Data Structures and
Algorithms

Analysis of Algorithms

Outline

N

#Running time
@ Pseudo-code

Big-oh notation

Big-theta notation

Big-omega notation

@ Asymptotic algorithm analysis

\V

Analysis of Algorithms

ATk -

Input Algorithm

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

(1,
N

Running Time

N

@ Most algorithms transform input
objects into output objects.

@ Measure of “goodness”:
= Running time
= Space

@ The running time of an algorithm
typically grows with the input size
and other factors:

= Hardware environments: processor,
memory, disk.

= Software environments: OS, compiler.
@ Focus: input size vs. running time.

Experimental Studies

N
N

@ Write a program 9000
implementing the 8000 -
algorithm 7000 -

@ Run the program with ~ 6000 -
inputs of varying size and E 5000 A
composition E 1000

@ Use a method like F 3000 -
System.currentTimeMillis() to 5000]
get an accurate measure
of the actual running time 199°-

& Plot the results °

‘.
K3
|
g

(5)

k\
T T
~t

*
.
T e

N
.
Sa
.
*

50
Input Size

100

N

Running time: worst case

@ Average case time is often
difficult to determine.

#® We focus on the worst case
running time.
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time
(<))
o

O best case
B average case
B worst case

120+

100

0
o

B
o

N
o
<

o

1000 2000 3000 4000
Input Size

Limitations of Experiments

N

@It is necessary to implement the
algorithm, which may be difficult

Results may not be indicative of the
running time on other inputs not included
in the experiment.

#In order to compare two algorithms, the
same hardware and software
environments must be used

Theoretical Analysis

N

Find alternative method.

Ideally: characterizes running time as a
function of the input size, n.

@ Uses a high-level description of the algorithm

instead of an implementation
Takes into account all possible inputs

@ Allows us to evaluate the speed of algorithms
independent of the hardware/software
environment

Pseudocode

N

Mix of natural language
and programming
constructs: human reader
oriented.

High-level description of an
algorithm

Less detailed than a
program

Preferred notation for
describing algorithms

Hides program design
issues

® @ ¢ @

Example: find max
element of an array

Algorithm arrayMax(A, n)
Input array 4 of n integers
Output maximum element of 4

currentMax < A[0]
fori<— 1 ton-1do
if A[i| > currentMax then
currentMax <— Ali]
return currentMax

Pseudocode Details \3

S
@ Control flow @ Method call
= if ... then ... [else ...] var.method (arg |, arg...])
= while ... do ... # Return value
= repeat ... until ... return expression
= for...do ... @ EXxpressions
= Indentation replaces braces <—Assignment

(like = in C++/Java)

@ Method declaration _ Equality testing
Algorithm method (arg [, arg...]) (like == in C++/Java)
Input ... n’ Superscripts and other
Output ... mathematical

formatting allowed

N

Basic computations
performed by an algorithm

Identifiable in pseudocode

Largely independent from the
programming language

@ Exact definition not important

® Assumed to take a constant
amount of time in the RAM
model

Primitive Operations

@ Examples:

Evaluating an
expression

Assigning a value
to a variable

Indexing into an
array

Calling a method

Returning from a
method

The Random Access Machine
(RAM) Model

N

¢ A CPU |\%

An potentially unbounded

bank of memory cells,
each of which can hold an
arbitrary number or
character

4 Memory cells are numbered and accessing
any cell in memory takes unit time.

Counting Primitive
Operations

N

L/

@ By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax < A[0] 2
fori<— l1ton—1do n

if A[/] > currentMax then 2(n—1)
currentMax <— A|i] [0, 2(n - 1)]
{ Increment counter i } 2(n—1)
return currentMax 1
Total [5n -1, 7n — 3]

Worst case analysis

N

@ Average case analysis is typically challenging:
= Probability distribution of inputs.

@ We focus on the worst case analysis: will perform well
on every case.

5 "“\l ------ - e e e e oem e o ow WOMSI-Case time
4ms
2 average-case time?
= 3ms
£
- L - e = Dest-case time
2 2ms

| ms

A B C D E F G

Input Instance

r

N

Estimating Running Time <= ;

@ Algorithm arrayMax executes 7n — 3 primitive
operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation
@ Let T(n) be worst-case time of arrayMax. Then
a(7n—-3)=<T(n) < b(7n - 3)

Hence, the running time T(n) is bounded by two
linear functions

Asymptotic Notation

N

#1Is this level of details necessary?

®How important is it to compute the
exact number of primitive operations?

#®How important are the set of primitive
operations?

Growth Rate of Running Time

N

Changing the hardware/ software
environment

» Affects T(n) by a constant factor, but

= Does not alter the growth rate of T(n)
#®The linear growth rate of the running

time 7(n) is an intrinsic property of

algorithm arrayMax

4

N

Constant Factors

| - - -Quadratic
| — Quadratic
— - - -Linear
— — Linear

] 1E+26
@ The growth rate is 1g+24 |
not affected by HE+22y
1E+20 -
= constant factors or {g+1s -
= lower-order terms _ I1E*16
s 1E+14
@ Examples < 1E+12
s 1021 + 105is a linear 'Ef10
function i
unc 1E+6
m 10°n2+10%nis a 1E+4
quadratic function ~ 1E*2
1E+0 -
1E

+0 1E+2

1E+4

1E+6

1E+8

1E+10

Big-Oh Notation

N

@ Given functions f(n)
and g(n), we say
that fin) is O(g(n)) if
there are positive
constants
¢ and n, such that

Running Time

f(n) < cg(n) for n=
Ry

o [nput Size

Big-Oh Exam

N

m 2n+10=<cn
m (c—2)n=10
m n=10/(c-2)
s Picke=3and n,=10

ple

10,000

@ Example: 2n + 10 is O(n)

1,000

100

10

---3n

—2n+10

10

100

1,000

N

Big-Oh Example

1,000,000

@ Example: the function
n’ is not O(n)

100,000

[| n2 =Cn 10’000 1

—nN2
---100n
--10n
—n

B n=<2¢

= The above inequality 1,000
cannot be satisfied

since ¢ must be a 100
constant

10

10

100

1,000

More Big-Oh Examples &’i

Y

e 7n-2
7/n-2 is O(n)
need c > 0 and n, = 1 such that 7n-2 < cen for n = n,
this is true forc =7and n, =1

m3n3 + 20n? + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n, = 1 such that 3n3 + 20n? + 5 < cen3 for n = n,
this is true forc =4 and n, = 21

m3logn+5

3logn+ 5is O(log n)
needc>0andny=1suchthat3logn + 5 < celognforn=n,
this is true forc =8 and n, = 2

N

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the
growth rate of a function

@ The statement “fin) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)

#® We can use the big-Oh notation to rank functions
according to their growth rate

fin) 1s O(g(n))

g(n)is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

Big-Oh Rules

A
¥

@ If is f(n) a polynomial of degree d, then f(n) is
o(n%), i.e.,
1. Drop lower-order terms
2. Drop constant factors

@ Use the smallest possible class of functions
m Say “2n is O(n)” instead of “2n is O(n?)”
@ Use the simplest expression of the class
s Say “3n+5is O(n)” instead of “3n + 5 is O(3n)”

Asymptotic Algorithm Analysis

N

@ The asymptotic analysis of an algorithm determines
the running time in big-Oh notation

@ To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation

@ Example:
= We determine that algorithm arrayMax executes at most
7n — 3 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
@ Since constant factors and lower-order terms are

eventually dropped anyhow, we can disregard them
when counting primitive operations

Seven Important Functions

T4 Seven functions that

often appear in 1E+30 l
algorithm analysis: 12120 T — Cublic /
s Constant = 1 1E+24 — Quadratic
Logarithmic = log n 1E+22 1 _ .
: Lingear ~n i 15420 e -
1E+18
| N'Log'N =~ N IOg n ’; 1E+16 /
= Quadratic = n? = 1E+14
= Cubic ~ n o2
= Exponential =~ 27 1ELg /
1E+6
@ In a log-log chart, the 1E4 —
slope of the line =l

corresponds to the
rowth rate of the
unction

1E+0 LE=2 1E+4 1E+6 1E+8-i-1E+10
n

Seven Important Functions

N

LE 44 |
ILE+0 —o— L xponential
FEA3S .

_ o= Cubic
FE+32
| Eeax | - Quadratic
L Ee24 | ~@= N.Log-N
P 2o ~a= Linear
LEvis | & Logarthmic
LESI2 | = Constant
LEO08 |
LE~M |
LE00 T e e e e e b e b M M e

PO A R S - B SR I I BN SO RO B
WAY WA ¥ ¥ F T WY FRF T ATE

Asymptotic Analysis

N

Caution: 1019%n ys, n?

Running Maximum Problem Size (n)
Time 1 second 1 minute 1 hour
400n 2,500 150,500 9,000,000

20nlogn 4,096 166,666 7,826,087

2n? 707 5,477 42,426
n4 31 88 244

2" 19 25 31

N

#® We further illustrate
asymptotic analysis with
two algorithms for prefix
averages

@ The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + XT1] + ... + X[i])/(i+1)

@ Computing the array 4 of
prefix averages of another

array X has applications to
financial analysis

35

30 1

25

Computing Prefix Averages

EX

OA

1 2 3 4 5 6 7

Prefix Averages (Quadratic)

N

@ The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAveragesI(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations

A < new array of n integers n
fori<—Oton—1do n
s < X][0] n
forj<— 1 toido l1+2+..+4(n—-1)
s < s + X[j] l1+2+..+4(n—-1)
Alil<s/(i+ 1) n

return 4 1

Arithmetic Progression

N

@ The running time of

prefixAveragesl IS

Ol1+2+...+n)
The sum of the first n

integersisn(n+1)/2

= There is a simple visual

proof of this fact

@ Thus, algorithm
prefixAveragesl runs in

S = NN W s Ut N 1

O(n?) time

Prefix Averages (Linear)

N

@ The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations

A < new array of n integers n
s<—0 1
fori<— Oton—1do n
s <— s+ X]i] n
Alil]<s/(@{+1) n
return A 1

@ Algorithm prefixAverages2 runs in O(n) time

Math you need to Review

4 Summations
Logarithms and Exponents

N

¢ properties of logarithms:
logy,(xy) = logyx + log,y

@ Proof techniques: l0g, (x/y) = logyx - logpy
log,x@ = alog,x

Induction loga = log,a/log,b
@ Counter example 4 properties of exponentials:
4 Contradiction il
. A aPct = (gP)¢
@ Basic probability b /aC(= g(b_c)
b=a2a Iogab

X
bc =gc¢ Iogab

Relatives of Big-Oh

N

4 big-Omega
a f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, = 1 such that
f(n) = ceg(n) for n = n,

@ big-Theta
= f(n) is ®(g(n)) if there are constants ¢’ > 0 and

7)

c = > 0 and an integer constant n, = 1 such that
c eg(n) < f(n) = c "eg(n) forn=n,

Intuition for Asymptotic
Notation

N

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

a f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

= f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)

Example Uses of the

JReIatives of Big-Oh

m 5n?is Q(n?)

f(n) 1s Q2(g(n)) if there 1s a constant ¢ > 0 and an integer constant n, = 1
such that f(n) = ceg(n) for n = n,

N

letc=5and n,=1
m 5n?is Q(n)

f(n) 1s Q(g(n)) if there 1s a constant ¢ > 0 and an integer constant n, = 1
such that f(n) = c*g(n) for n = n,

letc=1and n,=1
m Sn?is O®n?)

Aln) is O(g(n)) if it is Q(n?) and O(n?). We have already seen the former,
for the latter recall that f(n) 1s O(g(n)) 1f there 1s a constant ¢ > 0 and an
integer constant n, = 1 such that f(n) < ceg(n) for n = n,

Letc=5andn,=1

References

Chapter 4: Data Structures and
Algorithms by Goodrich and Tamassia

