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Priority Queue ADT"
•  A priority queue stores a 

collection of entries!
•  Each entry is a pair 

(key, value)!
•  Main methods of the Priority 

Queue ADT!
–  insert(k, x) 

inserts an entry with key k 
and value x!

–  removeMin() 
removes and returns the 
entry with smallest key!

•  Additional methods!
–  min() 

returns, but does not 
remove, an entry with 
smallest key!

–  size(), isEmpty()!

•  Applications:!
–  Standby flyers!
–  Auctions!
–  Stock market!
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Total Order Relations"
•  Keys in a priority 

queue can be 
arbitrary objects 
on which an order 
is defined!

•  Two distinct 
entries in a priority 
queue can have 
the same key 

•  Mathematical concept 
of total order relation ≤!
–  Reflexive property: 

x ≤ x 
–  Antisymmetric property: 

x ≤ y ∧ y ≤ x ⇒ x = y!
–  Transitive property: 

 x ≤ y ∧ y ≤ z ⇒ x ≤ z 
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Entry ADT"
•  An entry in a priority 

queue is simply a key-
value pair!

•  Priority queues store 
entries to allow for 
efficient insertion and 
removal based on keys!

•  Methods:!
–  key(): returns the key for 

this entry!
–  value(): returns the value 

associated with this 
entry!

•  As a Java interface:!
/** !
  * Interface for a key-value!
  * pair entry !
 **/!
public interface  Entry  {!
    public  Object key();!
    public  Object value();!
}!
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Comparator ADT"
•  A comparator encapsulates 

the action of comparing two 
objects according to a given 
total order relation!

•  A generic priority queue 
uses an auxiliary 
comparator!

•  The comparator is external 
to the keys being compared!

•  When the priority queue 
needs to compare two keys, 
it uses its comparator!

•  The primary method of the 
Comparator ADT:!
–  compare(x, y): Returns an 

integer i such that i < 0 if a < 
b, i = 0 if a = b, and i > 0 if a 
> b; an error occurs if a and b 
cannot be compared.!
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Example Comparator"
•  Lexicographic comparison of 2-D 

points:!
!
/** Comparator for 2D points under the 

standard lexicographic order. */!
public class  Lexicographic  implements  

Comparator  {!
    int  xa, ya, xb, yb;!
    public int  compare(Object a, Object b)  

throws  ClassCastException  {!
       xa = ((Point2D) a).getX();!
       ya = ((Point2D) a).getY();!
       xb = ((Point2D) b).getX();!
       yb = ((Point2D) b).getY();!
       if  (xa != xb)!
" "return  (xb - xa);!

       else"
" "return  (yb - ya);!

   }!
}!

•  Point objects:!
!
/** Class representing a point in the 

plane with integer coordinates */!
public class  Point2D !{!
    protected int xc, yc; // coordinates!
    public  Point2D(int  x,  int  y)  {!
       xc = x;!
       yc = y;!
   }!
    public int  getX()  { !

! !return  xc; !!
    }!
    public int  getY()  { !

! !return  yc; !!
    }!
}!



Phạm Bảo Sơn - DSA 

Priority Queue Sorting"
•  We can use a priority 

queue to sort a set of 
comparable elements!
1.  Insert the elements one 

by one with a series of 
insert operations!

2.  Remove the elements in 
sorted order with a series 
of removeMin operations!

•  The running time of this 
sorting method depends on 
the priority queue 
implementation!

Algorithm PQ-Sort(S, C) 
Input sequence S, comparator C 
for the elements of S 
Output sequence S sorted  in 
increasing order according to C 
P ← priority queue with  

 comparator C 
while ¬S.isEmpty () 

 e ← S.removeFirst () 
P.insert (e, 0) 

while ¬P.isEmpty() 
 e ← P.removeMin().key() 
S.insertLast(e) 
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Sequence-based Priority 
Queue"

•  Implementation with an 
unsorted list!

•  Performance:!
–  insert takes O(1) time 

since we can insert the 
item at the beginning or 
end of the sequence!

–  removeMin and min take 
O(n) time since we have 
to traverse the entire 
sequence to find the 
smallest key !

•  Implementation with a 
sorted list!

•  Performance:!
–  insert takes O(n) time 

since we have to find the 
place where to insert the 
item!

–  removeMin and min take 
O(1) time, since the 
smallest key is at the 
beginning!

4 5 2 3 1 1 2 3 4 5 
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Selection-Sort"
•  Selection-sort is the variation of PQ-sort where the 

priority queue is implemented with an unsorted 
sequence!

•  Running time of Selection-sort:!
1.  Inserting the elements into the priority queue with n insert 

operations takes O(n) time!
2.  Removing the elements in sorted order from the priority 

queue with n removeMin operations takes time 
proportional to  
! ! !1 + 2 + …+ n!

•  Selection-sort runs in O(n2) time !
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Selection-Sort Example"
                       !Sequence S ! !Priority Queue P!!
Input: ! !(7,4,8,2,5,3,9) ! !() !!
!
Phase 1!!
!(a) ! !(4,8,2,5,3,9) ! !(7) !!
!(b) ! !(8,2,5,3,9) ! !(7,4) !!
!.. ! !.. !.. !!
!. ! !. !. !!
!(g) ! !() ! ! !(7,4,8,2,5,3,9) !!

Phase 2!!
!(a) ! !(2) ! ! !(7,4,8,5,3,9) !!
!(b) ! !(2,3) ! ! !(7,4,8,5,9) !!
!(c) ! !(2,3,4) ! ! !(7,8,5,9)!!
!(d) ! !(2,3,4,5)! ! !(7,8,9) !!
!(e) ! !(2,3,4,5,7) ! !(8,9) !!
!(f) ! !(2,3,4,5,7,8) ! !(9) !!
!(g) ! !(2,3,4,5,7,8,9) ! !()!
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Insertion-Sort"
•  Insertion-sort is the variation of PQ-sort where the 

priority queue is implemented with a sorted 
sequence!

•  Running time of Insertion-sort:!
1.  Inserting the elements into the priority queue with n insert 

operations takes time proportional to  
! ! !1 + 2 + …+ n!

2.  Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes 
O(n) time!

•  Insertion-sort runs in O(n2) time !
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Insertion-Sort Example"
! ! !Sequence S !Priority queue P!!

Input: ! !(7,4,8,2,5,3,9) ! !() !!
!
Phase 1!!
     (a) !   !(4,8,2,5,3,9) ! !(7) !!
!(b) ! !(8,2,5,3,9) ! !(4,7) !!
!(c) ! !(2,5,3,9)! ! !(4,7,8) !!
!(d) ! !(5,3,9) ! ! !(2,4,7,8)!!
!(e) ! !(3,9) ! ! !(2,4,5,7,8) !!
!(f) ! !(9) ! ! !(2,3,4,5,7,8) !!
!(g) ! !() ! ! !(2,3,4,5,7,8,9) !!

!
Phase 2!!
!(a) ! !(2) ! ! !(3,4,5,7,8,9) !!
!(b) ! !(2,3) ! ! !(4,5,7,8,9) !!
!.. ! !.. ! ! !.. !!
!. ! !. ! ! !. !!
!(g) ! !(2,3,4,5,7,8,9) ! !()!
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In-place Insertion-sort"
•  Instead of using an 

external data structure, 
we can implement 
selection-sort and 
insertion-sort in-place!

•  A portion of the input 
sequence itself serves as 
the priority queue!

•  For in-place insertion-sort!
–  We keep sorted the initial 

portion of the sequence!
–  We can use swaps 

instead of modifying the 
sequence!

5 4 2 3 1 

5 4 2 3 1 

4 5 2 3 1 

2 4 5 3 1 

2 3 4 5 1 

1 2 3 4 5 

1 2 3 4 5 



Heaps"
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Recall Priority Queue ADT "
•  A priority queue stores a 

collection of entries!
•  Each entry is a pair 

(key, value)!
•  Main methods of the Priority 

Queue ADT!
–  insert(k, x) 

inserts an entry with key k 
and value x!

–  removeMin() 
removes and returns the 
entry with smallest key!

•  Additional methods!
–  min() 

returns, but does not 
remove, an entry with 
smallest key!

–  size(), isEmpty()!

•  Applications:!
–  Standby flyers!
–  Auctions!
–  Stock market!
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Recall Priority Queue 
Sorting"

•  We can use a priority 
queue to sort a set of 
comparable elements!
–  Insert the elements with a 

series of insert operations!
–  Remove the elements in 

sorted order with a series 
of removeMin operations!

•  The running time depends 
on the priority queue 
implementation:!
–  Unsorted sequence gives 

selection-sort: O(n2) time!
–  Sorted sequence gives 

insertion-sort: O(n2) time!
•  Can we do better?!

Algorithm PQ-Sort(S, C) 
Input sequence S, comparator C 
for the elements of S 
Output sequence S sorted  in 
increasing order according to C 
P ← priority queue with  

 comparator C 
while ¬S.isEmpty () 

 e ← S.remove (S. first ()) 
P.insertItem(e, e) 

while ¬P.isEmpty() 
 e ← P.removeMin() 
S.insertLast(e) 
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Heaps"
•  A heap is a binary tree 

storing keys at its nodes 
and satisfying the following 
properties:!
–  Heap-Order: for every 

internal node v other than the 
root, 
key(v) ≥ key(parent(v)) 

–  Complete Binary Tree: let h 
be the height of the heap!

•  for i = 0, … , h - 1, there are 
2i nodes of depth i!

•  at depth h, the internal 
nodes are to the left of the 
external nodes!

2 

6 5 

7 9 

•  The last node of a heap 
is the rightmost node of 
depth h 

last node 
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Height of a Heap"
•  Theorem: A heap storing n keys has height O(log n) 
!Proof: (we apply the complete binary tree property)!

–  Let h be the height of a heap storing n keys!
–  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key 

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1  + 1  

–  Thus, n ≥ 2h , i.e., h ≤ log n 

1 

2 

2h-1 

1 

keys 
0 

1 

h-1 

h 

depth 
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Heaps and Priority Queues"
•  We can use a heap to implement a priority queue!
•  We store a (key, element) item at each internal node!
•  We keep track of the position of the last node!
•  For simplicity, we show only the keys in the pictures!

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 



Phạm Bảo Sơn - DSA 

Insertion into a Heap"
•  Method insertItem of the 

priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap!

•  The insertion algorithm 
consists of three steps!
–  Find the insertion node z 

(the new last node)!
–  Store k at z!
–  Restore the heap-order 

property (discussed next)!

2 

6 5 

7 9 

insertion node 

2 

6 5 

7 9 1 

z 

z 
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Upheap"
•  After the insertion of a new key k, the heap-order property may be 

violated!
•  Algorithm upheap restores the heap-order property by swapping k 

along an upward path from the insertion node!
•  Upheap terminates when the key k reaches the root or a node 

whose parent has a key smaller than or equal to k !
•  Since a heap has height O(log n), upheap runs in O(log n) time!

2 

1 5 

7 9 6 z 

1 

2 5 

7 9 6 z 
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Removal from a Heap"
•  Method removeMin of 

the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap!

•  The removal algorithm 
consists of three steps!
–  Replace the root key with 

the key of the last node w!
–  Remove w !
–  Restore the heap-order 

property (discussed next)!

2 

6 5 

7 9 

last node 

w 

7 

6 5 

9 
w 

new last node 
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Downheap"
•  After replacing the root key with the key k of the last node, the 

heap-order property may be violated!
•  Algorithm downheap restores the heap-order property by 

swapping key k along a downward path from the root!
•  Downheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k !
•  Since a heap has height O(log n), downheap runs in O(log n) time!

7 

6 5 

9 
w 

5 

6 7 

9 
w 
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Updating the Last Node"
•  The insertion node can be found by traversing a path of O(log n) 

nodes!
–  Go up until a left child or the root is reached!
–  If a left child is reached, go to the right child!
–  Go down left until a leaf is reached!

•  Similar algorithm for updating the last node after a removal!
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Heap-Sort"
•  Consider a priority 

queue with n items 
implemented by means 
of a heap!
–  the space used is O(n)!
–  methods insert and 

removeMin take O(log n) 
time!

–  methods size, isEmpty, 
and min take time O(1) 
time!

•  Using a heap-based 
priority queue, we can 
sort a sequence of n 
elements in O(n log n) 
time 

•  The resulting algorithm 
is called heap-sort!

•  Heap-sort is much 
faster than quadratic 
sorting algorithms, such 
as insertion-sort and 
selection-sort!
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Vector-based Heap 
Implementation"

•  We can represent a heap with n 
keys by means of a vector of 
length n + 1!

•  For the node at rank i!
–  the left child is at rank 2i 
–  the right child is at rank 2i + 1 

•  Links between nodes are not 
explicitly stored!

•  The cell of at rank 0 is not used!
•  Operation insert corresponds to 

inserting at rank n + 1 
•  Operation removeMin 

corresponds to removing at rank 1 
•  Yields in-place heap-sort!

2 

6 5 

7 9 

2 5 6 9 7 
1 2 3 4 5 0 
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Merging Two Heaps"
•  We are given two 

heaps and a key k 
•  We create a new heap 

with the root node 
storing k and with the 
two heaps as subtrees!

•  We perform downheap 
to restore the heap-
order property !

7 

3 

5 8 

2 

6 4 

3 

5 8 

2 

6 4 

2 

3 

5 8 

4 

6 7 
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•  We can construct a 
heap storing n given 
keys in using a bottom-
up construction with log 
n phases!

•  In phase i, pairs of 
heaps with 2i -1 keys are 
merged into heaps with 
2i+1-1 keys!

Bottom-up Heap 
Construction"

2i -1 2i -1 

2i+1-1 
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Example"

15 16 12 4 7 6 20 23 

25 

15 16 

5 

12 4 

11 

7 6 

27 

20 23 
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Example (contd.)"

25 

15 16 

5 

12 4 

11 

9 6 

27 

20 23 
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20 

27 23 
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Example (contd.)"
7 

15 

25 16 

4 

12 5 

8 

6 

9 11 

20 

27 23 
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15 

25 16 

5 

12 7 

6 
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9 11 
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27 23 
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Example (end)"
4 

15 

25 16 

5 

12 7 

10 

6 

8 

9 11 

23 

20 27 

5 

15 

25 16 

7 

12 10 

4 

6 

8 

9 11 

23 

20 27 
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Analysis"
•  We visualize the worst-case time of a downheap with a proxy path 

that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)!

•  Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n) !

•  Thus, bottom-up heap construction runs in O(n) time !
•  Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort!



Adaptable 
Priority Queues"

3 a 

5 g 4 e 
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Recall the Entry and Priority 
Queue ADTs"

•  An entry stores a (key, 
value) pair within a data 
structure!

•  Methods of the entry 
ADT:!
–  key(): returns the key 

associated with this 
entry!

–  value(): returns the value 
paired with the key 
associated with this 
entry!

•  Priority Queue ADT:!
–  insert(k, x) 

inserts an entry with 
key k and value x!

–  removeMin() 
removes and returns 
the entry with 
smallest key!

–  min() 
returns, but does not 
remove, an entry 
with smallest key!

–  size(), isEmpty()!
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Motivating Example"
•  Suppose we have an online trading system where orders to 

purchase and sell a given stock are stored in two priority queues 
(one for sell orders and one for buy orders) as (p,s) entries:!
–  The key, p, of an order is the price!
–  The value, s, for an entry is the number of shares!
–  A buy order (p,s) is executed when a sell order (p’,s’) with price 

p’<p is added (the execution is complete if s’>s)!
–  A sell order (p,s) is executed when a buy order (p’,s’) with price 

p’>p is added (the execution is complete if s’>s)!
•  What if someone wishes to cancel their order before it 

executes?!
•  What if someone wishes to update the price or number of 

shares for their order?!
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Methods of the Adaptable 
Priority Queue ADT"

•  remove(e): Remove from P and return 
entry e.!!

•  replaceKey(e,k): Replace with k and 
return the key of entry e of P; an !error 
condition occurs if k is invalid (that is, k 
cannot be compared with other keys). !!

•  replaceValue(e,x): Replace with x and 
return the value of entry e of P. !!
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Example"
Operation 	
 	
 	
Output 	
 	
P 	
	

insert(5,A)    e1 	
 	
(5,A)   
insert(3,B)    e2 	
 	
(3,B),(5,A)   
insert(7,C)    e3 	
 	
(3,B),(5,A),(7,C) 
min()    e2 	
 	
(3,B),(5,A),(7,C) 
key(e2)      3 	
 	
(3,B),(5,A),(7,C) 
remove(e1)      e1 	
 	
(3,B),(7,C)   
replaceKey(e2,9)   3 	
 	
(7,C),(9,B)   
replaceValue(e3,D)  C 	
 	
(7,D),(9,B)   
remove(e2)      e2 	
 	
(7,D)  !



Phạm Bảo Sơn - DSA 

Locating Entries"
•  In order to implement the operations 

remove(k), replaceKey(e), and 
replaceValue(k), we need fast ways of 
locating an entry e in a priority queue.!

•  We can always just search the entire 
data structure to find an entry e, but 
there are better ways for locating 
entries.!
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Location-Aware Entries"

•  A locator-aware entry identifies and tracks the 
location of its (key, value) object within a data 
structure!

•  Intuitive notion:!
–  Coat claim check!
–  Valet claim ticket!
–  Reservation number!

•  Main idea:!
–  Since entries are created and returned from the 

data structure itself, it can return location-aware 
entries, thereby making future updates easier!
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List Implementation"
•  A location-aware list entry is an object storing!

–  key!
–  value!
–  position (or rank) of the item in the list!

•  In turn, the position (or array cell) stores the entry!
•  Back pointers (or ranks) are updated during swaps!

trailer header nodes/positions 

entries 

2 c 4 c 5 c 8 c 
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Heap Implementation"
•  A location-aware 

heap entry is an 
object storing!
–  key!
–  value!
–  position of the entry 

in the underlying 
heap!

•  In turn, each heap 
position stores an 
entry!

•  Back pointers are 
updated during 
entry swaps!

4 a 

2 d 

6 b 

8 g 5 e 9 c 



Phạm Bảo Sơn - DSA 

Performance"
•  Using location-aware entries we can achieve 

the following running times (times better than 
those achievable without location-aware 
entries are highlighted in red):!

Method   Unsorted List Sorted List  Heap   
size, isEmpty  O(1)   O(1)   O(1)   
insert    O(1)   O(n)   O(log n) 
min    O(n)   O(1)   O(1)   
removeMin   O(n)   O(1)   O(log n) 
remove   O(1)   O(1)   O(log n) 
replaceKey   O(1)   O(n)   O(log n) 
replaceValue  O(1)   O(1)   O(1)"


