Data Structures and
Algorithms

Search Trees

Outline |

 Binary Search Trees |
* AVL Trees |

» (2,4) Trees ’

Ordered Dictionaries

- Keys are assumed to come from a total
order.

* New operations:
— first(): first entry in the dictionary ordering
— last(): last entry in the dictionary ordering

— successors(k): iterator of entries with keys
greater than or equal to k; increasing order

— predecessors(k): iterator of entries with keys

less than or equal to k; decreasing order/+
4

b s e pu— e R T —— e P ™ -—’«———-’\WJ

. I ——— —— e

e

Binary Search

Binary search can perform operation find(k) on a dictionary

implemented by means of an array-based sequence, sorted by
key

— similar to the high-low game

— at each step, the number of candidate items is halved
— terminates after O(log n) steps

Example: find(7)

i —

Search Tables \L
~
SNA

- A search table is a dictionary implemented by means of a sorted
sequence

— We store the items of the dictionary in an array-based sequence,
sorted by key

— We use an external comparator for the keys
« Performance:
— find takes O(log n) time, using binary search

— insert takes O(n) time since in the worst case we have to shift n
items to make room for the new item

!
|
f
— remove take O(n) time since in the worst case we have to shift n—1 ’
items to compact the items after the removal]
- The lookup table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common f
operations, while insertions and removals are rarely performed

(e.g., credit card authorizations) /’F‘
i

e o TIEEREENR SRS, . s - e A e ‘*—W\r"’ »

Binary Search % \
Trees == ,_|_|3

- A binary search tree is a
binary tree storing keys
(or key-value entries) at

- An inorder traversal of a
binary search trees

its internal nodes and visits the keys In
satisfying the following Increasing order
property:

— Let u, v, and w be three
nodes such that u is in
the left subtree of v and w
is in the right subtree of
v. We have
key(u) < key(v) < key(w)

« External nodes do not
store items

I g I ——— e . 7

Search

To search for a key k,
we trace a downward
path starting at the root

The next node visited
depends on the
outcome of the
comparison of k with the
key of the current node

If we reach a leaf, the
key is not found and we
return null

Example: find(4):

— Call TreeSearch(4,root)

Algorithm TreeSearch(k, v)
if

return
if

return
else if

return
else

return

-—

Insertion

- To perform operation
insert(k, 0), we search for
key k (using TreeSearch)

« Assume k is not already in

the tree, and let w be the

leaf reached by the search

We insert k at node w and
expand w into an internal
node

Example: insert 5

> et A

Deletion

s — N

« To perform operation
remove(k), we search for
key k

« Assume key k is in the tree,
and let let v be the node
storing k

« If node v has a leaf child w,
we remove v and w from the
tree with operation
removeExternal(w), which
removes w and its parent

- Example: remove 4

st AT

« We consider the case where
the key k to be removed is
stored at a node v whose
children are both internal

— we find the internal node w
that follows v in an inorder
traversal

— we copy key(w) into node v

— we remove node w and its
left child z (which must be a v
leaf) by means of operation
removeExternal(z)

- Example: remove 3

Performance

- Consider a dictionary
with n items
iImplemented by means
of a binary search tree
of height A

— the space used is O(n)

— methods find, insert and
remove take O(h) time

* The height A is O(n) In
the worst case and
O(log n) in the best
case

*w——-—ao—’— et T e e O e

e S

= P— — .

S

AVL Tree Definition

+ AVL trees are
balanced.

« An AVL Tree is a
binary search tree
such that for every
Internal node v of T,
the heights of the
children of v can differ
by at most 1. An example of an AVL tree where the

heights are shown next to the HW
14

S
- e — et e A et el e et = "W,—’

Height of an AVL Treé /4 3. |

L———f—f—f—’— .4»

Fact: The height of an AVL tree storing n keys is O(log n).

Proof: Let us bound n(h): the minimum number of internal
nodes of an AVL tree of height h.

« We easily seethatn(1) =1 and n(2) =2 ;
For n > 2, an AVL tree of height h contains the root node, one
AVL subtree of height h-1 and another of height h-2. ;

« Thatis, n(h) =1 + n(h-1) + n(h-2) :
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i) f
Solving the base case we get: n(h) > 2 21 |
]

.+ Taking logarithms: h < 2log n(h) +2
« Thus the height of an AVL tree is O(log n) ﬂ
g a—— PG —— P NN O IR A ’ ,

 Insertion’is as in a binary search tree
- Always done by expanding an external node.
« Example:

Insertion in an AVL Tree

:
!
!

let (&,b,¢) be an inorder listing of x, y, z
perform the rotations needed to make b the topmost node of the

three
(other two cases
are symmetrical) case 2: double rotation

(a right rotation about ¢, {
then a left rotation about a)

Trinode Restructuring 2
¢
|

case 1: single rotation
(a left rotation about a)

W . s —— e ~— -~

Insertion Example, continued

unbalanced... ‘-----

...balanced

-~

Restructuring !
(as Single Rotations) |

- Single Rotations:

Restructuring t
(as Double Rotations) ;

« double rotations:

Removal in an AVL Tree

- Removal begins as in a binary search tree, which
means the node removed will become an empty
external node. Its parent, w, may cause an imbalance.

P SS—————

Rebalancing after a Removal

Let z be the first unbalanced node encountered while travelling
up the tree from w. Also, let y be the child of z with the larger
height, and let x be the child of y with the larger height.

We perform restructure(x) to restore balance at z. |
As this restructuring may upset the balance of another node J

higher in the tree, we must continue checking for balance until f'
the root of T is reached

s — N

3 IR T——

Running Times for
AVL Trees

- a single restructure is O(1)
— using a linked-structure binary tree
- find is O(log n)
— height of tree is O(log n), no restructures needed
- insert is O(log n) :
— initial find is O(log n) ;
— Restructuring up the tree, maintaining heights is O(log n)
- remove is O(log n)
— initial find is O(log n)
— Restructuring up the tree, maintaining heights is O(log n)

——

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
— Each internal node has at least two children and stores d -1
key-element items (k;, 0,), where d is the number of children
— For a node with children v, v, ... v, storing keys k, k, ... k,
- keys in the subtree of v, are less than k,
- keys in the subtree of v, are between k, ,and k; (i=2, ...,d - 1)
- keys in the subtree of v, are greater than k,_,

— The leaves store no items and serve as placeholders

P SIS

—— - .
— . a o _a

Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees
to multi-way search trees

Namely, we visit item (k;, 0;) of node v between the recursive
traversals of the subtrees of v rooted at children v; and v, , ,
An inorder traversal of a multi-way search tree visits the keys in
increasing order

P SIS

. F——— c— . a o _a .

1 <) 5 7 9 11 13 16 19
26 J

l ~TF- - == e e A, g A e N et Mﬂ‘w

Multi-Way Searching

- Similar to search in a binary search tree
* A each internal node with children v, v, ... v, and keys k, k, ... k,_,

— k=k;(i=1,...,d-1): the search terminates successfully
— k < k;: we continue the search in child v,

— k,_ <k<k;(i=2,...,d-1): we continue the search in child v,
— k >k, ,: we continue the search in child v,
* Reaching an external node terminates the search unsuccessfully
- Example: search for 30
11 24D

2 6 8 15 D 27 32>

e S

—— .
— e

-

A S /‘\
s

(2,4) Trees ’

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties
— Node-Size Property: every internal node has at most four children
— Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) 3
tree is called a 2-node, 3-node or 4-node :

10 15 24

s — N

Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height O(log n)
Proof:

— Let h be the height of a (2,4) tree with n items

— Since there are at least 2/ items at depthi =0, ... ,-—1 and no
items at depth A, we have J'
1 = 1t 2 e RS Oy

— Thus, h<log(n+1) ﬁ
Searching in a (2,4) tree with n items takes O(log n) time

P ————

depth items
0 B s vy o A R T Ny SRR T
1 2 T RN R R A
U AT gk bl b oA e
h O et
29

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by

searching for k

— We preserve the depth property but
— We may cause an overflow (i.e., node v may become a 5-node)

- Example: inserting key 30 causes an overflow
10 15 24

et A

|
|
z

Overflow and Split

We handle an overflow at a 5-node v with a split operation:

— letv, ... v; be the children of v and k, ... k, be the keys of v
— node v is replaced nodes v’ and v”
« v'is a 3-node with keys k, k, and children v, v, v,
« v"is a 2-node with key k, and children v, v,
— key k; is inserted into the parent u# of v (a new root may be created)

- The overflow may propagate to the parent node u

e S

S

Vi V5 V3 V4 Vs
3
.’-—-ﬁo—’— T

-

Analysis of Insertion

e

Algorithm insert(k, o) - Let T be a(2,4) tree with |
n items
1. We search for key & to locate the o Ig?gehtT has O(log n)

insertion node v — Step 1 takes O(log n)

time because we visit ‘
2. We add the new entry (k, 0) at node v O(log n) nodes i
— Step 2 takes O(1) time f

— Step 3 takes O(log n)
time because each split
if isRoot(v) takes O(1) time and we
perform O(log n) splits
g Thus, aninsertion in a
B pie) (2,4) tree takes O(log n)
time 3

e

3. while overflow(v)

create a new empty root above v

~ ’ _—— o et — e St D e TR e e e e P e -—"—’—‘W

Deletion

- We reduce deletion of an entry to the case where the item is at the
node with leaf children

- Otherwise, we replace the entry with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter entry

- Example: to delete key 24, we replace it with 27 (inorder successor)

10 15 24

et A

AN e ———p— Tt N e ey ——

Underflow and Fusion

Deleting an entry from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two
cases
Case 1: the adjacent siblings of v are 2-nodes

— Fusion operation: we merge v with an adjacent sibling w and move an
entry from u to the merged node v’

— After a fusion, the underflow may propagate to the parent u

P SIS

. F——— c— . a o _a

Underflow and Transfer

Case 2: an adjacent sibling w of v is a 3-node or a 4-node
— Transfer operation:
1. we move a child of wto v
2. we move an item from u to v
3. we move an item from w to u
— After a transfer, no underflow occurs

U U

C4 92 4 8
2> B8 @S @)

e S

: 5

*w—-—»a—-’—— e S TN T e e T e NS Tt A —WJ

Analysis of Deletion

« Let T be a (2,4) tree with n items
— Tree T has O(log n) height

* In a deletion operation

— We visit O(log n) nodes to locate the node from
which to delete the entry

— We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

— Each fusion and transfer takes O(1) time

» Thus, deleting an item from a (2,4) tree takes
O(log n) time

-

——— ——

e

References

« Chapter 10: Data structures and
Algorithms by Goodrich and Tamassia.

""""’—'—_—“"’_ e T e T e et ST = et A

s — N

RS-

