Data Structures and
Algorithms

Stacks and Queues

« Stacks
- Queues
- Sequence

Pham Bao Son - DSA

I g T —

Outline |

. s ———

The Stack ADT

- The Stack ADT stores
arbitrary objects

* |nsertions and deletions
follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

- Main stack operations:
— push(object): inserts an
element

— object pop(): removes and
returns the last inserted
element

Pham Bao Son - DSA

— e E——— S P

= - ~==

 Auxiliary stack
operations:

— object top(): returns the ‘
last inserted element |
without removing it

— integer size(): returns the E
number of elements 1
stored

— boolean isEmpty():
indicates whether no
elements are stored

e

Stack Interface in Java

« Java interface
corresponding to
our Stack ADT

* Requires the
definition of class

- Different from the
built-in Java class
java.util.Stack

Pham Bao Son - DSA
S g I — e

public interface Stack {
public int size();
public boolean isEmpty();

public Object top()
throws

public void push(Object o0);

public Object pop()
throws

-

Exceptions |

Attempting the execution
of an operation of ADT
may sometimes cause an
error condition, called an
exception

Exceptions are said to be
“thrown” by an operation
that cannot be executed

Pham Bao Son - DSA

—

T g g—

In the Stack ADT,
operations pop and top
cannot be performed if
the stack is empty

- Attempting the execution |

of pop or top on an f
empty stack throws an |

Applications of Stacks

» Direct applications
— Page-visited history in a Web browser
— Undo sequence in a text editor

— Chain of method calls in the Java Virtual }
Machine |

» Indirect applications
— Auxiliary data structure for algorithms e
— Component of other data structures

Pham B&o Son - DSA %’T\

- o R — p— —— L e e -—rwf—'—-"‘—--w J

Method Stack in the JVM

The Java Virtual Machine (JVM)
keeps track of the chain of active
methods with a stack

When a method is called, the JVM
pushes on the stack a frame
containing

— Local variables and return value

— Program counter, keeping track of the
statement being executed
When a method ends, its frame is
popped from the stack and control is

passed to the method on top of the
stack

Allows for recursion

Pham Bao Son - DSA

—

— g~

main

foo

bar

bar
PC =1
m=06
foo
PC =3
j=95
k=6
main
PC =2
=5
A 8

- P PR

Array-based Stack

- A simple way of Algorithm size()
Implementing the return
Stack ADT uses an
array Algorithm pop()
- We add elements if then
from left to right throv f‘
« A variable keeps else 1
track of the index of Lt !

the top element return

Pham Bao Son - DSA KJ‘-\

dﬁ’—*M——» -— — T P ———— - - |: : e ‘J',

TN

Array-based Stack (cont.)

- The array storing the
stack elements may

- P,

P) A!gorlthm push(o)
: ; if 1= then
* A push operation will e ‘
then throw a -
else i
— Limitation of the array- =, ‘
based implementation <~ ‘,
— Not intrinsic to the
Stack ADT

Pham Bao Son - DSA K}-\

T o g ——— e e e et e e e ”W,—’

!

Performance and Limitations ’

- Performance
— Let n be the number of elements in the stack
— The space used is O(n)
— Each operation runs in time O(1)

- Limitations |

— The maximum size of the stack must be defined a
priori and cannot be changed

— Trying to push a new element into a full stack f
causes an implementation-specific exception

Pham Bao Son - DSA //’HT

P -W

Array-based Stack in Java

public class ArrayStack
implements Stack {

private Object S[|;
private int top = -1;

public ArrayStack(int capacity) {
S = new Object[capacity]);
}

public Object pop()
throws
if isEmpty()
throw new

(“ ”);
Object temp = S[top];

——

e S St
i A -

S[top] = null;
top =top - 1;
return temp; i

Pham Bao Son - DSA
I g I ———— £

Stack with a Singly Linked

List

» We can implement a stack with a singly linked list
- The top element is stored at the first node of the list
- The space used is O(n) and each operation of the

Stack ADT takes O(1) time

—_—_—————— e —_— e — — —

T N R

@

A
Pham Bao Son - DSA

—

— g~

Parentheses Matching

s-Fach.. (), { or “[” must be paired with
a matching “)”, “}", or “[”
DO
)

[\
~ correct: (()((OXAODN)
_incorrect:)((){(IOD}

— incorrect: ({[]}

— incorrect: (|

Pham Bao Son - DSA /ﬁ’:\

-~
g e | e i

— correct: ()((
)

-t

Parentheses Matching
Algorithm ParenMatch(X,n): AI g O rlth m

Input: An array X of n tokens, each of which is either a grouping symbol, a
variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match
Let S be an empty stack
for i=0 to n-1 do
if X[i] is an opening grouping symbol then
S.push(X[i])
else if X[7] is a closing grouping symbol then
if S.isEmpty() then |
return false {nothing to match with})
if S.pop() does not match the type of X[i] then f
return false {wrong type}
if S.isEmpty() then

return true {every symbol matched} |'
else :

return false {some symbols were never matched} /’r\
Pham Bao Son - DSA 15 ,

S j

I e e = 4 - - W—"‘-\-M‘”_ <70",-‘m 4
o-%

HTML Tag Matching

@ For fully-correct HTML, each <name> should pair with a matching </name>

<body>

<center>

<h1> The Little Boat </h1>
</center>

<p> The storm tossed the little
boat like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but

not the tree salesman, who even as
a stowaway now felt that he

had overpaid for the voyage. </p>

 Will the salesman die?
 What color is the boat?
 And what about Naomi?

</body>

Pham Bao Son - DSA
— ._"—d\'_"»'—_ rm—

The Little Boat

The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as

a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color 1s the boat?
3. And what about Naomi?

:

g

. —— L —————— .)

Computing Spans

- We show how to use a stack 67
as an auxiliary data structure 5 -

In an algorithm 4 -
- @Given an an array X, the span 3 -
S[i] of X[i] is the maximum 7

number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] = XIi] 01
« Spans have applications to
financial analysis
— E.g., stock at 52-week high

Pham Bao Son - DSA / T
LS ~ p— e T S SO =S———. -—’«———-W

-

e N SN S

Quadratic Algorithm

- .

Algorithm spansI(X, n)
Input
Output

<

for: < 0 to

<—

do

while s </ A

<—

<

return

S S €

IA

1+2+..+4(n—-1)
1+2+..+4(n—-1)

n
1 ?

e, T
—— -

@ Algorithm spansI runs in O(n?) time

Pham Bao Son - DSA
T _ g I e

A W.WZ.W..E’!J

Computing Spans with a
Stack

- We keep in a stack the
indices of the elements
visible when “looking
back”

- We scan the array from
left to right
— Let i be the current index

— We pop indices from the
stack until we find index j

such that X[i] < X[j]
— We set ~—
— We push i onto the stack

Pham Bao Son - DSA
*W‘—-«— T e e S

s — N

RS-

i
3
7 -
Al
N NS N R

}
01234567 |

d."-—v

Linear Algorithm

Each index of the
array

= Is pushed into the
stack exactly one

= Is popped from
the stack at most
once
#® The statements in
the while-loop are
executed at most
n times

@ Algorithm spans2
runs in O(n) time

Pham Bao Son - DSA

—

-~

Algorithm spans2(X, n) 7
= n
= 1
for/ < 0O to do n
while (-

< do n
n
if 4. then n
= n

else
<~ n
: n

return }/—

P —— ~

—

-

The Queue ADT

The Queue ADT stores arbitrarye
objects

Insertions and deletions follow
the first-in first-out scheme

Insertions are at the rear of the
queue and removals are at the
front of the queue

Main queue operations:

— enqueue(object): inserts an
element at the end of the queue

— object dequeue(): removes and ;
returns the element at the front
of the queue

Pham Bao Son - DSA

— S— T

B G— P—

T g g—

- R S

Auxiliary queue
operations:

— object front(): returns the
element at the front without
removing it

— integer size(): returns the
number of elements stored E

— boolean isEmpty(): indicates 1
whether no elements are
stored

Exceptions

— Attempting the execution of
dequeue or front on an |
empty queue throws an 1

v’

-/22 J

{

Operation

(
enqueue(
dequeueg(
enqueue(
dequeueg(
front()

(
dequeueg(
isEmpty()
enqueue(
enqueue(7)
size()
enqueue(3)
enqueue(5)
dequeue()

Queue Exam

Output QO

= (5)

= (553

5 (3)

X (3, 7)

3 (7)

7 (7)

7 ()
“error” ()

true ()

S (9)

i (97 7)

2 9, 7)

— 9, 7, 3)
= 9,7,3,5)
9 (7, 3, 5)

Pham Bao Son - DSA

R —

ple

Applications of Queues

- —

» Direct applications
— Waiting lists, bureaucracy
— Access to shared resources (e.g., printer)
— Multiprogramming |
» Indirect applications
— Auxiliary data structure for algorithms :
— Component of other data structures

Pham B&o Son - DSA m

" o, T — — L e e e -—rwf—'--"‘—--w J

Array-based Queue

- Use an array of size N in a circular fashion

- Two variables keep track of the front and rear
f index of the front element
r Index immediately past the rear element

 Array location r is kept empty

e S

normal configuration

. F——— c— . a o _a .

wrapped-around configuration

ANENEEEEEEEEEEEEE i

Pham Bao Son - DSA ﬁT

l PP . T S NP P S S = S—p =% Mﬂ‘w

Queue Operations

A T Algorithm size()
modulo operator LeIuRtl
((jr_em_amder of Algorithm isEmpty()

ivision) return

Pham Bao Son - DSA f

Ve 1) R B e S W e L SRS ALE _S ,._,_-W

-

e i

-

Queue Operations (cont.)

- Operation enqueue Algorithm enqueue(o)
throws an exception if if = then
the array is full throw
» This exception is else
Implementation- — |
dependent -« |

Pham Bao Son - DSA ﬂ

- h‘ . . PN S —_— — I P e ——— _—ﬂv—-‘ww et J

Queue Operations (cont.)

- Operation dequeue Algorithm dequeue()

throws an exception if then
If the queue is empty throw
» This exception is else
specified in the —
queue ADT g
return

Pham Bao Son - DSA

-

i

28 J
— R e — e TN e N T ——-A———--W

T g g—

Queue Interface in Java

« Java interface
corresponding to
our Queue ADT

* Requires the
definition of class

* No corresponding
built-in Java class

Pham Bao Son - DSA
T _ g I e

public interface Queue {
public int size();
public boolean isEmpty();

public Object front()
throws

public void enqueue(Object o);

public Object dequeug()
throws

e S St
. -

Queue with a Singly Linked
List |

- We can implement a queue with a singly linked list
— The front element is stored at the first node
— The rear element is stored at the last node

- The space used is O(n) and each operation of the
Queue ADT takes O(1) time

b P — — T e S T e -—r“""-""w J

Application: Round Robin
Schedulers

- We can implement a round robin scheduler using a
queue, Q, by repeatedly performing the following
steps:

1. e = Q.dequeue()
2. Service element e
3. Q.enqueue(e)

The Queue

1. Deque the 2. Service the 3. Enqueue the

next element next element serviced element

Shared
Service

-

Sequence ADT

The Sequence ADT is the
union of the Vector and
List ADTs

Elements accessed by
— Rank, or
— Position

Generic methods:
— size(), isEmpty()

Vector-based methods:

— elemAtRank(r),
replaceAtRank(r, 0),
insertAtRank(r, o),
removeAtRank(r)

Pham Bao Son - DSA

—

T g g—

- B e el

« List-based methods:

— first(), last(), prev(p),
next(p), replace(p, 0),
insertBefore(p, 0),
insertAfter(p, o), :
insertFirst(o), i
insertLast(0), f
remove(p) 1

- Bridge methods:
— atRank(r), rankOf(p)

Applications of Sequences

- The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

 Direct applications:

— Generic replacement for stack, queue, vector, or {
list 1

— small database (e.g., address book)
» Indirect applications: f
— Building block of more complex data structures

Pham Bao Son - DSA KT

A S o = Fleiite 148 IR -—'"“"“"-WJ-"

— g~

Linked List Implementation |

A doubly linked list provides a # Position-based methods
reasonable implementation of the run in constant time
Sequence ADT # Rank-based methods
« Nodes implement Position and store: require searching from
— element header or trailer while
— link to the previous node keeping track of ranks; |
= Hiisicto the'fiext node hence, run in linear time E
Special trailer and header nodes :
header ! trailer

I i~

A~

T o g—— O — — e A e e I e —ﬂp-w

!

Array-based Implementation |

« We use a

circular array
storing
positions

A position

object stores:

— Element
— Rank

Indices fand /
keep track of
first and last
positions

Pham Bao Son - DSA

—

— g~

:

(elements\l

I
|
: |
S = 2l =
@eEmI
| L0 l 114 211 3! 1
I\ | _positions |
S |
(VL] I

Sequence Implementations

Operation Array List
size, ISEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, prev, next 1 i
replace 1 |
replaceAtRank 1 n
insertAtRank, removeAtRank n n
InsertFirst, insertLast 1 1
insertAfter, insertBefore n |
remove n 1 4
R S e e

-

