
Data Structures and
Algorithms  

Trees

Tree Example

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

2 Phạm Bảo Sơn - DSA

Phạm Bảo Sơn - DSA

What is a Tree
•  In computer science, a

tree is an abstract model
of a hierarchical
structure

•  A tree consists of nodes
with a parent-child
relation

•  Applications:
–  Organization charts
–  File systems
–  Programming

environments

Computers”R”Us

Sales R&D Manufacturing

Laptops Desktops US International

Europe Asia Canada

3

Tree: File system

Phạm Bảo Sơn - DSA 4

Phạm Bảo Sơn - DSA

Tree Terminology
•  Root: node without parent (A)
•  Internal node: node with at least one

child (A, B, C, F)
•  External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
•  Ancestors of a node: parent,

grandparent, grand-grandparent, etc.
•  Descendant of a node: child,

grandchild, grand-grandchild, etc.
•  Depth of a node: number of ancestors
•  Height of a tree: maximum depth of any

node (3)
•  Siblings: same parent.
•  Edge: (u, v): u is the parent of v.
•  Path

A

B D C

G H E F

I J K

Subtree: tree consisting of
a node and its
descendants

5

Ordered Tree
•  Linear ordering for children of each

node.
•  Example: Book structure

Phạm Bảo Sơn - DSA 6

Phạm Bảo Sơn - DSA

Tree ADT
•  We use positions to abstract

nodes
•  Generic methods:

–  integer size()
–  boolean isEmpty()
–  Iterator elements()
–  Iterator positions()

•  Accessor methods:
–  position root()
–  position parent(p)
–  positionIterator children(p)

Query methods:
n  boolean isInternal(p)
n  boolean isExternal(p)
n  boolean isRoot(p)

Update method:
n  object replace (p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

7

Tree Linked Structure

Phạm Bảo Sơn - DSA 8

Depth
•  Depth(v): number of ancestors of v.

Phạm Bảo Sơn - DSA 9

Phạm Bảo Sơn - DSA

Preorder Traversal
•  A traversal visits the nodes of a

tree in a systematic manner
•  In a preorder traversal, a node is

visited before its descendants
•  Application: print a structured

document

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme 1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

 preorder (w)

10

Phạm Bảo Sơn - DSA

Postorder Traversal
•  In a postorder traversal, a

node is visited after its
descendants

•  Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v

 postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1K programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

11

Phạm Bảo Sơn - DSA

Binary Trees
•  A binary tree is a tree with the

following properties:
–  Each internal node has at most two

children (exactly two for proper
binary trees)

–  The children of a node are an
ordered pair

•  We call the children of an internal
node left child and right child

•  Alternative recursive definition: a
binary tree is either
–  a tree consisting of a single node, or
–  a tree whose root has an ordered

pair of children, each of which is a
binary tree

Applications:
n  arithmetic expressions
n  decision processes
n  searching

A

B C

F G D E

H I
12

Phạm Bảo Sơn - DSA

Arithmetic Expression Tree
•  Binary tree associated with an arithmetic expression

–  internal nodes: operators
–  external nodes: operands

•  Example: arithmetic expression tree for the
expression (2 × (a - 1) + (3 × b))

+

××

-2

a 1

3 b

13

Phạm Bảo Sơn - DSA

Decision Tree
•  Binary tree associated with a decision process

–  internal nodes: questions with yes/no answer
–  external nodes: decisions

•  Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

14

Phạm Bảo Sơn - DSA

Properties of Proper Binary
Trees

•  Notation
n number of nodes
e number of external

nodes
i number of internal

nodes
h height

Properties:
n  e = i + 1
n  n = 2e - 1
n  h ≤ i
n  h ≤ (n - 1)/2
n  e ≤ 2h

n  h ≥ log2 e
n  h ≥ log2 (n + 1) - 1

15

Phạm Bảo Sơn - DSA

BinaryTree ADT
•  The BinaryTree ADT

extends the Tree ADT,
i.e., it inherits all the
methods of the Tree
ADT

•  Additional methods:
–  position left(p)
–  position right(p)
–  boolean hasLeft(p)
–  boolean hasRight(p)

•  Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

16

Linked Structure

Phạm Bảo Sơn - DSA 17

Phạm Bảo Sơn - DSA

Inorder Traversal
•  In an inorder traversal a

node is visited after its left
subtree and before its right
subtree

•  Application: draw a binary
tree
–  x(v) = inorder rank of v
–  y(v) = depth of v

Algorithm inOrder(v)
if hasLeft (v)

inOrder (left (v))
visit(v)
if hasRight (v)

inOrder (right (v))

3

1

2

5

6

7 9

8

4

18

Phạm Bảo Sơn - DSA

Print Arithmetic Expressions
•  Specialization of an inorder

traversal
–  print “(“ before traversing left

subtree
–  print operand or operator

when visiting node
–  print “)“ after traversing right

subtree

Algorithm printExpression(v)
if hasLeft (v)

 print(“(’’)
printExpression(left(v))

print(v.element ())
if hasRight (v)

printExpression(right(v))
 print (“)’’)

+

××

-2

a 1

3 b
((2 × (a - 1)) + (3 × b))

19

Phạm Bảo Sơn - DSA

Evaluate Arithmetic Expressions
•  Specialization of a postorder

traversal
–  recursive method returning

the value of a subtree
–  when visiting an internal

node, combine the values
of the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

 x ← evalExpr(leftChild (v))
 y ← evalExpr(rightChild (v))
 ◊ ← operator stored at v
return x ◊ y +

××

-2

5 1

3 2

20

Phạm Bảo Sơn - DSA

Euler Tour Traversal
•  Generic traversal of a binary tree
•  Includes special cases for preorder, postorder and inorder traversals
•  Walk around the tree and visit each node three times:

–  on the left (preorder)
–  from below (inorder)
–  on the right (postorder)

+

×

-2

5 1

3 2

L
B

R ×

21

Phạm Bảo Sơn - DSA

Template Method Pattern
•  Generic algorithm that can

be specialized by
redefining certain steps

•  Implemented by means of
an abstract Java class

•  Visit methods that can be
redefined by subclasses

•  Template method eulerTour
–  Recursively called on the

left and right children
–  A Result object with fields

leftResult, rightResult and
finalResult keeps track of
the output of the
recursive calls to eulerTour

public abstract class EulerTour {
 protected BinaryTree tree;
 protected void visitExternal(Position p, Result r) { }
 protected void visitLeft(Position p, Result r) { }
 protected void visitBelow(Position p, Result r) { }
 protected void visitRight(Position p, Result r) { }

 protected Object eulerTour(Position p) {
 Result r = new Result();
 if tree.isExternal(p) { visitExternal(p, r); }
 else {
 visitLeft(p, r);
 r.leftResult = eulerTour(tree.left(p));
 visitBelow(p, r);
 r.rightResult = eulerTour(tree.right(p));
 visitRight(p, r);
 return r.finalResult;
 } …

22

Phạm Bảo Sơn - DSA

Specializations of EulerTour
•  We show how to

specialize class
EulerTour to evaluate
an arithmetic
expression

•  Assumptions
–  External nodes store

Integer objects
–  Internal nodes store

Operator objects
supporting method
 operation (Integer, Integer)

public class EvaluateExpression
 extends EulerTour {

 protected void visitExternal(Position p, Result r) {
 r.finalResult = (Integer) p.element();
 }

 protected void visitRight(Position p, Result r) {
 Operator op = (Operator) p.element();
 r.finalResult = op.operation(
 (Integer) r.leftResult,
 (Integer) r.rightResult
);

 }

 …

}
23

Phạm Bảo Sơn - DSA

∅

Linked Structure for Trees
•  A node is represented by

an object storing
–  Element
–  Parent node
–  Sequence of children

nodes
•  Node objects implement

the Position ADT

B

D A

C E

F

B

∅ ∅

A D F

∅
C

∅
E 24

Phạm Bảo Sơn - DSA

Linked Structure for Binary
Trees

•  A node is represented
by an object storing

–  Element
–  Parent node
–  Left child node
–  Right child node

•  Node objects implement
the Position ADT

B

D A

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

25

Phạm Bảo Sơn - DSA

Array-Based Representation of
Binary Trees

•  nodes are stored in an array

…

n  let rank(node) be defined as follows:
n  rank(root) = 1
n  if node is the left child of parent(node),

 rank(node) = 2*rank(parent(node))
n  if node is the right child of parent(node),

 rank(node) = 2*rank(parent(node))+1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

26

References
•  Chapter 7: Data structures and

Algorithms by Goodrich and Tamassia.

Phạm Bảo Sơn - DSA 27

