performance

in a Rayleigh fading environment if 𝐸
𝑎
∕𝑁0 is sufficiently large even though repetition coding does not

result in a performance improvement in an AWGN environment.
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Performance of noncoherent FSK in a Rayleigh fading channel.

Repetition coding can be viewed as time-diversity transmission since the 𝑛 repeated symbols are
transmitted in 𝑛 different time slots or subpaths. We assume that energy per bit is held constant so that
the available signal energy is divided equally among 𝑛 subpaths. In Problem 12.27, it is shown that the
optimal combining of the receiver outputs prior to making a decision on the transmitted information bit
is as shown in Figure 12.19(a). The model for the repetition code considered in this example is shown
in Figure 12.19(b). The essential difference is that a ‘‘hard decision’’ on each symbol of the 𝑛-symbol
code word is made at the output of each of the 𝑛 receivers. The decoded information bit is then in favor
of the majority of the decisions made on each of the 𝑛 symbols of the received code word.

When a hard decision is made at the receiver output, information is clearly lost, and the result is a
degradation of performance. This can be seen in Figure 12.20, which illustrates the performance of the
𝑛 = 7 optimal system of Figure 12.19(a) and that of the rate 1

7
repetition code of Figure 12.19(b). Also

shown for reference is the performance of the uncoded system.
■

COMPUTER EXAMPLE 12.3

In this example we compare the performance of a (15, 11) Hamming code and a (23, 12) Golay code with
an uncoded system using PSK modulation operating in an AWGN environment. Since the code words
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Figure 12.21
Performance comparisons for Golay code and Hamming code with uncoded system.

carry different numbers of information bits, comparisons based on the word error probability cannot be
used. We therefore use the Torrieri approximation given in (12.126). Since both codes are binary 𝑞 = 2
for both codes. TheMATLAB code follows and the results are illustrated in Figure 12.21. The advantage
of the Golay code is clear, especially for high 𝐸

𝑏
∕𝑁0.

%File: c12ce3.m
zdB = 0:0.1:10; %set Eb/No axis in dB
z = 10.ˆ(zdB/10); %convert to linear scale
ber1 = q(sqrt(2*z)); %PSK result
ber2 = q(sqrt(12*2*z/23)); %CSER for (23,12) Golay code
ber3 = q(sqrt(11*z*2/15)); %CSER for (15,11) Hamming code
berg = ser2ber(2,23,7,3,ber2); %BER for Golay code
berh = ser2ber(2,15,3,1,ber3); %BER for Hamming code
semilogy(zdB,ber1,‘k-’,zdB,berg,‘k-’,zdB,berh,‘k-.’)
xlabel(‘E b/N o in dB’) %label x axis
ylabel(‘Bit Error Probability’) %label y axis
legend(‘Uncoded’,‘Golay code’,‘Hamming code’)

%End of script file.
■

COMPUTER EXAMPLE 12.4

In this example we compare the performance of a (23, 12) Golay code and a (31, 16) BCH code with an
uncoded system. PSK modulation and operation in an AWGN environment are assumed. Note that both
codes have rates of approximately 1/2 and both codes are capable of correcting up to 3 errors per code
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Figure 12.22
Comparison of Golay code and (31, 16) BCH code with uncoded PSK system.

word. The MATLAB code follows and the performance results are illustrated in Figure 12.22. Note that
the BCH code provides improved performance.

%File: c12 ce4.m
zdB = 0:0.1:10; %set Eb/No in dB
z = 10.ˆ(zdB/10); %convert to linear scale
ber1 = q(sqrt(2*z)); %PSK result
ber2 = q(sqrt(12*2*z/23)); %SER for (23,12) Golay code
ber3 = q(sqrt(16*z*2/31)); %SER for (16,31) BCH code
berg = ser2ber(2,23,7,3,ber2); %BER for (23,12) Golay code
berbch = ser2ber(2,23,7,4,ber3); %BER for (16,31) BCH code
semilogy(zdB,ber1,‘k-’,zdB,berg,‘k-’,zdB,berbch,‘k-.’)
xlabel(‘E b/N o in dB’) %label x axis
ylabel(‘Bit Error Probability’) %label y axis
legend(‘Uncoded’,‘Golay code’,‘(31,16) BCH code’)

% End of script file.
■

■ 12.5 COMMUNICATION IN NOISY CHANNELS:
CONVOLUTIONAL CODES

The convolutional code is an example of a nonblock code. Rather than the parity-check
symbols being calculated for a block of information symbols, the parity checks are calculated
over a span of information symbols. This span, which is referred to as the constraint span, is
shifted one information symbol each time an information symbol is input to the encoder.
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Figure 12.23
General convolutional coder.

A general convolutional coder is illustrated in Figure 12.23. The coder is rather simple
and consists of three component parts. The heart of the coder is a shift register that holds 𝑘
information symbols, where 𝑘 is the constraint span of the code. The shift register stages are
connected to 𝜈 modulo-2 adders as indicated. Not all stages are connected to all adders. In fact,
the connections are ‘‘somewhat random’’ and these connections have considerable impact on
the performance of the resulting code. Each time a new information symbol is shifted into the
coder, the adder outputs are sampled by the commutator. Thus, 𝜈 output symbols are generated
for each input symbol yielding a code of rate 1∕𝜈.6

A rate 1
3 convolutional coder is illustrated in Figure 12.24. For each input, the output of

the coder is the sequence 𝑣1𝑣2𝑣3. For the coder of Figure 12.24

𝑣1 = 𝑆1 ⊕𝑆2 ⊕𝑆3 (12.138)

𝑣2 = 𝑆1 (12.139)

𝑣3 = 𝑆1 ⊕𝑆2 (12.140)

Wewill see later that a well-performing codewill have the property that, for𝑆2 and𝑆3 (the two
previous inputs) fixed, 𝑆1 = 0 and 𝑆1 = 1 will result in outputs 𝑣1𝑣2𝑣3 that are complements.
The sequence 𝑆2𝑆3 will be referred to as the current state of the coder so that the current state,
together with the current input, determine the output. Thus, we see that the input sequence

101001⋯

results, assuming an initial state of 00, in the output sequence

111101011101100111⋯

At some point the sequence is terminated in a way that allows for unique decoding. This is
accomplished by returning the coder to the initial 00 state and will be illustrated when we
consider the Viterbi algorithm.

6In this chapter we only consider convolutional coders having rate 1∕𝑣. It is, of course, often desirable to generate
convolutional codes having higher rates. If symbols are shifted into the coder 𝑘 symbols at a time, rather than 1
symbol at a time, a rate 𝑘∕𝑣 convolutional code results. These codes are more complex and beyond the scope of this
introductory treatment. The motivated student should consult one of the standard textbooks on coding theory cited in
the references.
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convolutional coder.

12.5.1 Tree and Trellis Diagrams

A number of techniques have been developed for decoding convolutional codes. We discuss
two techniques here; the tree-searching technique, because of its fundamental nature, and the
Viterbi algorithm, because of its widespread use. The tree search is considered first. A portion
of the code tree for the coder of Figure 12.24 is illustrated in Figure 12.25. In Figure 12.25 the
single binary symbols are inputs to the coder, and the three binary symbols in parentheses are
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Code tree.
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the output symbols corresponding to each input symbol. For example, if 1010 is fed into the
coder, the output is 111101011101 or path 𝐴.

The decoding procedure also follows from Figure 12.25. To decode a received sequence,
we search the code tree for the path closest in Hamming distance to the input sequence. For
example, the input sequence 110101011111 is decoded as 1010, indicating an error in the third
and eleventh positions of the input sequence.

The exact implementation of tree-searching techniques is not practical for many applica-
tions since the code tree grows exponentially with the number of information symbols. For
example,𝑁 binary information symbols generate 2𝑁 branches of the code tree and storage of
the complete tree is impractical for large 𝑁 . Several decoding algorithms have been devel-
oped that yield excellent performance with reasonable hardware requirements. Prior to taking
a brief look at the most popular of these techniques, the Viterbi algorithm, we look at the trellis
diagram, which is essentially a code tree in compact form.

The key to construction of the trellis diagram is recognition that the code tree is repetitive
after 𝑘 branches, where 𝑘 is the constraint span of the coder. This is easily recognized from the
code tree shown in Figure 12.25. After the fourth input of an information symbol, 16 branches
have been generated in the code tree. The coder outputs for the first eight branches match
exactly the coder outputs for the second eight branches, except for the first symbol. After a
little thought, you should see that this is obvious. The coder output depends only on the latest
𝑘 inputs. In this case, the constraint span 𝑘 is 3. Thus, the output corresponding to the fourth
information symbol depends only on the second, third, and fourth coder inputs. It makes no
difference whether the first information symbol was a binary 0 or a binary 1. (This should
clarify the meaning of a constraint span.)

When the current information symbol is input to the coder, 𝑆1 is shifted to 𝑆2 and 𝑆2 is
shifted to 𝑆3. The new state, 𝑆2𝑆3, and the current input 𝑆1 then determine the shift-register
contents 𝑆1𝑆2𝑆3, which in turn determine the output 𝑣1𝑣2𝑣3. This information is summarized
in Table 12.6. The outputs corresponding to given state transitions are shown in parentheses,
consistent with Figure 12.25.

It should be noted that states 𝐴 and 𝐶 can only be reached from states 𝐴 and 𝐵. Also,
states𝐵 and𝐷 can only be reached from states𝐶 and𝐷. The information in Table 12.6 is often
shown in a state diagram, as in Figure 12.26. In the state diagram, an input of binary 0 results
in the transition denoted by a dashed line, and an input of binary 1 results in the transition
designated by a solid line. The resulting coder output is denoted by the three symbols in
parentheses. For any given sequence of inputs, the resulting state transitions and coder outputs
can be traced on the state diagram. This is a very convenient method for determining the coder
output resulting from a given sequence of inputs.

The trellis diagram, illustrated in Figure 12.27, results directly from the state diagram.
Initially, the coder is assumed to be in state 𝐴 (all contents are 0s). A binary 0 input results
in the coder remaining in state 𝐴, as indicated by the dashed line, and a binary 1 input results
in a transition to state 𝐶 , as indicated by the solid line. Any of the four states can be reached
by a sequence of two inputs. The third input results in the possible transitions shown. The
fourth input results in exactly the same set of possible transitions. Therefore, after the second
input, the trellis becomes completely repetitive, and the possible transitions are those labeled
steady-state transitions. The coder can always be returned to state 𝐴 by inputting two binary
0s as shown in Figure 12.27. As before, the output sequence resulting from any transition is
shown by the sequence in parentheses.
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Table 12.6 States, Transations, and Outputs for the Convolutional Coder Shown in
Figure 12.23

(a) Definition of States

State S𝟏 S𝟐

𝐴 0 0
𝐵 0 1
𝐶 1 0
𝐷 1 1

(b) State Transitions

Previous Current

State 𝑺𝟏 𝑺𝟐 Input S𝟏 S𝟐 S𝟑 State Output

𝐴 0 0 0 0 0 0 𝐴 (000)
1 1 0 0 𝐶 (111)

𝐵 0 1 0 0 0 1 𝐴 (100)
1 1 0 1 𝐶 (011)

𝐶 1 0 0 0 1 0 𝐵 (101)
1 1 1 0 𝐷 (010)

𝐷 1 1 0 0 1 1 𝐵 (001)
1 1 1 1 𝐷 (110)

(c) Encoder Output for State Transition 𝑥 → 𝑦

Transition Output

𝐴 → 𝐴 (000)
𝐴 → 𝐶 (111)
𝐵 → 𝐴 (100)
𝐵 → 𝐶 (011)
𝐶 → 𝐵 (101)
𝐶 → 𝐷 (010)
𝐷 → 𝐵 (001)
𝐷 → 𝐷 (110)

12.5.2 The Viterbi Algorithm

In order to illustrate the Viterbi algorithm, we consider the received sequence that we
previously considered to illustrate decoding using a code tree---namely, the sequence
110101011111. The first step is to compute the Hamming distances between the initial node
(state𝐴) and each of the four states three levels deep into the trellis. We must look three levels
deep into the trellis because the constraint span of the example coder is 3. Since each of the
four nodes can be reached from only two preceding nodes, eight paths must be identified, and
the Hamming distance must be computed for each path.We therefore initially look three levels
deep into the trellis, and since the example coder has rate 1

3 , the first nine received symbols
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Figure 12.26
State diagram for the example
convolutional coder.

are initially considered. Thus, the Hamming distances between the input sequence 110101011
and the eight paths terminating three levels deep into the trellis are computed. These calcu-
lations are summarized in Table 12.7. After the eight Hamming distances are computed, the
path having the minimum Hamming distance to each of the four nodes is retained. These
four retained paths are known as survivors. The other four paths are discarded from further
consideration. The four survivors are identified in Table 12.7.
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Figure 12.27
Trellis diagram.
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Table 12.7 Calculations for Viterbi Algorithm: Step One (Received Sequence =
110101011)

Path𝟏 Corresponding symbols Hamming distance Survivor?

𝐴𝐴𝐴𝐴 000000000 6 No
𝐴𝐶𝐵𝐴 111101100 4 Yes
𝐴𝐶𝐷𝐵 111010001 5 Yes2

𝐴𝐴𝐶𝐵 000111101 5 No2

𝐴𝐴𝐴𝐶 000000111 5 No
𝐴𝐶𝐵𝐶 111101011 1 Yes
𝐴𝐶𝐷𝐷 111010110 6 No
𝐴𝐴𝐶𝐷 000111010 4 Yes

1The initial and terminal states are identifted by the first and fourth letters, respectively. The second and third letters
correspond to intermediate states.
2if two or more paths have the same Hamming distance, it makes no difference which is retained as the survivor.

The next step in the application of the Viterbi algorithm is to consider the next three
received symbols, which are 111 in the example being considered. The scheme is to compute
once again the Hamming distance to the four states, this time four levels deep in the trellis. As
before, each of the four states can be reached from only two previous states. Thus, once again,
eight Hamming distances must be computed. Each of the four previous survivors, along with
their respective Hamming distances, is extended to the two states reached by each surviving
path. The Hamming distance of each new segment is computed by comparing the coder output,
corresponding to each of the new segments, with 111. The calculations are summarized in
Table 12.8. The path having the smallest new distance is path ACBCB. This corresponds to
information sequence 1010 and is in agreement with the previous tree search.

For a general received sequence, the process identified in Table 12.8 is continued. After
each new set of calculations, involving the next three received symbols, only the four surviving
paths and the accumulated Hamming distances need be retained. At the end of the process, it
is necessary to reduce the number of surviving paths from four to one. This is accomplished
by inserting two dummy 0s at the end of the information sequence, corresponding to the

Table 12.8 Calculations for Viterbi Algorithm: Step Two (Received Sequence =
110101011111)

Previous New Added New
Path𝟏 survivors distance segiment distance distance Survivor?

𝐴𝐶𝐵𝐴𝐴 4 𝐴𝐴 3 7 Yes
𝐴𝐶𝐷𝐵𝐴 5 𝐵𝐴 2 7 No
𝐴𝐶𝐵𝐶𝐵 1 𝐶𝐵 1 2 Yes
𝐴𝐴𝐶𝐷𝐵 4 𝐷𝐵 2 6 No
𝐴𝐶𝐵𝐴𝐶 4 𝐴𝐶 0 4 Yes
𝐴𝐶𝐷𝐵𝐶 5 𝐵𝐶 1 6 No
𝐴𝐶𝐵𝐶𝐷 1 𝐶𝐷 2 3 Yes
𝐴𝐴𝐶𝐷𝐷 4 𝐷𝐷 1 5 No

1An underscore indicates the previous survivor.
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Termination of the trellis diagram.

transmission of six code symbols. As shown in Figure 12.28, this forces the trellis to terminate
at state 𝐴.

The Viterbi algorithm has found widespread application in practice. It can be shown that
the Viterbi algorithm is a maximum-likelihood decoder, and in that sense, it is optimal. Viterbi
and Omura (1979) give an excellent analysis of the Viterbi algorithm. A paper by Heller and
Jacobs (1971)7 summarizes a number of performance characteristics of the Viterbi algorithm.

12.5.3 Performance Comparisons for Convolutional Codes

As was done with block codes, a MATLAB program was developed that allows us to compare
the bit error probabilities for convolutional codes having various parameters. The MATLAB
program follows:

% File: c12 convcode.m
% BEP for convolutional coding in Gaussian noise
% Rate 1/3 or 1/2
% Hard decisions
%
clf
nu max = input...
(’ Enter max constraint length: 3-9, rate 1/2; 3-8, rate 1/3 => ’);
nu min = input(’ Enter min constraint length (step size = 2) => ’);
rate = input(’Enter code rate: 1/2 or 1/3 => ’);
Eb N0 dB = 0:0.1:12;
Eb N0 = 10.ˆ(Eb N0 dB/10);
semilogy(Eb N0 dB, qfn(sqrt(2*Eb N0)), ’LineWidth’, 1.5), ...

axis([min(Eb N0 dB) max(Eb N0 dB) 1e-12 1]), ...

7Heller, J. A. and I. M. Jacobs, ‘‘Viterbi Decoding for Satellite and Space Communications,’’ IEEE Transactions on
Communications Technology, COM-19: 835--848, October 1971.
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xlabel(’{\itE b/N} 0, dB’), ylabel(’{\itP b}’), ...
hold on
for nu = nu min:2:nu max

if nu == 3
if rate == 1/2

dfree = 5;
c = [1 4 12 32 80 192 448 1024];

elseif rate == 1/3
dfree = 8;
c = [3 0 15 0 58 0 201 0];

end
elseif nu == 4

if rate == 1/2
dfree = 6;
c = [2 7 18 49 130 333 836 2069];

elseif rate == 1/3
dfree = 10;
c = [6 0 6 0 58 0 118 0];

end
elseif nu == 5

if rate == 1/2
dfree = 7;
c = [4 12 20 72 225 500 1324 3680];

elseif rate == 1/3
dfree = 12;
c = [12 0 12 0 56 0 320 0];

end
elseif nu == 6

if rate == 1/2
dfree = 8;
c = [2 36 32 62 332 701 2342 5503];

elseif rate == 1/3
dfree = 13;
c = [1 8 26 20 19 62 86 204];

end
elseif nu == 7

if rate == 1/2
dfree = 10;
c = [36 0 211 0 1404 0 11633 0];

elseif rate == 1/3
dfree = 14;
c = [1 0 20 0 53 0 184 0];

end
elseif nu == 8

if rate == 1/2
dfree = 10;
c = [2 22 60 148 340 1008 2642 6748];

elseif rate == 1/3
dfree = 16;
c = [1 0 24 0 113 0 287 0];

end
elseif nu == 9

if rate == 1/2
dfree = 12;
c = [33 0 281 0 2179 0 15035 0];

elseif rate == 1/3
disp(’Error: there are no weights for nu = 9 and rate = 1/3’)

end
end
Pd = [];
p = qfn(sqrt(2*rate*Eb N0));
kk = 1;
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for k = dfree:1:dfree+7;
sum = 0;
if mod(k,2) == 0

for e = k/2+1:k
sum = sum + nchoosek(k,e)*(p.ˆe).*((1-p).ˆ(k-e));

end
sum = sum + 0.5*nchoosek(k,k/2)*(p.ˆ(k/2)).*((1-p).ˆ(k/2));

elseif mod(k,2) == 1
for e = (k+1)/2:k

sum = sum + nchoosek(k, e)*(p.ˆe).*((1-p).ˆ(k-e));
end

end
Pd(kk, :) = sum;
kk = kk+1;

end
Pbc = c*Pd;
semilogy(Eb N0 dB, Pbc, ’--’, ’LineWidth’, 1.5), ...

text(Eb N0 dB(78)+.1, Pbc(78), [’\nu = ’, num2str(nu)])
end
legend([’BPSK uncoded’], ...
[’Convol. coded; HD; rate = ’, num2str(rate, 3)])
hold off

% End of script file.

The preceding MATLAB code is based on the linearity of convolutional codes, which
allows us to assume the all-zeros path through the trellis as being the correct path. A decoding
error event then corresponds to a path that deviates from the all-zeros path at some point in
the trellis and remerges with the all-zeros path a number of steps later. Since the all-zeros
path is assumed to be the correct path, the number of information bit errors corresponds to
the number of information ones associated with an error event path of a given length. The bit
error probability can then be upper bounded by

𝑛𝑃
𝑏
<

∞∑

𝑘=𝑑free

𝑐
𝑘
𝑃
𝑘

(12.141)

where 𝑑free is the free distance of the code (the Hamming distance of the minimum-length
error event path from the all-zeros path, or simply the Hammingweight of theminimum-length
error event path), 𝑃

𝑘
is the probability of an error event path of length 𝑘 occurring, and 𝑐

𝑘
is

the weighting coefficient giving the number of information bit errors associated with all error
event paths of length 𝑘 in the trellis. The latter, called the weight structure of the code, can be
found from the generating function of the code, which is a function that enumerates all nonzero
paths through the trellis and gives the number of information ones associated with all paths of
a given length. The partial (partial because the upper limit of the sum in (12.141) must be set to
some finite number for computational purposes) weight structures of ‘‘good’’ convolutional
codes have been found and published in the literature (the weights in the program above are
given by the vectors labeled c).8 The error event probabilities are given by9

𝑃
𝑘
=

𝑘∑

𝑒=(𝑘∕2)+1

(
𝑘

𝑒

)
𝑝
𝑒(1 − 𝑝)𝑘−𝑒 +

(
𝑘

𝑘∕2

)
𝑝
𝑘∕2(1 − 𝑝)𝑘∕2, 𝑘 even (12.142)

8J. P. Odenwalder, ‘‘Error Control,’’ in Data Communications, Networks, and Systems, Thomas Bartree (ed.),
Indianapolis: Howard W. Sams, 1985.
9Ziemer and Peterson, 2001, pp. 504--505.
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and

𝑃
𝑘
=

𝑘∑

𝑒=(𝑘+1)∕2

(
𝑘

𝑒

)
𝑝
𝑒(1 − 𝑝)𝑘−𝑒, 𝑘 odd (12.143)

where, for an AWGN channel,

𝑃 = 𝑄

⎛
⎜
⎜
⎝

√
2𝑘𝑅𝐸

𝑏

𝑁0

⎞
⎟
⎟
⎠

(12.144)

in which 𝑅 is the code rate.
Strictly speaking, when the upper limit of (12.141) is truncated to a finite integer, the

upper bound may no longer be true. However, if carried out to a reasonable number of terms,
the finite sum result of (12.141) is a sufficiently good approximation to the bit-error probability
for moderate to low values of 𝑝 as computer simulations have shown.

COMPUTER EXAMPLE 12.5

As an example of the improvement one can expect from a convolutional code, estimates for the bit error
probability for rate 1

2
and 1

3
convolutional codes are plotted in Figures 12.29 and 12.30, respectively, as

computed using the preceding MATLAB program. These results show that, for codes having contraint
length 7, a rate 1

2
code gives about a 3.5 dB improvement at a bit error probability of 10−6 whereas a

rate 1
3
code provides almost 4 dB improvement. For soft decisions (where the output of the detector

is quantized into several levels before being input to the Viterbi decoder), the improvement would be
significantly more (about 5.8 dB and 6.2 dB, respectively10).

12108
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Eb /N0, dB

P
b

convol, coded; hard dec.; rate = 0.5

BPSK uncoded

Figure 12.29
Estimated bit error probability
performance for convolutionally
encoded BPSK operating in an
additive white Gaussian noise
channel; 𝑅 = 1∕2.

10See Ziemer and Peterson, 2001, pp. 511 and 513.
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Figure 12.30
Estimated bit error probability
performance for convolutionally
encoded BPSK operating in an
additive white Gaussian noise
channel; 𝑅 = 1∕3.

■

■ 12.6 BANDWIDTH AND POWER EFFICIENT MODULATION (TCM)

A desirable characteristic of any modulation scheme is the simultaneous conservation of
bandwidth and power. Since the late 1970s, the approach to this challenge has been to combine
coding and modulation. There have been two approaches: (1) continuous phase modulation
(CPM)11 with memory extended over several modulation symbols by cyclical use of a set of
modulation indices; and (2) combining coding with an𝑀-ary modulation scheme, referred to
as trellis-codedmodulation (TCM).12 We briefly explore the latter approach in this section. For
an introductory discussion of the former approach, see Ziemer and Peterson (2001), Chapter
4. Sklar (1988) is a well-written reference with more examples on TCM than given in this
short section.

In Chapter 11 it was illustrated through the use of signal-space diagrams that the most
probable errors in an 𝑀-ary modulation scheme result from mistaking a signal point closest
in Euclidian distance to the transmitted signal point as corresponding to the actual transmitted
signal. Ungerboeck’s solution to this problem was to use coding in conjunction with 𝑀-ary
modulation to increase the minimum Euclidian distance between those signal points most
likely to be confused without increasing the average power or bandwidth over an uncoded
scheme transmitting the same number of bits per second. We illustrate the procedure with a
specific example.

We wish to compare a TCM system and a QPSK system operating at the same data rates.
Since the QPSK system transmits 2 bits per signal phase (signal space point), we can keep

11Continuous phase modulation has been explored by many investigators. For introductory treatments see C.-E.
Sundberg, ‘‘Continuous Phase Modulation,’’ IEEE Communications Magazine, 24: 25--38, April 1986, and J. B.
Anderson and C.-E. Sundberg, ‘‘Advances in Constant Envelope Coded Modulation,’’ IEEE Communications Mag-
azine, 29: 36--45, December 1991.
12Three introductory treatments of TCM can be found in G. Ungerboeck, ‘‘Channel Coding with Multilevel/Phase
Signals,’’ IEEE Transactions on Information Theory, IT-28: 55--66, January 1982; G. Ungerboeck, ‘‘Trellis-Coded
Modulation with Redundant Signal Sets, Part I: Introduction,’’ IEEE Communications Magazine, 25: 5--11, February
1987; and G. Ungerboeck, ‘‘Trellis-Coded Modulation with Redundant Signal Sets, Part II: State of the Art,’’ IEEE
Communications Magazine, 25: 12--21, February 1987.
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Figure 12.31
(a) Convolutional coder and (b) trellis
diagram corresponding to a 4-state,
8-PSK TCM.

that same data rate with the TCM system by employing an 8-PSK modulator, which carries
3 bits per signal phase, in conjunction with a convolutional coder that produces three encoded
symbols for every two input data bits, i.e., a rate 2

3 coder. Figure 12.31(a) shows an coder for
accomplishing this, and Figure 12.31(b) shows the corresponding trellis diagram. The coder
operates by taking the first data bit as the input to a rate 1

2 convolutional coder that produces
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the first and second encoded symbols, and the second data bit directly as the third encoded
symbol. These are then used to select the particular signal phase to be transmitted according
to the following rules:

1. All parallel transitions in the trellis are assigned the maximum possible Euclidian distance.
Since these transitions differ by one code symbol (the one corresponding to the uncoded
bit in this example), an error in decoding these transitions amounts to a single bit error,
which is minimized by this procedure.

2. All transitions emanating or converging into a trellis state are assigned the next to largest
possible Euclidian distance separation.

The application of these rules to assigning the encoded symbols to a signal phase in an
8-PSK system can be done with a technique known as set partitioning, which is illustrated
in Figure 12.32. If the coded symbol 𝑐1 is a 0, the left branch is chosen in the first tier of the
tree, whereas if 𝑐1 is a 1, the right branch is chosen. A similar procedure is followed for tiers 2
and 3 of the tree, with the result being that a unique signal phase is chosen for each possible
coded output.

To decode the TCM signal, the received signal plus noise in each signaling interval is
correlated with each possible transition in the trellis, and a search is made through the trellis by
means of a Viterbi algorithm using the sum of these cross-correlations as metrics rather than
Hamming distance as discussed in conjunction with Figure 12.25 (this is called the use of a
soft decision metric). Also note that the decoding procedure is twice as complicated since two
branches correspond to a path from one trellis state to the next due to the uncoded bit becoming
the third symbol in the code. In choosing the two decoded bits for a surviving branch, the first
decoded bit of the pair corresponds to the input bit 𝑏1 that produced the state transition of the

0 010101

100

0 1

1

1

Code symbol c1:

c2:

c3:

(111)(011)(101)(001)(110)(010)(100)(000)

Figure 12.32
Set partitioning for assigning a rate 2

3
coder output to 8-PSK signal points while obeying the rules for

maximizing free distance. (From G. Ungerboeck, ‘‘Channel Coding with Multilevel/Phase Signals,’’
IEEE Transactions on Information Theory, Vol. IT-28, January 1982, pp. 55--66.)
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branch being decoded. The second decoded bit of the pair is the same as the third symbol 𝑐3
of that branch word, since 𝑐3 is the same as the uncoded bit 𝑏2.

Ungerboeck has characterized the event error probability performance of a signaling
method in terms of the free distance of the signal set. For high SNRs, the probability of
an error event (i.e., the probability that at any given time the VA makes a wrong decision
among the signals associated with parallel transitions, or starts to make a sequence of wrong
decisions along some path diverging from more than one transition from the correct path) is
well approximated by

𝑃 (error event) = 𝑁free𝑄

(
𝑑free
2𝜎

)
(12.145)

where𝑁free denotes the number of nearest-neighbor signal sequences with distance 𝑑free that
diverge at any state from a transmitted signal sequence, and reemerge with it after one or
more transitions. (The free distance is often calculated by assuming the signal energy has been
normalized to unity and that the noise standard deviation 𝜎 accounts for this normalization.)

For uncoded QPSK, we have 𝑑free = 21∕2 and 𝑁free = 2 (there are two adjacent sig-
nal points at distance 𝑑free = 21∕2), whereas for 4-state-coded 8-PSK we have 𝑑free = 2 and
𝑁free = 1. Ignoring the factor 𝑁free, we have an asymptotic gain due to TCM over uncoded
QPSK of 22∕(21∕2)2 = 2 = 3 dB. Figure 12.33, also from Ungerboeck, compares the asymp-
totic lower bound for the error event probability with simulation results.
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Figure 12.33
Performance for a 4-state, 8-PSK TCM
signaling scheme. (From G. Ungerboeck,
‘‘Trellis-Coded Modulation with
Redundant Signal Set, Part l:
Introduction,’’ IEEE Communications
Magazine, February 1987, Vol. 25,
pp. 5--11.)
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Table 12.9 Asymptotic Coding Gains for TCM Systems

Asymtotic coding gain (dB)

No. of States, 𝟐𝒗 𝒌 G𝟖𝐏𝐒𝐊∕𝐐𝐏𝐒𝐊 𝒎 = 𝟐 G𝟏𝟔𝐏𝐒𝐊∕𝟖𝐏𝐒𝐊 𝒎 = 𝟑

4 1 3.01 ---
8 2 3.60 ---

16 2 4.13 ---
32 2 4.59 ---
64 2 5.01 ---

128 2 5.17 ---
256 2 5.75 ---

4 1 --- 3.54
8 1 --- 4.01

16 1 --- 4.44
32 1 --- 5.13
64 1 --- 5.33

128 1 --- 5.33
256 2 --- 5.51

Source: Adapted from G. Ungerboeck, ‘‘Trellis-Coded Modulation with Redundant Signal Sets, Part II: State of the
Art,’’ IEEE Communications Magazine. Vol. 25. February 1987, pp. 12--21.

It should be clear that the TCM coding--modulation procedure can be generalized to
higher-level 𝑀-ary schemes. Ungerboeck shows that this observation can be generalized as
follows:

1. Of the 𝑚 bits to be transmitted per coder--modulator operation, 𝑘 ≤ 𝑚 bits are expanded to
𝑘 + 1 coded symbols by a binary rate 𝑘∕(𝑘 + 1) convolutional coder.

2. The 𝑘 + 1 coded symbols select one of 2𝑘+1 subsets of a redundant 2𝑚+1-ary signal set.

3. The remaining 𝑚 − 𝑘 symbols determine one of 2𝑚−𝑘 signals within the selected subset.

It should also be stated that one may use block codes or other modulation schemes, such
as 𝑀-ary ASK or QASK, to implement a TCM system.

Another parameter that influences the performance of a TCM system is the constraint
span of the code, 𝜈, which is equivalent to saying that the coder has 2𝜈 states. Ungerboeck has
published asymptotic gains for TCM systems with various constraint lengths. These are given
in Table 12.9.

Finally, the paper by Viterbi et al. (1989) gives a simplified scheme for 𝑀-ary PSK that
uses a single rate 1

2 , 64-state binary convolutional code for which very large-scale integrated
circuit implementations are plentiful. A technique known as puncturing converts it to rate
(𝑛 − 1)∕𝑛.

■ 12.7 FEEDBACK CHANNELS

In many practical systems, a feedback channel is available from receiver to transmitter.
When available, this channel can be utilized to achieve a specified performance with de-
creased complexity of the coding scheme.Many such schemes are possible: decision feedback,
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P1 = P{v > a2 s1(t)}

Figure 12.34
Decision regions for a null-zone receiver.

error-detection feedback, and information feedback. In a decision-feedback scheme, a null-
zone receiver is used, and the feedback channel is utilized to inform the transmitter either that
no decision was possible on the previous symbol and to retransmit or that a decision was made
and to transmit the next symbol. The null-zone receiver is usually modeled as a binary-erasure
channel. Error-detection feedback involves the combination of coding and a feedback channel.
With this scheme, retransmission of code words is requested when errors are detected.

In general, feedback schemes tend to be rather difficult to analyze. Thus, only the simplest
scheme, the decision-feedback channel with perfect feedback assumed, will be treated here.
Assume a binary transmission scheme with matched-filter detection. The signaling waveforms
are 𝑠1(𝑡) and 𝑠2(𝑡). The conditional pdfs of the matched-filter output at time 𝑇 , conditioned on
𝑠1(𝑡) and 𝑠2(𝑡), were derived in Chapter 9 and are illustrated for our application in Figure 12.34.
We shall assume that both 𝑠1(𝑡) and 𝑠2(𝑡) have equal a priori probabilities. For the null-zone
receiver, two thresholds, 𝑎1 and 𝑎2, are established. If the sampled matched-filter output,
denoted 𝑉 , lies between 𝑎1 and 𝑎2, no decision is made, and the feedback channel is used
to request a retransmission. This event is denoted an erasure and occurs with probability 𝑃2.
Assuming 𝑠1(𝑡) transmitted, an error is made if 𝑉 > 𝑎2. The probability of this event is denoted
𝑃1. By symmetry, these probabilities are the same for 𝑠2(𝑡) transmitted.

Assuming independence, the probability of 𝑗 − 1 erasures followed by an error is

𝑃 (𝑗 − 1 transmissions, error) = 𝑃
𝑗−1
2 𝑃1 (12.146)

The overall probability of error is the summation of this probability over all 𝑗. This is (note
that 𝑗 = 0 is not included since 𝑗 = 0 corresponds to a correct decision resulting from a single
transmission)

𝑃
𝐸
=

∞∑

𝑗=1
𝑃

𝑗−1
2 𝑃1 (12.147)

which is

𝑃
𝐸
=

𝑃1
1 − 𝑃2

(12.148)

The expected number of transmissions 𝑁 is also easily derived. The result is

𝑁 = 1
(1 − 𝑃2)2

(12.149)
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which is typically only slightly greater than one. It follows from these results that the error
probability can be reduced considerablywithout significantly increasing𝑁 . Thus, performance
is improved without a great sacrifice in information rate.

COMPUTER EXAMPLE 12.6

We now consider a baseband communications system with an integrate-and-dump detector. The output
of the integrate-and-dump detector is given by

𝑉 =

{
+𝐴𝑇 +𝑁, if +𝐴 is sent

−𝐴𝑇 +𝑁, if −𝐴 is sent

where 𝑁 is a random variable representing the noise at the detector output at the sampling instant. The
detector uses two thresholds, 𝑎1 and 𝑎2, where 𝑎1 = −𝛾 𝐴𝑇 and 𝑎2 = 𝛾 𝐴𝑇 . A retransmission occurs if
𝑎1 < 𝑉 < 𝑎2. Here we let 𝛾 = 0.2. The goal of this exercise is to compute and plot both the probability
of error (Figure 12.35) and the expected number of transmissions (Figure 12.36) as a function of
𝑧 = 𝐴

2
𝑇 ∕𝑁0.

The probability-density function of the sampled matched-filter output, conditioned on the transmis-
sion of −𝐴, is

𝑓
𝑉
(𝑣| − 𝐴) = 1

√
2𝜋𝜎

𝑛

exp
(
−(𝑣 + 𝐴𝑇 )2

2𝜎2
𝑛

)
(12.150)

The probability of erasure is

𝑃 (Erasure| − 𝐴) = 1
√
2𝜋𝜎

𝑛

∫

𝑎2

𝑎1

exp
(
−(𝑣 + 𝐴𝑇 )2

2𝜎2
𝑛

)
𝑑𝑣 (12.151)
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Probability of error.
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Expected number of
transmissions.

With

𝑦 = 𝑣 + 𝐴𝑇

𝜎
𝑛

(12.152)

(12.151) becomes

𝑃 (Erasure| − 𝐴) = 1
√
2𝜋 ∫

(1+𝛾)𝐴𝑇 ∕𝜎𝑛

(1−𝛾)𝐴𝑇 ∕𝜎𝑛
exp

(
−𝑦

2

2

)
𝑑𝑦 (12.153)

which may be expressed in terms of the Gaussian 𝑄-function. The result is

𝑃 (Erasure| − 𝐴) = 𝑄

(
(1 − 𝛾)𝐴𝑇

𝜎
𝑛

)
−𝑄

(
(1 + 𝛾)𝐴𝑇

𝜎
𝑛

)
(12.154)

By symmetry

𝑃 (Erasure| − 𝐴) = 𝑃 (Erasure| + 𝐴) (12.155)

In addition, +𝐴 and −𝐴 are assumed to be transmitted with equal probability. Thus,

𝑃 (Erasure) = 𝑃2 = 𝑄

(
(1 − 𝛾)𝐴𝑇

𝜎
𝑛

)
−𝑄

(
(1 + 𝛾)𝐴𝑇

𝜎
𝑛

)
(12.156)

It was shown in Chapter 9 that the variance of 𝑁 for an integrate-and-dump detector, with white noise
input, is

𝜎
2
𝑛
= 1

2
𝑁0𝑇 (12.157)

Thus,

𝐴𝑇

𝜎
𝑛

= 𝐴𝑇

√
2

𝑁0𝑇
=

√
2𝐴2𝑇

𝑁0
(12.158)

which is
𝐴𝑇

𝜎
𝑛

=
√
2𝑧 (12.159)
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With this substitution the probability of an erasure becomes

𝑃2 = 𝑄

[
(1 − 𝛾)

√
2𝑧

]
−𝑄

[
(1 + 𝛾)

√
2𝑧

]
(12.160)

The probability of error, conditioned on the transmission of −𝐴, is

𝑃 (Error| − 𝐴) = 1
√
2𝜋𝜎

𝑛

∫

∞

𝑎2=𝛾𝐴𝑇

exp
(
−(𝑣 + 𝐴𝑇 )2

2𝜎2
𝑛

)
𝑑𝑣 (12.161)

Using the same steps as used to determine the probability of erasure gives

𝑃 (Error) = 𝑃1 = 𝑄

[
(1 + 𝛾)

√
2𝑧

]

The MATLAB code for calculating and plotting the error probability and the expected number of
transmissions follows. For comparison purposes, the probability of error for a single-threshold integrate-
and-dump detector is also determined (simply let 𝛾 = 0 in (12.161)) for comparison purposes.

% File: c12ce6.m
g = 0.2; % gamma
zdB = 0:0.1:10; % z in dB
z = 10.ˆ(zdB/10); % vector of z values
q1 = Q((1-g)*sqrt(2*z));
q2 = Q((1+g)*sqrt(2*z));
qt = Q(sqrt(2*z)); % gamma=0 case
p2 = q1-q2; % P2
p1 = q2; % P1
pe = p1./(1-p2); % probability of error
semilogy(zdB,pe,zdB,qt)
xlabel(’z - dB’)
ylabel(’Probability of Error’)
pause
N = 1./(1-p2);
plot(zdB,N)
xlabel(’z - dB’)
ylabel(’Expected Number of Transmissions’)

% End of script file.

In the preceding program the Gaussian 𝑄-function is calculated using the MATLAB routine

function out=Q(x)

out=0.5*erfc(x/sqrt(2));
■

■ 12.8 MODULATION AND BANDWIDTH EFFICIENCY

In Chapter 8, signal-to-noise ratios were computed at various points in a communication
system. Of particular interest were the signal-to-noise ratio at the input to the demodulator and
the signal-to-noise ratio of the demodulated output. These were referred to as the predetection
SNR, (SNR)

𝑇
, and the postdetection SNR, (SNR)

𝐷
, respectively. The ratio of these parameters,

the detection gain, has been widely used as a figure of merit for the system. In this section
we will compare the behavior of (SNR)

𝐷
as a function of (SNR)

𝑇
for several systems. First,

however, we investigate the behavior of an optimum, but unrealizable system. This study will
provide a basis for comparison and also provide additional insight into the concept of the
trade-off of bandwidth for signal-to-noise ratio.
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Figure 12.37
Block diagram of a communication system.

12.8.1 Bandwidth and SNR

The block diagram of a communication system is illustrated in Figure 12.37. We will focus on
the receiver portion of the system. The SNR at the output of the predetection filter, (SNR)

𝑇
,

yields the maximum rate at which information may arrive at the receiver. From the Shannon--
Hartley law, this rate, 𝐶

𝑇
is

𝐶
𝑇
= 𝐵

𝑇
log

[
1 + (SNR)

𝑇

]
(12.162)

where 𝐵
𝑇
, the predetection bandwidth, is typically the bandwidth of the modulated signal.

Since (12.162) is based on the Shannon--Hartley law, it is valid only for additivewhiteGaussian
noise cases. The SNR of the demodulated output, (SNR)

𝐷
, yields the maximum rate at which

information may leave the receiver. This rate, denoted 𝐶
𝐷
, is given by

𝐶
𝐷
= 𝑊 log[1 + (SNR)

𝐷
] (12.163)

where 𝑊 is the bandwidth of the message signal.
An optimal modulation is defined as one for which 𝐶

𝐷
= 𝐶

𝑇
. For this system, demodu-

lation is accomplished, in the presence of noise, without loss of information. Equating 𝐶
𝐷
to

𝐶
𝑇
yields

(SNR)
𝐷
=

[
1 + (𝑆𝑁𝑅)

𝑇

]𝐵𝑇 ∕𝑊 − 1 (12.164)

which shows that the optimum exchange of bandwidth for SNR is exponential. Recall that we
first encountered the trade-off between bandwidth and system performance, in terms of the
SNR at the output of the demodulator in Chapter 7 when the performance of FM modulation
in the presence of noise was studied.

The ratio of transmission bandwidth 𝐵
𝑇
to the message bandwidth 𝑊 is referred to as

the bandwidth expansion factor 𝛾 . To fully understand the role of this parameter, we write the
predetection SNR as

(SNR)
𝑇
=

𝑃
𝑇

𝑁0𝐵𝑇

= 𝑊

𝐵
𝑇

𝑃
𝑇

𝑁0𝑊
= 1

𝛾

𝑃
𝑇

𝑁0𝑊
(12.165)

Thus, (12.164) can be expressed as

(SNR)
𝐷
=

[
1 + 1

𝛾

(
𝑃
𝑇

𝑁0𝑊

)]𝛾
− 1 (12.166)

The relationship between (SNR)
𝐷
and 𝑃𝑇

𝑁0𝑊
is illustrated in Figure 12.38.
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Performance of an optimum modulation
system.

12.8.2 Comparison of Modulation Systems

The concept of an optimal modulation system provides a basis for comparing system perfor-
mance. For example, an ideal single-sideband system has a bandwidth expansion factor of
one, since the transmission bandwidth is ideally equal to the message bandwidth. Thus, the
postdetection SNR of the optimal modulation system is, from (12.166) with 𝛾 equal to 1,

(SNR)
𝐷
=

𝑃
𝑇

𝑁0𝑊
(12.167)

This is exactly the same result as that obtained in Chapter 8 for an SSB system using coherent
demodulation with a perfect phase reference. Therefore, if the transmission bandwidth 𝐵

𝑇
of

an SSB system is exactly equal to the message bandwidth 𝑊 , SSB is optimal, assuming that
there are no other error sources. Of course, this can never be achieved in practice, since ideal
filters would be required in addition to perfect phase coherence of the demodulation carrier.

The story is quite different with DSB, AM, and QDSB. For these systems, 𝛾 = 2. In
Chapter 7 we saw that the postdetection SNR for DSB and QDSB, assuming perfect coherent
demodulation, is

(SNR)
𝐷
=

𝑃
𝑇

𝑁0𝑊
(12.168)

whereas for the optimal system it is given by (12.166) with 𝛾 = 2.
These results are shown in Figure 12.39 along with the result for AM with square-law

demodulation. It can be seen that these systems are far from optimal, especially for large
values of 𝑃𝑇

𝑁0𝑊
.
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Performance comparison of analog systems.

Also shown in Figure 12.39 is the result for FM without pre-emphasis, with sinusoidal
modulation, assuming a modulation index of 10. With this modulation index, the bandwidth
expansion factor is

𝛾 = 2 (𝛽 + 1)𝑊
𝑊

= 22 (12.169)

The realizable performance of the FM system is taken from Figure 8.18. It can be seen that
realizable systems fall far short of optimal if 𝛾 and 𝑃𝑇

𝑁0𝑊
are large.

■ 12.9 QUICK OVERVIEWS

In this overview section, we consider several important coding techniques. Keep in mind that
these are simply overviews. We hope that the interested student will investigate the topics
considered here in greater detail.

12.9.1 Interleaving and Burst-Error Correction

Many practical communication channels, such as those encountered in mobile communication
systems, exhibit fading in which errors tend to group together in bursts. Thus, errors are no
longer independent. Much attention has been devoted to code development for improving the
performance of systems exhibiting burst-error characteristics. Most of these codes tend to be
more complex than the simple codes previously considered. A code for correction of a single
burst, however, is rather simple to understand and leads to a technique known as interleaving,
which is useful in a number of situations.
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As an example, assume that the output of a source is coded using an (𝑛, 𝑘) block code.
The 𝑖th code word will be of the form

𝜆
𝑖1 𝜆

𝑖2 𝜆
𝑖3 ⋯ 𝜆

𝑖𝑛

Assume that 𝑚 of these code words are read into a table by rows so that the 𝑖th row represents
the 𝑖th code word. This yields the 𝑚 by 𝑛 array

𝜆11 𝜆12 ⋯ 𝜆1𝑛
𝜆21 𝜆22 ⋯ 𝜆2𝑛
𝜆31 𝜆32 ⋯ 𝜆3𝑛
⋮ ⋮ ⋱ ⋮

𝜆
𝑚1 𝜆

𝑚2 ⋯ 𝜆
𝑚𝑛

If transmission is accomplished by reading out of this table by columns, the transmitted stream
of symbols will be

𝜆11 𝜆21 ⋯ 𝜆
𝑚1 𝜆12 𝜆22 ⋯ 𝜆

𝑚2 ⋯ 𝜆1𝑛 𝜆2𝑛 ⋯ 𝜆
𝑚𝑛

The received symbols must be deinterleaved prior to decoding as illustrated in Figure 12.40.
The deinterleaver performs the inverse operation as the interleaver and reorders the received
symbols into blocks of 𝑛 symbols per block. Each block corresponds to a codeword, whichmay
exhibit errors due to channel effects. Specifically, if a burst of errors affects 𝑚 consecutive
symbols, then each code word (length 𝑛) will have exactly one error. An error-correcting
code capable of correcting single errors, such as a Hamming code, will correct the burst of
channel errors induced by the channel if there are no other errors in the transmitted stream of
𝑚𝑛 symbols. Likewise, a double error-correcting code can be used to correct a single burst
spanning 2𝑚 symbols. These codes are known as interleaved codes since 𝑚 code words, each
of length 𝑚, are interleaved to form the sequence of length 𝑚𝑛.

The net effect of the interleaver is to randomize the errors so that the correlation of error
events is reduced. The interleaver illustrated here is called a block interleaver. There are many
other types of interleavers possible, but their consideration is beyond the scope of this simple
introduction. We will see in the following section that the interleaving process plays a critical
role in turbo coding.

Interleaver
Modulator

and

transmitter

Receiver

and

decoder

Channel

Channel

coder

DeinterleaverDecoder
Output data

Data

source

Figure 12.40
Communication system with
interleaving.
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Turbo coder.

12.9.2 Turbo Coding

The study of coding theory has been a search for the coding scheme that yields a communi-
cations system having the performance closely approaching the Shannon bound. For the most
part progress has been incremental. A large step in this quest for nearly ideal performance in
the presence of noise was revealed in 1993with the publication of a paper by Berrou, Glavieux,
and Thitimajshima.13 It is remarkable that this paper was not the result of a search for a more
powerful coding scheme, but was a result of a study of efficient clocking techniques for con-
catenated circuits. Their discovery, however, has revolutionized coding theory. Turbo coding,
and especially decoding, are complex tasks and a study of even simple implementations are
well beyond the scope of this text. We will present, however, a few important concepts as
motivation for further study.

The basic architecture of a turbo coder is illustrated in Figure 12.41. Note that the turbo
coder consists of an interleaver, such aswe studied previously and a pair of recursive systematic
convolutional coders (RSCCs). An RSCC is shown in Figure 12.41. Note that the RSCC is
much like the convolutional coders previously studied with one important difference. That
difference lies in the feedback path from the delay elements back to the input. The conventional
convolutional coder does not have this feedback path and therefore it behaves as an FIR digital
filter. With the feedback path the filter becomes an IIR, or recursive, filter and here lies one of
the attributes of the turbo code. The RSCC shown in Figure 12.42(a) is a rate 1/2 convolutional
coder for which the input 𝑥

𝑖
generates an output sequence 𝑥

𝑖
𝑝
𝑖
. Since the first symbol in the

output sequence is the information symbol, the coder is systematic.
The two RSCCs shown in Figure 12.41 are usually identical and, with the parallel archi-

tecture shown, generate a rate 1/3 code. The input symbol 𝑥
𝑖
produces the output sequence

𝑥
𝑖
𝑝1𝑖𝑝2𝑖. As we know, good code performance (low error probability) results if the Hamming

distance between code words is large. Because of the recursive nature of the coder, a single bi-
nary 1 in the input sequence will produce a periodic parity sequence 𝑝1, with period 𝑇𝑝

. Strictly
speaking, a sequence of unity weight on the input will produce a sequence of infinite weight for
𝑝1. However, if the input sequence consists of a pair of binary ones separated by 𝑇

𝑝
, the parity

sequence will be the sum of two periodic sequences with period 𝑇
𝑝
. Since binary arithmetic

has an addition table that results in a zero when two identical binary numbers are added, the

13C. Berrou, Glavieux, and P. Thitimajshima, ‘‘Near Shannon Limit Error-Correcting Coding and Decoding: Turbo
Codes,’’ Proc. 1993 Int. Conf. Commun., pp. 1064--1070, Geneva, Switzerland, May 1993.

See also D. J. Costello and G. D. Forney, ‘‘Channel Coding: The Road to Channel Capacity,’’ Proc. IEEE,
Vol. 95, pp. 1150--1177, June 2007, for an excellent tutorial article on the history of coding theory.
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Recursive, systematic convolutional
coder.

sum of the two sequences is zero except for the first period of the offset. This, of course, will
reduce the Hamming weight of the first parity sequence, which is an undesirable effect.

This is where the interleaver comes into play. The interleaver will change the separation
between the two binary ones and therefore cancellation will, with high probability, not occur.
It therefore follows that if one of the parity sequences has large Hamming weight, the other
one will not.

Figure 12.43 illustrates the performance of a turbo code for two different interleaver sizes.
The larger interleaver produces better performance results since it can better ‘‘randomize’’
the interleaver input.

Most turbo decoding algorithms are based on the MAP estimation principle studied in
the previous chapter. Of perhaps more importance is the fact that turbo decoding algorithms,
unlike other decoding tools, are iterative in nature so that a given sequence passes through
the decoder a number of times with the error probability decreasing with each pass. As a
result, a trade-off exists between performance and decoding time. This attribute allows one
the freedom to develop application specific decoding algorithms. This freedom is not available
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Figure 12.43
Performance curves for turbo codes.
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in other techniques. For example one can target various decoders for a given quality of service
(QoS) by adjusting the number of iterations used in the decoding process. Decoders can
also be customized to take advantage of latency/performance trade-offs. As an example, data
communications requires low bit error probabilities but latency is not often a problem. Voice
communications, however, requires low latency but higher error probabilities can be tolerated.

The turbo code is an example of a capacity-approaching code since we can achieve per-
formance arbitrarily close to the Shannon bound. Another example of a capacity approaching
code is the low-density parity-check (LDPC) code. Exact decoding of capacity-approaching
codes is what is known as an NP-hard problem and therefore close approximations to the
optimum decoder are sought. LDPC codes were invented by Gallager in 1963 but were over-
looked for many decades due to the difficulties of decoding these codes. (See the Historical
References in the Bibliography.) Decoding approximations exist, such as the iterative decod-
ing technique discussed with the turbo code. The interested student is referred to the excellent
book by William Ryan and Shu Lin (2009).

12.9.3 Source Coding Examples

Earlier in this chapter we considered simple source coding. There are, however, a vast array of
source coding techniques available, all of which have different properties. In order to briefly
demonstrate this, we very briefly consider two very different types of source coders. The first
coder to be considered is the run-length coder, which is a lossless coder. A lossless coder has
the advantage that the original data stream can be exactly reconstructed from the output of the
coder. The second technique, known as JPEG coding, is not lossless but is extremely flexible.

Run-Length Codes

A run-length code is a data compression technique that replaces a binary sequence by a
shorter sequence. The run-length code is most powerful when binary symbols, or sequences of
symbols, are frequently repeated in a data stream. A simple example demonstrates the concept.

COMPUTER EXAMPLE 12.7

The following MATLAB program generates a sequence of symbols, which can be used to illustrate
run-length coding.

% File: c12ce7.m
for k=1:40

z(k)=rand(1);
if z(k)<0.3

z(k)=’B’;
else

z(k)=’W’;
end

end
s=char(z)

% End of script file.

Executing the program gives the result

WWBWWBBWWWBWWWWBWWWWWBWWWWWWWBWBBBBWWWWB
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There are many ways to express the coded sequence. The most straightforward is

2W1B2W2B3W1B4W1B5W1B7W1B1W4B4W1B

which simply means 2 white, 1 black, 2 white, and so forth.
■

The run-length coding technique works best when there are long runs of a given symbol.
As an example, consider a line drawing such as a black-and-white cartoon published in a
newspaper. There will be long runs of white pixels and short runs of black pixels. The run-
length coding technique also works well for FAX transmission since a page being faxed
typically contains mostly white space. When a line of a page being faxed is white space, all
pixels will be white and that line can be transmitted with by, as an example, 75W.

This leads to another variation of run-length coding in which frequently occurring data
streams can be replaced by a single symbol. For example, WWBWW could be replaced by
the symbol C. Many variations are possible. This suggests the use of a sliding window on the
scanned data in order to identify the sequencies to be replaced by shorter symbols.

When Huffman coding was studied earlier in this chapter, it was apparent that the code
words generated by the Huffman code had long strings of 0 or 1, especially for source symbols
having low probability. Thus, the output of a Huffman coder is frequently run-length coded.
This produces the modified Huffman code.

JPEG

In the last section, we saw that run-length coding is useful for black-and-white images in which
the data contains long runs of either black or white. Run-length coding is not useful for source
data like color photographs in which there are many colors and hues. For this type of image
the currently most popular compression technique is JPEG (named for the Joint Photographic
Experts Group, the committee that developed the JPEG standard). In many ways JPEG is
the opposite of run-length coding. Run-length coding is lossless. JPEG coding is not lossless.
Run-length coding is only useful on specific source data as we saw in the preceding section.
JPEG is useful on multi-color images such as photographs. JPEG is ubiquitous in today’s
world and is used for image storing in digital cameras and for image storage in the Internet.
Although JPEG is not lossless, most agree that a 10 to 1 compression can be applied without
perceptable loss of image quality.

Themain advantage of JPEG is that it allows the user to select the trade-off between image
fidelity and the size of the file needed to store the data. Obviously, for a fixed image size, small
files yield low fidelity and, as the file size is allowed to become larger, fidelity is improved. As
an example, one popular camera manufacturer allows the user to choose between JPEG/fine,
JPEG/nomal, and JPEG/basic. JPEG/fine provides very little compression and therefore, image
artifacts are not apparent. JPEG/normal and JPEG/basic typically provide compression of 8:1
and 16:1.

All of the components of the JPEG algorithm have been studied previously in this book.
Briefly stated, the JPEG compression algorithm is based on the discrete cosine transform
(DCT). The image is first divided into data blocks that are 8 by 8 pixels and the data block
is converted into the frequency domain using the DCT. The next step is to quantize the
amplitude and phase components. This is where the image compression takes place. The level
of quantizing determines the compression ratio. The quantized data for all 8 by 8 pixel blocks
is then compressed again using a Huffman code. This last step is of course lossless. The
compressed image is restored by reversing this process.
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12.9.4 Digital Television

The transition from analog television to digital television was completed on June 12, 2009.
As with the conversion from monaural to stereophonic FM transmission, the FCC ruled that
people who owned analog televisions would not find those analog systems obsolete.14 While
making FM stereophonic broadcasts compatible with monaural receivers was, as we saw in
Chapter 4, a simple task, making digital television compatible with analog receivers was far
more complex. It was finally ruled that converter boxes be made available, and a coupon
system was established in the United States to partially offset the cost of converter boxes.

A study of digital television is complicated by the vast number of standards that apply. In
the U.S. terrestrial digital TV transmission makes use of eight-level vestigial sideband. Much
of the rest of the world uses coded OFDM (orthogonal frequency-division multiplexing).
Satellite-based systems use other transmission techniques. There are additional standards
that apply to U.S. terrestial transmission. For example, most HDTV (high-definition digital
television) systems use 1920 by 1080 pixels with interlaced scanning, and have a 16:9 aspect
mode. These images have essentially the same quality as 35-mm photographic slides. SDTV
(standard definition digital television) uses a variety of standards, but in the United States,
640 by 480 having a 4:3 aspect ratio is common.15

The data rate of an uncompressed high-definition digital transmission is huge and is
approximately 1.6 GHz per channel. Therefore, MPEG (developed by the Motion-Picture
Experts Group) image compression and coding is used. Since a ‘‘movie’’ can be viewed as
a sequence of frames, it is not surprising that MPEG can be viewed as a sequence of JPEG
images. Thus, consistent with JPEG, MGEG is based on the discrete cosine transform and
uses the same 8 by 8 pixel data segments as JPEG. Coefficient quantization, like JPEG, is
used for data compression. The properties of human vision, namely persistence, is used to
determine frame refresh rates and frame-to-frame redundancy removal is used for additional
compression. Although less important, compression of the audio signal is also used.

There are many advantages of digital television over analog television. In the opinion of
the author, the two most important are:

1. We earlier saw that error-free regeneration and retransmission of digital signals was pos-
sible. The binary data stream is simply demodulated, remodulated, and retransmitted. As-
suming that the bit-error rate of the original data stream is negligible, noise and interference
effects are removed.

2. For the most part, digital television systems can be implemented using digital signal
processing (DSP). DSP components are small, typically inexpensive, and highly reliable
over long periods of time.

There are a number of other advantages. For example, digital transmission requires lower
power. Ghost imaging due to multipath reflection is much less, and digital signals are easily
multiplexed.

With this brief introduction, it is our hope that the student is motivated to pursue this
subject further.

14The student is reminded that the introduction of new technology into the marketplace is not simply determined by
technical issues but is also determined by legal, regulatory, and financial, just to name a few. The technical world has
little control over many of these issues.
15Clearly, HDTV signals have much greater bandwidth than SDTV signals. Therefore, it is typically necessary to
replace the coaxial cable from the antenna to the TV receiver when converting from SDTV to HDTV in order to
achieve the required capacity.
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Further Reading

An exposition of information theory and coding that was anywhere near complete would, of necessity,
be presented at a level far beyond that intended for this text. The purpose in the present chapter is to
present some of the basic ideas of information theory at a level consistent with the rest of this book.
Hopefully, the material presented here provides motivation for additional study.

The original paper by Shannon (1948) is stimulating reading at about the same level as this chapter.
This paper is available as a paperback with an interesting postscript byW.Weaver (Shannon andWeaver,
1963).

A variety of textbooks on information theory are available. The book by Blahut (1987) is recom-
mended. A current standard that is used in many graduate programs was authored by Cover and Thomas
(2006).

There are also a number of textbooks available that cover coding theory at the graduate level. The
books by text by Lin and Costello (2004) and Wicker (1994) are standard textbooks. The book by Clark
and Cain (1981) contains a wealth of practical information concerning coder and decoder design, in
addition to the usual theoretical background material. As mentioned, the study of capacity approaching
codes is a currently active area of research. The text by Ryan and Lin (2009) is an excellent treatment of
these codes. The interested student should also see Johnson (2009).

As mentioned in the last section of this chapter, the subject of bandwidth and power-efficient com-
munications is very important to the implementation of modern systems. Continuous phase modulation is
treated in the text by Ziemer and Peterson (2001). An introductory treatment of trellis-coded modulation,
(TCM), including a discussion of coding gain, is contained in the book by Sklar (1988). The book by
Biglieri, Divsalar, McLane, and Simon (1991) is a complete treatment of TCM theory, performance, and
implementation.

Summary

1. The information associated with the occurrence of
an event is defined as the logarithm of the probability of
the event. If a base 2 logarithm is used, the measure of
information is the bit.

2. The average information associated with a set of
source outputs is known as the entropy of the source. The
entropy function has a maximum, and the maximum oc-
curs when all source states are equally likely. Entropy is
average uncertainty.

3. A channel with 𝑛 inputs and𝑚 outputs is represented
by the nm transition probabilities of the form 𝑃 (𝑦

𝑗
∣ 𝑥

𝑖
).

The channelmodel can be a diagram showing the transition
probabilities or a matrix of the transition probabilities.

4. A number of entropies can be defined for a sys-
tem. The entropies 𝐻(𝑋) and 𝐻(𝑌 ) denote the average
uncertainty of the channel input and output, respectively.
The quantity 𝐻(𝑋 ∣ 𝑌 ) is the average uncertainty of the
channel input given the output, and 𝐻(𝑌 ∣ 𝑋) is the av-
erage uncertainty of the channel output given the input.
The quantity 𝐻(𝑋, 𝑌 ) is the average uncertainty of the
communication system as a whole.

5. The mutual information between the input and out-
put of a channel is given by

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌 )

or

𝐼(𝑋; 𝑌 ) = 𝐻(𝑌 ) −𝐻(𝑌 ∣ 𝑋)

The maximum value of mutual information, where the
maximization is with respect to the source probabilities, is
known as the channel capacity.

6. Source coding is used to remove redundancy from a
source output so that the information per transmitted sym-
bol can be maximized. If the source rate is less than the
channel capacity, it is possible to code the source output so
that the information can be transmitted through the chan-
nel. This is accomplished by forming source extensions
and coding the symbols of the extended source into code
words having minimum average wordlength. The mini-
mumaveragewordlength �̄� approaches𝐻(𝑋𝑛) = 𝑛𝐻(𝑋),
where 𝐻(𝑋𝑛) is the entropy of the 𝑛th-order extension of
a source having entropy 𝐻(𝑋), as 𝑛 increases.
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7. Two techniques for source coding were illustrated in
this chapter. These were the Shannon--Fano technique and
the Huffman technique. The Huffman technique yields an
optimum source code, which is the source code having
minimum average wordlength.
8. Error-free transmission on a noisy channel can be

accomplished if the source rate is less than the channel
capacity. This is accomplished using channel codes.

9. The capacity of an AWGN channel is

𝐶
𝑐
= 𝐵 log2

(
1 + 𝑆

𝑁

)

where 𝐵 is the channel bandwidth and 𝑆∕𝑁 is the SNR.
This is known as the Shannon--Hartley law.

10. An (𝑛, 𝑘) block code is generated by appending
𝑟 = 𝑛 − 𝑘 parity symbols to a 𝑘-symbol source sequence.
This yields an 𝑛-symbol code word.

11. Decoding is typically accomplished by computing
the Hamming distance from the received 𝑛-symbol se-
quence to each of the possible transmitted code words.
The code word closest in Hamming distance to the re-
ceived sequence is the most likely transmitted code word.
The two code words closest in Hamming distance deter-
mine the minimum distance of the code 𝑑

𝑚
. The code can

correct 1
2
(𝑑

𝑚
− 1) errors.

12. A single-parity-check code is formed by adding a
single-parity symbol to the information sequence. This
(𝑘 + 1, 𝑘) code can detect single errors but provides no
error-correcting capability.

13. The rate of a block code is 𝑘∕𝑛. The best codes pro-
vide powerful error-correction capabilities in combination
with high rate.

14. Repetition codes are formed by transmitting each
source symbol an odd number of times and therefore have
rate 1∕𝑛. Repetition codes do not provide improved perfor-
mance in anAWGNenvironment but do provide improved
performance in a Rayleigh fading environment. This sim-
ple example illustrated the importance of selecting an ap-
propriate coding scheme for a given channel.

15. The parity-check matrix [𝐻] is defined such that
[𝐻][𝑇 ] = [0], where [𝑇 ] is the transmitted codewordwrit-
ten as a column vector. If the received sequence is denoted
by the column vector [𝑅], the syndrome [𝑆] is determined
from [𝑆] = [𝐻][𝑅]. This can be shown to be equivalent
to [𝑆] = [𝐻][𝐸], where [𝐸] is the error sequence. If a
single error occurs in the transmission of a code word, the
syndrome is the column of [𝐻] corresponding to the error
position.

16. The generator matrix [𝐺] of a parity-check code
is determined such that [𝑇 ] = [𝐺][𝐴], where [𝑇 ] is the
𝑛-symbol transmitted sequence and [𝐴] is the 𝑘-symbol
information sequence. Both [𝑇 ] and [𝐴] are written as
column vectors.

17. For a group code, the modulo 2 sum of any two code
words is another code word.

18. A Hamming code is a single error-correcting code
such that the columns of the parity-check matrix corre-
spond to the binary representation of the column index.

19. Cyclic codes are a class of block codes in which a
cyclic shift of code-word symbols always yields another
codeword. These codes are very useful because implemen-
tation of both the coder and decoder is easily accomplished
using shift registers and basic logic components.

20. The channel symbol-error probability of a coded sys-
tem is greater than the symbol-error probability of an un-
coded system since the available energy for transmission of
𝑘 information symbols must be spread over the 𝑛 > 𝑘 sym-
bol code word rather than just the 𝑘 information symbols.
The error-correcting capability of the code often allows a
net performance gain to be realized. The performance gain
depends on the choice of code and the channel character-
istics.

21. Convolutional codes are easily generated using sim-
ple shift registers and modulo 2 adders. Decoding is ac-
complished using a tree-search technique, which is often
implemented using the Viterbi algorithm. The constraint
span is the code parameter having the most significant
impact on performance.

22. Trellis-coded modulation is a scheme for combining
𝑀-ary modulation with coding in a way that increases the
Euclidian distance between those signal points for which
errors aremost likelywithout increasing the average power
or bandwidth over an uncoded scheme having the same bit
rate. Decoding is accomplished using a Viterbi decoder
that accumulates decision metrics (soft decisions) rather
than Hamming distances (hard decisions).

23. The feedback channel system makes use of a null-
zone receiver, and a retransmission is requested if the re-
ceiver decision falls within the null zone. If a feedback
channel is available, the error probability can be signifi-
cantly reduced with only a slight increase in the required
number of transmissions.

24. Interleaved codes are useful for burst-noise environ-
ments.

25. Run-length codes are most useful for compressing
data streams that have long runs of a single symbol, such
as a scan of a document having mostly white space. Run-
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length codes are lossless since the original data can be
perfectly reconstructed from the coded data. Run-length
codes are frequently combined with Huffman codes.

26. JPEG codes are not lossless but allow the user to se-
lect a degree of compression allowing a trade-off between
image fidelity and file size. They are useful on images
having many color tones such as photographs.

27. Digital television makes use of a wide-variety of
standards and is available in both high definition and
standard definition. Image compression is necessary and

MPEG, which is basically an extension of JPEG, is used.
Digital television has many advantages, two of which are
noise immunity, due to the use of signal regreneration, and
implementation through the use of DSP.

28. Use of the Shannon--Hartley law yields the con-
cept of optimum modulation for a system operating in
an AWGN environment. The result is the performance of
an optimum system in terms of predetection and postde-
tection bandwidth. The trade-off between bandwidth and
SNR is easily seen.

Drill Problems

12.1 Amessage occurs with a probability of 0.8. Deter-
mine the information associated with the message in bits,
nats, and hartleys.

12.2 (a) A source outputs 73 equally likely messages.
Determine the information, in bits, associated with each
message. (b) Repeat assuming that there are 37 equally
likely messages.

12.3 A source has three outputs with probabilities 1
6
,

1
2
, and 1

3
. Determine the entropy of the source. Give the

source probabilities that yield the maximum entropy for a
source with three outputs.

12.4 A communication system consists of two binary
symmetric channels in cascade. The first BSC has an er-
ror probability of 0.03 and the second BSC has an error
probability of 0.07. Determine the error probability of the
cascade combination.

12.5 A binary symmetric channel has an error prob-
ability of 0.001. Write the channel transition probability
matrix. Assuming that the input probabilities are 0.3 and
0.7, determine the output probabilities.

12.6 A binary symmetric channel has an error proba-
bility of 0.001. Determine the channel capacity.

12.7 The symbol probabilities of a binary source are 0.4
and 0.6. Determine the entropy of the fifth-order source
extension.

12.8 A communications system operates in an AWGN
channel with a signal-to-noise ratio of 25 dB. The channel

bandwidth is 15 kHz. Determine the channel capacity in
bps.

12.9 Give the transmitted code words of a rate 1
7
repe-

tition code. What is the Hamming distance between the
code words? How many errors per code word can be
corrected?

12.10 Consider a (5,4) code. What kind of code is this?
How many errors per code word can be corrected? How
many errors per code word can be detected? Give the gen-
erator matrix of this code.

12.11 A (7,4) single error-correcting code has the source
symbols in positions 1, 2, 6, and 7.Write the generator ma-
trix for this code.

12.12 A convolutional code has a constraint span of 5.
Assuming that data symbols are input to the coder one bit
at a time, how many states does it take to define the state
diagram of the coder?

12.13 A communications system uses feedback to in-
crease reliability. The system is modeled as a binary era-
sure channelwith an erasure probability of 0.01.Determine
the average number of transmissions needed for transmis-
sion of a symbol.

12.14 A communications system operates with a mes-
sage signal bandwidth of 10 kHz and a transmission
bandwidth of 250 kHz. What is the bandwidth expansion
factor? Assuming a predetection SNR of 20 dB and opti-
mum demodulation, determine the postdetection SNR.

Problems

Section 12.1

12.1 A binary three-hop communication system has
transition probabilities 𝛼

𝑖
, 𝛽

𝑖
, and 𝛾

𝑖
(𝑖 = 1, 2, 3, 4). Deter-

mine the transition probabilities for the overall three-hop

system. Solve this problem two different ways. First, trace
all possible paths from the input to the output and compute
the probabilities for each path. Then solve this problem as
a matrix multiplication.
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12.2 Assume that you have a standard deck of 52 cards
(jokers have been removed).

(a) What is the information associated with the draw-
ing of a single card from the deck?

(b) What is the information associated with the draw-
ing of a pair of cards, assuming that the first card
drawn is replaced in the deck prior to drawing the
second card?

(c) What is the information associated with the draw-
ing of a pair of cards assuming that the first card
drawn is not replaced in the deck prior to drawing
the second card?

12.3 A source has five outputs denoted [𝑚1, 𝑚2, 𝑚3,

𝑚4, 𝑚5] with respective probabilities [0.30, 0.25, 0.20,
0.15, 0.10]. Determine the entropy of the source. What
is the maximum entropy of a source with five outputs?

12.4 A source consists of six outputs denoted [𝐴,𝐵,𝐶 ,
𝐷, 𝐸, 𝐹 ] with respective probabilities [0.30, 0.25, 0.20,
0.1, 0.1, 0.05]. Determine the entropy of the source.

12.5 A channel has the following transition matrix:

⎡
⎢
⎢
⎢
⎣

0.6 0.3 0.1
0.2 0.5 0.3
0.2 0.2 0.6

⎤
⎥
⎥
⎥
⎦

(a) Sketch the channel diagram showing all transition
probabilities.

(b) Determine the channel output probabilities as-
suming that the input probabilities are equal.

(c) Determine the channel input probabilities that re-
sult in equally likely channel outputs.

(d) Determine the joint probability matrix using
part (c).

12.6 Abinary symmetric channel has an error probabil-
ity of 0.007. How many of these channels can be cascaded
before the overall error probability exceeds 0.02?

12.7 A channel has two inputs, (0, 1), and three out-
puts, (0, 𝑒, 1), where 𝑒 indicates an erasure; that is, there
is no output for the corresponding input. The channel
matrix is [

1 − 𝑝 𝑝 0
0 𝑝 1 − 𝑝

]

Compute the channel capacity.
12.8 Abinary symmetric channelwith error probability

𝑝1 is followed by an erasure channel with erasure proba-
bility 𝑝2. Describe the channel matrix that results from this
cascade combination of channels. Comment on the results.

12.9 Determine the capacity of the channel described
by the channel matrix shown below. Sketch your result as
a function of 𝑝 and give an intuitive argument that supports
your sketch. (Note: 𝑞 = 1 − 𝑝.). Generalize to 𝑁 parallel
binary symmetric channels.

⎡
⎢
⎢
⎢
⎢
⎣

𝑝 𝑞 0 0
𝑞 𝑝 0 0
0 0 𝑝 𝑞

0 0 𝑞 𝑝

⎤
⎥
⎥
⎥
⎥
⎦

12.10 From the entropy definitions given in (12.25)
through (12.29), derive (12.30) and (12.31).

12.11 The input to a quantizer is a random signal having
an amplitude probability density function

𝑓
𝑋
(𝑥) =

{
𝑎𝑒

−𝑎𝑥
, 𝑥 ≥ 0

0, 𝑥 < 0

The signal is to be quantized using four quantizing lev-
els 𝑥

𝑖
as shown in Figure 12.44. Determine the values

𝑥
𝑖
, 𝑖 = 1, 2, 3, in terms of 𝑎 so that the entropy at the quan-

tizer output is maximized.

x10 x2 x3

Figure 12.44

12.12 Repeat the preceding problem assuming that the
input to the quantizer has the Rayleigh probability density
function

𝑓
𝑋
(𝑥) =

{ 𝑥

𝑎2
𝑒
−𝑥2∕2𝑎2

, 𝑥 ≥ 0

0, 𝑥 < 0

12.13 Determine the quantizing levels, in terms of 𝜎, so
that the entropy at the output of a quantizer is maximized.
Assume that there are six quantizing levels and that the
input to the quantizer is a zero-mean Gaussian process.

12.14 Two binary symmetrical channels are in cascade,
as shown in Figure 12.45. Determine the capacity of each
channel. The overall system with inputs 𝑥1 and 𝑥2 and out-
puts 𝑧1 and 𝑧2 can be represented as shown with 𝑝11, 𝑝12,
𝑝21, and 𝑝22 properly chosen. Determine these four prob-
abilities and the capacity of the overall system. Comment
on the results.
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0.25

x1

x2

y1

y2

z1

z2

z1

z2

x1

x2

p11

p12

p21

p22

Figure 12.45

Section 12.2

12.15 A source has two outputs [𝐴,𝐵] with respective
probabilities [ 5

8
,
3
8
]. Determine the entropy of the fourth-

order extension of this source using two different methods.

12.16 Calculate the entropy of the fourth-order exten-
sion of the source defined in Table 12.1. Determine �̄�∕𝑛
for 𝑛 = 4, and add this result to those shown in Figure
12.9. Determine the efficiency of the resulting codes for
𝑛 = 1, 2, 3, and 4.

12.17 Asource has seven equally likely outputmessages.
Determine a Shannon--Fano code for the source, and de-
termine the efficiency of the resulting code. Repeat for the
Huffman code, and compare the results.

12.18 A source has five outputs denoted
[𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5] with respective probabilities [0.40,
0.20, 0.17, 0.13, 0.10]. Determine the code words to rep-
resent the source outputs using both the Shannon--Fano
and the Huffman techniques.

12.19 A binary source has output probabilities [0.85,
0.15]. The channel can transmit 350 binary symbols per
second at the capacity of 1 bit/symbol. Determine themax-
imum source symbol rate if transmission is to be accom-
plished.

12.20 A source output consists of eleven equally likely
messages. Encode the source output using both binary
Shannon--Fano and Huffman codes. Compute the effi-

ciency of both of the resulting codes and compare the
results.

12.21 An analog source has an output described by the
probability density function

𝑓
𝑋
(𝑥) =

{
2𝑥, 0 ≤ 𝑥 ≤ 1
0, otherwise

The output of the source is quantized into 10 messages
using the eleven quantizing levels

𝑥
𝑖
= 0.1𝑘, 𝑘 = 0, 1,… , 10

The resulting messages are encoded using a binary Huff-
man code. Assuming that 250 samples of the source are
transmitted each second, determine the resulting binary
symbol rate in symbols per second. Also determine the
information rate in bits per second.

12.22 A source output consists of five messages
[𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5] with respective probabilities [0.35,
0.25, 0.2, 0.15, 0.05]. Determine the binary code words
for the second-order source extension using the Shannon--
Fano and Huffman coding techniques. Determine the effi-
ciency of the resulting codes and comment on the results.

12.23 It can be shown that a necessary and sufficient
condition for the existence of an instantaneous binary code
with wordlengths 𝑙

𝑖
, 1 ≤ 𝑖 ≤ 𝑁 , is

𝑁∑

𝑖=1
2−𝑙𝑖 ≤ 1

This is known as the Kraft inequality. Show that the Kraft
inequality is satisfied by the code words given in Table
12.3. (Note: The inequality given above must also be sat-
isfied for uniquely decipherable codes.)

Section 12.3

12.24 A continuous bandpass channel can be modeled
as illustrated in Figure 12.46. Assuming a signal power
of 60 W and a noise power spectral density of 10−5 W/Hz,
plot the capacity of the channel as a function of the chan-
nel bandwidth, and compute the capacity in the limit as
𝐵 → ∞.

∑ Filter

bandwidth = B
Signal

White

Gaussian

noise

Figure 12.46
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12.25 Consider again the bandpass channel illustrated in
Figure 12.46. The noise power spectral density is 10−5 and
the bandwidth is 10 kHz. Plot the capacity of the channel
as a function of signal power 𝑃

𝑇
, and compute the capacity

in the limit as 𝑃
𝑇
→ ∞. Contrast the result of this problem

with the result of preceding problem.

Section 12.4

12.26 Develop an analysis that shows that increasing 𝑛

for a rate 1∕𝑛 code always degrades system performance
in an AWGN. In order to obtain specific results, assume
PSK modulation.

12.27 Write the parity-check matrix and the generator
matrix for a (15, 11) single error-correcting code. Assume
that the code is systematic. Calculate the code word corre-
sponding to the all-ones information sequence. Calculate
the syndrome corresponding to an error in the third posi-
tion assuming the code word corresponding to the all-ones
input sequence.

12.28 A parity-check code has the parity-check matrix

[𝐻] =
⎡
⎢
⎢
⎢
⎣

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎥
⎥
⎥
⎦

Determine the generator matrix and find all possible code
words.

12.29 For the code described in the preceding problem,
find the code words [𝑇1] and [𝑇2] corresponding to the
information sequences

[𝐴1] =

⎡
⎢
⎢
⎢
⎢
⎣

0
1
1
1

⎤
⎥
⎥
⎥
⎥
⎦

[𝐴2] =

⎡
⎢
⎢
⎢
⎢
⎣

1
0
1
0

⎤
⎥
⎥
⎥
⎥
⎦

Using these two code words, illustrate the group property.

12.30 Determine the relationship between 𝑛 and 𝑘 for a
Hamming code. Use this result to show that the code rate
approaches 1 for large 𝑛.

12.31 Determine the generator matrix for the coder il-
lustrated in Figure 12.15. Use the generator matrix to gen-
erate the complete set of code words and use the results to
check the code words shown in Figure 12.15. Show that
these code words constitute a cyclic code.

12.32 Use the result of the preceding problem to de-
termine the parity-check matrix for the coder shown in
Figure 12.15. Use the parity-check matrix to decode the

received sequences 1101001 and 1101011. Compare your
result with that shown in Figure 12.16.

12.33 Consider the coded system examined in Computer
Example 12.1. Show that the probability of three symbol
errors in a code word is negligible compared to the proba-
bility of two symbol errors in a code word for SNRs above
a certain level.

Section 12.5

12.34 Consider the convolutional coder shown in Figure
12.24. The shift register contents are 𝑆1𝑆2𝑆3, where 𝑆1
represents the most recent input. Compute the output se-
quence 𝑣1𝑣2𝑣3 for 𝑆1 = 0 and for 𝑆1 = 1. Show that the
two output sequences generated are complements. Is this
desirable? Why?

12.35 Repeat the preceding problem for the convolu-
tional coder illustrated in Figure 12.47. For the coder
shown in Figure 12.47, the shift register contents are
𝑆1𝑆2𝑆3𝑆4, where 𝑆1 represents the most recent input.

S2S1 S3 S4

++

Input

Output

v1 v2

Figure 12.47

12.36 What is the constraint span of the convolutional
coder shown in Figure 12.47? Draw the state diagram,
giving the output for each state transition.

12.37 Determine the state diagram for the convolutional
coder shown in Figure 12.48. Draw the trellis diagram
through the first set of steady-state transitions. On a sec-
ond trellis diagram, show the termination of the trellis to
the all-zero state.

Section 12.6

12.38 Asource produces binary symbols at a rate of 5000
symbols per second. The channel is subjected to error
bursts lasting 0.2 s Devise an encoding scheme using
an interleaved (𝑛, 𝑘) Hamming code, which allows full
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S2S1 S3

++

Input

Output

v1 v2

Figure 12.48

correction of the error burst. Assume that the information
rate out of the coder is equal to the information rate into

the coder. What is the minimum time between bursts if
your system is to operate properly?

12.39 Repeat the preceding problem assuming a (23,12)
Golay code.

12.40 Develop the appropriate analysis to verify the cor-
rectness of (12.149).

Section 12.7

12.41 Compare FM with pre-emphasis to an optimal
modulation system for 𝛽 = 1, 5, and 10. Consider only
operation above threshold, and assume 20 dB as the value
of 𝑃

𝑇
∕𝑁0𝑊 at threshold.

12.42 Derive (12.149), the expression for the expected
number of transmissions for the feedback channel.

Computer Exercises

12.1 Develop a computer program that allows you to
plot the entropy of a source with variable output probabili-
ties. We wish to observe that the maximum source entropy
does indeed occur when the source outputs are equally
likely. Start with a simple two-output source [𝑚1, 𝑚2]with
respective probabilities [𝑎, 1 − 𝑎], and plot the entropy as
a function of the parameter 𝑎. Then consider more com-
plex cases such as a three-output source [𝑚1, 𝑚2, 𝑚3] with
respective probabilities [𝑎, 𝑏, 1 − 𝑎 − 𝑏]. Be creative with
the manner in which the results are displayed.

12.2 Develop a MATLAB program that generates the
Huffman source code for an input randombinary bit stream
of arbitrary length.

12.3 Computer Example 12.2 did not contain the MAT-
LAB program used to generate Figure 12.18. Develop a
MATLAB program for generating Figure 12.18, and use
your program to verify the correctness of Figure 12.18.

12.4 Table 12.5 gives a short list of rate 1
2
and rate 3

4
BCH codes. Using the Torrieri bound and an appropriate
MATLAB program, plot together on a single set of axes
the bit error probability for the rate 1

2
BCH codes having

block length 𝑛 = 7, 15, 31, and 63. Assume PSK modula-
tion with matched-filter detection. Repeat for rate 3

4
BCH

codes having block length 𝑛 = 15, 31, 63, and 127. What
conclusions can you draw from this exercise?

12.5 In implementing the Torrieri technique for compar-
ing codes on the basis of information bit error probability,
the MATLAB function nchoosek was used. Using
this function for large values of 𝑛 and 𝑘 can give rise to
numerical precision difficulties that result from the facto-
rial function. In order to illustrate this problem, execute
the MATLAB function nchoosek with 𝑛 = 1000 and
𝑘 = 500. Develop an alternative technique for calculat-
ing nchoosek that mitigates some of these problems.
Using your technique develop a performance comparison
for (511,385) and (1023,768) BCH codes. Assume FSK
modulation with coherent demodulation.

12.6 Develop a MATLAB program for generating the
tree diagram illustrated in Figure 12.25.
12.7 Repeat Computer Example 12.6 for 𝛾 = 0.1 and
𝛾 = 0.3 and 𝛾 = 0.4 What do you conclude from these
results combined with the results of Computer Example
12.6, which were generated for 𝛾 = 0.2?

12.8 In Computer Example 12.7, a runstream of W and
B symbols was generated. Develop a MATLAB program
to develop the run-length code.
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APPENDIXA

PHYSICAL NOISE SOURCES

As discussed in Chapter 1, noise originates in a communication system from two broad classes of sources: those external to the

system, such as atmospheric, solar, cosmic, or man-made sources, and those internal to the system. The degree to which external

noise sources influence system performance depends heavily upon system location and configuration. Consequently, the reliable

analysis of their effect on system performance is difficult and depends largely on empirical formulas and on-site measurements.

Their importance in the analysis and design of communication systems depends on their intensity relative to the internal noise

sources. In this appendix, we are concerned with techniques of characterization and analysis of internal noise sources.

Noise internal to the subsystems that compose a communication system arises as a result of the random motion of charge

carriers within the devices composing those subsystems. We now discuss several mechanisms that give rise to internal noise and

suitable models for these mechanisms.

■ A.1 PHYSICAL NOISE SOURCES

A.1.1 Thermal Noise

Thermal noise is the noise arising from the random motion of charge carriers in a conducting or semiconducting medium.
Such random agitation at the atomic level is a universal characteristic of matter at temperatures other than absolute zero.
Nyquist was one of the first to have studied thermal noise. Nyquist’s theorem states that the mean-square noise voltage
appearing across the terminals of a resistor of 𝑅 ohms at temperature 𝑇 Kelvins in a frequency band 𝐵 hertz is given by

𝑣rms
2 =

⟨
𝑣
𝑛

2(𝑡)
⟩
= 4𝑘𝑇𝑅𝐵V2 (A.1)

where

𝑘 = Boltzmann’s constant = 1.38 × 10−23 J/K

Thus, a noisy resistor can be represented by an equivalent circuit consisting of a noiseless resistor in series with a
noise generator of rms voltage 𝑣

𝑟𝑚𝑠
as shown in Figure A.1(a). Short-circuiting the terminals of Figure A.1(a) results in

a short-circuit noise current of mean-square value

𝑖
𝑟𝑚𝑠

2 =
⟨
𝑖
𝑛

2 (𝑡)
⟩
=

⟨
𝑣
𝑛

2 (𝑡)
⟩

𝑅2 = 4𝑘𝑇𝐵
𝑅

= 4𝑘𝑇𝐺𝐵 A2 (A.2)

where𝐺 = 1∕𝑅 is the conductance of the resistor. The Thevenin equivalent of Figure A.1(a) can therefore be transformed
to the Norton equivalent shown in Figure A.1(b).
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)b()a(

R (noiseless)

vrms = (4k TRB) 1/2 irms = (4k TRB) 1/2 G =

(noiseless)

1

R

Figure A.1
Equivalent circuits for a noisy resistor. (a) Thevenin. (b) Norton.

EXAMPLE A.1

Consider the resistor network shown in Figure A.2. Assuming room temperature of 𝑇 = 290K, find the rms noise voltage appearing at
the output terminals in a 100 kHz bandwidth.

S o l u t i o n

We use voltage division to find the noise voltage due to each resistor across the output terminals. Then, since powers due to independent
sources add, we find the rms output voltage 𝑣0 by summing the square of the voltages due to each resistor (proportional to power), which
gives the total mean-square voltage, and take the square root to give the rms voltage. The calculation yields

𝑣0
2 = 𝑣01

2 + 𝑣02
2 + 𝑣03

2

where

𝑣01 =
√
4𝑘𝑇𝑅1𝐵

(
𝑅3

𝑅1 +𝑅2 +𝑅3

)
(A.3)

𝑣02 =
√
4𝑘𝑇𝑅2𝐵

(
𝑅3

𝑅1 +𝑅2 +𝑅3

)
(A.4)

and

𝑣03 =
√
4𝑘𝑇𝑅3𝐵

(
𝑅1 + 𝑅2

𝑅1 +𝑅2 +𝑅3

)
(A.5)

In the above expressions,
√
4𝑘𝑇𝑅

𝑖
𝐵 represents the rms voltage across resistor 𝑅

𝑖
. Thus,

𝑣0
2 = (4𝑘𝑇𝐵)

[ (
𝑅1 + 𝑅2

)
𝑅3

2

(
𝑅1 +𝑅2 +𝑅3

)2 +
(
𝑅1 + 𝑅2

)2
𝑅3

(
𝑅1 +𝑅2 +𝑅3

)2

]

R2 = 100 Ω 

R3 =

1000 Ω

R1

(all noiseless)

R2

R3
R1 =

1000 Ω
v0

(a) (b)

v2
2 = 4kTR2

Bv1
2 = 4kTR1 3

2 = 4kTR3B

v0

~~

~

v

B

Figure A.2
Circuits for noise calculation. (a) Resistor network. (b) Noise equivalent circuit.
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=
(
4 × 1.38 × 10−23 × 290 × 105

)

×
[
(1100) (1000)2

(2100)2
+ (1100)2 (1000)

(2100)2

]

≅ 8.39 × 10−13 V2 (A.6)

Therefore,

𝑣0 = 9.16 × 10−7 V (rms) (A.7)

■

A.1.2 Nyquist’s Formula

Although Example A.1 is instructive from the standpoint of illustrating noise computations involving several noisy
resistors, it also illustrates that such computations can be exceedingly long if many resistors are involved. Nyquist’s
formula, which can be proven from thermodynamic arguments, simplifies such computations considerably. It states: The
mean-square noise voltage produced at the output terminals of any one-port network containing only resistors, capacitors,
and inductors is given by

⟨
𝑣
𝑛

2 (𝑡)
⟩
= 2𝑘𝑇

∫

∞

−∞
𝑅 (𝑓 ) 𝑑𝑓 (A.8)

where 𝑅 (𝑓 ) is real part of the complex impedance seen looking back into the terminals (in terms of frequency in hertz,
𝑓 = 𝜔∕2𝜋). If the network contains only resistors, the mean-square noise voltage in a bandwidth 𝐵 is

⟨
𝑣
𝑛

2⟩ = 4𝑘𝑇𝑅eq𝐵V2 (A.9)

where 𝑅eq is the Thevenin equivalent resistance of the network.

EXAMPLE A.2

If we look back into the terminals of the network shown in Figure A.2, the equivalent resistance is

𝑅eq = 𝑅3 ∥
(
𝑅1 +𝑅2

)
=
𝑅3

(
𝑅1 +𝑅2

)

𝑅1 + 𝑅2 + 𝑅3
(A.10)

Thus,

𝑣0
2 =

4𝑘𝑇𝐵𝑅3
(
𝑅1 +𝑅2

)

(
𝑅1 + 𝑅2 + 𝑅3

) (A.11)

which can be shown to be equivalent to the result obtained previously.
■

A.1.3 Shot Noise

Shot noise arises from the discrete nature of current flow in electronic devices. For example, the electron flow in a
saturated thermionic diode is due to the sum total of electrons emitted from the cathode that arrive randomly at the anode,
thus providing an average current flow 𝐼

𝑑
(from anode to cathode when taken as positive) plus a randomly fluctuating

component of mean-square value

𝑖rms
2 =

⟨
𝑖
𝑛

2 (𝑡)
⟩
= 2𝑒𝐼

𝑑
𝐵 A2 (A.12)

where 𝑒 = charge of the electron = 1.6 × 10−19 C. Equation (A.12) is known as Schottky’s theorem.
Since powers from independent sources add, it follows that the squares of noise voltages or noise currents from

independent sources, such as two resistors or two currents originating from independent sources, add. Thus, when applying
Schottky’s theorem to a p-n junction, we recall that the current flowing in a p-n junction diode

𝐼 = 𝐼
𝑠

[
exp

(
𝑒𝑉

𝑘𝑇

)
− 1

]
(A.13)

www.it-ebooks.info

http://www.it-ebooks.info/


696 Appendix A ∙ Physical Noise Sources

where 𝑉 is the voltage across the diode and 𝐼
𝑠
is the reverse saturation current, can be considered as being caused by

two independent currents −𝐼
𝑠
and 𝐼

𝑠
exp (𝑒𝑉 ∕𝑘𝑇 ). Both currents fluctuate independently, producing a mean-square shot

noise current given by

𝑖rms,tot
2 =

[
2𝑒𝐼

𝑠
exp

(
𝑒𝑉

𝑘𝑇

)
+ 2𝑒𝐼

𝑠

]
𝐵

= 2𝑒
(
𝐼 + 2𝐼

𝑠

)
𝐵 (A.14)

For normal operation, 𝐼 ≫ 𝐼
𝑠
and the differential conductance is 𝑔0 = 𝑑𝐼∕𝑑𝑉 = 𝑒𝐼∕𝑘𝑇 , so that (A.14) may be approxi-

mated as

𝑖rms,tot
2 ≅ 2𝑒𝐼𝐵 = 2𝑘𝑇

(
𝑒𝐼

𝑘𝑇

)
𝐵 = 2𝑘𝑇 𝑔0𝐵 (A.15)

which can be viewed as half-thermal noise of the differential conductance 𝑔0 since there is a factor of 2 rather than a
factor of 4 as in (A.2).

A.1.4 Other Noise Sources

In addition to thermal and shot noise, there are three other noise mechanisms that contribute to internally generated noise
in electronic devices. We summarize them briefly here. A fuller treatment of their inclusion in the noise analysis of
electronic devices is given by Van der Ziel (1970).

Generation-Recombination Noise

Generation-recombination noise is the result of free carriers being generated and recombining in semiconductor material.
One can consider these generation and recombination events to be random. Therefore, this noise process can be treated
as a shot noise process.

Temperature-Fluctuation Noise

Temperature-fluctuation noise is the result of the fluctuating heat exchange between a small body, such as a transistor,
and its environment due to the fluctuations in the radiation and heat-conduction processes. If a liquid or gas is flowing
past the small body, fluctuation in heat convection also occurs.

Flicker Noise

Flicker noise is due to various causes. It is characterized by a spectral density that increases with decreasing frequency.
The dependence of the spectral density on frequency is often found to be proportional to the inverse first power of the
frequency. Therefore, flicker noise is sometimes referred to as one-over-f noise. More generally, flicker noise phenomena
are characterized by power spectra that are of the form constant/𝑓𝛼 , where 𝛼 is close to unity. The physical mechanism
that gives rise to flicker noise is not well understood.

A.1.5 Available Power

Since calculations involving noise involve transfer of power, the concept of maximum power available from a source of
fixed internal resistance is useful. Figure A.3 illustrates the familiar theorem regarding maximum power transfer, which
states that a source of internal resistance 𝑅 delivers maximum power to a resistive load 𝑅

𝐿
if 𝑅 = 𝑅

𝐿
and that, under

these conditions, the power 𝑃 produced by the source is evenly split between source and load resistances. If 𝑅 = 𝑅
𝐿
,

the load is said to be matched to the source, and the power delivered to the load is referred to as the available power 𝑃
𝑎
.

Thus, 𝑃
𝑎
= 1

2
𝑃 , which is delivered to the load only if 𝑅 = 𝑅

𝐿
. Consulting Figure A.3(a), in which 𝑣rms is the rms voltage

of the source, we see that the voltage across 𝑅
𝐿
= 𝑅 is 1

2
𝑣rms. This gives

𝑃
𝑎
= 1
𝑅

(1
2
𝑣rms

)2
=
𝑣rms

2

4𝑅
(A.16)
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)b()a(

R

vrms GL = 1/RLRL G = 1/Rirms

Figure A.3
Circuits pertinent to maximum power transfer theorem. (a) Thevenin equivalent for a source with load resistance 𝑅

𝐿
. (b) Norton

equivalent for a source with load conductance 𝐺
𝐿
.

Similarly, when dealing with a Norton equivalent circuit as shown in Figure A.3(b), we can write the available power as

𝑃
𝑎
=
(1
2
𝑖rms

)2
𝑅 =

𝑖rms
2

4𝐺
(A.17)

where 𝑖rms = 𝑣rms∕𝑅 is the rms noise current.
Returning to (A.1) or (A.2) and using (A.16) or (A.17), we see that a noisy resistor produces the available power

𝑃
𝑎,𝑅

= 4𝑘𝑇𝑅𝐵
4𝑅

= 𝑘𝑇𝐵 W (A.18)

Similarly, from (A.15), a diode with load resistance matched to its differential conductance produces the available power

𝑃
𝑎,𝐷

= 1
2
𝑘𝑇𝐵 W, 𝐼 ≫ 𝐼

𝑠
(A.19)

EXAMPLE A.3

Calculate the available power per hertz of bandwidth for a resistance at room temperature, taken to be 𝑇0 = 290K. Express in decibels
referenced to 1 watt (dBW) and decibels referenced to 1 milliwatt (dBm).

S o l u t i o n

Power/hertz = 𝑃
𝑎,𝑅

∕𝐵 =
(
1.38 × 10−23

)
(290) = 4.002 × 10−21 W/Hz

Power/hertz in dBW = 10 log10
(
4.002 × 10−21∕1

)
≅ −204 dBW

Power/hertz in dBm = 10 log10
(
4.002 × 10−21∕10−3

)
≅ −174 dBm

■

A.1.6 Frequency Dependence

In Example A.2, available power per hertz for a noisy resistor at 𝑇0 = 290 K was computed and found, to good
approximation, to be --174 dBm/Hz, independent of the frequency of interest. Actually, Nyquist’s theorem, as stated by
(A.1), is a simplification of a more general result. The proper quantum mechanical expression for available power per
hertz, or available power spectral density 𝑆

𝑎
(𝑓 ), is

𝑆
𝑎
(𝑓 ) ≜

𝑃
𝑎

𝐵
= ℎ𝑓

exp(ℎ𝑓∕𝑘𝑇 ) − 1
W∕Hz (A.20)

where ℎ = Planck’s constant = 6.6254 × 10−34 J-s.
This expression is plotted in Figure A.4, where it is seen that for all but very low temperatures and very high

frequencies, the approximation is good that 𝑆
𝑎
(𝑓 ) is constant (that is, 𝑃

𝑎
is proportional to bandwidth 𝐵).

A.1.7 Quantum Noise

Taken by itself, (A.20) might lead to the false assumption that for very high frequencies where ℎ𝑓 ≫ 𝑘𝑇 , such as those
used in optical communication, the noise would be negligible. However, it can be shown that a quantum noise term
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Figure A.4
Noise power spectral density versus frequency for thermal resistors.

equal to ℎ𝑓 must be added to (A.20) in order to account for the discrete nature of the electron energy. This is shown
in Figure A.4 as the straight line, which permits the transition frequency between the thermal noise and quantum noise
regions to be estimated. This transition frequency is seen to be above 20 GHz even for 𝑇 = 2.9 K.

■ A.2 CHARACTERIZATION OF NOISE IN SYSTEMS

Having considered several possible sources of internal noise in communication systems, we now wish to discuss
convenient methods for characterization of the noisiness of the subsystems that make up a system, as well as overall
noisiness of the system. Figure A.5 illustrates a cascade of𝑁 stages or subsystems that make up a system. For example,
if this block diagram represents a superheterodyne receiver, subsystem 1 would be the RF amplifier, subsystem 2 the
mixer, subsystem 3 the IF amplifier, and subsystem 4 the detector. At the output of each stage, we wish to be able to relate

(a)

(b)

R0

S
N 0

S
N 1

S
N 2

S
N N – 1

S
N N

Subsystem

1

Subsystem

2

Subsystem

N

Subsystem

l
Equivalent

resistance, Rl

es,1

es, l – 1

Rl – 1, Ts

+

–

Figure A.5
Cascade of subsystems making up a system. (a) N-subsystem cascade with definition of SNRs at each point. (b) The lth subsystem in
the cascade.
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the signal-to-noise power ratio at the input. This will allow us to pinpoint those subsystems that contribute significantly
to the output noise of the overall system, thereby enabling us to implement designs that minimize the noise.

A.2.1 Noise Figure of a System

One useful measure of system noisiness is the so-called noise figure F, defined as the ratio of the SNR at the system input to
the SNR at the system output. In particular, for the 𝑙th subsystem in Figure A.5, the noise figure𝐹

𝑙
is defined by the relation

(
𝑆

𝑁

)

𝑙

= 1
𝐹
𝑙

(
𝑆

𝑁

)

𝑙−1
(A.21)

For an ideal, noiseless subsystem, 𝐹
𝑙
= 1; that is, the subsystem introduces no additional noise. For physical devices,

𝐹
𝑙
> 1.
Noise figures for devices and systems are often stated in terms of decibels (dB). Specifically

𝐹dB = 10 log10 𝐹ratio (A.22)

Typical noise figures are 2--4.5 dB for a traveling wave tube amplifier (power gain of 20--30 dB) and 5--8 dB for mixers
(a passive mixer has a loss of at least 3 dB due to the use of only one of the sidebands at its output). Further information
is contained in Mumford and Schiebe (1968) or device manufacturer’s data sheets.

The definition of noise figure given by (A.21) requires the calculation of both signal and noise powers at each point
of the system. An alternative definition, equivalent to (A.21), involves the calculation of noise powers only. Although
signal and noise powers at any point in the system depend on the loading of a subsystem on the preceding one, SNRs
are independent of load, since both signal and noise appear across the same load. Hence, any convenient load impedance
may be used in making signal and noise calculations. In particular, we will use load impedances matched to the output
impedance, thereby working with available signal and noise powers.

Consider the 𝑙th subsystem in the cascade of the system shown in Figure A.5. If we represent its input by a Thevenin
equivalent circuit with rms signal voltage 𝑒

𝑠,𝑙−1 and equivalent resistant 𝑅
𝑙−1, the available signal power is

𝑃
𝑠𝑎,𝑙−1 =

𝑒
𝑠,𝑙−1

2

4𝑅
𝑙−1

(A.23)

If we assume that only thermal noise is present, the available noise power for a source temperature of 𝑇
𝑠
is

𝑃
𝑛𝑎,𝑙−1 = 𝑘𝑇

𝑠
𝐵 (A.24)

given an input SNR of
(
𝑆

𝑁

)

𝑙−1
=

𝑒
𝑠,𝑙−1

2

4𝑘𝑇
𝑠
𝑅
𝑙−1𝐵

(A.25)

The available output signal power, from Figure A.5(b), is

𝑃
𝑠𝑎,𝑙

=
𝑒
𝑠,𝑙

2

4𝑅
𝑙

(A.26)

We can relate 𝑃
𝑠𝑎,𝑙

to 𝑃
𝑠𝑎,𝑙−1 by the available power gain 𝐺𝑎

of subsystem 𝑙, defined to be

𝑃
𝑠𝑎,𝑙

= 𝐺
𝑎
𝑃
𝑠𝑎,𝑙−1 (A.27)

which is obtained if all resistances are matched. The output SNR is

(
𝑆

𝑁

)

𝑙

=
𝑃
𝑠𝑎,𝑙

𝑃
𝑛𝑎,𝑙

= 1
𝐹
𝑙

𝑃
𝑠𝑎,𝑙−1

𝑃
𝑛𝑎,𝑙−1

(A.28)

or

𝐹
𝑙
=
𝑃
𝑠𝑎,𝑙−1

𝑃
𝑠𝑎,𝑙

𝑃
𝑛𝑎,𝑙

𝑃
𝑛𝑎,𝑙−1

=
𝑃
𝑠𝑎,𝑙−1

𝐺
𝑎
𝑃
𝑠𝑎,𝑙−1

𝑃
𝑛𝑎,𝑙

𝑃
𝑛𝑎,𝑙−1

=
𝑃
𝑛𝑎,𝑙

𝐺
𝑎
𝑃
𝑛𝑎,𝑙−1

(A.29)
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Figure A.6
𝑌 -factor method for
measuing effective noise
temperature.

where any mismatches may be ignored, since they affect signal and noise the same.1 Thus, the noise figure is the ratio
of the output noise power to the noise power that would have resulted had the system been noiseless. Noting that 𝑃

𝑛𝑎,𝑙
=

𝐺
𝑎
𝑃
𝑛𝑎,𝑙−1 + 𝑃int,𝑙, where 𝑃int,𝑙 is the available internally generated noise power of subsystem 𝑙, and that 𝑃

𝑛𝑎,𝑙−1 = 𝑘𝑇
𝑠
𝐵,

we may write (A.29) as

𝐹
𝑙
= 1 +

𝑃int,𝑙

𝐺
𝑎
𝑘𝑇

𝑠
𝐵

(A.30)

or, setting 𝑇
𝑠
= 𝑇0 = 290K to standardize the noise figure,2 we obtain

𝐹
𝑙
= 1 +

𝑃int,𝑙

𝐺
𝑎
𝑘𝑇0𝐵

(A.31)

Thus, for𝐺
𝑎
≫ 1, 𝐹

𝑙
≅ 1, which shows that the effect of internally generated noise becomes inconsequential for a system

with a large gain. Conversely, a system with low gain enhances the importance of internal noise.

A.2.2 Measurement of Noise Figure

Using (A.29), with the available noise power at the output 𝑃
𝑛𝑎,out referred to the device input and representing this noise

by a current generator 𝑖
𝑛
2 in parallel with the source resistance 𝑅

𝑠
or a voltage generator 𝑒

𝑛
2 in series with it, we can

determine the noise figure by changing the input noise a known amount and measuring the change in noise power at the
device output. In particular, if we assume a current source represented by a saturated thermionic diode, so that

𝑖
𝑛
2 = 2𝑒𝐼

𝑑
𝐵 A2 (A.32)

and sufficient current is passed through the diode so the noise power at the output is double the amount that appeared
without the diode, then the noise figure is

𝐹 =
𝑒𝐼

𝑑
𝑅
𝑠

2𝑘𝑇0
(A.33)

where 𝑒 is the charge of the electron in coulombs, 𝐼
𝑑
is the diode current in amperes, 𝑅

𝑠
is the input resistance, 𝑘 is

Boltzmann’s constant, and 𝑇0 is the standard temperature in degrees Kelvin.
A variation of the preceding method is the 𝑌 -factor method, which is illustrated in Figure A.6. Assume that two

calibrated noise sources are available, one at effective temperature 𝑇hot and the other at 𝑇cold. With the first at the input

1This assumes that the gains for noise power and signal power are the same. If gain varies with frequency, then a spot noise figure can be defined, where
signal power and noise power are measured in a small bandwidth Δ𝑓 .
2If this were not done, the manufacturer of a reciever could claim superior noise performance of its product over that of a competitor simply by choosing 𝑇

𝑠

larger than the competitor. See Mumford and Scheibe (1968), pages 53--56, for a summary of the various definitions of noise figure used in the past.
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of the unknown system with unknown temperature 𝑇
𝑒
, the available output noise power from (A.18) is

𝑃
ℎ
= 𝑘(𝑇hot + 𝑇

𝑒
)𝐵𝐺 (A.34)

where 𝐵 is the noise bandwidth of the device under test and 𝐺 is its available power gain. With the cold noise source
present, the available output noise power is

𝑃
𝑐
= 𝑘(𝑇cold + 𝑇

𝑒
)𝐵𝐺 (A.35)

The two unknowns in these two equations are 𝑇
𝑒
and 𝐵𝐺. Dividing the first by the second, we obtain

𝑃
ℎ

𝑃
𝑐

= 𝑌 =
𝑇hot + 𝑇

𝑒

𝑇cold + 𝑇
𝑒

(A.36)

When solved for 𝑇
𝑒
, this equation becomes

𝑇
𝑒
=
𝑇hot − 𝑌 𝑇cold

𝑌 − 1
(A.37)

which involves the two known source temperatures and the measured 𝑌 factor. The 𝑌 factor can be measured with the
aid of the precision attenuator shown in Figure A.6 as follows: (1) connect the hot noise source to the system under test
and adjust the attenuator for a convenient meter reading, (2) switch to the cold noise source and adjust the attenuator for
the same meter reading as before, (3) noting the change in attenuator setting Δ𝐴 in dB, calculate 𝑌 = 10Δ𝐴∕10, and (4)
calculate the effective noise temperature using (A.37).

A.2.3 Noise Temperature

Equation (A.18) states that the available noise power of a resistor at temperature 𝑇 is 𝑘𝑇𝐵watts, independent of the
value of 𝑅. We may use this result to define the equivalent noise temperature 𝑇

𝑛
of any noise source:

𝑇
𝑛
=
𝑃
𝑛,max

𝑘𝐵
(A.38)

where 𝑃
𝑛,max is the maximum noise power the source can deliver in bandwidth 𝐵.

EXAMPLE A.4

Two resistors 𝑅1 and 𝑅2 at temperatures 𝑇1 and 𝑇2 are connected in series to form a white-noise source. Find the equivalent noise
temperature of the combination.

S o l u t i o n

The mean-square voltage generated by the combination is

⟨
𝑣
𝑛

2⟩ = 4𝑘𝐵𝑅1𝑇1 + 4𝑘𝐵𝑅2𝑇2 (A.39)

Since the equivalent resistance is 𝑅1 + 𝑅2, the available noise power is

𝑃
𝑛𝑎

=
⟨
𝑣
𝑛
2⟩

4(𝑅1 +𝑅2)
=

4𝑘(𝑇1𝑅1 + 𝑇2𝑅2)𝐵
4(𝑅1 +𝑅2)

(A.40)

The equivalent noise temperature is therefore

𝑇
𝑛
=
𝑃
𝑛𝑎

𝑘𝐵

𝑅1𝑇1 +𝑅2𝑇2
𝑅1 +𝑅2

(A.41)

Note that 𝑇
𝑛
is not a physical temperature unless both resistors are at the same temperature.

■
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A.2.4 Effective Noise Temperature

Returning to (A.30), we note that the second term, 𝑃int,𝑙∕𝐺𝑎
𝑘𝑇0𝐵, which is dimensionless, is due solely to the internal

noise of the system. Noting that 𝑃int,𝑙∕𝐺𝑎
𝑘𝐵 has the dimensions of temperature, we may write the noise figure as

𝐹
𝑙
= 1 +

𝑇
𝑒

𝑇0
(A.42)

where

𝑇
𝑒
=

𝑃int,𝑙

𝐺
𝑎
𝑘𝐵

(A.43)

Thus,

𝑇
𝑒
=
(
𝐹
𝑙
− 1

)
𝑇0 (A.44)

𝑇
𝑒
is the effective noise temperature of the system and depends only on the parameters of the system. It is a measure

of noisiness of the system referred to the input, since it is the temperature required of a thermal resistance, placed at the
input of a noiseless system, in order to produce the same available noise power at the output as is produced by the internal
noise sources of the system. Recalling that 𝑃

𝑛𝑎,𝑙
= 𝐺

𝑎
𝑃
𝑛𝑎,𝑙−1 + 𝑃int,𝑙 and that 𝑃

𝑛𝑎,𝑙−1 = 𝑘𝑇
𝑠
𝐵, we may write the available

noise power at the subsystem output as

𝑃
𝑛𝑎,𝑙

= 𝐺
𝑎
𝑘𝑇

𝑠
𝐵 + 𝐺

𝑎
𝑘𝑇

𝑒
𝐵

= 𝐺
𝑎
𝑘
(
𝑇
𝑠
+ 𝑇

𝑒

)
𝐵 (A.45)

where the actual temperature of the source 𝑇
𝑠
is used. Thus, the available noise power at the output of a system can be

found by adding the effective noise temperature of the system to the temperature of the source and multiplying by 𝐺
𝑎
𝑘𝐵,

where the term 𝐺
𝑎
appears because the noise is referred to the system input.

A.2.5 Cascade of Subsystems

Considering the first two stages in Figure A.5, we see that noise appears at the output due to the following sources:

1. Amplified source noise, 𝐺
𝑎1
𝐺
𝑎2
𝑘𝑇

𝑠
𝐵

2. Internal noise from the first stage amplified by the second stage, 𝐺
𝑎2
𝑃
𝑎,int1

= 𝐺
𝑎2
(𝐺

𝑎1
𝑘𝑇

𝑒1
𝐵)

3. Internal noise from the second stage, 𝑃
𝑎,int2 = 𝐺

𝑎2
𝑘𝑇

𝑒2
𝐵

Thus, the total available noise power at the output of the cascade is

𝑃
𝑛𝑎,2 = 𝐺

𝑎1
𝐺
𝑎2
𝑘

(

𝑇
𝑠
+ 𝑇

𝑒1
+
𝑇
𝑒2

𝐺
𝑎1

)

𝐵 (A.46)

Noting that the available gain for the cascade is 𝐺
𝑎1
𝐺
𝑎2
and comparing with (A.45), we see that the effective temperature

of the cascade is

𝑇
𝑒
= 𝑇

𝑒1
+
𝑇
𝑒2

𝐺
𝑎1

(A.47)

From (A.42), the overall noise figure is

𝐹 = 1 +
𝑇
𝑒

𝑇0
= 1 +

𝑇
𝑒1

𝑇0
+ 1
𝐺
𝑎1

𝑇
𝑒2

𝑇0

= 𝐹1 +
𝐹2 − 1
𝐺
𝑎1

(A.48)
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where 𝐹1 is the noise figure of stage 1 and 𝐹2 is the noise figure of stage 2. The generalization of this result to an arbitrary
number of stages is known as Friis’s formula and is given by

𝐹 = 𝐹1 +
𝐹2 − 1
𝐺
𝑎1

+
𝐹3 − 1
𝐺
𝑎1
𝐺
𝑎2

+ … (A.49)

whereas the generalization of (A.47) is

𝑇
𝑒
= 𝑇

𝑒1
+
𝑇
𝑒2

𝐺
𝑎1

+
𝑇
𝑒3

𝐺
𝑎1
𝐺
𝑎2

+ … (A.50)

EXAMPLE A.5

A parabolic dish antenna is pointed up into the sky not directly at the sun. Noise due to atmospheric radiation is equivalent to a source
temperature of 70 K. A low-noise preamplifier with noise figure of 2 dB and an available power gain of 20 dB over a bandwidth of 20
MHz is mounted at the antenna feed (focus of the parabolic reflector).

(a) Find the effective noise temperature of the preamplifier.
(b) Find the available noise power at the preamplifier output.

S o l u t i o n

(a) From (A.45), we have

𝑇eff ,in = 𝑇
𝑠
+ 𝑇

𝑒,preamp (A.51)

but (A.44) gives

𝑇
𝑒,preamp = 𝑇0(𝐹preamp − 1)

= 290(102∕10 − 1)
= 169.6K (A.52)

(b) From (A.45), the available output noise power is

𝑃
𝑛𝑎,out = 𝐺

𝑎
𝑘
(
𝑇
𝑠
+ 𝑇

𝑒

)
𝐵

= 1020∕10(1.38 × 10−23)(169.6 + 70)
(
20 × 106

)

= 6.61 × 10−12 W (A.53)

■

EXAMPLE A.6

A preamplifier with power gain to be found and a noise figure of 2.5 dB is cascaded with a mixer with a gain of 5 dB and a noise figure
of 8 dB. Find the preamplifier gain such that the overall noise figure of the cascade is at most 4 dB.

S o l u t i o n

Friis’s formula specializes to

𝐹 = 𝐹1 +
𝐹2 − 1
𝐺1

(A.54)

Solving for 𝐺1, we get

𝐺1 =
𝐹2 − 1
𝐹 − 𝐹1

= 108∕10 − 1
104∕10 − 102.5∕10

= 7.24 (ratio) = 8.6 dB (A.55)

Note that the gain of the mixer is immaterial.
■
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A.2.6 Attenuator Noise Temperature and Noise Figure

Consider a purely resistive attenuator that imposes a loss of a factor of 𝐿 in available power between input and output;
thus, the available power at its output 𝑃

𝑎,out is related to the available power at its input 𝑃
𝑎,in by

𝑃
𝑎,out =

1
𝐿
𝑃
𝑎,in = 𝐺

𝑎
𝑃
𝑎,in (A.56)

However, since the attenuator is resistive and assumed to be at the same temperature 𝑇
𝑠
as the equivalent resistance

at its input, the available output power is

𝑃
𝑛𝑎,out = 𝑘𝑇

𝑠
𝐵 (A.57)

Characterizing the attenuator by an effective temperature 𝑇
𝑒
and employing (A.42), we may also write 𝑃

𝑛𝑎,out as

𝑃
𝑛𝑎,out = 𝐺

𝑎
𝑘
(
𝑇
𝑠
+ 𝑇

𝑒

)
𝐵

= 1
𝐿
𝑘
(
𝑇
𝑠
+ 𝑇

𝑒

)
𝐵 (A.58)

Equating (A.57) and (A.58) and solving for 𝑇
𝑒
, we obtain

𝑇
𝑒
= (𝐿 − 1) 𝑇

𝑠
(A.59)

for the effective noise temperature of a noise resistance of temperature 𝑇
𝑠
followed by an attenuator. From (A.42), the

noise figure of the cascade of source resistance and attenuator is

𝐹 = 1 +
(𝐿 − 1) 𝑇

𝑠

𝑇0
(A.60)

or

𝐹 = 1 +
(𝐿 − 1) 𝑇0

𝑇0
= 𝐿 (A.61)

for an attenuator at room temperature, 𝑇0.

EXAMPLE A.7

Consider a receiver system consisting of an antenna with lead-in cable having a loss factor of 𝐿 = 1.5 dB (gain of −1.5 dB), which at
room temperature is also its noise figure 𝐹1, and RF preamplifier with a noise figure of 𝐹2 = 7 dB and a gain of 20 dB, followed by a
mixer with a noise figure of 𝐹3 = 10 dB and a conversion gain of 8 dB, and finally an integrated-circuit IF amplifier with a noise figure
of 𝐹4 = 6 dB and a gain of 60 dB.

(a) Find the overall noise figure and noise temperature of the system.
(b) Find the noise figure and noise temperature of the system with preamplifier and cable interchanged (i.e., the preamplifier is mounted

right at the antenna terminal).

S o l u t i o n

(a) Converting decibel values to ratios and employing (A.46), we obtain

𝐹 = 1.41 + 5.01 − 1
1∕1.41

+ 10 − 1
100∕1.41

+ 3.98 − 1
(100)(6.3)∕1.41

= 1.41 + 5.65 + 0.13 + 6.7 × 10−3 = 7.19 = 8.57 dB (A.62)

Note that the cable and RF amplifier essentially determine the noise figure of the system and that the noise figure of the system is
enhanced because of the loss of the cable. If we solve (A.47) for 𝑇

𝑒
, we have an effective noise temperature of

𝑇
𝑒
= 𝑇0(𝐹 − 1) = 290(7.19 − 1) = 1796K (A.63)
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(b) Interchanging the cable and RF preamplifier, we obtain the noise figure

𝐹 = 5.01 + 1.41 − 1
100

+ 10 − 1
100∕1.41

+ 3.98 − 1
(100)(6.3)∕1.41

= 5.01 +
(
4.1 × 10−3

)
+ 0.127 +

(
6.67 × 10−3

)

= 5.15 = 7.12 dB (A.64)

The noise temperature is

𝑇
𝑒
= 290(4.15) = 1203K (A.65)

Now the noise figure and noise temperature are essentially determined by the noise level of the RF preamplifier.
■

We have omitted one possibly important source of noise, which is the antenna. If the antenna is directive and pointed
at source of significant thermal noise, such as the daytime sky (typical noise temperature of 300 degrees Fahrenheit),
its equivalent temperature may also be of importance in the calculation. This is particularly true when a low-noise
preamplifier is employed (see Table A.1).

■ A.3 FREE-SPACE PROPAGATION EXAMPLE

As a final example of noise calculation, we consider a free-space electromagnetic-wave propagation channel. For the sake
of illustration, suppose the communication link of interest is between a synchronous-orbit relay satellite and a low-orbit
satellite or aircraft, as shown in Figure A.7.

This might represent part of a relay link between a ground station and a small scientific satellite or an aircraft. Since
the ground station is high power, we assume the ground-station-to-relay-satellite link is noiseless and focus our attention
on the link between the two satellites.

Assume a relay satellite transmitted signal power of 𝑃
𝑇
W. If radiated isotropically, the power density at a distance

𝑑 from the satellite is given by

𝑝
𝑡
=

𝑃
𝑇

4𝜋𝑑2W∕m2 (A.66)

If the satellite antenna has directivity, with the radiated power being directed toward the low-orbit vehicle, the antenna
can be described by an antenna power gain𝐺

𝑇
over the isotropic radiation level. For aperture-type antennas with aperture

Relay

satellite

Low-orbit

user

Ground

station

Earth's Surface

Figure A.7
A satellite-relay communication link.
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area 𝐴
𝑇
large compared with the square of the transmitted wavelength 𝜆2, it can be shown that the maximum gain is

given by 𝐺
𝑇
= 4𝜋𝐴

𝑇
∕𝜆2. The power 𝑃

𝑅
intercepted by the receiving antenna is given by the product of the receiving

aperture area 𝐴
𝑅
and the power density at the aperture. This gives

𝑝
𝑅
= 𝑝

𝑡
𝐴
𝑅
=
𝑃
𝑇
𝐺
𝑇

4𝜋𝑑2 𝐴𝑅
(A.67)

However, we may relate the receiving aperture antenna to its maximum gain by the expression 𝐺
𝑅
= 4𝜋𝐴

𝑅
∕𝜆2, giving

𝑃
𝑅
=
𝑃
𝑇
𝐺
𝑇
𝐺
𝑅
𝜆
2

(4𝜋𝑑)2
(A.68)

Equation (A.68) includes only the loss in power from isotropic spreading of the transmitted wave. If other losses
such as atmospheric absorption are important, they may be included as a loss factor 𝐿0 in (A.68) to yield

𝑃
𝑅
=
(

𝜆

4𝜋𝑑

)2 𝑃
𝑇
𝐺
𝑇
𝐺
𝑅

𝐿0
(A.69)

The factor (4𝜋𝑑∕𝜆)2 is sometimes referred to as the free-space loss.3

In the calculation of receiver power, it is convenient to work in terms of decibels. Taking 10 log10 𝑃𝑅, we obtain

10 log10 𝑃𝑅 = 20 log10(𝜆∕4𝜋𝑑) + 10 log10 𝑃𝑇
+10 log10 𝐺𝑇

+ 10 log10 𝐺𝑅
− 10 log10 𝐿0 (A.70)

Now 10 log10 𝑃𝑅 can be interpreted as the received power in decibels referenced to 1W; it is commonly referred to as power
in dBW. Similarly, 10 log10 𝑃𝑇 is commonly referred to as the transmitted signal power in dBW. The terms 10 log10 𝐺𝑇

and
10 log10 𝐺𝑅

are the transmitter and receiver antenna gains (above isotropic) in decibels, while the term 10 log10 𝐿0 is the
loss factor in decibels.When 10 log10 𝑃𝑇 and 10 log10 𝐺𝑇

are taken together, this sum is referred to as the effective radiated
power in decibel watts (ERP, or sometimes EIRP, for effective radiated power referenced to isotropic). The negative of
the first term is the free-space loss in decibels. For 𝑑 = 106 mi

(
1.6 × 109 m

)
and a frequency of 500 MHz (𝜆 = 0.6m),

20 log10
(

𝜆

4𝜋𝑑

)
= 20 log10

( 0.6
4𝜋 × 1.6 × 109

)
= −210 dB (A.71)

If 𝜆 or 𝑑 change by a factor of 10, this value changes by 20 dB. We now make use of (A.70) and the results obtained
for noise figure and temperature to compute the signal-to-noise ratio for a typical satellite link.

EXAMPLE A.8

We are given the following parameters for a relay-satellite-to-user link:

Relay satellite effective radiated power
(
𝐺
𝑇
= 30 dB;𝑃

𝑇
= 100W

)
∶ 50 dBW

Transmit frequency: 2GHz (𝜆 = 0.15 m)
Receiver noise temperature of user (includes noise figure of receiver and background temperature of antenna): 700 K

User satellite antenna gain: 0 dB
Total system losses: 3 dB

Relay-user separation: 41,000 km

Find the signal-to-noise power ratio in a 50-kHz bandwidth at the user satellite receiver IF amplifier output.

3We take the convention here that a loss is a factor in the denominator of 𝑃
𝑅
; a loss in decibels is a positive quantity (a negative gain).
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S o l u t i o n

The received signal power is computed using (A.69) as follows (+ and − signs in parentheses indicate whether the quantity is added or
subtracted):

Free-space loss: −20 log10(0.15∕4𝜋 × 41 × 106): 190.7 dB (−)
Effective radiated power: 50 dBW (+)

Receiver antenna gain: 0 dB (+)

System losses: 3 dB (−)
Received signal power: −143.7 dBW

The noise power level, calculated from (A.43), is

𝑃int = 𝐺
𝑎
𝑘𝑇

𝑒
𝐵 (A.72)

where 𝑃int is the receiver output noise power due to internal sources. Since we are calculating the signal-to-noise ratio, the available
gain of the receiver does not enter the calculation because both signal and noise are multiplied by the same gain. Hence, we may set 𝐺

𝑎

to unity, and the noise level is

𝑃int,dBW = 10 log10
[
𝑘𝑇0

(
𝑇
𝑒

𝑇0

)
𝐵

]

= 10 log10(𝑘𝑇0) + 10 log10
(
𝑇
𝑒

𝑇0

)
+ 10 log10 𝐵

= −204 + 10 log10(700∕290) + 10 log10(50,000)

= −153.2 dBW (A.73)

Hence, the signal-to-noise ratio at the receiver output is

𝑆𝑁𝑅0 = −143.7 + 153.2 = 9.5 dB (A.74)

■

EXAMPLE A.9

To interpret the result obtained in the previous example in terms of the performance of a digital communication system, we must convert
the signal-to-noise ratio obtained to energy-per-bit-to-noise spectral density ratio𝐸

𝑏
∕𝑁0 (see Chapter 9). By definition of SNR0, we have

SNR0 =
𝑃
𝑅

𝑘𝑇
𝑒
𝐵

(A.75)

Multiplying numerator and denominator by the duration of a data bit 𝑇
𝑏
, we obtain

SNR0 =
𝑃
𝑅
𝑇
𝑏

𝑘𝑇
𝑒
𝐵𝑇

𝑏

=
𝐸
𝑏

𝑁0𝐵𝑇𝑏
(A.76)

where 𝑃
𝑅
𝑇
𝑏
= 𝐸

𝑏
and 𝑘𝑇

𝑒
= 𝑁0 are the signal energy per bit and the noise power spectral density, respectively. Thus, to obtain 𝐸𝑏∕𝑁0

from SNR0, we calculate

𝐸
𝑏
∕𝑁0|dB = (SNR0)dB + 10 log10(𝐵𝑇𝑏) (A.77)

For example, from Chapter 9 we recall that the null-to-null bandwidth of a phase-shift keyed carrier is 2∕𝑇
𝑏
Hz. Therefore, 𝐵𝑇

𝑏
for

BPSK is 2 or 3 dB, and

𝐸
𝑏
∕𝑁0|dB = 9.5 + 3 = 12.5 dB (A.78)

The probability of error for a binary BPSK digital communication system was derived in Chapter 9 as

𝑃
𝐸

= 𝑄

(√
2𝐸

𝑏
∕𝑁0

)
≅ 𝑄

(√
2 × 101.25

)

≅ 1.23 × 10−9 for 𝐸
𝑏
∕𝑁0 = 12.5 dB (A.79)
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which is a fairly small probability of error (anything less than 10−6 would probably be considered adequate). It appears that the system
may have been overdesigned. However, no margin has been included as a safety factor. Components degrade or the system may be
operated in an environment for which it was not intended. With only 3 dB allowed for margin, the performance in terms of error
probability becomes 1.21 × 10−5.

■

Further Reading

Treatments of internal noise sources and calculations oriented toward communication systems comparable to the
scope and level of the presentation here may be found in most of the books on communications referenced in Chapters
2 and 3. A concise, but thorough, treatment at an elementary level is available in Mumford and Scheibe (1968). An
in-depth treatment of noise in solid-state devices is available in Van der Ziel (1970). Another useful reference on
noise is Ott (1988). For discussion of satellite-link power budgets, see Ziemer and Peterson (2001).

Problems

Section A.1

A.1 A true rms voltmeter (assumed noiseless) with an
effective noise bandwidth of 30 MHz is used to measure
the noise voltage produced by the following devices. Cal-
culate the meter reading in each case.

(a) A 10 k Ω resistor at room temperature, 𝑇0 =
290 ◦K.

(b) A 10 k Ω resistor at 29 ◦K.

(c) A 10 k Ω resistor at 2.9 ◦K.

(d) What happens to all of the above results if the
bandwidth is decreased by a factor of 4? a factor
of 10? a factor of 100?

A.2 Given a junction diode with reverse saturation cur-
rent 𝐼

𝑠
= 15 𝜇A.

(a) At room temperature (290 ◦K), find 𝑉 such that
𝐼 > 20𝐼

𝑠
, thus allowing (A.16) to be approxi-

mated by (A.17). Find the rms noise current.

(b) Repeat part (a) for 𝑇 = 29 ◦K.

A.3 Consider the circuit shown in Figure A.8.

R1 R3 RL

R2
Figure A.8

(a) Obtain an expression for the mean-square noise
voltage appearing across 𝑅3.

(b) If 𝑅1 = 2000 Ω, 𝑅2 = 𝑅
𝐿
= 300 Ω, and 𝑅3 =

500Ω, find the mean-square noise voltage per
hertz.

A.4 Referring to the circuit of Figure A.8, consider𝑅
𝐿

to be a load resistance, and find it in terms of 𝑅1, 𝑅2, and
𝑅3 so that the maximum available noise power available
from 𝑅1, 𝑅2, and 𝑅3 is delivered to it.

A.5 Assuming a bandwidth of 2 MHz, find the rms
noise voltage across the output terminals of the circuit
shown in Figure A.9 if it is at a temperature of 400 ◦K.

5kΩ

kΩ V

5kΩ

20kΩ 50 rms10kΩ

+

–

Figure A.9

Section A.2

A.6 Obtain an expression for 𝐹 and 𝑇
𝑒
for the two-port

resistive matching network shown in Figure A.10, assum-
ing a source at 𝑇0 = 290 ◦K.

R2

R1
Figure A.10

A.7 A source with equivalent noise temperature 𝑇
𝑠
=

1000 ◦K is followed by a cascade of three amplifiers hav-
ing the specifications shown in Table A.1. Assume a band-
width of 50 kHz.

(a) Find the noise figure of the cascade.

(b) Suppose amplifiers 1 and 2 are interchanged. Find
the noise figure of the cascade.
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(c) Find the noise temperature of the systems of parts
(a) and (b).

(d) Assuming the configuration of part (a), find the
required input signal power to give an output
signal-to-noise ratio of 40 dB. Perform the same
calculation for the system of part (b).

Table A.1

Amplifier no. 𝑭 𝑻
𝒆

Gain

1 300 K 10 dB
2 6 dB 30 dB
3 11 dB 30 dB

A.8 An attenuator with loss 𝐿 ≫ 1 is followed by an
amplifier with noise figure 𝐹 and gain 𝐺

𝑎
= 1∕𝐿.

(a) Find the noise figure of the cascade at tempera-
ture 𝑇0.

(b) Consider the cascade of two identical attenuator-
amplifier stages as in part (a). Determine the noise
figure of the cascade at temperature 𝑇0.

(c) Generalize these results to 𝑁 identical attenua-
tors and amplifiers at temperature 𝑇0. How many
decibels does the noise figure increase as a re-
sult of doubling the number of attenuators and
amplifiers?

A.9 Given a cascade of a preamplifier, mixer, and am-
plifier with the specifications shown in Table A.2,

Table A.2

Noise Gain,
figure, dB dB Bandwidth

Preamplifier 2 𝐺1 *
Mixer 8 1.5 *
Amplifier 5 30 10 MHz

*The bandwidth of this stage is much greater than the
amplifier bandwidth

(a) Find the gain of the preamplifier such that the overall
noise figure of the cascade is 5 dB or less.

(b) The preamplifier is fed by an antenna with noise tem-
perature of 300 K (this is the temperature of the earth
viewed from space). Find the temperature of the overall
system using a preamplifier gain of 15 dB and also for
the preamplifier gain found in part (a).

(c) Find the noise power at the amplifier output for the two
cases of part (b).

(d) Repeat part (b) except now assume that a transmission
line with loss of 2 dB connects the antenna to the pream-
plifier.

A.10 An antenna with a temperature of 300 ◦K is fed into a re-
ceiver with a total gain of 80 dB, 𝑇

𝑒
= 1500 ◦K, and a bandwidth

of 3MHz.

(a) Find the available noise power at the output of the re-
ceiver.

(b) Find the necessary signal power 𝑃
𝑟
in dBm at the an-

tenna terminals such that the output signal-to-noise ratio
is 50 dB.

A.11 Referring to (A.37) and the accompanying discussion, sup-
pose that two calibrated noise sources have effective temperatures
of 600 ◦K and 300 ◦K.

(a) Obtain the noise temperature of an amplifier with these
two noise sources used as inputs if the difference in at-
tenuator settings to get the same power meter reading at
the amplifier’s output is 1 dB; 1.5 dB; 2 dB.

(b) Obtain the corresponding noise figures.

Section A.3

A.12 Given a relay-user link as described in Section A.3 with
the following parameters:

Average transmit power of relay satellite: 35 dBW
Transmit frequency: 7.7 GHz

Effective antenna aperture of relay satellite: 1 m2

Noise temperature of user receiver (including antenna):
1000 ◦K

Antenna gain of user: 6 dB
Total system losses: 5 dB
System bandwidth: 1MHz

Relay-user separation: 41,000 km

(a) Find the received signal power level at the user in dBW.

(b) Find the receiver noise level in dBW.

(c) Compute the signal-to-noise ratio at the receiver in deci-
bels.

(d) Find the average probability of error for the following
digital signalingmethods:4 (1) BPSK, (2) binary DPSK,
(3) binary noncoherent FSK, and (4) QPSK.

4This part of the problem requires results from Chapters 9 and 10.
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APPENDIXB

JOINTLY GAUSSIAN RANDOM VARIABLES

In this appendix, we examine the joint probability density function and the characteristic function for a set of Gaussian random

variables 𝑿𝟏, 𝑿𝟐, … , 𝑿
𝑵
. In Chapter 6 the joint pdf for 𝑵 = 𝟐 was given as

𝒇
𝑿𝟏𝑿𝟐

(𝒙𝟏, 𝒙𝟐) =

𝐞𝐱𝐩
⎧
⎪
⎨
⎪
⎩

− 𝟏
𝟐(𝟏 − 𝝆

𝟐)

⎡
⎢
⎢
⎣

(
𝒙𝟏 −𝒎𝟏
𝝈
𝒙𝟏

)𝟐

− 𝟐𝝆
(
𝒙𝟏 −𝒎𝟏
𝝈
𝒙𝟏

)(
𝒙𝟐 −𝒎𝟐
𝝈
𝒙𝟐

)

+
(
𝒙𝟐 −𝒎𝟐
𝝈
𝒙𝟐

)𝟐⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

𝟐𝝅𝝈
𝒙𝟏
𝝈
𝒙𝟐

√
𝟏 − 𝝆

𝟐
(B.1)

where 𝒎
𝒊
= 𝑬

{
𝑿

𝒊

}
, 𝝈𝟐

𝒙
𝒊

= 𝑬

{[
𝑿

𝒊
−𝒎

𝒊

]𝟐}
, 𝒊 = 𝟏, 𝟐, and 𝝆 = 𝑬

{
(𝑿𝟏 −𝒎𝟏)(𝑿𝟐 −𝒎𝟐)∕𝝈𝒙𝟏𝝈𝒙𝟐

}
. This important result is now

generalized.

■ B.1 THE PDF

The joint probability density function of𝑁 jointly Gaussian random variables is

𝑓
𝑋
(𝐱) = (2𝜋)−𝑁∕2 |det 𝐂|−1∕2 exp

[
−1
2
(𝐱 −𝐦)𝑡 𝐂−1 (𝐱 −𝐦)

]
(B.2)

where 𝐱 and 𝐦 are column matrices whose transposes are

𝐱𝑡 =
[
𝑥1 𝑥2 ⋯ 𝑥

𝑁

]
(B.3)

and

𝐦𝑡 =
[
𝑚1 𝑚2 ⋯ 𝑚

𝑁

]
(B.4)

respectively, and 𝐂 is the positive definite matrix of correlation coefficients with elements

𝐶
𝑖𝑗
= 𝐸

[(
𝑋
𝑖
− 𝑚

𝑖

) (
𝑋
𝑗
− 𝑚

𝑗

)]
(B.5)

Note that in (B.2) 𝐱𝑡 and 𝐦𝑡 are 1 by𝑁 row matrices and that 𝐂 is an𝑁 by𝑁 square matrix.
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■ B.2 THE CHARACTERISTIC FUNCTION

The joint characteristic function of the Gaussian random variables 𝑋1, 𝑋2,… , 𝑋
𝑁
is

𝑀𝐗 (𝐯) = exp
[
𝑗𝐦𝑡𝐯 − 1

2
𝐯𝑡𝐂𝐯

]
(B.6)

where 𝐯𝑡=
[
𝑣1 𝑣2 ⋯ 𝑣

𝑁

]
. From the power-series expansion of (B.6), it follows that for any four zero-mean Gaussian

random variables,

𝐸
(
𝑋1𝑋2𝑋3𝑋4

)
= 𝐸

(
𝑋1𝑋2

)
𝐸
(
𝑋3𝑋4

)
+ 𝐸

(
𝑋1𝑋3

)
𝐸
(
𝑋2𝑋4

)

+ 𝐸
(
𝑋1𝑋4

)
𝐸
(
𝑋2𝑋3

)
(B.7)

This is a rule that is useful enough to be worth memorizing.

■ B.3 LINEAR TRANSFORMATIONS

If a set of jointly Gaussian random variables is transformed to a new set of random variables by a linear transformation,
the resulting random variables are jointly Gaussian. To show this, consider the linear transformation

𝐲 = 𝐀𝐱 (B.8)

where 𝐲 and 𝐱 are column matrices of dimension 𝑁 and 𝐀 is a nonsingular 𝑁 by𝑁 square matrix with elements
[
𝑎
𝑖𝑗

]
.

From (B.8), the Jacobian is

𝐽

(
𝑥1, 𝑥2,… , 𝑥

𝑁

𝑦1, 𝑦2,… , 𝑦
𝑁

)

= det
(
𝐀−1) (B.9)

where 𝐀−1 is the inverse matrix of 𝐀. But det(𝐀−1) = 1∕ det(𝐀). Using this in (B.1), along with

𝐱 = 𝐀−1𝐲 (B.10)

gives

𝑓𝐘 (𝐲) = (2𝜋)−𝑁∕2 |det 𝐂|−1∕2 |det 𝐀|−1

× exp
[
−1
2
(
𝐀−1𝐲 −𝐦

)𝑡 𝐂−1 (𝐀−1𝐲 −𝐦
)]

(B.11)

Now det 𝐀 = det 𝐀𝑡 and 𝐀𝐀−1 = 𝐈, the identity matrix. Therefore, (B.11) can be written as

𝑓𝐘 (𝐲) = (2𝜋)−𝑁∕2 ||det 𝐀𝐂𝐀
𝑡||
−1∕2

× exp
{
−1
2
[𝐀−1(𝐲 − 𝐀𝐦)]𝑡𝐂−1[𝐀−1(𝐲 − 𝐀𝐦)]

}
(B.12)

But the equalities (𝐀𝐁)𝑡 = 𝐁𝑡𝐀𝑡 and
(
𝐀−1)𝑡 =

(
𝐀𝑡
)−1

allow the term inside the braces in (B.12) to be written as

−1
2

[
(𝐲 − 𝐀𝐦)𝑡

(
𝐀𝑡
)−1 𝐂−1𝐀−1 (𝐲 − 𝐀𝐦)

]

Finally, the equality (𝐀𝐁)−1 = 𝐁−1𝐀−1 allows the above term to be rearranged to

−1
2

[
(𝐲 − 𝐀𝐦)𝑡

(
𝐀𝐂𝐀𝑡

)−1 (𝐲 − 𝐀𝐦)
]

Thus, (B.12) becomes

𝑓𝐘 (𝐲) = (2𝜋)−𝑁∕2 ||det 𝐀𝐂𝐀
𝑡|| exp

{
−1
2
(𝐲 − 𝐀𝐦)𝑡

(
𝐀𝐂𝐀𝑡

)−1 (𝐲 − 𝐀𝐦)
}

(B.13)

We recognize this as a joint Gaussian density function for a random vector 𝐘 with mean vector 𝐸 [𝐘] = 𝐀𝐦 and
covariance matrix 𝐀𝐂𝐀𝑡.
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APPENDIXC

PROOF OF THE NARROWBAND
NOISE MODEL

We now show that the narrowband noise model, introduced in Chapter 7, holds. To simplify notation, let

�̂�(𝒕) = 𝒏
𝒄
(𝒕) 𝐜𝐨𝐬(𝝎𝟎𝒕+ 𝜽) − 𝒏

𝒔
(𝒕) 𝐬𝐢𝐧(𝝎𝟎𝒕+ 𝜽) (C.1)

where �̂�(𝒕) is the noise representation defined by (C.1) and is not to be confused with the Hilbert transform. Thus, we must show

that

𝑬{[𝒏(𝒕) − �̂�(𝒕)]𝟐} = 𝟎 (C.2)

Expanding and taking the expectation term by term, we obtain

𝑬{(𝒏− �̂�)𝟐} = 𝒏
𝟐 − 𝟐𝒏�̂�+ �̂�

𝟐 (C.3)

where the argument, 𝒕, has been dropped to simplify notation.

Let us consider the last term in (C.3) first. By the definition of �̂�(𝑡),

�̂�2 = 𝐸

{[
𝑛
𝑐
(𝑡) cos𝜔0𝑡 + 𝜃) − 𝑛𝑠(𝑡) sin(𝜔0𝑡 + 𝜃)

]2}

= 𝑛2
𝑐
cos2(𝜔0𝑡 + 𝜃) + 𝑛2𝑠 sin

2(𝜔0𝑡 + 𝜃)

− 2𝑛
𝑐
𝑛
𝑠
cos(𝜔0𝑡 + 𝜃) sin(𝜔0𝑡 + 𝜃)

= 1
2
𝑛2
𝑐
+ 1

2
𝑛2
𝑠
= 𝑛2 (C.4)

where we have employed the fact that

𝑛2
𝑐
= 𝑛2

𝑠
= 𝑛2 (C.5)

along with the averages

cos2(𝜔0𝑡 + 𝜃) =
1
2
+ 1

2
cos 2(𝜔0𝑡 + 𝜃) =

1
2

(C.6)

sin2(𝜔0𝑡 + 𝜃) =
1
2
− 1

2
cos 2(𝜔0𝑡 + 𝜃) =

1
2

(C.7)

and

cos(𝜔0𝑡 + 𝜃) sin(𝜔0𝑡 + 𝜃) =
1
2
sin 2(𝜔0𝑡 + 𝜃) = 0 (C.8)

Next, we consider 𝑛�̂�. By definition of �̂�(𝑡), it can be written as

𝑛�̂� = 𝐸{𝑛(𝑡)[𝑛
𝑐
(𝑡) cos(𝜔0𝑡 + 𝜃) − 𝑛𝑠(𝑡) sin(𝜔0𝑡 + 𝜃)]} (C.9)

From Figure 6.12,

𝑛
𝑐
(𝑡) = ℎ(𝑡′) ∗ [2𝑛(𝑡′) cos(𝜔0𝑡

′ + 𝜃)] (C.10)
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and

𝑛
𝑠
(𝑡) = −ℎ(𝑡′) ∗ [2𝑛(𝑡′) sin(𝜔0𝑡

′ + 𝜃)] (C.11)

where ℎ(𝑡′) is the impulse response of the lowpass filter in Figure 6.12. The argument 𝑡′ has been used in (C.10) and
(C.11) to remind us that the variable of integration in the convolution is different from the variable 𝑡 in (C.9). Substituting
(C.10) and (C.11) into (C.9), we obtain

𝑛�̂� =
𝐸{𝑛(𝑡)ℎ(𝑡′) ∗ [2𝑛(𝑡′) cos(𝜔0𝑡

′ + 𝜃)] cos(𝜔0𝑡 + 𝜃)
+ ℎ(𝑡′) ∗ [2𝑛(𝑡′) sin𝜔0𝑡

′ + 𝜃)] sin(𝜔0𝑡 + 𝜃)]}

=
𝐸{2𝑛(𝑡)ℎ(𝑡′) ∗ 𝑛(𝑡′)[cos(𝜔0𝑡

′ + 𝜃) cos(𝜔0𝑡 + 𝜃)
+ sin(𝜔0𝑡

′ + 𝜃) sin(𝜔0𝑡 + 𝜃)]}

= 𝐸{2𝑛(𝑡)ℎ(𝑡′) ∗ [𝑛(𝑡′) cos𝜔0(𝑡 − 𝑡′)]}

= 2ℎ(𝑡′) ∗ [𝐸{𝑛(𝑡)𝑛(𝑡′)} cos𝜔0(𝑡 − 𝑡′)]

= 2ℎ(𝑡′) ∗ [𝑅𝑛(𝑡 − 𝑡′) cos𝜔0(𝑡 − 𝑡′)]

≜ 2
∫

∞

−∞
ℎ(𝑡 − 𝑡′)𝑅

𝑛
(𝑡 − 𝑡′) cos𝜔0(𝑡 − 𝑡′) 𝑑𝑡′ (C.12)

Letting 𝑢 = 𝑡 − 𝑡′, gives

𝑛�̂� = 2
∫

∞

−∞
ℎ(𝑢) cos(𝜔0𝑢)𝑅𝑛

(𝑢) 𝑑𝑢 (C.13)

Now, a general case of Parseval’s theorem is

∫

∞

−∞
𝑥(𝑡)𝑦(𝑡) 𝑑𝑡 =

∫

∞

−∞
𝑋(𝑓 )𝑌 ∗(𝑓 ) 𝑑𝑓 (C.14)

where 𝑥(𝑡) ⟷ 𝑋(𝑓 ) and 𝑦(𝑡) ⟷ 𝑌 (𝑓 ). In (C.13) we note that

ℎ(𝑢) cos𝜔0𝑢 ↔
1
2
𝐻(𝑓 − 𝑓0) +

1
2
𝐻(𝑓 + 𝑓0) (C.15)

and

𝑅
𝑛
(𝑢) ↔ 𝑆

𝑛
(𝑓 ) (C.16)

Thus, using (C.14), we may write (C.13) as

𝑛�̂� =
∫

∞

−∞
[𝐻

(
𝑓 − 𝑓0

)
+𝐻(𝑓 + 𝑓0)]𝑆𝑛 (𝑓 ) 𝑑𝑓 (C.17)

which follows because 𝑆
𝑛
(𝑓 ) is real. However, 𝑆

𝑛
(𝑓 ) is nonzero only where 𝐻(𝑓 − 𝑓0) +

𝐻(𝑓 + 𝑓0) = 1 because it was assumed narrowband. Thus, (C.13) reduces to

𝑛�̂� =
∫

∞

−∞
𝑆
𝑛
(𝑓 ) 𝑑𝑓 = 𝑛2(𝑡) (C.18)

Substituting (C.18) and (C.4) into (C.3), we obtain

𝐸{(𝑛 − �̂�)2} = 𝑛2 − 2𝑛2 + 𝑛2 ≡ 0 (C.19)

which shows that the mean-square error between 𝑛(𝑡) and �̂�(𝑡) is zero.
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APPENDIXD

ZERO-CROSSING AND ORIGIN
ENCIRCLEMENT STATISTICS

In this appendix we consider a couple of problems frequently encountered in the study of FMdemodulation of signals in additive

Gaussian noise. Specifically, expressions are derived for the probability of a zero crossing of a bandlimited Gaussian process

and for the average rate of origin encirclement of a constant-amplitude sinusoid plus narrowband Gaussian noise.

■ D.1 THE ZERO-CROSSING PROBLEM

Consider a sample function of a lowpass, zero-mean Gaussian process 𝑛(𝑡), as illustrated in Figure D.1. Denote the
effective noise bandwidth by 𝑊 , the power spectral density by 𝑆

𝑛
(𝑓 ), and the autocorrelation function by 𝑅

𝑛
(𝜏).

Consider the probability of a zero crossing in a small time interval Δ seconds in duration. For Δ sufficiently small,
so that more than one zero crossing is unlikely, the probability 𝑃Δ− of a minus-to-plus zero crossing in a time interval
Δ ≪ 1∕(2𝑊 ) is the probability that 𝑛0 < 0 and 𝑛0 + �̇�0Δ > 0. That is,

𝑃Δ− = Pr(𝑛0 < 0 and 𝑛0 + �̇�0Δ > 0)

= Pr(𝑛0 < 0 and 𝑛0 > −�̇�0Δ, all �̇�0 ≥ 0)

= Pr(−�̇�0Δ < 𝑛0 < 0, all �̇�0 ≥ 0) (D.1)

This can be written in terms of the joint pdf of 𝑛0 and �̇�0, 𝑓𝑛0 �̇�0
(𝑦, 𝑧), as

𝑃Δ− =
∫

∞

0

[

∫

0

−𝑧Δ
𝑓
𝑛0 �̇�0

(𝑦, 𝑧) 𝑑𝑦
]
𝑑𝑧 (D.2)

where 𝑦 and 𝑧 are running variables for 𝑛0 and �̇�0, respectively. Now �̇�0 is a Gaussian random variable, since it involves
a linear operation on 𝑛 (𝑡), which is Gaussian by assumption. In Problem D.1, it is shown that

𝐸{𝑛0�̇�0} =
𝑑𝑅

𝑛
(𝜏)

𝑑𝜏

||||𝜏=0
(D.3)

Thus, if the derivative of 𝑅
𝑛
(𝜏) exists at 𝜏 = 0, it is zero because 𝑅

𝑛
(𝜏) must be even. It follows that

𝐸{𝑛0�̇�0} = 0 (D.4)

Therefore, 𝑛0 and �̇�0, which are samples of 𝑛0(𝑡) and 𝑑𝑛0(𝑡)∕𝑑𝑡, respectively, are statistically independent, since uncor-

related Gaussian processes are independent. Thus, letting var{𝑛0} = 𝑛
2
0 and var{�̇�0} = �̇�

2
0, the joint pdf of 𝑛0 and �̇�0 is

𝑓
𝑛0 �̇�0

(𝑦, 𝑧) =
exp(−𝑦2∕2𝑛20)√

2𝜋𝑛20

exp(−𝑧2∕2�̇�20)√
2𝜋�̇�20

(D.5)
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1/2W

n0 + n0

t

Intercept = n(0) = n0

= n0Slope =
dn
dt t = 0

n(t)

Δ

Δ

Δ

Δ

Figure D.1
Sample function of a lowpass Gaussian
process of bandwidth W.

which, when substituted into (D.2), yields

𝑃Δ− =
∫

∞

0

exp(−𝑧2∕2�̇�20)√
2𝜋�̇�20

⎡
⎢
⎢
⎢
⎣
∫

0

−𝑧Δ

exp(−𝑦2∕2𝑛20)√
2𝜋𝑛20

𝑑𝑦

⎤
⎥
⎥
⎥
⎦

𝑑𝑧 (D.6)

For Δ small, the inner integral of (D.6) can be approximated as 𝑧Δ
√

2𝜋𝑛20

, which allows (D.6) to be simplified to

𝑃Δ− ≅ Δ
√

2𝜋𝑛20
∫

∞

0
𝑧

exp(−𝑧2∕2�̇�20)√
2𝜋�̇�20

𝑑𝑧 (D.7)

Letting 𝜁 = 𝑧
2∕2�̇�20 yields

𝑃Δ− ≅ Δ

2𝜋
√

𝑛
2
0 �̇�

2
0

∫

∞

0
�̇�
2
0 𝑒

−𝜁
𝑑𝜁

= Δ
2𝜋

√√√√√
�̇�
2
0

𝑛
2
0

(D.8)

for the probability of a minus-to-plus zero crossing in Δ seconds. By symmetry, the probability of a plus-to-minus zero
crossing is the same. Thus, the probability of a zero crossing in Δ seconds, plus or minus, is

𝑃Δ ≅ Δ
𝜋

√√√√√
�̇�
2
0

𝑛
2
0

(D.9)

For example, suppose that 𝑛(𝑡) is an ideal lowpass process with the power spectral density

𝑆
𝑛
(𝑓 ) =

{ 1
2
𝑁0, |𝑓 | ≤ 𝑊

0, otherwise
(D.10)

Thus,

𝑅
𝑛
(𝜏) = 𝑁0𝑊 sinc 2𝑊 𝜏

which possesses a derivative at zero. Therefore, 𝑛0 and �̇�0 are independent. It follows that

𝑛
2
0 = var{𝑛0} =

∫

∞

−∞
𝑆

𝑛
(𝑓 ) 𝑑𝑓 = 𝑅

𝑛
(0) = 𝑁0𝑊 (D.11)
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and, since the transfer function of a differentiator is 𝐻
𝑑
(𝑓 ) = 𝑗2𝜋𝑓 , that

�̇�
2
0 = var{�̇�0} =

∫

∞

−∞

||𝐻𝑑
(𝑓 )||

2
𝑆

𝑛
(𝑓 ) 𝑑𝑓 =

∫

𝑊

−𝑊
(2𝜋𝑓 )2 1

2
𝑁0 𝑑𝑓

= 1
3
(2𝜋𝑊 )2(𝑁0𝑊 ) (D.12)

Substitution of these results into (D.9) gives a

2𝑃Δ− = 2𝑃Δ+ = 𝑃Δ = Δ
𝜋

2𝜋𝑊
√
3

= 2𝑊 Δ
√
3

(D.13)

for the probability of a zero crossing in a small time interval Δ seconds in duration for a random process with an ideal
rectangular lowpass spectrum.

■ D.2 AVERAGE RATE OF ZERO CROSSINGS

Consider next the sum of a sinusoid plus narrowband Gaussian noise:

𝑧(𝑡) = 𝐴 cos𝜔0𝑡 + 𝑛(𝑡) (D.14)

= 𝐴 cos𝜔0𝑡 + 𝑛
𝑐
(𝑡) cos𝜔0𝑡 − 𝑛

𝑠
(𝑡) sin𝜔0𝑡

where 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) are lowpass processes with statistical properties as described in Section 6.5. We may write 𝑧(𝑡) in

terms of envelope 𝑅(𝑡) and phase 𝜃(𝑡) as

𝑧(𝑡) = 𝑅(𝑡) cos[𝜔0𝑡 + 𝜃(𝑡)] (D.15)

where

𝑅(𝑡) =
√

[𝐴 + 𝑛
𝑐
(𝑡)]2 + 𝑛2

𝑠
(𝑡) (D.16)

and

𝜃(𝑡) = tan−1
[

𝑛
𝑠
(𝑡)

𝐴 + 𝑛
𝑐
(𝑡)

]
(D.17)

A phasor representation for this process is shown in Figure D.2(a). In Figure D.2(b), a possible trajectory for the tip of
𝑅(𝑡) that does not encircle the origin is shown along with 𝜃(𝑡) and 𝑑𝜃(𝑡)∕𝑑𝑡. In Figure D.2(c), a trajectory that encircles
the origin is shown along with 𝜃(𝑡) and 𝑑𝜃(𝑡)∕𝑑𝑡. For the case in which the origin is encircled, the area under 𝑑𝜃∕𝑑𝑡must
be 2𝜋 radians. Recalling the definition of an ideal FM discriminator in Chapter 3, we see that the sketches for 𝑑𝜃∕𝑑𝑡,
shown in Figure D.2, represent the output of a discriminator in response to input of an unmodulated signal plus noise or
interferece. For a high signal-to-noise ratio, the phasor will randomly fluctuate near the horizontal axis. Occasionally,
however, it will encircle the origin as shown in Figure D.2(c). Intuitively, these encirclements become more probable
as the signal-to-noise ratio decreases. Because of its nonzero area, the impulsive type of output illustrated in Figure
D.2(c), caused by an encirclement of the origin, has a much more serious effect on the noise level of the discriminator
output than does the noise excursion illustrated in Figure D.2(b), which has zero area. We now derive an expression for
the average number of noise spikes per second of the type illustrated in Figure D.2(c). Only positive spikes caused by
counterclockwise origin encirclements will be considered, since the average rate for negative spikes, which result from
clockwise origin encirclements, is the same by symmetry.

Assume that if 𝑅(𝑡) crosses the horizontal axis when it is in the second quadrant, the origin encirclement will
be completed. With this assumption, and considering a small interval Δ seconds in duration, the probability of a
counterclockwise encirclement 𝑃

𝑐𝑐Δ in the interval (0,Δ) is

𝑃
𝑐𝑐Δ = Pr[𝐴 + 𝑛

𝑐
(𝑡) < 0 and 𝑛

𝑠
(𝑡) makes + to − zero crossing in (0,Δ)]

= Pr
[
𝑛
𝑐
(𝑡) < −𝐴

]
𝑃Δ− (D.18)
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Figure D.2
Phasor diagrams showing possible trajectories for a sinusoid plus Gaussian noise. (a) Phasor representation for a sinusoid plus
narrowband noise. (b) Trajectory that does not encircle origin. (c) Trajectory that does encircle origin.

where 𝑃Δ− is the probability of a minus-to-plus zero crossing in (0,Δ) as given by (D.13) with 𝑛(𝑡) replaced by 𝑛
𝑠
(𝑡), and

the statistical independence of 𝑛
𝑐
(𝑡) and 𝑛

𝑠
(𝑡) has been used. Recall from Chapter 7 that 𝑛2

𝑐
(𝑡) = 𝑛2

𝑠
(𝑡) = 𝑛2(𝑡). If 𝑛(𝑡) is an

ideal bandpass process with single-sided bandwidth 𝐵 and power spectral density 𝑁0, then 𝑛2(𝑡) = 𝑁0𝐵, and

Pr[𝑛
𝑐
(𝑡) < −𝐴] =

∫

−𝐴

−∞

𝑒
−𝑛2

𝑐
∕2𝑁0𝐵

√
2𝜋𝑁0𝐵

𝑑𝑛
𝑐
=
∫

∞

𝐴∕
√
𝑁0𝐵

𝑒
−𝑢2∕2
√
2𝜋

𝑑𝑢 (D.19)

= 𝑄

(√
𝐴2∕𝑁0𝐵

)
(D.20)

where 𝑄(⋅) is the Gaussian 𝑄-function. From (D.13) with 𝑊 = 𝐵∕2, which is the bandwidth of 𝑛
𝑠
(𝑡), we have

𝑃Δ− = Δ𝐵
2
√
3

(D.21)

Substituting (D.20) and (D.21) into (D.18), we obtain

𝑃
𝑐𝑐Δ = Δ𝐵

2
√
3
𝑄

(√
𝐴2

𝑁0𝐵

)

(D.22)
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Figure D.3
Rate of origin encirclements as a
function of signal-to-noise ratio.

The probability of a clockwise encirclement 𝑃
𝑐Δ is the same by symmetry. Thus, the expected number of encirclements

per second, clockwise and counterclockwise, is

𝜈 = 1
Δ

(
𝑃
𝑐Δ + 𝑃

𝑐𝑐Δ
)

= 𝐵
√
3
𝑄

(√
𝐴2

𝑁0𝐵

)

(D.23)

We note that the average number of encirclements per second increases in direct proportion to the bandwidth and
decreases essentially exponentially with increasing signal-to-noise ratio 𝐴

2∕(2𝑁0𝐵). We can see this in Figure D.3,
which illustrates 𝜈∕𝐵 as a function of signal-to-noise ratio. Figure D.3 also shows the asymptote as 𝐴2∕(2𝑁0𝐵) → 0 of

𝜈∕𝐵 = 1∕(2
√
3) = 0.2887.

The results derived above say nothing about the statistics of the number of impulses, 𝑁 , in a time interval, 𝑇 . In
Problem D.2, however, it is shown that the power spectral density of a periodic impulse noise process is given by

𝑆
𝐼
(𝑓 ) = 𝜈𝑎2 (D.24)

where 𝜈 is the average number of impulses per second (𝜈 = 𝑓
𝑠
for a periodic impulse train) and 𝑎2 is the mean-squared

value of the impulse weights 𝑎
𝑘
. A similar result can be shown for impulses that have exponentially distributed intervals

between them (i.e., Poisson impulse noise). Approximating the impulse portion of 𝑑𝜃∕𝑑𝑡 as a Poisson impulse noise
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process with sample functions of the form

𝑥(𝑡) ≜ 𝑑𝜃(𝑡)
𝑑𝑡

||||impulse
=

∞∑

𝑘=−∞
±2𝜋𝛿(𝑡 − 𝑡

𝑘
) (D.25)

where 𝑡
𝑘
is a Poisson point process with average rate 𝜈 given by (D.23), we may approximate the power spectral density

of this impulse noise process as white with a spectral level given by

𝑆
𝑥
(𝑓 ) = 𝜈(2𝜋)2

= 4𝜋2
𝐵

√
3

𝑄

(√
𝐴2

𝑁0𝐵

)

, −∞ < 𝑓 < ∞ (D.26)

If the sinusoidal signal component in (D.14) is FM modulated, the average number of impulses per second is
increased over that obtained for no modulation. Intuitively, the reason may be explained as follows. Consider a carrier
that is FM modulated by a unit step. Thus,

𝑧(𝑡) = 𝐴 cos 2𝜋[𝑓
𝑐
+ 𝑓

𝑑
𝑢(𝑡)]𝑡 + 𝑛(𝑡) (D.27)

where 𝑓
𝑑
≤

1
2
𝐵 is the frequency-deviation constant in hertz per volt. Because of this frequency step, the carrier phasor

shown in Figure D.2(a) rotates counterclockwise at 𝑓
𝑑
Hz for 𝑡 > 0. Since the noise is bandlimited to 𝐵 Hz with center

frequency 𝑓
𝑐
Hz, its average frequency is less than the instantaneous frequency of the modulated carrier when 𝑡 > 0.

Hence, there will be a greater probability for a 2𝜋 clockwise rotation of𝑅(𝑡) relative to the carrier phasor if it is frequency
offset by 𝑓

𝑑
Hz (that is, modulated) than if it is not. In other words, the average rate for negative spikes will increase for

𝑡 > 0 and that for positive spikes will decrease. Conversely, for a negative frequency step, the average rate for positive
spikes will increase and that for negative spikes will decrease. It can be shown that the result is a net increase 𝛿𝜈 in the
spike rate over the case for no modulation, with the average increase approximated by (see Problems D.1 and D.2)

𝛿𝜈 = |𝛿𝑓 | exp
(

−𝐴2

2𝑁0𝐵

)
(D.28)

where |𝛿𝑓 | is the average of the magnitude of the frequency deviation. For the case just considered, |𝛿𝑓 | = 𝑓
𝑑
. The total

average spike rate is then 𝜈 + 𝛿𝜈. The power spectral density of the spike noise for modulated signals is obtained by
substituting 𝜈 + 𝛿𝜈 for 𝜈 in (D.26).

Problems

D.1 Consider a signal-plus-noise process of the form

𝑧(𝑡) = 𝐴 cos 2𝜋(𝑓0 + 𝑓
𝑑
)𝑡 + 𝑛(𝑡) (D.29)

where 𝑛(𝑡) is given by

𝑛(𝑡) = 𝑛
𝑐
(𝑡) cos 2𝜋𝑓0𝑡 − 𝑛

𝑠
(𝑡) sin 2𝜋𝑓0𝑡 (D.30)

Assume that 𝑛(𝑡) is an ideal bandlimited white-noise pro-
cess with double-sided power spectral density equal to
1
2
𝑁0, for −

1
2
𝐵 ≤ 𝑓 ± 𝑓0 ≤

1
2
𝐵, and zero otherwise. Write

𝑧(𝑡) as

𝑧(𝑡) = 𝐴 cos 2𝜋(𝑓0 + 𝑓
𝑑
)𝑡 + 𝑛

′
𝑐
(𝑡) cos 2𝜋(𝑓0 + 𝑓

𝑑
)𝑡

−𝑛′
𝑠
sin 2𝜋(𝑓0 + 𝑓

𝑑
)𝑡

(a) Express 𝑛′
𝑐
(𝑡) and 𝑛′

𝑠
(𝑡) in terms of 𝑛

𝑐
(𝑡) and 𝑛

𝑠
(𝑡).

Find the power spectral densities of 𝑛
′
𝑐
(𝑡) and

𝑛
′
𝑠
(𝑡), 𝑆

𝑛
′
𝑐
(𝑓 ) and 𝑆

𝑛
′
𝑠
(𝑓 ).

(b) Find the cross-spectral density of 𝑛
′
𝑐
(𝑡) and

𝑛
′
𝑠
(𝑡),𝑆

𝑛
′
𝑐
𝑛
′
𝑠
(𝑓 ), and the cross-correlation function,

𝑅
𝑛
′
𝑐
𝑛
′
𝑠
(𝜏). Are 𝑛′

𝑐
(𝑡) and 𝑛′

𝑠
(𝑡) correlated? Are 𝑛′

𝑐
(𝑡)

and 𝑛
′
𝑠
(𝑡), sampled at the same instant, indepen-

dent?

D.2

(a) Using the results of ProblemD.1, derive Equation
(D.28) with |𝛿𝑓 | = 𝑓

𝑑
.

(b) Compare Equations (D.28) and (D.23) for a
squarewave-modulated FM signal with deviation
𝑓
𝑑
by letting |𝛿𝑓 | = 𝑓

𝑑
and 𝐵 = 2𝑓

𝑑
for 𝑓

𝑑
= 5

and 10 for signal-to-noise ratios of𝐴2∕𝑁0𝐵 = 1,
10, 100, 1000. Plot 𝜈 and 𝛿𝜈 versus 𝐴2∕𝑁0𝐵.
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APPENDIXE

CHI-SQUARE STATISTICS

Useful probability distributions result from sums of squares of independent Gaussian random variables of the form

𝒁 =
𝒏∑

𝒊=𝟏
𝑿

𝟐
𝒊

(E.1)

If each of the component random variables, 𝑿
𝒊
, is zero-mean and has variance 𝝈𝟐, the probability density function of 𝒁 is

𝒇
𝒁
(𝒛) = 𝟏

𝝈
𝒏𝟐𝒏∕𝟐𝚪(𝒏∕𝟐)

𝒛
(𝒏−𝟐)∕𝟐 𝐞𝐱𝐩(−𝒛∕𝟐𝝈𝟐), 𝒛 ≥ 𝟎 (E.2)

The random variable 𝑍 is known as a central chi-square, or simply chi-square, random variable with 𝑛 degrees of
freedom. In (E.2), Γ(𝑥) is the gamma function defined as

Γ(𝑥) =
∫

∞

0
𝑡
𝑥−1 exp(−𝑡)𝑑𝑡, 𝑥 > 0 (E.3)

The gamma function has the properties

Γ(𝑛) = (𝑛 − 1)Γ(𝑛 − 1) (E.4)

and

Γ(1) = 1 (E.5)

The two preceding equations give, for integer 𝑛,

Γ(𝑛) = (𝑛 − 1)! integer 𝑛 (E.6)

Also

Γ
(1
2

)
=
√
𝜋 (E.7)

With the change of variables 𝑧 = 𝑦
2
, the central chi-square distribution with two degrees of freedom as obtained

from (E.2) becomes the Rayleigh pdf, given by

𝑓
𝑌
(𝑦) = 𝑦

𝜎2 exp
(
−𝑦2∕2𝜎2)

, 𝑦 ≥ 0 (E.8)

If the component random variables in (E.1) are not zero mean but have means defined by 𝐸(𝑋
𝑖
) = 𝑚

𝑖
, the resulting

pdf of 𝑍 is

𝑓
𝑧
(𝑧) = 1

2𝜎2

(
𝑧

𝑠2

)(𝑛−2)∕4
exp

(
−𝑧 + 𝑠

2

2𝜎2

)
𝐼
𝑛∕2−1

(
𝑠

√
𝑧

𝜎2

)

, 𝑧 ≥ 0 (E.9)

where

𝑠
2 =

𝑛∑

𝑖=1
𝑚

2
𝑖

(E.10)
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and

𝐼
𝑚
(𝑥) =

∞∑

𝑘=0

(𝑥∕2)𝑚+2𝑘

𝑘!Γ(𝑚 + 𝑘 + 1)
, 𝑥 ≥ 0 (E.11)

is the 𝑚th-order modified Bessel function of the first kind. The random variable defined by (E.9) is called a noncentral
chi-square random variable. If we let 𝑛 = 2 and make the change of variables 𝑧 = 𝑦

2, (E.9) becomes

𝑓
𝑌
(𝑦) = 𝑦

𝜎2 exp
(
−𝑦

2 + 𝑠2

2𝜎2

)
𝐼0

(
𝑠𝑦

𝜎2

)
, 𝑦 ≥ 0 (E.12)

which is known as the Ricean pdf.
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APPENDIXF

MATHEMATICAL AND NUMERICAL TABLES

This appendix contains several tables pertinent to the material contained in this book. The tables are:

1. The Gaussian Q-Function

2. Trigonometric Identities

3. Series Expansions

4. Integrals

5. Fourier-Transform Pairs

6. Fourier-Transform Theorems

■ F.1 THE GAUSSIAN Q-FUNCTION

In this appendixwe examine theGaussian𝑄-function inmore detail and discuss several approximations to the𝑄-function.1

The Gaussian probability density function of unit variance and zero mean is

𝑍(𝑥) = 1
√
2𝜋

𝑒
−𝑥2∕2 (F.1)

and the corresponding cumulative distribution function is

𝑃 (𝑥) =
∫

𝑥

−∞
𝑍(𝑡) 𝑑𝑡 (F.2)

The Gaussian 𝑄-function is defined as2

𝑄(𝑥) = 1 − 𝑃 (𝑥) =
∫

∞

𝑥

𝑍(𝑡) 𝑑𝑡 (F.3)

An asymptotic expansion for 𝑄(𝑥), valid for large 𝑥, is

𝑄(𝑥) = 𝑍(𝑥)
𝑥

[
1 − 1

𝑥2
+ 1 ⋅ 3

𝑥4
−⋯ + (−1)𝑛1 ⋅ 3⋯ (2𝑛 − 1)

𝑥2𝑛

]
+𝑅

𝑛
(F.4)

where the remainder is given by

𝑅
𝑛
= (−1)𝑛+11 ⋅ 3⋯ (2𝑛 + 1)

∫

∞

𝑥

𝑍(𝑡)
𝑡2𝑛+2

𝑑𝑡 (F.5)

1The information given in this appendix is extracted from M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, New York: Dover, 1972
(Originally published in 1964 as part of the National Bureau of Standards Applied Mathematics Series 55).
2For 𝑥 < 0, 𝑄(𝑥) = 1 −𝑄 (|𝑥|).
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Table F.1 A Short Table of 𝑄-Function Values

𝒙 𝑸 (𝒙) 𝒙 𝑸 (𝒙) 𝒙 𝑸 (𝒙)

0 0.5 1.5 0.066807 3.0 0.0013499
0.1 0.46017 1.6 0.054799 3.1 0.00096760
0.2 0.42074 1.7 0.044565 3.2 0.00068714
0.3 0.38209 1.8 0.035930 3.3 0.00048342
0.4 0.34458 1.9 0.028717 3.4 0.00033693
0.5 0.30854 2.0 0.022750 3.5 0.00023263
0.6 0.27425 2.1 0.017864 3.6 0.00015911
0.7 0.24196 2.2 0.013903 3.7 0.00010780
0.8 0.21186 2.3 0.010724 3.8 7.2348 × 10−5
0.9 0.18406 2.4 0.0081975 3.9 4.8096 × 10−5
1.0 0.15866 2.5 0.0062097 4.0 3.1671 × 10−5
1.1 0.13567 2.6 0.0046612 4.1 2.0658 × 10−5
1.2 0.11507 2.7 0.0034670 4.2 1.3346 × 10−5
1.3 0.096800 2.8 0.0025551 4.3 8.5399 × 10−6
1.4 0.080757 2.9 0.0018658 4.4 5.4125 × 10−6

which is less in absolute value than the first neglected term. For 𝑥 ≥ 3, less than 10% error results if only the first term
in (F.4) is used to approximate the Gaussian 𝑄-function.

A finite-limit integral for the 𝑄-function, which is convenient for numerical integration, is3

𝑄 (𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
𝜋 ∫

∞

𝑥

exp
(
− 𝑥

2

2 sin2 𝜙

)
𝑑𝜙, 𝑥 ≥ 0

1 − 1
𝜋 ∫

∞

𝑥

exp
(
− 𝑥

2

2 sin2 𝜙

)
𝑑𝜙, 𝑥 < 0

(F.6)

The well-known error function can be related to the Gaussian 𝑄-function by

erf(𝑥) ≜ 2
√
𝜋
∫

𝑥

0
𝑒
−𝑡2

𝑑𝑡 = 1 − 2𝑄
(√

2𝑥
)

(F.7)

The complementary error function is defined as erfc(𝑥) = 1 − erf(𝑥) so that

𝑄 (𝑥) = 1
2
erfc

(
𝑥∕

√
2
)

(F.8)

which is convenient for computing values using MATLAB since erfc is a subprogram in MATLAB but the 𝑄-function
is not.

A short table of values for 𝑄(𝑥) follows. Note that values of 𝑄 (𝑥) for 𝑥 < 0 can be found from the table by using
the relationship

𝑄 (𝑥) = 1 −𝑄 (|𝑥|) (F.9)

For example, from Table F.1, 𝑄 (−0.1) = 1 −𝑄 (0.1) = 1 − 0.46017 = 0.53983.

3J. W. Craig, ‘‘A New, Simple and Exact Result for Calculating the Probability of Error for Two-Dimensional Signal Constellations,’’ IEEE MILCOM’91
Conf. Rec., Boston, MA, pp. 25.5.1--25.5.5, November 1991.

M. K. Simon and Dariush Divsalar, ‘‘Some New Twists to Problems Involving the Gaussian Probability Integral,’’ IEEE Transactions on
Communications, Vol. 46, pp. 200--210, February 1998.
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■ F.2 TRIGONOMETRIC IDENTITIES

cos(𝑢) = 𝑒
𝑗𝑢 + 𝑒

−𝑗𝑢

2

sin(𝑢) = 𝑒
𝑗𝑢 − 𝑒

−𝑗𝑢

2𝑗

cos2(𝑢) + sin2(𝑢) = 1

cos2(𝑢) − sin2(𝑢) = cos (2𝑢)

2 sin(𝑢) cos(𝑢) = sin (2𝑢)

cos(𝑢) cos(𝑣) = 1
2
cos (𝑢 − 𝑣) + 1

2
cos (𝑢 + 𝑣)

sin(𝑢) cos(𝑣) = 1
2
sin (𝑢 − 𝑣) + 1

2
sin (𝑢 + 𝑣)

sin(𝑢) sin(𝑣) = 1
2
cos (𝑢 − 𝑣) − 1

2
cos (𝑢 + 𝑣)

cos (𝑢 ± 𝑣) = cos 𝑢 cos 𝑣 ∓ sin 𝑢 sin 𝑣

sin (𝑢 ± 𝑣) = sin 𝑢 cos 𝑣 ± cos 𝑢 sin 𝑣

cos2(𝑢) = 1
2
+ 1

2
cos (2𝑢)

cos2𝑛(𝑢) = 1
22𝑛

[
𝑛−1∑

𝑘=0
2

(
2𝑛
𝑘

)

cos 2 (𝑛 − 𝑘) 𝑢 +

(
2𝑛
𝑛

)]

cos2𝑛−1(𝑢) = 1
22𝑛−2

[
𝑛−1∑

𝑘=0
2

(
2𝑛 − 1
𝑘

)

cos (2𝑛 − 2𝑘 − 1) 𝑢

]

sin2(𝑢) = 1
2
− 1

2
cos (2𝑢)

sin2𝑛(𝑢) = 1
22𝑛

[
𝑛−1∑

𝑘=0
(−1)𝑛−𝑘 2

(
2𝑛
𝑘

)

cos 2 (𝑛 − 𝑘) 𝑢 +

(
2𝑛
𝑛

)]

sin2𝑛−1(𝑢) = 1
22𝑛−2

[
𝑛−1∑

𝑘=0
(−1)𝑛+𝑘−1 2

(
2𝑛 − 1
𝑘

)

sin (2𝑛 − 2𝑘 − 1) 𝑢

]

■ F.3 SERIES EXPANSIONS

(𝑢 + 𝑣)𝑛 =
𝑛∑

𝑘=0

(
𝑛

𝑘

)

𝑢
𝑛−𝑘

𝑣
𝑘
,

(
𝑛

𝑘

)

= 𝑛!
(𝑛 − 𝑘)!𝑘!

Letting 𝑢 = 1 and 𝑣 = 𝑥 where |𝑥| ≪ 1 results in the approximations:

(1 + 𝑥)𝑛 ≅ 1 + 𝑛𝑥; (1 − 𝑥)𝑛 ≅ 1 − 𝑛𝑥; (1 + 𝑥)1∕2 ≅ 1 + 1
2
𝑥

log
𝑎
𝑢 = log

𝑒
𝑢 log

𝑎
𝑒; log

𝑒
𝑢 = ln 𝑢 = log

𝑒
𝑎 log

𝑎
𝑢

𝑒
𝑢 =

∞∑

𝑘=0
𝑢
𝑘∕𝑘! ≅ 1 + 𝑢, |𝑢| ≪ 1

www.it-ebooks.info

http://www.it-ebooks.info/


F.4 Integrals 725

ln (1 + 𝑢) ≅ 𝑢, |𝑢| ≪ 1

sin 𝑢 =
∞∑

𝑘=0
(−1)𝑘 𝑢

2𝑘+1

(2𝑘 + 1)!
≅ 𝑢 − 𝑢

3∕3!, |𝑢| ≪ 1

cos 𝑢 =
∞∑

𝑘=0
(−1)𝑘 𝑢

2𝑘

(2𝑘)!
≅ 1 − 𝑢

2∕2!, |𝑢| ≪ 1

tan 𝑢 = 𝑢 + 1
3
𝑢
3 + 2

15
𝑢
5 + …

𝐽
𝑛
(𝑢) ≅

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑢
𝑛

2𝑛𝑛!

[
1 − 𝑢

2

22 (𝑛 + 1)
+ 𝑢

4

2 ⋅ 24 (𝑛 + 1) (𝑛 + 2)
− …

]
, |𝑢| ≪ 1

√
2
𝜋𝑢

cos (𝑢 − 𝑛𝜋∕2 − 𝜋∕2) , |𝑢| ≫ 1

𝐼0(𝑢) ≅
⎧
⎪
⎨
⎪
⎩

1 + 𝑢
2

22
+ 𝑢

4

24
+ … ≅ 𝑒

𝑢
2∕4
, 0 ≤ 𝑢 ≪ 1

𝑒
𝑢

√
2𝜋𝑢

, 𝑢 ≫ 1

■ F.4 INTEGRALS

F.4.1 Indefinite

∫
sin (𝑎𝑥) 𝑑𝑥 = −1

𝑎
cos (𝑎𝑥)

∫
cos (𝑎𝑥) 𝑑𝑥 = 1

𝑎
sin (𝑎𝑥)

∫
sin2 (𝑎𝑥) 𝑑𝑥 = 𝑥

2
− 1

4𝑎
sin (2𝑎𝑥)

∫
cos2 (𝑎𝑥) 𝑑𝑥 = 𝑥

2
+ 1

4𝑎
sin (2𝑎𝑥)

∫
𝑥 sin (𝑎𝑥) 𝑑𝑥 = 𝑎

−2 [sin (𝑎𝑥) − 𝑎𝑥 cos (𝑎𝑥)]

∫
𝑥 cos (𝑎𝑥) 𝑑𝑥 = 𝑎

−2 [cos (𝑎𝑥) + 𝑎𝑥 sin (𝑎𝑥)]

∫
𝑥
𝑚 sin (𝑥) 𝑑𝑥 = −𝑥𝑚 cos (𝑥) + 𝑚

∫
𝑥
𝑚−1 cos (𝑥) 𝑑𝑥

∫
𝑥
𝑚 cos (𝑥) 𝑑𝑥 = 𝑥

𝑚 sin (𝑥) − 𝑚
∫

𝑥
𝑚−1 sin (𝑥) 𝑑𝑥

∫
exp(𝑎𝑥) 𝑑𝑥 = 𝑎

−1 exp(𝑎𝑥)

∫
𝑥
𝑚 exp(𝑎𝑥) 𝑑𝑥 = 𝑎

−1
𝑥
𝑚 exp(𝑎𝑥) − 𝑎

−1
𝑚
∫

𝑥
𝑚−1 exp(𝑎𝑥) 𝑑𝑥

∫
exp(𝑎𝑥) sin (𝑏𝑥) 𝑑𝑥 =

(
𝑎
2 + 𝑏

2)−1 exp(𝑎𝑥) [𝑎 sin (𝑏𝑥) − 𝑏 cos (𝑏𝑥)]

∫
exp(𝑎𝑥) cos (𝑏𝑥) 𝑑𝑥 =

(
𝑎
2 + 𝑏

2)−1 exp(𝑎𝑥) [𝑎 cos (𝑏𝑥) + 𝑏 sin (𝑏𝑥)]
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F.4.2 Definite

∫

∞

0

𝑥
𝑚−1

1 + 𝑥𝑛
𝑑𝑥 =

𝜋∕𝑛
sin (𝑚𝜋∕𝑛)

, 𝑛 > 𝑚 > 0

∫

𝜋

0
sin2 (𝑛𝑥) 𝑑𝑥 =

∫

𝜋

0
cos2 (𝑛𝑥) 𝑑𝑥 = 𝜋∕2, 𝑛 an integer

∫

𝜋

0
sin (𝑚𝑥) sin (𝑛𝑥) 𝑑𝑥 =

∫

𝜋

0
cos (𝑚𝑥) cos (𝑛𝑥) 𝑑𝑥 = 0, 𝑚 ≠ 𝑛, 𝑚 and 𝑛 integer

∫

𝜋

0
sin (𝑚𝑥) cos (𝑛𝑥) 𝑑𝑥 =

{
2m/

(
𝑚
2 − 𝑛

2)
, 𝑚 + 𝑛 odd

0, 𝑚 + 𝑛 even

∫

∞

0
𝑥
𝑎−1 cos 𝑏𝑥 𝑑𝑥 = Γ (𝑎)

𝑏𝑎
cos (𝜋𝑎∕2) , 0 < |𝑎| < 1, 𝑏 > 0

∫

∞

0
𝑥
𝑎−1 sin 𝑏𝑥 𝑑𝑥 = Γ (𝑎)

𝑏𝑎
sin (𝜋𝑎∕2) , 0 < |𝑎| < 1, 𝑏 > 0

∫

∞

0
𝑥
𝑛 exp(−𝑎𝑥) 𝑑𝑥 = 𝑛!∕𝑎𝑛+1, 𝑛 an integer and > 0

∫

∞

0
exp

(
−𝑎2𝑥2

)
𝑑𝑥 =

√
𝜋

2 |𝑎|

∫

∞

0
𝑥
2𝑛 exp

(
−𝑎2𝑥2

)
𝑑𝑥 =

1 ⋅ 3 ⋅ 5… (2𝑛 − 1)
√
𝜋

2𝑛+1𝑎2𝑛+1
, 𝑎 > 0

∫

∞

0
exp(−𝑎𝑥) cos (𝑏𝑥) 𝑑𝑥 = 𝑎

𝑎2 + 𝑏2
, 𝑎 > 0

∫

∞

0
exp(−𝑎𝑥) sin (𝑏𝑥) 𝑑𝑥 = 𝑏

𝑎2 + 𝑏2
, 𝑎 > 0

∫

∞

0
exp

(
−𝑎2𝑥2

)
cos (𝑏𝑥) 𝑑𝑥 =

√
𝜋

2𝑎
exp

(
− 𝑏

2

4𝑎2

)

∫

∞

0
𝑥 exp

(
−𝑎𝑥2

)
𝐼
𝑘
(𝑏𝑥) 𝑑𝑥 = 1

2𝑎
exp

(
− 𝑏

2

4𝑎

)
, 𝑎 > 0

∫

∞

0

cos (𝑎𝑥)
𝑏2 + 𝑥2

𝑑𝑥 = 𝜋

2𝑏
exp(−𝑎𝑏) , 𝑎 > 0, 𝑏 > 0

∫

∞

0

𝑥 sin (𝑎𝑥)
𝑏2 + 𝑥2

𝑑𝑥 = 𝜋

2
exp(−𝑎𝑏) , 𝑎 > 0, 𝑏 > 0

∫

∞

0
sinc(𝑥) 𝑑𝑥 =

∫

∞

0
sinc2 (𝑥) 𝑑𝑥 = 1

2
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■ F.5 FOURIER-TRANSFORM PAIRS

Signal Fourier transform

Π (𝑡∕𝜏) =
{

1, |𝑡| ≤ 𝜏∕2
0, otherwise

𝜏 sinc( 𝑓𝜏) = 𝜏
sin (𝜋𝑓𝜏)
𝜋𝑓𝜏

2𝑊 sinc(2𝑊 𝑡) Π (𝑓∕2𝑊 )

Λ (𝑡∕𝜏) =
{

1 − |𝑡| ∕𝜏, |𝑡| ≤ 𝜏

0, otherwise
𝜏 sinc2 ( 𝑓𝜏)

𝑊 sinc2 (𝑊 𝑡) Λ ( 𝑓∕𝑊 )
exp(−𝛼𝑡) 𝑢 (𝑡) , 𝛼 > 0 1∕ (𝛼 + 𝑗2𝜋𝑓 )
𝑡 exp(−𝛼𝑡) 𝑢 (𝑡) , 𝛼 > 0 1∕ (𝛼 + 𝑗2𝜋𝑓 )2

exp(−𝛼 |𝑡|) , 𝛼 > 0 2𝛼∕
[
𝛼
2 + (2𝜋𝑓 )2

]

exp
[
−𝜋 (𝑡∕𝜏)2

]
𝜏 exp

[
−𝜋 (𝜏𝑓 )2

]

𝛿 (𝑡) 1

1 𝛿 ( 𝑓 )

cos
(
2𝜋𝑓0𝑡

) 1
2
𝛿
(
𝑓 − 𝑓0

)
+ 1

2
𝛿
(
𝑓 + 𝑓0

)

sin
(
2𝜋𝑓0𝑡

) 1
2𝑗

𝛿
(
𝑓 − 𝑓0

)
− 1

2𝑗
𝛿
(
𝑓 + 𝑓0

)

𝑢 (𝑡) 1
𝑗2𝜋𝑓

+ 1
2
𝛿 ( 𝑓 )

1∕ (𝜋𝑡) −𝑗sgn( 𝑓 ) ; sgn(𝑓 ) =
{

1, 𝑓 > 0
−1, 𝑓 < 0

∑∞
𝑚=−∞ 𝛿

(
𝑡 − 𝑚𝑇

𝑠

)
𝑓
𝑠

∑∞
𝑛=−∞ 𝛿

(
𝑓 − 𝑛𝑓

𝑠

)
; 𝑓

𝑠
= 1∕𝑇

𝑠

■ F.6 FOURIER-TRANSFORM THEOREMS

Time-domain operation Frequency-domain operation
Name (signals assumed real)

Superposition 𝑎1𝑥1 (𝑡) + 𝑎2𝑥2 (𝑡) 𝑎1𝑋1 ( 𝑓 ) + 𝑎2𝑋2 ( 𝑓 )
Time delay 𝑥

(
𝑡 − 𝑡0

)
𝑋 (𝑓 ) exp

(
−𝑗2𝜋𝑡0𝑓

)

Scale change 𝑥 (𝑎𝑡) |𝑎|−1 𝑋 (𝑓∕𝑎)
Time reversal 𝑥 (−𝑡) 𝑋 (−𝑓 ) = 𝑋

∗ (𝑓 )
Duality 𝑋 (𝑡) 𝑥 (−𝑓 )
Frequency translation 𝑥 (𝑡) exp

(
𝑗2𝜋𝑓0𝑡

)
𝑋

(
𝑓 − 𝑓0

)

Modulation 𝑥 (𝑡) cos
(
2𝜋𝑓0𝑡

) 1
2
𝑋

(
𝑓 − 𝑓0

)
+ 1

2
𝑋

(
𝑓 + 𝑓0

)

Convolution4 𝑥1 (𝑡) ∗ 𝑥2 (𝑡) 𝑋1 ( 𝑓 )𝑋2 (𝑓 )
Multiplication 𝑥1 (𝑡) 𝑥2 (𝑡) 𝑋1 (𝑓 ) ∗ 𝑋2 (𝑓 )

Differentiation
𝑑
𝑛
𝑥 (𝑡)
𝑑𝑡𝑛

(𝑗2𝜋𝑓 )𝑛 𝑋 (𝑓 )

Integration ∫
𝑡

−∞ 𝑥 (𝜆) 𝑑𝜆 𝑋 (𝑓 ) ∕ (𝑗2𝜋𝑓 ) + 1
2
𝑋 (0) 𝛿 (𝑓 )

4
𝑥1 (𝑡) ∗ 𝑥2 (𝑡) ≜ ∫

∞
−∞ 𝑥1 (𝜆) 𝑥2 (𝑡 − 𝜆) 𝑑𝜆.
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Absorption, 10
Adaptive equalization, 464
Adaptive filter, 14
Administrative Radio Conference, 7
Advanced Mobile Phone System, 545
Advanced Technology Satellite, 10
Aliasing, 80
Alphabet, 630
Amplitude density spectrum, 36
Amplitude distortion, 64
Amplitude jitter, 237
Amplitude modulation (AM)
coherent detection, 113, 116
defined, 113
detection gain, 356
effect of interference on, 139--141
effect of noise on, 354--361
efficiency, 118, 356
envelope detection of, 118--122, 357--359
index, 116
optimal performance of, 679
square law detection of, 359--361
trapezoid, 122

Amplitude response function, 59
Amplitude-shift keying (ASK), 404
Amplitude spectrum, 35
Analog baseband system, 350
Analog pulse modulation, 142
Analog signal, 4
Analog-to-digital conversion (see also

Pulse-code modulation), 215, 396
Analytic signal, 85--87, 127
Angle modulation (see also Frequency

modulation)
bandwidth of signal, 168
Carson’s rule, 169
defined, 156
demodulation of, 175--195
deviation ratio, 169
effect of noise on, 370--384
frequency deviation, 156
frequency deviation constant, 157
index, 161, 165
interference in, 196--201
narrowband modulation, 157--161
narrowband-to-wideband conversion, 160,

173--175
phase deviation, 156

phase deviation constant, 157
power in signal, 168
spectrum with sinusoidal signal, 161--168
wideband modulation, 169

Antipodal signals, 411
Aperiodic signal, 18
A posteriori probability, 14
Apparent carrier, 485
Arithmetical average, 275
Asynchronous system, 398
Atmospheric attenuation, 10
Atmospheric noise, 6
Attenuator noise, 712
Autocorrelation function
deterministic signals, 51
properties, 52, 320
random signals, 313
random pulse train, 321

Available power, 703
Available power gain, 707
Average cost, 596
Average information, 617
Average power, 703
Average uncertainty, 621
AWGN model, 350

Balanced discriminator, 179
Bandlimited channels, 438
Bandlimited white noise, 321
Bandpass limiter, 177
Bandpass signals, 87--89
Bandpass systems, 89--91
Bandwidth
bit-rate, 402
efficiency, 508, 676--678
efficient modulation, 668--672
expansion factor, 677
limited operation, 635
noise-equivalent, 329--332
relation to risetime, 75--78

Barker sequence, 528
Baseband, 148, 215, 350
Baseband data transmission, 215--243
Basis vector set, 574
Bayes detection
likelihood ratio, 568
minimum average cost (risk), 565
performance, 569

threshold of test, 568
Bayes estimation, 596--598
Bayes’ rule, 254, 260
Bessel filter, 71
Bessel functions, table of, 163
Bessel polynomial, 73
BIBO stability, 58
Binary random waveform,

321--323
Binary system, 397
Binary unit, 397
Binit, 398
Binomial coefficient, 287
Binomial distribution, 287
Binomial theorem, 288
Biphase-shift keying (BPSK), 418--420
Bit, 216, 398, 616
Bit-rate bandwidth, 402
Bit synchronization, 239
Boltzmann’s constant, 349, 699
Burst-error-correcting code, 679
Butterworth filter, 71, 331

Capacity limit, 533
Carrier frequency, 112
Carrier nulls, 165
Carrier recovery, 353
Carrier reinsertion, 129, 135
Carrier synchronization, 181, 517--520
Carson’s rule, 169
Causal system, 58
Cellular mobile radio, 477, 545--555
Central-limit theorem, 291--294
Channel
Bandlimited, 426
binary erasure, 689
binary symmetric, 624
bits per channel use, 623
capacity, 622--626
characteristics, 4--13
continuous, 634--636
defined, 4
electromagnetic wave, 7
fading, 449
feedback, 672--676
guided electromagnetic wave, 11
matrix, 619
measurement (of noise figure), 707--709

728
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memoryless, 618
models, 618--621
multipath, 443--448
noiseless, 623
optical, 11
representation of, 618--621
transition probability, 619

Channel capacity
binary symmetric channel, 624
continuous channel, 634
defined, 622
noiseless channel, 623

Characteristic function, 282
Chebyshev filter, 71
Chebyshev inequality, 296
Chebyshev polynomial, 72
Chip period, 520
Chi-square statistics, 732
Cochannel interference, 548
Code synchronization, 537--539
Coding
definitions
alphabet, 630
block codes, 636--657
code rate, 637
code-word vector, 641
constraint span, 658
efficiency, 630
error vector, 641
forward error correction, 636
generator matrix, 643
group code, 644
Hamming distance, 637
Hamming weight, 637
information rate, 627, 648
instantaneous codes, 630
linear code, 644
minimum-distance decoder, 638
nonblock codes, 630
noninstantaneous codes, 630
parity-check matrix, 641
source, 626--634
space-time, 551
syndrome, 642
systematic, 644
Torreri bounds, 650
Tree diagram, 659
Trellis diagram, 662
perfect code, 649
systematic code, 641
word length, 630

for error control
BCH codes, 648
burst-error correcting codes, 679
convolutional codes, 657--668
cyclic codes, 645--647
Golay code, 647
Hamming codes, 644
interleaved codes, 679
Reed-Solomon code, 648
repetition codes, 639, 653
single error correction, 640--647

single parity-check codes, 638
structure of parity-check codes, 638--644
trellis-coded modulation, 668--672
turbo code, 681--683
Viterbi decoding (Viterbi algorithm), 658

source encoding
described, 626--629
Huffman, 632--634
JPEG, 685
Modified Huffman code, 684
MPEG, 685
Shannon-Fano, 632
source extensions, 627--629
run-length codes, 683

Coherent demodulation, 115, 355
Communication system, 4
Communication theory, 13
Commutator, 147, 658
Companding, 387
Compound event, 252
Complementary error function, 296
Complex envelope, 87, 89--91
Compressor, 388
Conditional expectation, 279
Conditional entropy, 621
Conditional mean, 597
Conditional probability, 253
Conditional probability density, 267
Conditional risk, 597
Consistent estimate, 602
Constraint span, 658
Continuous-phase modulation (CPM), 668
Convolution, 38--39
Convolutional code, 657--668
Convolution theorem, 42
Correct detection, 569
Correlation, 50--55, 316--320
Correlation coefficient, 285, 292
Correlation detection, 413
Cost of making a decision, 566, 569, 596
Costas phase-lock loop
for carrier synchronization,

239
demodulation of DSB, 194

Covariance, 285
Cramer-Rao inequality, 601
Cross-correlation function, 324
Cross-power, 324
Cross-power spectral density, 324
Crosstalk, 208
Cumulative distribution function, 262
Cycle--slipping phenomenon, 192
Cyclic codes, 645
Cyclic prefix, 543
Cyclostationary process, 321

Data transmission
Baseband, 215--239
with modulation, 404--437

Data vector, 583
Decimation in time and frequency, 94
Decision rule, 587

De-emphasis (see Pre-emphasis)
Delay distortion, 64
Delay spread, 542, 550
Delta function, 21
Delta modulation, 144--146
Demodulation phase errors, 366--369
Detection (statistical)
Bayes detection, 564--574
M-ary orthogonal signals, 590
maximum a posteriori detection, 573,

583--595
minimum probability of error detection, 573
Neyman-Pearson detection, 572
Noncoherent digital signaling, 592--595

Detection gain
in AM, 356
defined, 353
in DSB, 353
optimal, 677
in SSB, 355

Deviation ratio, 169
Differential encoding, 422, 437
Differential phase-shift keying (DPSK), 422
Differentiation theorem, 41
Diffuse multipath, 6
Digtal audio broadcasting, 540
Digital signal, 4
Digital telephone system, 149
Digital--to-analog conversion, 216, 396
Dimensionality theorem, 581
Direct sequence (DS) spread-spectrum,

528--536
Dirichlet conditions, 35
Discrete Fourier transform, 91--95
Discriminator, 175
Distortion
amplitude, 64
harmonic, 68
intermodulation, 68
nonlinear, 64, 67
phase (delay), 64

Distortionless transmission, 64
Diversity transmission, 452, 595
Double-sideband modulation (DSB)
coherent demodulation of, 115
defined, 113
detection gain, 356
effect of interference on, 139--141
effect of noise on, 351--355
optimal performance of, 678

Duality theorem, 41

Effective carrier, 141
Effective noise temperature, 709
Effective radiated power, 713
Efficient estimate, 601
Electromagnetic spectrum, 8--9
Electromagnetic-wave propagation channels, 7
Energy, 24, 37
Energy signal, 24
Energy spectral density, 37
Ensemble, 310
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Entropy, 617, 631
Envelope, 76, 85, 333
Envelope detection
of AM signals, 118--122
of FSK signals, 429
of VSB signals, 134

Envelope-phase representation of noise,
333--337

Equal gain combining, 453
Equalization
adaptive, 464
decision-directed, 464
defined, 14, 227
fractionally spaced, 461
filter, 448
least mean-square, 465
minimum mean-square error, 459--463
tap weight adjustment, 463
transversal implementation, 234
zero-forcing, 233--237, 234, 455--459

Equivalent noise temperature, 709
Ergodic process, 313
Error correcting codes (see Coding)
Error-detection feedback, 672--676
Error function, 296
Error probability (see specific system)
Estimation
applications, 602--606
estimation of signal phase, 604--606
pulse amplitude modulation, 603
Bayes, 596--602
conditional mean, 597
conditional risk, 597
cost function, 596
Cramer-Rao inequality, 601
efficient, 601
likelihood equations, 599
likelihood function, 599
maximum a posteriori (MAP), 597
maximum likelihood, 596, 598--602
multiple observations, 599--601
rule, 596
squared-error cost function, 596
theory, 14, 596--606
unbiased, 601
uniform cost function, 596

Euler’s theorem, 19
Event, 250, 252
Excess phase, 485
Expander, 388
Expectation, 275
Extended source, 631
Eye diagrams, 237--239

Fading, 436, 550
Fading margin, 475
False alarm, 569
Fast Fourier transform, 91--95
Fast frequency-shift keying (FFSK), 485
Fast hop, 536
Federal Communications Commission (FCC), 9
Feedback channels, 672--676

Feedback demodulators
Costas phase-lock loop,

181--194
phase-lock loop, 194

Filter
adaptive, 14
Bessel, 71
Butterworth, 71, 331
Chebyshev, 71
de-emphasis, 199
effects on digital data, 225--227
equalization, 231--233
ideal, 68--70
intermediate-frequency, 136
matched, 14, 407--414
postdetection, 351
predetection, 351
pre-emphasis, 199
radio frequency, 137
reconstruction, 80
roll-off factor, 239
square-root raised cosine, 441
tapped-delay line, 235
transversal, 235
Weiner, 14
whitening, 414
zero ISI, 226--228, 232--234

Filtered Gaussian process, 327
Fixed system, 56
Fourier coefficients, 26
Fourier series
complex exponential, 26
examples, 29
symmetry properties, 27
trigonometric form, 28

Fourier transforms
amplitude and phase spectra, 36
defined, 35
discrete, 91--95
fast, 94
inverse, 35
periodic signals, 48, 50
symmetry properties, 36
table of, 739
theorems, 40--43

Frame, 522
Free distance, 666
Free-space loss, 714
Free-space propagation, 713--716
Frequency bands, 8
Frequency deviation, 156
Frequency diversity, 452
Frequency divider, 196
Frequency division multiplexing, 204
Frequency-domain analysis, 13
Frequency hopped (FH) spread-spectrum, 528,

536
Frequency modulation
bandwidth of signal, 168
Carson’s rule, 169
de-emphasis, 200, 374
defined, 156

demodulation
of noiseless, 175--195
in the presence of noise, 196--201

deviation constant, 157
deviation ratio, 169
discriminator, 175
effect of interference on, 196--201
effect of noise on, 370--384
index, 161
indirect, 174
narrowband modulation, 159
narrowband-to-wideband conversion, 160,

173--175
optimal performance of, 679
power in signal, 168
pre-emphasis in, 200, 374
spectrum with sinusoidal modulation,

161--168
stereophonic broadcasting, 205
threshold effects, 376--384

Frequency multiplier, 196
Frequency reuse, 546
Frequency-shift keying (FSK)
Coherent, 404, 497
M-ary, 480
Noncoherent, 498

Frequency translation, 136
Frequency translation theorem, 41
Friis’ formula, 710
Fundamental period, 18
Fundamental theorem of information theory,

634

Gamma function, 297
Gaussian MSK, 487
Gaussian process, 311
Gaussian Q-function, 295
Generator matrix, 643
Geometric distribution, 290
Global positioning system, 527
Global system for mobile radio, 545
Golay code, 647
Gram-Schmidt procedure, 579
Gray code, 431, 504
Group codes, 644
Group delay, 64
Guided electromagnetic-wave channel, 11

Halfwave symmetry, 27
Hamming codes, 644
Hamming distance, 637
Hamming weight, 637
Handoff, 546
Harmonic frequencies, 26
Hartley, 616
High-side tuning, 137
Hilbert transforms
analytic signals, 85--87, 127
defined, 82
properties, 83--85

History of communications, 2
Huffman code, 623--634

www.it-ebooks.info

http://www.it-ebooks.info/


Index 731

Ideal descriminator, 175
Ideal filters, 68--75
Image frequency, 136
Impulse function, 21
Impulse noise, 376
Impulse response
ideal filters, 68--70
of linear system, 56

Indirect frequency modulation, 174
Information, 616
Information feedback, 673
Information rate, 626
Information theory, 1, 15, 615
Instantaneous sampling, 78
Intangible economy, 1
Integrals (table of), 737
Integrate-and-dump detector, 398
Integration theorem, 41
Interference
adjacent channel, 516
co-channel, 548
in angle modulation, 196--201
in linear modulation, 139--141
intersymbol, 216, 415
multipath, 443--448

Interleaved codes, 679
Intermediate frequency, 136
Intermodulation distortion, 68
International Telecommunications Union

(ITU), 7
Intersymbol interference, 427
Isotropic radiation, 714

Jacobian, 273
Joint entropy, 621
Joint event, 252
Jointly Gaussian random variables, 719--721
Joint probability
cumulative distribution function, 265
density function, 266
matrix, 619

Kraft inequality, 690
Kronecker delta, 578

Laplace approximation, 288
Last mile problem, 12, 540
Likelihood ratio, 568
Limiter, 177
Line codes, 215--225
Linear systems
amplitude response, 59
BIBO stable, 58
causal, 57
definition of, 56
distortionless transmission, 64
fixed, 56
frequency response, 58
impulse response, 56
input-output spectra, 62--64
phase shift function (phase response), 59
random input and output, 325--327

response to periodic inputs, 62--64
superposition integral, 56
time invariant, 56
transfer function, 58

Line codes, 216--225
Line spectra, 30--34
Local multipoint distribution system (LMDS),

10
Local oscillator, 137
Lower sideband, 113, 124
Low-side tuning, 138

Manchester data format, 218
Marginal probability, 260
Marker code, 522
M-ary hypothesis test, 573
M-ary systems, 216, 431--435, 477--509
MAP receivers, 583--588
Matched filter
correlator implementation, 413
defined, 14, 398
derivation of, 407--410
optimum threshold, 414
performance of, 410--413
whitened, 410

Maximum a posterior (MAP) detection, 573
Maximum a posterior (MAP) estimation, 597
Maximum a posterior (MAP) receivers, 573
Maximum likelihood estimation, 598
Maximum power transfer, 703
Maximum ratio combining, 453
Mean-square error
in analog systems, 366--369
evaluation of, 362

Measure (probability), 252
Message signal, 4
Minimax detector, 573
Minimum mean-square error equalization, 362
Minimum probability of error detection, 573
Minimum shift-keying (MSK), 482--489
Missed detection, 569
Mixing, 136
Model (signal), 17
Modulation
amplitude (AM), 116--124, 355--361, 415
amplitude-shift keying (ASK), 243, 397, 404
angle (FM and PM), 112
bandwidth and power efficient, 668--672
biphase-shift keying (BPSK), 418
carrier, 112, 243
continuous-wave, 112
defined, 112
delta (DM), 144
differentially coherent phase-shift keying

(DPSK), 421, 502--503
double-sideband (DSB), 113--116, 351--353
efficiency, 118
factor, 116
frequency-shift keying (FSK), 243, 387, 404,

420, 497--502
linear, 112,
M-ary systems, 477--509, 489--498

multicarrier, 540--544
noncoherent FSK, 429
offset quadriphase-shift keying (OQPSK),

481
on-off keying (OOK), 415
optimum, 678
phase-shift keying (PSK), 243, 387, 404, 416
pulse amplitude (PAM), 113
pulse-code (PCM), 146
pulse-position (PPM), 203
pulse-width (PWM), 201--203
quadrature-amplitude (QAM), 495--497
quadrature double-sideband (QDSB),

366--369
single-sideband (SSB), 124--132, 353--355
spread-spectrum, 528--539
staggered QPSK, 481
theory (defined), 13
trapezoid, 122--124
trellis coded, 668--672
vestigial-sideband (VSB), 133--136

Modulation factor, 116
Modulation index
amplitude modulation, 116
angle modulation, 161
phase-shift keying, 416
pulse-width modulation, 202

Modulation theorem, 41
Moment generating function, 282
Monte Carlo simulation, 614
m-sequence, 54
Multichannel multipoint distribution system

(MMDS), 10
Multipath
data systems analysis in the presence of,

443--448
diffuse, 6
ghost images, 685
interference, 443--448
specular, 6
two-ray model, 444

Multiple access
code division, 533, 553--555
frequency division, 533
power control, 534

Multiple-input multiple-output (MIMO), 15,
551--553

Multiple observations (estimates based on), 599
Multiplexing
frequency-division, 204
orthogonal frequency division, 477, 540--545
quadrature, 206, 477, 481
time-division, 147--150

Multiplication theorem, 43
Mutual information, 622

Narrowband angle modulation, 156--161
Narrowband noise model, 333--339
envelope-phase representation, 333
power spectral densities, 335--337
proof of, 716--717
quadrature-component representation, 333
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Narrowband-to-wideband conversion, 160
Nat, 616
Negative frequency, 20
Negative modulation factor, 116
Neyman-Pearson detection, 572
Noise
Atmospheric, 6
attenuator, 712
bandlimited white, 321
colored, 414
defined, 1
effective temperature, 709
envelope-phase representation, 333
equivalent bandwidth, 329
equivalent temperature, 709
external, 6
extraterrestrial, 6
figure, 706
flicker, 6, 703
generation-recombination, 702
half-thermal, 702
impulse, 6
interference, 6
internal, 6
measurement, 707
narrowband model, 333--339
nonwhite, 414
one-over-f, 703
quadrature-component representation, 333
quantizing, 385
quantum, 704
shot, 12, 702
sources of, 5--7
spike, 377
static, 6
temperature
defined, 449
and figure for an attenuator, 712
and figure for cascade systems, 710

temperature-fluctuation, 703
thermal, 349, 699
white, 321

Noiseless coding theorem, 627
Noncoherent digital system, 592--595
Nonlinear distortion, 67
Non-return-to-zero (NRZ) data format, 217
Norm (in signal space), 576
Normalized energy, 24
Normalized power, 24
Norton circuit, 700
Null event, 252
Null-zone receiver, 673
Nyquist criterion (zero ISI), 227--233
Nyquist frequency, 78
Nyquist pulse-shaping criterion, 229--231, 438
Nyquist’s formula, 701
Nyquist’s theorem, 699

Observation space, 585
Offset quadriphase-shift keying (OQPSK),

481--482
On-off keying, 415

Optimal modulation, 678
Optimum threshold, 414
Order of diversity, 453
Origin encirclement, 199,

725--731
Orthogonal processes, 324
Orthogonal signals
to achieve Shannon’s bound, 590--592
binary, 411
detection of M-ary orthogonal signals, 590

Orthonormal basis set, 574
Outcomes
equally likely, 250
mutually exclusive, 250

Paley-Weiner criterion, 59
Parameter estimation, 565
Parity check codes, 640--645
Parseval’s theorem, 28, 37, 410
Partially coherent system, 415
Percent modulation, 116
Period, 18
Periodic signal, 18
Phase delay, 64
Phase detector, 181
Phase deviation, 156
Phase distortion, 64
Phase-lock loop (PLL)
acquisition, 189--194
carrier synchronization, 517
Costas, 194, 451, 517
Cycle slipping, 192
damping factor, 188
for demodulation of FM and PM, 177,

181--194
for frequency multiplication and division,

195
linear model, 183
lock range, 190
natural frequency, 188
noiseless analysis, 181--194
optimal estimator, 604--606
phase plane, 190
steady-state errors, 186
threshold effects, 376--384
tracking mode, 184--189
transfer function, 185

Phase modulation (see Angle modulation)
Phase-plane, 190
Phase response function, 59
Phase-shift keying (PSK), 404
Phase-shift modulator, 127
Phase spectrum, 20, 30--34
Phase trellis, 486
Phasor signal, 18
Photodiode, 12
Pilot carrier, 205
Pilot clock, 240
Planck’s constant, 704
Poisson approximation, 289
Poisson distribution, 289
Poisson sum formula, 50

Polar RZ pulse, 218
Postdetection combining, 453
Postdetection filter, 115
Power, 24, 168
Power-efficient modulation, 668--672
Power gain, 707
Power limited operation, 635
Power margin, 430
Power signal, 24
Power spectral density
deterministic signals, 50
digital modulation, 510--516
FSK modulation, 514--516
line coded data, 218--225
quadrature modulation, 510--514
random signals, 316--323

Predetection combinng, 453
Predetection filter, 351
Pre-emphasis and de-emphasis
to combat interference, 201
to combat noise, 347

Probability
axioms of, 252
classical (equally likely) definition, 250
conditional, 253
definition, 250--253
mass function, 263
relative frequency definition, 251

Probability density functions
Binomial, 286--288, 297
Cauchy, 305
chi-square, 297, 305
conditional, 267
defined, 263
Gaussian, 291--296, 297
Geometric, 290, 297
Hyperbolic, 297
Joint, 265
jointly Gaussian, 273
Laplacian, 297
lognormal, 297
marginal Gaussian, 284
marginal, 266
mass function, 263
Nakagami-m, 297
one-sided exponential, 297
Poisson, 297
Rayleigh, 274, 297
Ricean, 338
sum of independent random variables,

281--284
Tikonov, 419
uniform, 297

Probability (cumulative) distribution functions
defined, 262
joint, 265
marginal, 266
properties, 262

Pseudo-noise (PN) sequence,
524--528

Pulse-amplitude modulation (PAM),
142
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Pulse-code modulation (PCM), 146, 384--387
Pulse correlation function, 122
Pulse-position modulation (PPM), 142, 203
Pulse resolution, 75
Pulse-width modulation (PWM), 142, 201--203
Puncturing, 672

Q-function, 401
Quadrature-component representation of noise,

333--337
Quadrature double-sideband modulation

(QDSB)
definition of, 206
effects of noise on, 366--369
optimal performance of, 679

Quadrature multiplexing, 206
Quadriphase-shift keying (QPSK), 477--481
Quantizing, 384
Quantum noise, 704

Radio-frequency filter, 138
Raised cosine spectra, 229
Random process
autocorrelation, 316--323
covariance, 313
cyclostationary, 321
defined, 250
ensemble, 310
ensemble average, 313
ergodic, 312, 315
Gaussian, 311
joint pdfs, 311
mean, 312
orthogonal, 324
relative frequency description,

308
sample function, 310
sample space, 310
stationary, 311
time average, 313
variance, 312
wide-sense stationary, 311

Random signal, 18
Random telegraph waveform, 315
Random variable
averages of (see Statistical averages)
continuous, 261
definition, 260--262
discrete, 261
statistical independence, 267
transformation of, 270--274

Rayleigh’s energy theorem, 37, 330
Rayleigh fading, 339, 654
Receiver, 4
Receiver operating characteristic,

570
Recursive symmetric convolutional coder, 681
Relative frequency, 251
Reliability, 259
Repetition code, 639
Return-to-zero (RZ) data format, 217
Rice-Nakagami (Ricean) pdf, 339

Ricean K factor, 339
Risetime, 75
Roll-off factor, 228
Rotating phasor, 26
Run-length codes, 683

Sallen-Key circuit, 107
Sample function, 310
Sample space, 252
Sampling
bandpass signals, 81
lowpass signals, 78--81

Scalar product, 575, 578
Scale-change theorem, 40
Schottky’s theorem, 702
Schwarz inequality, 407, 576
Selection combining, 453
Selectivity, 136
Self-synchronization, 218, 219, 234, 520
Sensitivity, 136
Serial MSK, 486
Series expansions, 737
Set partitioning, 670
Shannon-Fano codes, 632
Shannon-Hartley law, 634
Shannon’s first theorem (noiseless coding), 627
Shannon’s Second Theorem (fundamental

theorem), 15, 615, 634
Shannon limit, 15
Shot noise, 12, 702
Sifting property, 21
Signal
analog, 4
antipodal, 411
aperiodic, 18
classifications, 24
defined, 17
detection, 14
deterministic, 17
digital, 4
dimensionality, 581
energy, 24
message, 4
models, 17--23
periodic, 18
phasor, 18--21
power, 24
random, 18
space, 575
sinusoidal, 19

Signal-to-noise ratio (SNR)
estimator, 361--366
in AM, 355--361
in angle modulation, 370--384
in baseband systems, 350
in coherent systems, 366--369
in DSB, 351--353
in FM, 372--384
in PCM, 384--387
in PM, 371
in quantizing, 384--385
in SSB, 353--355

Signal-to-interference ratio (SIR),
548

Signum function, 82
Sinc function, 30
Sine-integral function, 78, 582
Single-sideband modulation (SSB)
carrier reinsertion, 129
coherent demodulation of, 128
defined, 124
detection gain, 353
effect of noise on, 353--355
optimal performance of, 679
phase-shift modulation, 127

Singularity functions
impulse function, 21
rectangular pulse function, 22
unit step, 21

Slope overload, 146
Slow hop, 536
Smart antennas, 551
Soft decision metric, 670
Source coding, 396
Source extension, 628
Space diversity, 452
Span (vector space), 574
Spectrum
amplitude, 19, 31
angle-modulated signal, 161--165
cosine, 228
double-sided, 20, 31
line, 18--21, 30--34
line codes, 216--225
magnitude, 31
phase, 19, 31
single-sided, 19, 31
symmetry of, 36

Spherics, 6
Spike noise, 376, 378
Split-phase data format, 218
Spreading code, 530
Spread-spectrum communications, 477,

528--539
Squared-error cost function, 596
Square-law detectors, 351
Squaring loop, 517
Square-well cost function, 586
Stability (BIBO), 58
Staggered QPSK, 482
Standard deviation, 279
Standard temperature, 707
State diagram, 660
Stationary process, 311
Statistical averages
autocorrelation function, 51, 313
average of a sum, 280
characteristic function, 282
conditional expectation, 279
continuous random variables, 275
correlation coefficient, 285
covariance, 285
discrete random variables, 274
functions of a random variable, 275
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Statistical averages (continued)
joint moments, 278
marginal moments, 278
mean, 276
mean of a sum, 280
moment generating function, 282
multiple random variables, 277
standard deviation, 279
variance, 279
variance of a sum, 281

Statistical independence, 254, 267, 281
Statistical irregularity, 308
Step function, 23
Stereophonic broadcasting, 205
Stochastic process, 308
Strict-sense stationary, 311
Sufficient statistic, 589
Superheterodyne receiver, 136
Superposition integral, 57
Superposition theorem, 40
Suppressed carrier, 116
Survivor, 662
Symbol, 216, 477
Symbol synchronization, 239
Symmetry properties
Fourier coefficients, 27
Fourier transform, 36
transfer function, 59

Synchronous demodulation, 115
Synchronous system, 398
Synchronization
bit, 239
carrier, 517--520
code, 537
early late gate, 520
frame, 149
pilot clock, 240, 517
self, 219
symbol, 520
word, 239, 521

Syndrome, 642
System
amplitude-response function, 59
baseband, 215
BIBO stable, 58
binary, 397
causal, 58
communications, 4
defined, 17
distortionless, 64

fixed, 56
gain, 362
identification, 327
impulse response, 56
linear, 56
model (signal), 17--23
phase-response function, 56
response to periodic inputs, 62
superposition property, 56
suppressed carrier, 116
time delay, 361
time-invariant, 56
transfer function, 58

Tables
Fourier-transform pairs, 739
Fourier transform theorems, 740
Gaussian Q-function, 734--736
integrals, 737
series expansions, 737
trigonometric identities, 736

Tapped delay-line, 235
Telephone system, 149
Thermal noise, 349
Thevenin circuit, 700
Threshold effect
in AM systems, 141
in FM systems, 376--384
in linear envelope detection, 357--359
in PCM systems, 386
in square-law detection, 359--361

Threshold extension (PLL), 384
Threshold of test, 568
Time average autocorrelation, 51
Time-delay theorem, 40
Time diversity, 452
Time-division multiplexing, 147--150
Time-domain analysis, 13
Time-invariant system, 56
Timing error (jitter), 238
Torreri approximation, 650
Trans-Atlantic/Pacific cable, 12
Transducer, 4
Transfer function
Defined, 58
Symmetry properties, 59

Transform theorems, 40--48, 740
Transition probability, 619
Transmission bandwidth, 218
Transmitter, 4

Trans-Atlantic and Pacific Cable, 12
Transparent reception, 218
Transversal filter, 234
Trapezoidal integration, 192
Tree diagram, 257, 659
Trellis-coded modulation (TCM), 668--672
Trellis diagram, 659
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