Data Structures and
Algorithms

Stacks and Queues




« Stacks
- Queues
- Sequence
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The Stack ADT

- The Stack ADT stores
arbitrary objects

* |nsertions and deletions
follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

- Main stack operations:
— push(object): inserts an
element

— object pop(): removes and
returns the last inserted
element
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 Auxiliary stack
operations:

— object top(): returns the ‘
last inserted element |
without removing it

— integer size(): returns the E
number of elements 1
stored

— boolean isEmpty():
indicates whether no
elements are stored
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Stack Interface in Java

« Java interface
corresponding to
our Stack ADT

* Requires the
definition of class

- Different from the
built-in Java class
java.util.Stack
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public interface Stack {
public int size();
public boolean isEmpty();

public Object top()
throws

public void push(Object o0);

public Object pop()
throws
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Exceptions |

Attempting the execution
of an operation of ADT
may sometimes cause an
error condition, called an
exception

Exceptions are said to be
“thrown” by an operation
that cannot be executed
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In the Stack ADT,
operations pop and top
cannot be performed if
the stack is empty

- Attempting the execution |

of pop or top on an f
empty stack throws an |




Applications of Stacks

» Direct applications
— Page-visited history in a Web browser
— Undo sequence in a text editor

— Chain of method calls in the Java Virtual }
Machine |

» Indirect applications
— Auxiliary data structure for algorithms e
— Component of other data structures
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Method Stack in the JVM

The Java Virtual Machine (JVM)
keeps track of the chain of active
methods with a stack

When a method is called, the JVM
pushes on the stack a frame
containing

— Local variables and return value

— Program counter, keeping track of the
statement being executed
When a method ends, its frame is
popped from the stack and control is

passed to the method on top of the
stack

Allows for recursion
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Array-based Stack

- A simple way of Algorithm size()
Implementing the return
Stack ADT uses an
array Algorithm pop()
- We add elements if then
from left to right throv f‘
« A variable keeps else 1
track of the index of Lt !

the top element return
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Array-based Stack (cont.)

- The array storing the
stack elements may

- P,

P ) A!gorlthm push(o)
: ; if 1= then
* A push operation will e ‘
then throw a -
else i
— Limitation of the array- =, ‘
based implementation <~ ‘,
— Not intrinsic to the
Stack ADT
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Performance and Limitations ’

- Performance
— Let n be the number of elements in the stack
— The space used is O(n)
— Each operation runs in time O(1)

- Limitations |

— The maximum size of the stack must be defined a
priori and cannot be changed

— Trying to push a new element into a full stack f
causes an implementation-specific exception
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Array-based Stack in Java

public class ArrayStack
implements Stack {

private Object S[ |;
private int top = -1;

public ArrayStack(int capacity) {
S = new Object[capacity]);
}

public Object pop()
throws
if isEmpty()
throw new

(“ ”);
Object temp = S[top];

——
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S[top] = null;
top =top - 1;
return temp; i

Pham Bao Son - DSA
I g I ———— £



Stack with a Singly Linked

List

» We can implement a stack with a singly linked list
- The top element is stored at the first node of the list
- The space used is O(n) and each operation of the

Stack ADT takes O(1) time
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Parentheses Matching

s-Fach.. (), { or “[” must be paired with
a matching “)”, “}", or “[”
DO
)

[ \
~ correct: (()((OXAODN)
_incorrect: )(( ){(IOD}

— incorrect: ({[ ]}

— incorrect: ( |
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Parentheses Matching
Algorithm ParenMatch(X,n): AI g O rlth m

Input: An array X of n tokens, each of which is either a grouping symbol, a
variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match
Let S be an empty stack
for i=0 to n-1 do
if X[i] is an opening grouping symbol then
S.push(X[i])
else if X[7] is a closing grouping symbol then
if S.isEmpty() then |
return false {nothing to match with} )
if S.pop() does not match the type of X[i] then f
return false {wrong type}
if S.isEmpty() then

return true {every symbol matched} |'
else :

return false {some symbols were never matched} /’r\
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HTML Tag Matching

@ For fully-correct HTML, each <name> should pair with a matching </name>

<body>

<center>

<h1> The Little Boat </h1>
</center>

<p> The storm tossed the little
boat like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but

not the tree salesman, who even as
a stowaway now felt that he

had overpaid for the voyage. </p>
<ol>

<li> Will the salesman die? </li>
<li> What color is the boat? </li>
<li> And what about Naomi? </li>
</ol>

</body>
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The Little Boat

The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as

a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color 1s the boat?
3. And what about Naomi?
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Computing Spans

- We show how to use a stack 67
as an auxiliary data structure 5 -

In an algorithm 4 -
- @Given an an array X, the span 3 -
S[i] of X[i] is the maximum 7

number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] = XIi] 01
« Spans have applications to
financial analysis
— E.g., stock at 52-week high
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Quadratic Algorithm

- .

Algorithm spansI(X, n)
Input
Output

<

for: < 0 to

<—

do

while s </ A

<—

<

return

S S €

IA

1+2+..+4(n—-1)
1+2+..+4(n—-1)

n
1 ?

e, T
—— -

@ Algorithm spansI runs in O(n?) time
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Computing Spans with a
Stack

- We keep in a stack the
indices of the elements
visible when “looking
back”

- We scan the array from
left to right
— Let i be the current index

— We pop indices from the
stack until we find index j

such that X[i] < X[j]
— We set ~—
— We push i onto the stack
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Linear Algorithm

# Each index of the
array

= Is pushed into the
stack exactly one

= Is popped from
the stack at most
once
#® The statements in
the while-loop are
executed at most
n times

@ Algorithm spans2
runs in O(n) time
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Algorithm spans2(X, n) 7
= n
= 1
for/ < 0O to do n
while (-

< do n
n
if 4. then n
= n

else
<~ n
: n

return }/—

P —— ~

—







-

The Queue ADT

The Queue ADT stores arbitrarye
objects

Insertions and deletions follow
the first-in first-out scheme

Insertions are at the rear of the
queue and removals are at the
front of the queue

Main queue operations:

— enqueue(object): inserts an
element at the end of the queue

— object dequeue(): removes and ;
returns the element at the front
of the queue
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Auxiliary queue
operations:

— object front(): returns the
element at the front without
removing it

— integer size(): returns the
number of elements stored E

— boolean isEmpty(): indicates 1
whether no elements are
stored

Exceptions

— Attempting the execution of
dequeue or front on an |
empty queue throws an 1

v’
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Operation

(
enqueue(
dequeueg(
enqueue(
dequeueg(
front()

(
dequeueg(
isEmpty()
enqueue(
enqueue(7)
size()
enqueue(3)
enqueue(5)
dequeue()

Queue Exam

Output QO

= (5)

= (553

5 (3)

X (3, 7)

3 (7)

7 (7)

7 ()
“error” ()

true ()

S (9)

i (97 7)

2 9, 7)

— 9, 7, 3)
= 9,7,3,5)
9 (7, 3, 5)
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Applications of Queues

- —

» Direct applications
— Waiting lists, bureaucracy
— Access to shared resources (e.g., printer)
— Multiprogramming |
» Indirect applications
— Auxiliary data structure for algorithms :
— Component of other data structures
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Array-based Queue

- Use an array of size N in a circular fashion

- Two variables keep track of the front and rear
f index of the front element
r Index immediately past the rear element

 Array location r is kept empty

e S

normal configuration

. F——— c— . a o _a .

wrapped-around configuration

ANENEEEEEEEEEEEEE i
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Queue Operations

A T Algorithm size()
modulo operator LeIuRtl
((jr_em_amder of Algorithm isEmpty()

ivision) return
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Queue Operations (cont.)

- Operation enqueue Algorithm enqueue(o)
throws an exception if if = then
the array is full throw
» This exception is else
Implementation- — |
dependent -« |
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Queue Operations (cont.)

- Operation dequeue  Algorithm dequeue()

throws an exception if then
If the queue is empty throw
» This exception is else
specified in the —
queue ADT g
return
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Queue Interface in Java

« Java interface
corresponding to
our Queue ADT

* Requires the
definition of class

* No corresponding
built-in Java class

Pham Bao Son - DSA
T _ g I e

public interface Queue {
public int size();
public boolean isEmpty();

public Object front()
throws

public void enqueue(Object o);

public Object dequeug()
throws

e S St
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Queue with a Singly Linked
List |

- We can implement a queue with a singly linked list
— The front element is stored at the first node
— The rear element is stored at the last node

- The space used is O(n) and each operation of the
Queue ADT takes O(1) time
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Application: Round Robin
Schedulers

- We can implement a round robin scheduler using a
queue, Q, by repeatedly performing the following
steps:

1. e = Q.dequeue()
2. Service element e
3. Q.enqueue(e)

The Queue

1. Deque the 2. Service the 3. Enqueue the

next element next element serviced element

Shared
Service

-




Sequence ADT

The Sequence ADT is the
union of the Vector and
List ADTs

Elements accessed by
— Rank, or
— Position

Generic methods:
— size(), isEmpty()

Vector-based methods:

— elemAtRank(r),
replaceAtRank(r, 0),
insertAtRank(r, o),
removeAtRank(r)
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« List-based methods:

— first(), last(), prev(p),
next(p), replace(p, 0),
insertBefore(p, 0),
insertAfter(p, o), :
insertFirst(o), i
insertLast(0), f
remove(p) 1

- Bridge methods:
— atRank(r), rankOf(p)




Applications of Sequences

- The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

 Direct applications:

— Generic replacement for stack, queue, vector, or {
list 1

— small database (e.g., address book)
» Indirect applications: f
— Building block of more complex data structures
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Linked List Implementation |

A doubly linked list provides a # Position-based methods
reasonable implementation of the run in constant time
Sequence ADT # Rank-based methods
«  Nodes implement Position and store: require searching from
— element header or trailer while
— link to the previous node keeping track of ranks; |
= Hiisicto the'fiext node hence, run in linear time E
Special trailer and header nodes :
header ! trailer

I i~
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Array-based Implementation |

« We use a

circular array
storing
positions

A position

object stores:

— Element
— Rank

Indices fand /
keep track of
first and last
positions
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Sequence Implementations

Operation Array List
size, ISEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, prev, next 1 i
replace 1 |
replaceAtRank 1 n
insertAtRank, removeAtRank n n
InsertFirst, insertLast 1 1
insertAfter, insertBefore n |
remove n 1 4
R S e e
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