
Data Structures and 
Algorithms  

"

Stacks and Queues!



Outline"
•  Stacks!
•  Queues!
•  Sequence!

Phạm Bảo Sơn - DSA  2 



Stacks"



Phạm Bảo Sơn - DSA  4 

The Stack ADT"
•  The Stack ADT stores 

arbitrary objects!
•  Insertions and deletions 

follow the last-in first-out 
scheme!

•  Think of a spring-loaded 
plate dispenser!

•  Main stack operations:!
–  push(object): inserts an 

element!
–  object pop(): removes and 

returns the last inserted 
element!

•  Auxiliary stack 
operations:!
–  object top(): returns the 

last inserted element 
without removing it!

–  integer size(): returns the 
number of elements 
stored!

–  boolean isEmpty(): 
indicates whether no 
elements are stored!



Phạm Bảo Sơn - DSA  5 

Stack Interface in Java"
•  Java interface 

corresponding to 
our Stack ADT!

•  Requires the 
definition of class 
EmptyStackException!

•  Different from the 
built-in Java class 
java.util.Stack 

public interface Stack { 

 public int size(); 

 public boolean isEmpty(); 

 public Object top() 
   throws EmptyStackException; 

 public void push(Object o); 

 public Object pop() 
    throws EmptyStackException; 

} 



Phạm Bảo Sơn - DSA  6 

Exceptions"
•  Attempting the execution 

of an operation of ADT 
may sometimes cause an 
error condition, called an 
exception!

•  Exceptions are said to be 
“thrown” by an operation 
that cannot be executed!

•  In the Stack ADT, 
operations pop and top 
cannot be performed if 
the stack is empty!

•  Attempting the execution 
of pop or top on an 
empty stack throws an 
EmptyStackException!



Phạm Bảo Sơn - DSA  7 

Applications of Stacks"
•  Direct applications!

– Page-visited history in a Web browser!
– Undo sequence in a text editor!
– Chain of method calls in the Java Virtual 

Machine!
•  Indirect applications!

– Auxiliary data structure for algorithms!
– Component of other data structures!



Phạm Bảo Sơn - DSA  8 

Method Stack in the JVM"
•  The Java Virtual Machine (JVM) 

keeps track of the chain of active 
methods with a stack!

•  When a method is called, the JVM 
pushes on the stack a frame 
containing!
–  Local variables and return value!
–  Program counter, keeping track of the 

statement being executed !
•  When a method ends, its frame is 

popped from the stack and control is 
passed to the method on top of the 
stack!

•  Allows for recursion"

main() { 
 int i = 5; 
 foo(i); 
 } 

foo(int j) { 
 int k; 
 k = j+1; 
 bar(k); 
 } 

bar(int m) { 
 … 
 } 

bar 
  PC = 1 
  m = 6 

foo 
  PC = 3 
  j = 5 
  k = 6 

main 
  PC = 2 
  i = 5 



Phạm Bảo Sơn - DSA  9 

Array-based Stack"
•  A simple way of 

implementing the 
Stack ADT uses an 
array!

•  We add elements 
from left to right!

•  A variable keeps 
track of the  index of 
the top element !

S 
0 1 2 t 

… 

Algorithm size() 
 return t + 1 

 
Algorithm pop() 
 if isEmpty() then 
  throw EmptyStackException 
  else   
  t ← t - 1 
  return S[t + 1] 



Phạm Bảo Sơn - DSA  10 

Array-based Stack (cont.)"
•  The array storing the 

stack elements may 
become full!

•  A push operation will 
then throw a 
FullStackException!
–  Limitation of the array-

based  implementation!
–  Not intrinsic to the 

Stack ADT!

S 
0 1 2 t 

… 

Algorithm push(o) 
 if t = S.length - 1 then 
  throw FullStackException 
  else   
  t ← t + 1 
  S[t] ← o 



Phạm Bảo Sơn - DSA  11 

Performance and Limitations"
•  Performance!

–  Let n be the number of elements in the stack!
–  The space used is O(n)!
–  Each operation runs in time O(1) 

•  Limitations!
–  The maximum size of the stack must be defined a 

priori and cannot be changed!
–  Trying to push a new element into a full stack 

causes an implementation-specific exception!



Phạm Bảo Sơn - DSA  12 

Array-based Stack in Java"
public class ArrayStack 

  implements Stack { 

 // holds the stack elements  
 private Object S[ ]; 

 // index to top element 
 private int top = -1; 

 // constructor 
 public ArrayStack(int capacity) { 
   S = new Object[capacity]); 
  } 

 public Object pop() 
   throws EmptyStackException { 
  if isEmpty() 
   throw new EmptyStackException 
    (“Empty stack: cannot pop”); 
  Object temp = S[top]; 
  // facilitates garbage collection  
  S[top] = null; 
  top = top – 1; 
  return temp; 
  } 



Phạm Bảo Sơn - DSA  13 

Stack with a Singly Linked 
List"

•  We can implement a stack with a singly linked list!
•  The top element is stored at the first node of the list!
•  The space used is O(n) and each operation of the 

Stack ADT takes O(1) time !

∅ t 

nodes 

elements 



Phạm Bảo Sơn - DSA  14 

Parentheses Matching"
•  Each “(”, “{”, or “[” must be paired with 

a matching “)”, “}”, or “[”!
–  correct: ( )(( )){([( )])}   
–  correct: ((( )(( )){([( )])}))   
–  incorrect: )(( )){([( )])}   
–  incorrect: ({[ ])}   
–  incorrect: (   

!



Phạm Bảo Sơn - DSA  15 

Parentheses Matching 
Algorithm"

Algorithm ParenMatch(X,n): 
Input: An array X of n tokens, each of which is either a grouping symbol, a 
variable, an arithmetic operator, or a number 
Output: true if and only if all the grouping symbols in X match 
Let S be an empty stack 
for i=0 to n-1 do 

 if X[i] is an opening grouping symbol then 
  S.push(X[i]) 
 else if X[i] is a closing grouping symbol then 
  if S.isEmpty() then 
   return false {nothing to match with}  
  if S.pop() does not match the type of X[i] then 
   return false {wrong type}  

if S.isEmpty() then 
 return true {every symbol matched}  

else 
 return false {some symbols were never matched} 

!



Phạm Bảo Sơn - DSA  16 

HTML Tag Matching"
!
<body>!
<center>!
<h1> The Little Boat </h1>!
</center>!
<p> The storm tossed the little!
boat like a cheap sneaker in an!
old washing machine. The three!
drunken fishermen were used to!
such treatment, of course, but!
not the tree salesman, who even as!
a stowaway now felt that he!
had overpaid for the voyage. </p>!
<ol>!
<li> Will the salesman die? </li>!
<li> What color is the boat? </li>!
<li> And what about Naomi? </li>!
</ol>!
</body>!

 
The Little Boat 

 
The storm tossed the little boat 
like a cheap sneaker in an old 
washing machine. The three 
drunken fishermen were used to 
such treatment, of course, but not 
the tree salesman, who even as 
a stowaway now felt that he had 
overpaid for the voyage. 
 
1. Will the salesman die? 
2. What color is the boat? 
3. And what about Naomi? 
 

! For fully-correct HTML, each <name> should pair with a matching </name> 
 



Phạm Bảo Sơn - DSA  17 

Computing Spans"

•  We show how to use a stack 
as an auxiliary data structure 
in an algorithm!

•  Given an an array X, the span 
S[i] of X[i] is the maximum 
number of consecutive 
elements X[j] immediately 
preceding X[i] and such that 
X[j] ≤ X[i] !

•  Spans have applications to 
financial analysis!
–  E.g., stock at 52-week high! 6 3 4 5 2 

1 1 2 3 1 
X 
S 



Phạm Bảo Sơn - DSA  18 

Quadratic Algorithm"
Algorithm spans1(X, n) 

 Input array X of n integers 
 Output array S of spans of X       # 
 S ← new array of n integers     n 
 for i ← 0 to n - 1 do    n 
  s ← 1      n 
  while s ≤ i ∧ X[i - s] ≤ X[i]  1 + 2 + …+ (n - 1) 
    s ← s + 1    1 + 2 + …+ (n - 1) 
  S[i] ← s           n 
 return S            1 

! Algorithm spans1 runs in O(n2) time  



Phạm Bảo Sơn - DSA  19 

Computing Spans with a 
Stack"

•  We keep in a stack the 
indices of the elements 
visible when “looking 
back”!

•  We scan the array from 
left to right!
–  Let i be the current index 
–  We pop indices from the 

stack until we find index j 
such that X[i] < X[j] 

–  We set S[i] ← i - j!
–  We push i onto the stack!



Phạm Bảo Sơn - DSA  20 

Linear Algorithm"
Algorithm spans2(X, n)      # 

 S ← new array of n integers     n 
 A ← new empty stack       1 
  for i ← 0 to n - 1 do      n 
   while (¬A.isEmpty() ∧  
      X[A.top()] ≤ X[i] ) do n 
    A.pop()          n 
   if A.isEmpty() then       n 
    S[i] ← i + 1        n 
   else 
     S[i] ← i - A.top()     n 
   A.push(i)          n 
 return S                 1 

! Each index of the 
array 
n  Is pushed into the 

stack exactly one  
n  Is popped from 

the stack at most 
once 

! The statements in 
the while-loop are 
executed at most 
n times  

! Algorithm spans2 
runs in O(n) time  



Queues"



Phạm Bảo Sơn - DSA  22 

The Queue ADT"
•  The Queue ADT stores arbitrary 

objects!
•  Insertions and deletions follow 

the first-in first-out scheme!
•  Insertions are at the rear of the 

queue and removals are at the 
front of the queue!

•  Main queue operations:!
–  enqueue(object): inserts an 

element at the end of the queue!
–  object dequeue(): removes and 

returns the element at the front 
of the queue!

•  Auxiliary queue 
operations:!
–  object front(): returns the 

element at the front without 
removing it!

–  integer size(): returns the 
number of elements stored!

–  boolean isEmpty(): indicates 
whether no elements are 
stored!

•  Exceptions!
–  Attempting the execution of 

dequeue or front on an 
empty queue throws an 
EmptyQueueException!



Phạm Bảo Sơn - DSA  23 

Queue Example"
Operation 	

 	

 	

Output 	

Q     
enqueue(5)   – 	

(5)   
enqueue(3)   – 	

(5, 3)   
dequeue()   5 	

(3)   
enqueue(7)   – 	

(3, 7)   
dequeue()   3 	

(7)   
front()    7 	

(7)   
dequeue()   7 	

()   
dequeue()   “error” 	

()   
isEmpty()   true 	

()   
enqueue(9)   – 	

(9)   
enqueue(7)   – 	

(9, 7)   
size() 	

 	

 	

2 	

(9, 7)   
enqueue(3)   – 	

(9, 7, 3)   
enqueue(5)   – 	

(9, 7, 3, 5)  
dequeue()   9 	

(7, 3, 5)   
!
!
!



Phạm Bảo Sơn - DSA  24 

Applications of Queues"
•  Direct applications!

– Waiting lists, bureaucracy!
– Access to shared resources (e.g., printer)!
– Multiprogramming!

•  Indirect applications!
– Auxiliary data structure for algorithms!
– Component of other data structures!



Phạm Bảo Sơn - DSA  25 

Array-based Queue"
•  Use an array of size N in a circular fashion!
•  Two variables keep track of the front and rear!

f !index of the front element!
r !index immediately past the rear element!

•  Array location r is kept empty!

Q 
0 1 2 r f 

normal configuration 

Q 
0 1 2 f r 

wrapped-around configuration 



Phạm Bảo Sơn - DSA  26 

Queue Operations"
•  We use the 

modulo operator 
(remainder of 
division)!

Algorithm size() 
 return (N - f + r) mod N 

 
Algorithm isEmpty() 
 return (f = r) 

Q 
0 1 2 r f 

Q 
0 1 2 f r 



Phạm Bảo Sơn - DSA  27 

Queue Operations (cont.)"
Algorithm enqueue(o) 
 if size() = N - 1 then 
  throw FullQueueException 
  else   
  Q[r] ← o 
  r ← (r + 1) mod N 

•  Operation enqueue 
throws an exception if 
the array is full!

•  This exception is 
implementation-
dependent!

Q 
0 1 2 r f 

Q 
0 1 2 f r 



Phạm Bảo Sơn - DSA  28 

Queue Operations (cont.)"
•  Operation dequeue 

throws an exception 
if the queue is empty!

•  This exception is 
specified in the 
queue ADT!

Algorithm dequeue() 
 if isEmpty() then 
  throw EmptyQueueException 
  else 
  o ← Q[f] 
  f ← (f + 1) mod N 
  return o 

Q 
0 1 2 r f 

Q 
0 1 2 f r 



Phạm Bảo Sơn - DSA  29 

Queue Interface in Java"
•  Java interface 

corresponding to 
our Queue ADT!

•  Requires the 
definition of class 
EmptyQueueException!

•  No corresponding 
built-in Java class 

public interface Queue { 

 public int size(); 

 public boolean isEmpty(); 

 public Object front() 
   throws EmptyQueueException; 

 public void enqueue(Object o); 

 public Object dequeue() 
    throws EmptyQueueException; 

} 



Phạm Bảo Sơn - DSA  30 

Queue with a Singly Linked 
List"

•  We can implement a queue with a singly linked list!
–  The front element is stored at the first node!
–  The rear element is stored at the last node!

•  The space used is O(n) and each operation of the 
Queue ADT takes O(1) time!

f 

r 

∅ 

nodes 

elements 



Phạm Bảo Sơn - DSA  31 

Application: Round Robin 
Schedulers"

•  We can implement a round robin scheduler using a 
queue, Q, by repeatedly performing the following 
steps:!

1.   e = Q.dequeue()!
2.   Service element e!
3.   Q.enqueue(e)!

The Queue 

Shared  
Service 

1 .  Deque the  
next element 3 .  Enqueue the  

serviced element 2 .  Service the  
next element 



Phạm Bảo Sơn - DSA  32 

Sequence ADT"
•  The Sequence ADT is the 

union of the Vector and 
List ADTs!

•  Elements accessed by!
–  Rank, or!
–  Position!

•  Generic methods:!
–  size(), isEmpty()!

•  Vector-based methods:!
–  elemAtRank(r), 

replaceAtRank(r, o), 
insertAtRank(r, o), 
removeAtRank(r)!

•  List-based methods:!
–  first(), last(), prev(p), 

next(p), replace(p, o), 
insertBefore(p, o), 
insertAfter(p, o), 
insertFirst(o), 
insertLast(o), 
remove(p)!

•  Bridge methods:!
–  atRank(r), rankOf(p)!



Phạm Bảo Sơn - DSA  33 

Applications of Sequences"
•  The Sequence ADT is a basic, general-

purpose, data structure for storing an ordered 
collection of elements!

•  Direct applications:!
–  Generic replacement for stack, queue, vector, or 

list!
–  small database (e.g., address book)!

•  Indirect applications:!
–  Building block of more complex data structures!



Phạm Bảo Sơn - DSA  34 

Linked List Implementation"
•  A doubly linked list provides a 

reasonable implementation of the 
Sequence ADT!

•  Nodes implement Position and store:!
–  element!
–  link to the previous node!
–  link to the next node!

•  Special trailer and header nodes!
trailer header nodes/positions 

elements 

! Position-based methods 
run in constant time 

! Rank-based methods 
require searching from 
header or trailer while 
keeping track of ranks; 
hence, run in linear time 



Phạm Bảo Sơn - DSA  35 

Array-based Implementation"
•  We use a 

circular array 
storing 
positions !

•  A position 
object stores:!
–  Element!
–  Rank!

•  Indices f and l 
keep track of 
first and last 
positions!

0 1 2 3 
positions 

elements 

S 
l f 



Phạm Bảo Sơn - DSA  36 

Sequence Implementations"
Operation Array List 
size, isEmpty 1 1 
atRank, rankOf, elemAtRank 1 n 
first, last, prev, next 1 1 
replace 1 1 
replaceAtRank 1 n 
insertAtRank, removeAtRank n n 
insertFirst, insertLast 1 1 
insertAfter, insertBefore n 1 
remove n 1 


