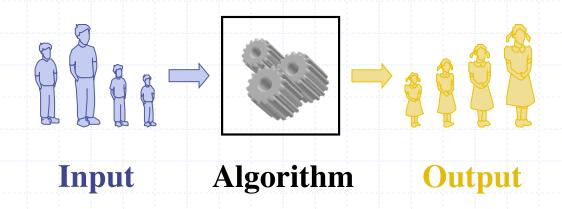
# Data Structures and Algorithms

**Analysis of Algorithms** 

#### Outline

- Running time
- Pseudo-code
- Big-oh notation
- Big-theta notation
- Big-omega notation
- Asymptotic algorithm analysis

## **Analysis of Algorithms**



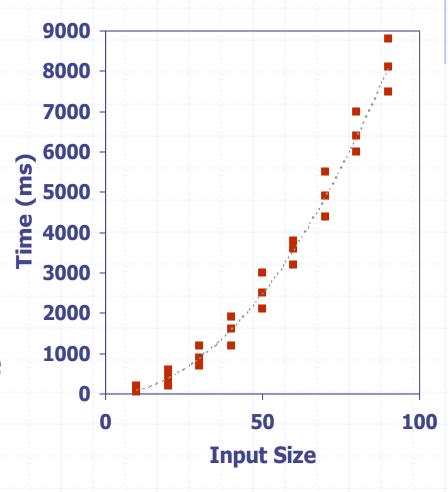
An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.

## Running Time

- Most algorithms transform input objects into output objects.
- Measure of "goodness":
  - Running time
  - Space
- The running time of an algorithm typically grows with the input size and other factors:
  - Hardware environments: processor, memory, disk.
  - Software environments: OS, compiler.
- Focus: input size vs. running time.

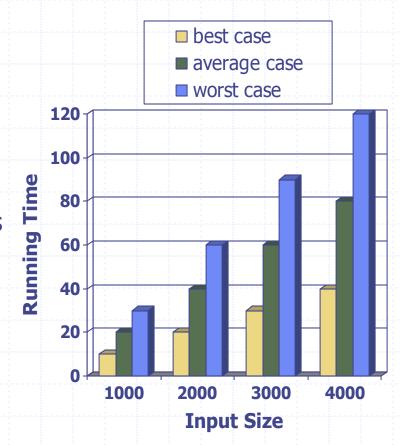
#### **Experimental Studies**

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results



#### Running time: worst case

- Average case time is often difficult to determine.
- We focus on the worst case running time.
  - Easier to analyze
  - Crucial to applications such as games, finance and robotics



### Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- ◆ In order to compare two algorithms, the same hardware and software environments must be used

#### Theoretical Analysis

- Find alternative method.
- Ideally: characterizes running time as a function of the input size, n.
- Uses a high-level description of the algorithm instead of an implementation
- Takes into account all possible inputs
- Allows us to evaluate the speed of algorithms independent of the hardware/software environment

#### Pseudocode

- Mix of natural language and programming constructs: human reader oriented.
- High-level description of an algorithm
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)

Input array A of n integersOutput maximum element of A

 $currentMax \leftarrow A[0]$ for  $i \leftarrow 1$  to n - 1 do

if A[i] > currentMax then  $currentMax \leftarrow A[i]$ return currentMax

#### Pseudocode Details



- Control flow
  - if ... then ... [else ...]
  - while ... do ...
  - repeat ... until ...
  - for ... do ...
  - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method call
  var.method (arg [, arg...])
- Return value return expression
- Expressions
  - ← Assignment (like = in C++/Java)
  - = Equality testing
     (like == in C++/Java)
  - n<sup>2</sup> Superscripts and other mathematical formatting allowed

#### **Primitive Operations**

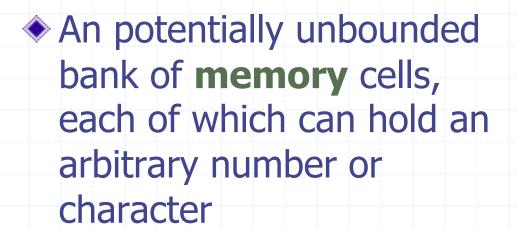
- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important
- Assumed to take a constant amount of time in the RAM model

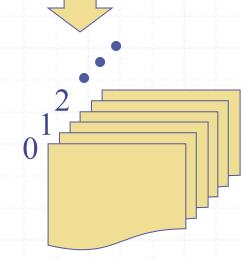


- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

## The Random Access Machine (RAM) Model

#### **♦** A CPU





Memory cells are numbered and accessing any cell in memory takes unit time.

## Counting Primitive Operations

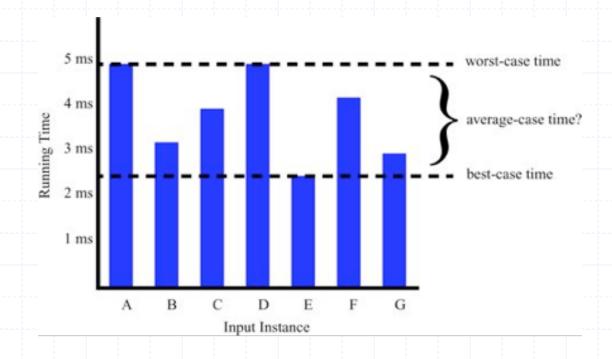
By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] for i \leftarrow 1 to n-1 do

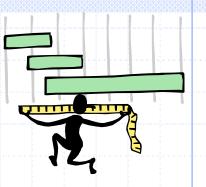
if A[i] > currentMax then
currentMax \leftarrow A[i] [0, 2(n-1)] { increment counter i } 2(n-1) return currentMax 1
```

#### Worst case analysis

- Average case analysis is typically challenging:
  - Probability distribution of inputs.
- We focus on the worst case analysis: will perform well on every case.



## **Estimating Running Time**



- Algorithm arrayMax executes 7n 3 primitive operations in the worst case. Define:
  - a = Time taken by the fastest primitive operation
  - b =Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then  $a(7n-3) \le T(n) \le b(7n-3)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

#### **Asymptotic Notation**

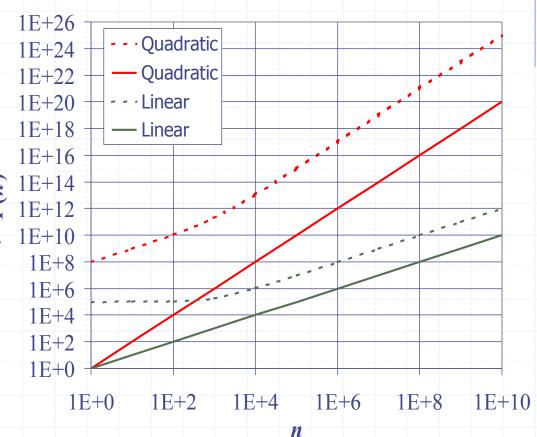
- Is this level of details necessary?
- How important is it to compute the exact number of primitive operations?
- How important are the set of primitive operations?

## **Growth Rate of Running Time**

- Changing the hardware/ software environment
  - $\blacksquare$  Affects T(n) by a constant factor, but
  - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

#### **Constant Factors**

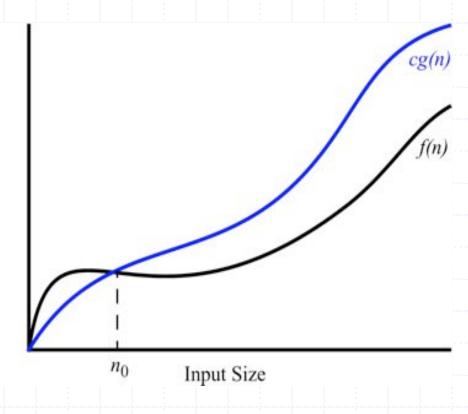
- The growth rate is not affected by
  - constant factors or
  - lower-order terms
- Examples
  - $10^2 n + 10^5$  is a linear function
  - $10^5 n^2 + 10^8 n$  is a quadratic function



## **Big-Oh Notation**

♦ Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for  $n \ge n_0$ 

Running Time



## Big-Oh Example

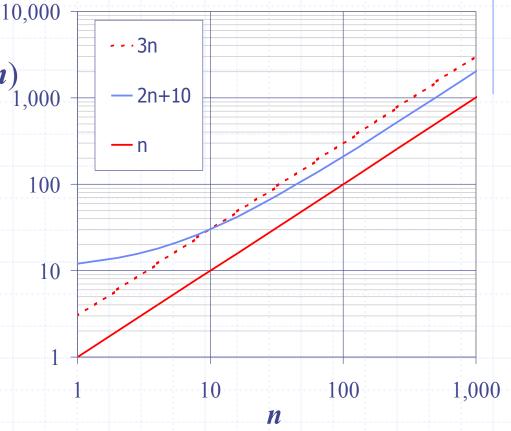


$$2n + 10 \le cn$$

$$(c-2) n \ge 10$$

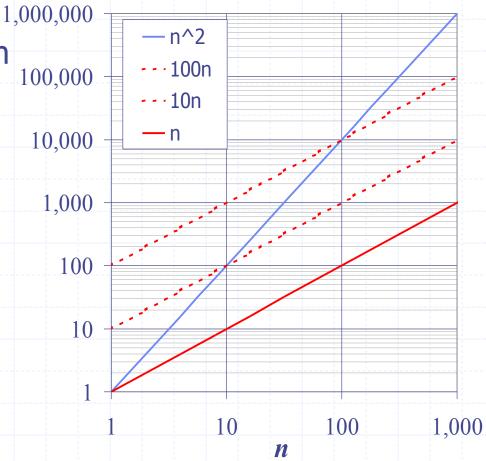
■ 
$$n \ge 10/(c-2)$$

• Pick 
$$c = 3$$
 and  $n_0 = 10$ 



## Big-Oh Example

- Example: the function  $n^2$  is not O(n)
  - $n^2 \leq cn$
  - $n \leq c$
  - The above inequality cannot be satisfied since c must be a constant



#### More Big-Oh Examples



#### → 7n-2

7n-2 is O(n)  $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7n-2\leq c\bullet n\ for\ n\geq n_0$  this is true for c=7 and  $n_0=1$ 

■  $3n^3 + 20n^2 + 5$   $3n^3 + 20n^2 + 5$  is  $O(n^3)$ need c > 0 and  $n_0 \ge 1$  such that  $3n^3 + 20n^2 + 5 \le c \cdot n^3$  for  $n \ge n_0$ this is true for c = 4 and  $n_0 = 21$ 

#### ■ 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$ need c > 0 and  $n_0 \ge 1$  such that  $3 \log n + 5 \le c \bullet \log n$  for  $n \ge n_0$ this is true for c = 8 and  $n_0 = 2$ 

#### Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

|                 | f(n) is $O(g(n))$ | g(n) is $O(f(n))$ |
|-----------------|-------------------|-------------------|
| g(n) grows more | Yes               | No                |
| f(n) grows more | No                | Yes               |
| Same growth     | Yes               | Yes               |

#### Big-Oh Rules



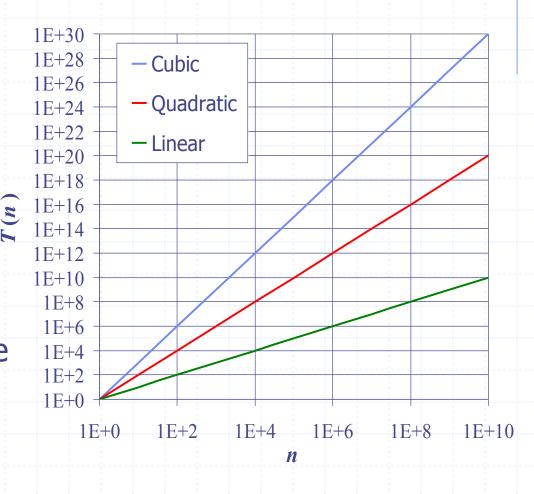
- If is f(n) a polynomial of degree d, then f(n) is  $O(n^d)$ , i.e.,
  - Drop lower-order terms
  - 2. Drop constant factors
- Use the smallest possible class of functions
  - Say "2n is O(n)" instead of "2n is  $O(n^2)$ "
- Use the simplest expression of the class
  - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

## Asymptotic Algorithm Analysis

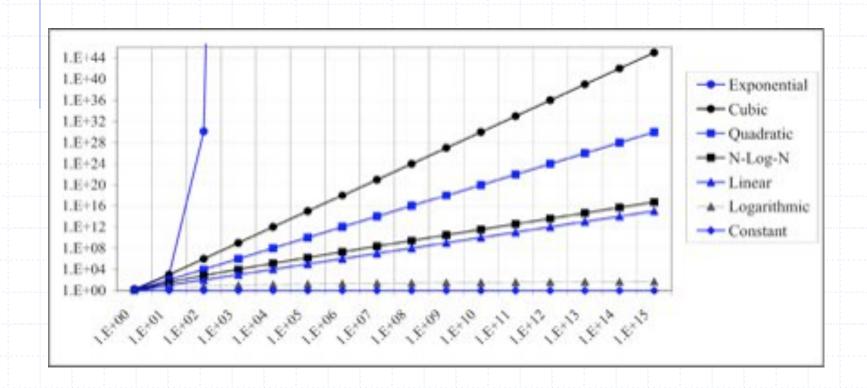
- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
  - We find the worst-case number of primitive operations executed as a function of the input size
  - We express this function with big-Oh notation
- Example:
  - We determine that algorithm arrayMax executes at most 7n-3 primitive operations
  - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

#### Seven Important Functions

- Seven functions that often appear in algorithm analysis:
  - Constant ≈ 1
  - Logarithmic  $\approx \log n$
  - Linear  $\approx n$
  - N-Log-N  $\approx n \log n$
  - Quadratic  $\approx n^2$
  - Cubic  $\approx n^3$
  - Exponential  $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function



#### Seven Important Functions



## **Asymptotic Analysis**

◆ Caution: 10<sup>100</sup>n vs. n<sup>2</sup>

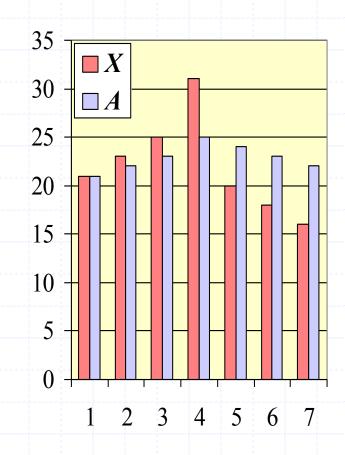
|   | Running               | <b>Maximum Problem Size (n)</b> |          |           |  |
|---|-----------------------|---------------------------------|----------|-----------|--|
|   | Time                  | 1 second                        | 1 minute | 1 hour    |  |
| - | 400n                  | 2,500                           | 150,500  | 9,000,000 |  |
| ^ | 20nlogn               | 4,096                           | 166,666  | 7,826,087 |  |
|   | 2n <sup>2</sup>       | 707                             | 5,477    | 42,426    |  |
| - | n <sup>4</sup>        | 31                              | 88       | 244       |  |
|   | <b>2</b> <sup>n</sup> | 19                              | 25       | 31        |  |

## Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- ◆ The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis



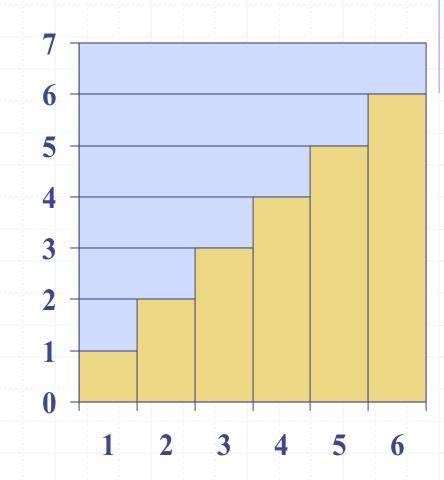
### Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

| Algorithm <i>prefixAverages1(X, n)</i>   |                                    |
|------------------------------------------|------------------------------------|
| Input array X of n integers              |                                    |
| Output array A of prefix average         | $\operatorname{sof} X$ #operations |
| $A \leftarrow$ new array of $n$ integers | n                                  |
| for $i \leftarrow 0$ to $n-1$ do         | $\boldsymbol{n}$                   |
| $s \leftarrow X[0]$                      | $\boldsymbol{n}$                   |
| for $j \leftarrow 1$ to $i$ do           | $1 + 2 + \ldots + (n - 1)$         |
| $s \leftarrow s + X[j]$                  | $1 + 2 + \ldots + (n - 1)$         |
| $A[i] \leftarrow s / (i+1)$              | n                                  |
| return A                                 |                                    |

#### **Arithmetic Progression**

- ◆ The running time of prefixAverages1 is O(1 + 2 + ...+ n)
- The sum of the first n integers is n(n + 1)/2
  - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in O(n²) time



## Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

| Algorithm <i>prefixAverages2(X, n)</i> Input array <i>X</i> of <i>n</i> integers |             |
|----------------------------------------------------------------------------------|-------------|
| Output array $A$ of prefix averages of $X$                                       | #operations |
| $A \leftarrow$ new array of $n$ integers                                         | n           |
| $s \leftarrow 0$                                                                 | 1           |
| $\mathbf{for}\ i \leftarrow 0\ \mathbf{to}\ n-1\ \mathbf{do}$                    | n           |
| $s \leftarrow s + X[i]$                                                          | n           |
| $A[i] \leftarrow s / (i+1)$                                                      | n           |
| return A                                                                         | 1           |

 $\bullet$  Algorithm *prefixAverages2* runs in O(n) time

#### Math you need to Review



- Summations
- Logarithms and Exponents

- Proof techniques:
  - Induction
  - Counter example
  - Contradiction
- Basic probability

#### properties of logarithms:

$$log_b(xy) = log_bx + log_by$$
  
 $log_b(x/y) = log_bx - log_by$   
 $log_bx^a = alog_bx$   
 $log_ba = log_xa/log_xb$ 

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$ 
 $a^b / a^c = a^{(b-c)}$ 
 $b = a^{\log_a b}$ 
 $b^c = a^{c*\log_a b}$ 

#### Relatives of Big-Oh



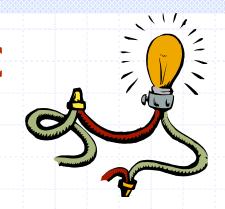
#### big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n<sub>0</sub> ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n<sub>0</sub>

#### big-Theta

• f(n) is  $\Theta(g(n))$  if there are constants c' > 0 and c'' > 0 and an integer constant  $n_0 \ge 1$  such that  $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$  for  $n \ge n_0$ 

## Intuition for Asymptotic Notation



#### Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically
 less than or equal to g(n)

#### big-Omega

• f(n) is  $\Omega(g(n))$  if f(n) is asymptotically greater than or equal to g(n)

#### big-Theta

f(n) is Θ(g(n)) if f(n) is asymptotically
 equal to g(n)

## Example Uses of the Relatives of Big-Oh



#### $\blacksquare$ 5n<sup>2</sup> is $\Omega(n^2)$

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

let 
$$c = 5$$
 and  $n_0 = 1$ 

#### $\blacksquare$ 5n<sup>2</sup> is $\Omega(n)$

f(n) is  $\Omega(g(n))$  if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \ge c \cdot g(n)$  for  $n \ge n_0$ 

let 
$$c = 1$$
 and  $n_0 = 1$ 

#### ■ $5n^2$ is $\Theta(n^2)$

f(n) is  $\Theta(g(n))$  if it is  $\Omega(n^2)$  and  $O(n^2)$ . We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant  $n_0 \ge 1$  such that  $f(n) \le c \cdot g(n)$  for  $n \ge n_0$ 

Let 
$$c = 5$$
 and  $n_0 = 1$ 

#### References

 Chapter 4: Data Structures and Algorithms by Goodrich and Tamassia