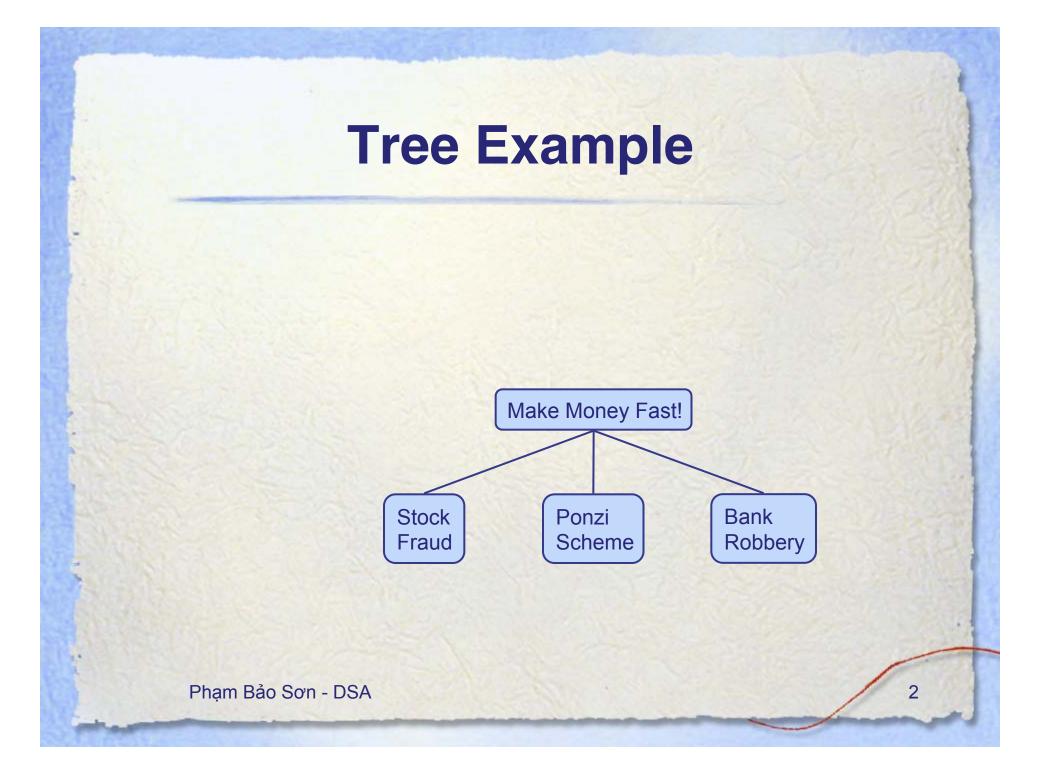
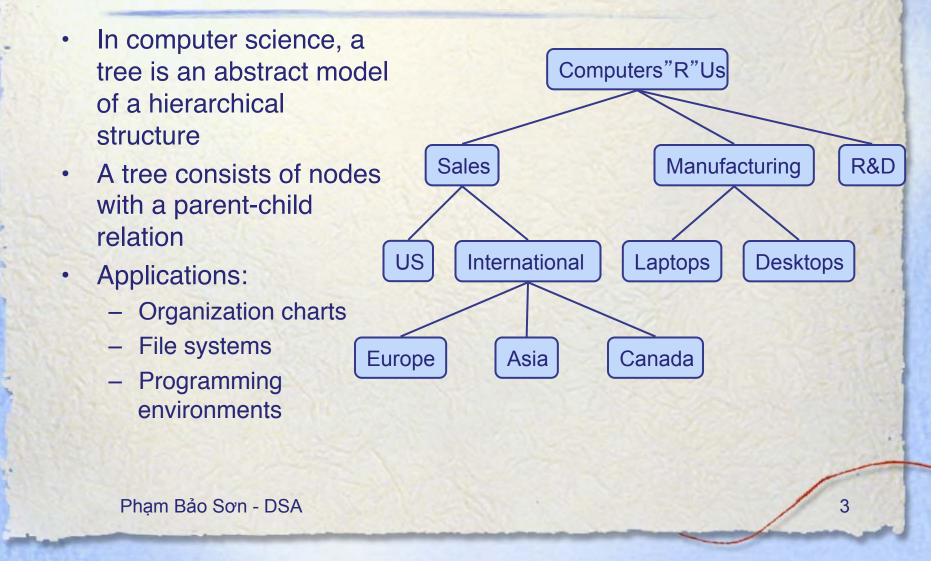
Data Structures and Algorithms

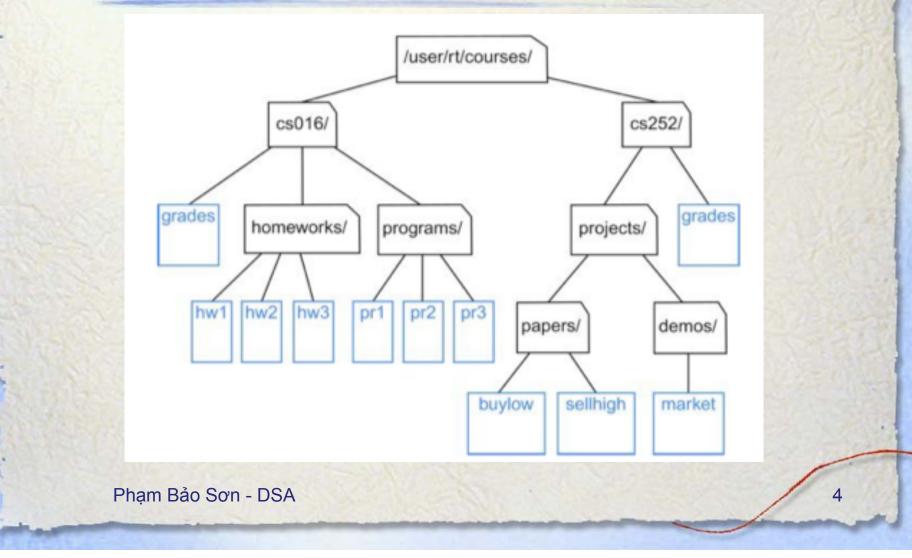
Trees



What is a Tree



Tree: File system



Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Siblings: same parent.
- Edge: (u, v): u is the parent of v.
- Path

Phạm Bảo Sơn - DSA

 Subtree: tree consisting of a node and its descendants

Κ

G

D

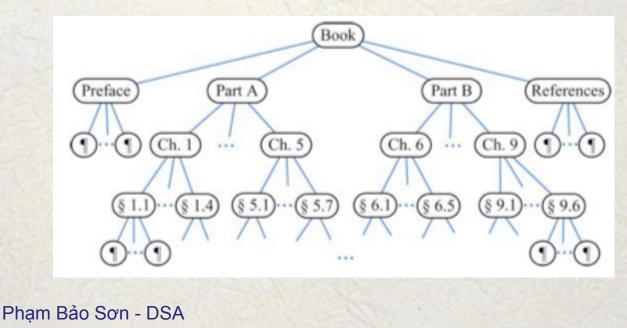
Н

5

Β

Ordered Tree

- Linear ordering for children of each node.
- Example: Book structure



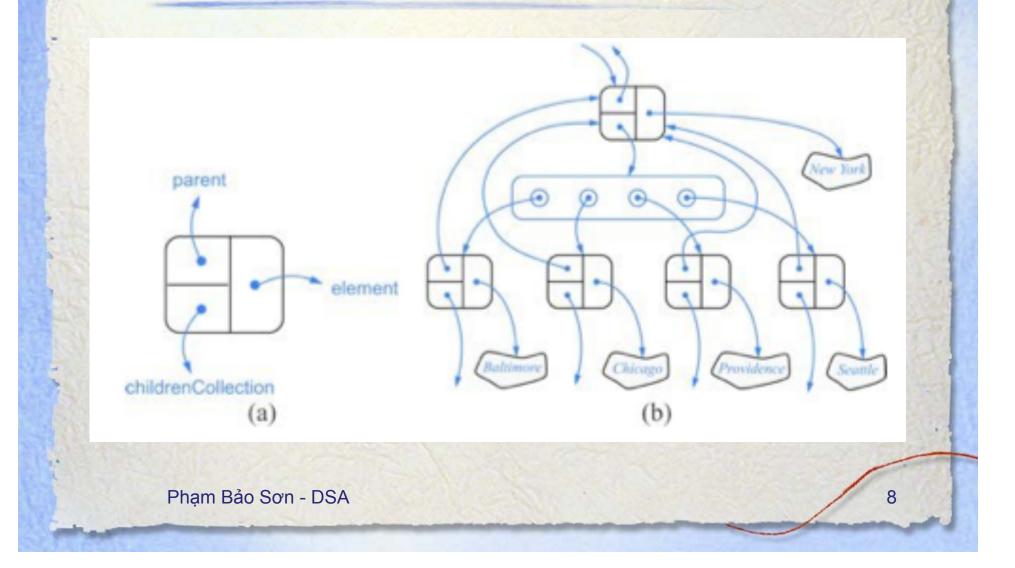
Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator elements()
 - Iterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

Query methods:

- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Update method:
 - object replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Tree Linked Structure



Depth

9

Depth(v): number of ancestors of v.

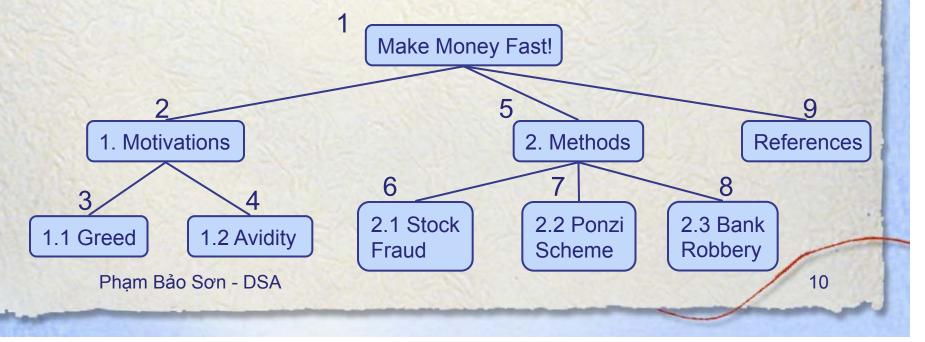
```
Algorithm depth(T, v):
 if v is the root of T then
     return 0
 else
     return 1+depth(T, w), where w is the parent of v in T
```

```
public static <E> int depth (Tree<E> T, Position<E> v) {
 if (T.isRoot(v))
     return 0;
 else
     return 1 + depth(T, T.parent(v));
```

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

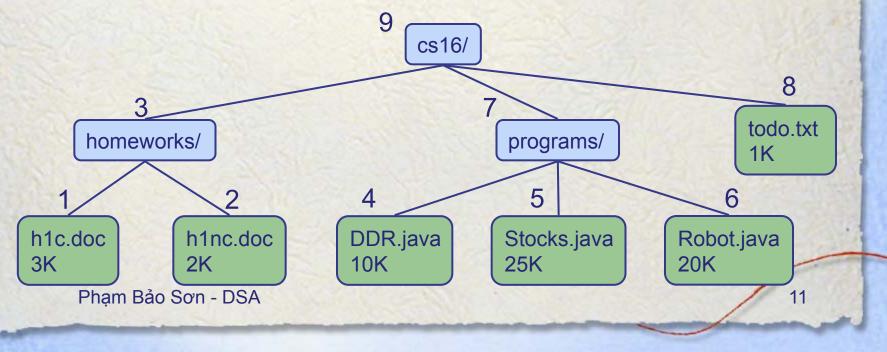
Algorithm *preOrder(v) visit(v)* for each child *w* of *v preorder (w)*



Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm *postOrder(v)* for each child *w* of *v postOrder(w) visit(v)*



Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions

F

G

12

- decision processes
- searching

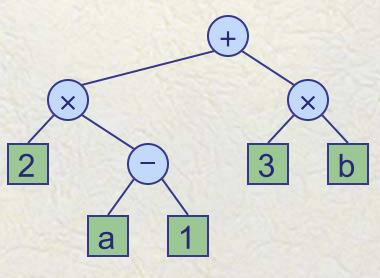
Ε

Η

D

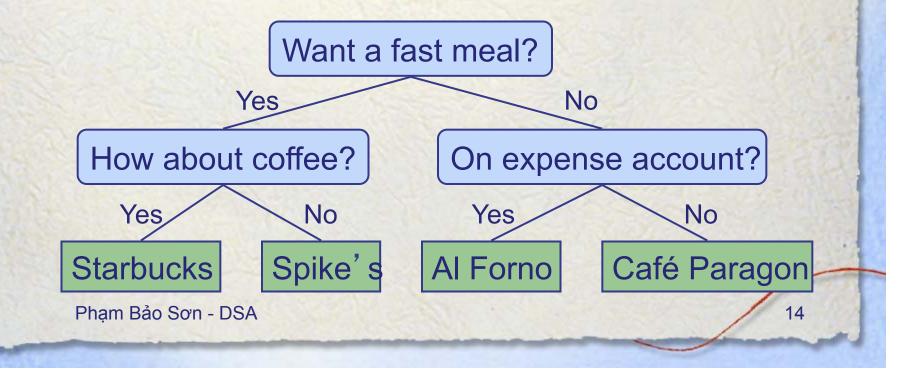
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression (2 × (a - 1) + (3 × b))



Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision



Properties of Proper Binary Trees

Notation	Properties:
<i>n</i> number of nodes	■ <i>e</i> = <i>i</i> + 1
<i>e</i> number of external nodes	■ $n = 2e - 1$
<i>i</i> number of internal	h ≤ i
nodes	• $h \le (n-1)/2$
h height	$\bullet e \leq 2^h$
	$h \ge \log_2 e$
	■ $h \ge \log_2(n+1) - 1$
Phạm Bảo Sơn - DSA	15

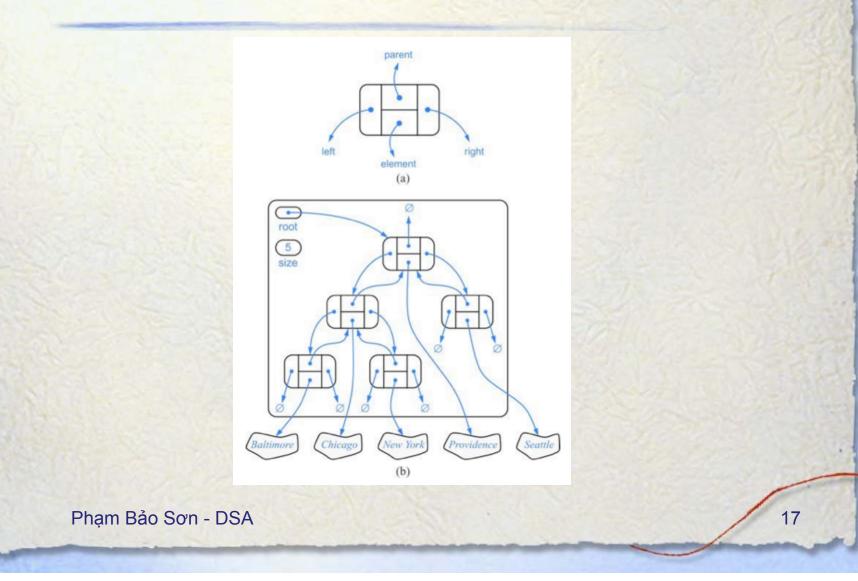
BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

16

Linked Structure



Inorder Traversal

8

9

6

5

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v

3

- y(v) = depth of v

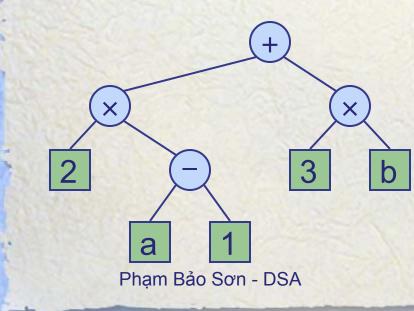
Pham Bảo Sơn - DSA

Algorithm inOrder(v) if hasLeft (v) inOrder (left (v)) visit(v) if hasRight (v) inOrder (right (v))

10 11 12

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print "(" before traversing left subtree
 - print operand or operator when visiting node
 - print ")" after traversing right subtree



Algorithm printExpression(v) if hasLeft (v) print("('') printExpression(left(v)) print(v.element ()) if hasRight (v) printExpression(right(v)) print(")'')

 $((2 \times (a - 1)) + (3 \times b))$

Evaluate Arithmetic Expressions

Х

2

3

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

X

5

Pham Bao Son - DSA

Algorithm *evalExpr(v)* if *isExternal* (v)

return v.element ()

else

- $x \leftarrow evalExpr(leftChild(v))$
- y ← evalExpr(rightChild (v))
- $\Diamond \leftarrow$ operator stored at v

return $x \Diamond y$

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes special cases for preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)

Phạm Bảo Sơn - DSA

X

2

Template Method Pattern

public abstract class EulerTour { Generic algorithm that can protected BinaryTree tree; be specialized by protected void visitExternal(Position p, Result r) { } redefining certain steps protected void visitLeft(Position p, Result r) { } Implemented by means of protected void visitBelow(Position p, Result r) { } an abstract Java class protected void visitRight(Position p, Result r) { } Visit methods that can be protected Object eulerTour(Position p) { redefined by subclasses Result r = new Result(); Template method eulerTour if tree.isExternal(p) { visitExternal(p, r); } Recursively called on the else { left and right children visitLeft(p, r); A Result object with fields r.leftResult = eulerTour(tree.left(p)); leftResult, rightResult and visitBelow(p, r); finalResult keeps track of r.rightResult = eulerTour(tree.right(p)); the output of the visitRight(p, r); recursive calls to eulerTour return r.finalResult;

} ...

Specializations of EulerTour

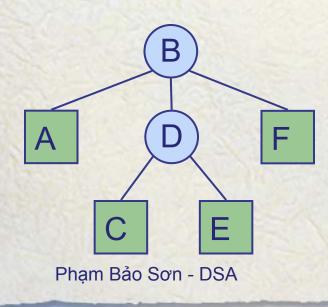
- We show how to specialize class EulerTour to evaluate an arithmetic expression
- Assumptions
 - External nodes store Integer objects
 - Internal nodes store
 Operator objects
 supporting method
 operation (Integer, Integer)

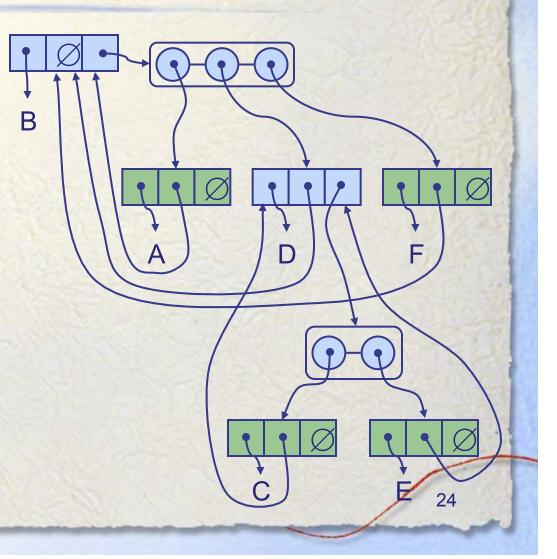
public class EvaluateExpression extends EulerTour {

protected void visitExternal(Position p, Result r) {
 r.finalResult = (Integer) p.element();

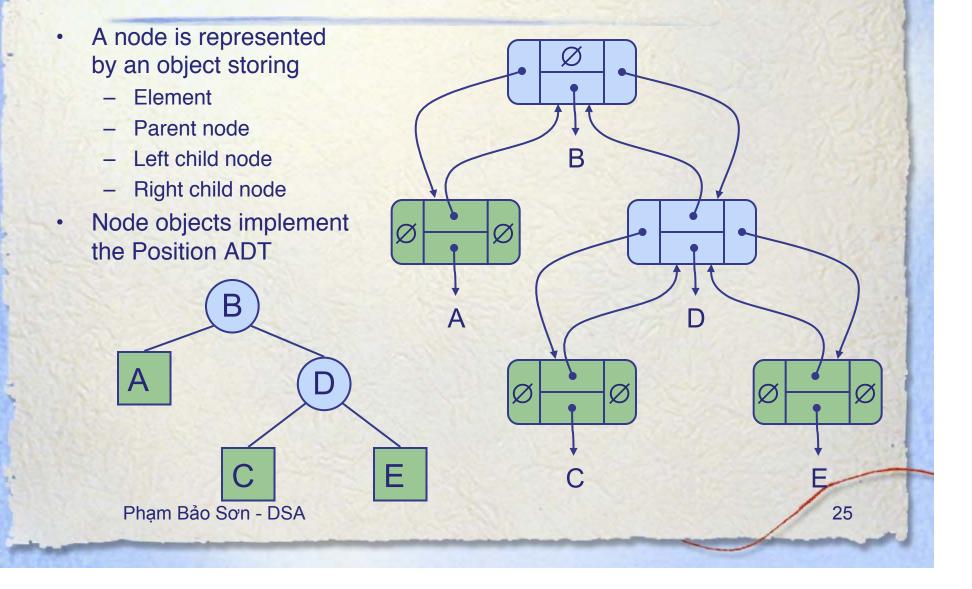
Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT





Linked Structure for Binary Trees



Array-Based Representation of Binary Trees

6

Η

26

Е

10

nodes are stored in an array

let rank(node) be defined as follows:

rank(root) = 1

if node is the left child of parent(node), rank(node) = 2*rank(parent(node))

 if node is the right child of parent(node), rank(node) = 2*rank(parent(node))+1
 Phạm Bảo Sơn - DSA

References

 Chapter 7: Data structures and Algorithms by Goodrich and Tamassia.

Phạm Bảo Sơn - DSA