Data Structures and
Algorithms

Priority Queues

Outline

e A

* Priority Queues
* Heaps
 Adaptable Priority Queues

Pham Bao Son - DSA : &
W o S —— - -_— n—r—

Priority Queues

o” W5

5

Priority Queue ADT

- A priority queue stores a
collection of entries

- Each entry is a pair
(key, value)

« Main methods of the Priority
Queue ADT
— insert(k, x)
inserts an entry with key k
and value x

— removeMin()
removes and returns the
entry with smallest key

Pham Bao Son - DSA

—

‘ﬂ‘ - BT ———— e - e —

B S

- Additional methods
— min()
returns, but does not
remove, an entry with
smallest key

— size(), isEmpty()

« Applications:
— Standby flyers
— Auctions ii
— Stock market

Total Order Relations

- Keys in a priority + Mathematical concept

gueue can be of total order relation <
arbitrary objects — Reflexive property: fi
on which an order X=X |
is defined — Antisymmetric property: ;

- Two distinct X EY RN e 1
entries in a priority — Transitive property:

gueue can have X<SPAY<I=>X=<Z

the same key

Pham Bao Son - DSA /T\

b o a— e ————n e A e R ——AF—-W J

Entry ADT

* An entry in a priority - As a Java interface:

gueue is simply a key- s

value pair * Interface for a key-value
- Priority queues store " pair entry

entries to allow for |

efficient insertion and public interface Entry {

removal based on keys public Object key();
. Methods: public Object value();

— key(): returns the key for ;

this entry

— value(): returns the value
associated with this
entry

A NN g

— —— ——

Pham Bao Son - DSA /T\

bt - o B s e —m——~— I N e R e S e S et —’MF—‘W

N e o e o

Comparator ADT

A comparator encapsulates
the action of comparing two
objects according to a given
total order relation

A generic priority queue * The primary method of the
uses an auxiliary Comparator ADT: :-
comparator — compare(x, y): Returns an |
The comparator is external integer isuch that i<0if a < |
to the keys being compared b,i=0ifa=b,andi>0if a
When the priority queue > b; an error occurs if aand b
needs to compare two keys, cannot be compared.

it uses its comparator i

Pham Bao Son - DSA /T

: — ST > Pra——— A S S — _’«—.—--W

| Ex_ample&om parator
- Lexicographic comparfison of 2-D

points:

/** Comparator for 2D points under the
standard lexicographic order. */

public class Lexicographic implements
Comparator {

int xa, ya, xb, yb;

public int compare(Object a, Object b)
throws ClassCastException {
xa = ((Point2D) a).getX();

-

« Point objects:

/** Class representing a point in the
plane with integer coordinates */
public class Point2D {
protected int xc, yc; // coordinates
public Point2D(int x, int y) {
XC = X;
yc=Yy;
}
public int getX() {
return Xxc;
}

public int getY() {
return yc;
}

} o

— —— ——

ya = ((Point2D) a).getY();

xb = ((Point2D) b).getX();

yb = ((Point2D) b).getY();

if (xa!=xb)
return (xb - xa);

else
return (yb - ya);

}
} Pham Bao Son - DSA
ke RS NG

e o AT T et o

Priority Queue Sorting

- We can use a priority
gueue to sort a set of
comparable elements

1. Insert the elements one

by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

« The running time of this
sorting method depends on
the priority queue
implementation

Pham Bao Son - DSA
T g e . 7

Algorithm PQ-Sort(S, C)
Input

Output

while

while

-

- P,

P —— -

S——

Sequence-based Priority

Queue |
* Implementation withan - Implementation with a |
unsorted list sorted list
@—06—C0—C—0 e ConConCon®

 Performance:

— insert takes O(1) time * Performance: |

since we can insert the — insert takes O(n) time |
item at the beginning or since we have to find the |
end of the sequence place where to insert the

— removeMin and min take item
O(n) time since we have — removeMin and min take ;

to traverse the entire

: O(1) time, since the
gfnqalf%g?ié?, Ll smallest key is at the

beginning ’
Pham Bao Son - DSA /‘}_\

o g— — ol — —— A A et e > et _,&A,W

Selection-Sort

« Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

« Running time of Selection-sort: 2.‘

1. Inserting the elements into the priority queue with » insert l
operations takes O(n) time |

2. Removing the elements in sorted order from the priority |
queue with n removeMin operations takes time
proportional to

l+2+...+n
- Selection-sort runs in O(n?) time

Pham Bao Son - DSA /T

cas s - e 2 i L SR AR P —’M’—‘W

N e o e o

- g e et et e s it

Selection-Sort Example

Sequence S

Input: (7,4,8,2,5,3,9)
Phase 1

(a) (4,8,2,5,3,9)

(b) (8,2,5,3,9)

(9) ()
Phase 2

(a) (2)

(b) (2,3)

(c) (2,3,4)

(d) (2,3,4,5)

(e) (2,3,4,5,7)

(f) (2,3,4:5¢.8)

(9) (2,3,4,5,7,8,9)

Pham Bao Son - DSA

Priority Queue P

y

(7,4)

(7,4,8,2,5,3,9)

‘ e ST

Insertion-Sort

. Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

* Running time of Insertion-sort: j

1. Inserting the elements into the priority queue with n insert n
operations takes time proportional to |

l+2+..+n 1

2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

- Insertion-sort runs in O(n?) time

Pham Bao Son - DSA /T

: — ST - Pra——— e s i N _’«—.—--W

N e o e o

Insertion-Sort Example

Input:

Phase 1

Sequence S
(7,4,8,2,5,3,9)

2,3,4,5,7,8,9)

gIlzham Bao Son - DSA

B e =

#\._’:f‘f

Priority queue P

y

)

7)
4,7,8)

(7

(4,

(
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

(3,4,5,7,8,9)
(4,5,7,8,9)

e e

S
-
i
n
O
q
—

In-place Inser

 Instead of using an
external data structure,
we can implement
selection-sort and
insertion-sort in-place

« A portion of the input
sequence itself serves as
the priority queue

* For in-place insertion-sort

— We keep sorted the initial
portion of the sequence 3

— We can use swaps @ @
instead of modifying the

sequence @ @ 5
Pham Bao Son - DSA J

b o e—— et e s e T e A e e I Tt ——f‘“ﬂ‘w

O

@
®

©» ©

O
e s

© © ©
©

O

%
®

G
@
@

©
©

)
:

C
G
C

@

© @
® ©

Recall Priority Queue ADT

- A priority queue stores a
collection of entries

- Each entry is a pair
(key, value)

« Main methods of the Priority
Queue ADT
— insert(k, x)
inserts an entry with key k
and value x

— removeMin()
removes and returns the
entry with smallest key

Pham Bao Son - DSA

—

‘ﬂ‘ - BT ———— e - e —

B S

- Additional methods
— min()
returns, but does not
remove, an entry with
smallest key

— size(), isEmpty()

« Applications:
— Standby flyers
— Auctions ii
— Stock market

Recall Priority Queue|
Sorting

We can use a priority
queue to sort a set of
comparable elements

— Insert the elements with a
series of insert operations

— Remove the elements in
sorted order with a series
of removeMin operations

The running time depends
on the priority queue
Implementation:

— Unsorted sequence gives
selection-sort: O(n?) time

— Sorted sequence %ives
insertion-sort: O(n?) time

Can we do better?

Pham Bao Son - DSA

*."—-

Algorithm PQ-Sort(S, C)
Input

Output

PPN ~

i

Heaps %

* Aheap is a binary tree - The last node of a heap ,
storing keys at its nodes is the rightmost node of
and satisfying the following depth
properties:

— Heap-Order: for every
internal node v other than the
root,
key(v) = key(parent(v))

— Complete Binary Tree: let h
be the height of the heap

- fori=0,...,h-1,there are
o nodes of depth i

 at depth A, the internal
nodes are to the left of the
external nodes
Pham Bao Son - DSA

—

ﬂ_ ’; B T ———— e e A g A e

Height of a Heap

- Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
— Let h be the height of a heap storing n keys

— Since there are 2/ keys at depthi =0, ... , A — 1 and at least one key
atdepthh, wehaven=1+2+4+ ... +2F1 +1 :

— Thus,n=2" i.e., h<logn ‘
depth keys
0 T 0 et ot v A e
1 I e St A
Gl 2 b e s
h IS 1

Pham Bao Son - DSA
g ge— e —

Heaps and Priority Queues

We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

For simplicity, we show only the keys in the pictures

[2, sue) |

Pham Bao Son - DSA /—7\

b -~ " et et e e I A AR e O I et P —w’-’\w

e s

PN o : -

- Method insertltem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap

- The insertion algorithm
consists of three steps

— Find the insertion node z
(the new last node)

— Store k at z

— Restore the heap-order
property (discussed next)

Pham Bao Son - DSA

Bt Rp—

Upheap

After the insertion of a new key k, the heap-order property may be
violated

e e

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key k reaches the root or a node 4
whose parent has a key smaller than or equal to k& :

Since a heap has height O(log n), upheap runs in O(log n) time

Pham Bao Son - DSA

- g e et et e s it

Removal from a Heap
« Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

- The removal algorithm
consists of three steps

— Replace the root key with
the key of the last node w

— Remove w

— Restore the heap-order
property (discussed next)

e s

© N— -

PN

E

new last node
Pham Bao Son - DSA J

b o -—— Bt e T e R g AR e e A e A et P —w’-’\w

Downheap

After replacing the root key with the key k of the last node, the
heap-order property may be violated

Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Downheap terminates when key k reaches a leaf or a node whose |
children have keys greater than or equal to & :

Since a heap has height O(log n), downheap runs in O(log n) time

e

Pham Bao Son - DSA

—

ﬂ_ - D — S S — SN

Updating the Last Node

- The insertion node can be found by traversing a path of O(log n)
nodes

— Go up until a left child or the root is reached
— If a left child is reached, go to the right child |
— Go down left until a leaf is reached J

- Similar algorithm for updating the last node after a removal

e S

N

Pham Bao Son - DSA /_r

a T e —— -wvnhwﬂﬂw

Heap-Sort

S R N

- Consider a priority
queue with »n items
Implemented by means

- Using a heap-based
priority queue, we can
sort a sequence of n

of a heap elements in O(n log n) a
— the space used is O(n) time |
— methods insert and - The resulting algorithm ¢

removeMin take O(log n) is called heap-sort
time

- Heap-sort is much _ :
and min take time O(1) fast_er than q_uadratlc
time sorting algorithms, such

as insertion-sort and :
Pham B&o Son - DSA selection-sort J

. o S pu— — - T TR e S e, —AA‘H‘—W’,'

— methods size, iISsEmpty,

Vector-based Heap
Implementation

We can represent a heap with »
keys by means of a vector of
length n + 1

For the node at rank i

— the left child is at rank 2i
— the right child is at rank 2i + 1

Links between nodes are not
explicitly stored

The cell of at rank 0 is not used

Operation insert corresponds to
Inserting at rank n + 1

Operation removeMin
corresponds to removing at rank 1

Yields in-place heap-sort

Pham Bao Son - DSA

— - -~

-y - AT — D —

-~

i A

Merging Two Heaps }

- We are given two ® ©

heaps and a key k&

» We create a new heap
with the root node
storing k£ and with the
two heaps as subtrees

« We perform downheap
to restore the heap-
order property

Pham Bao Son - DSA

'. - e S e e T

Bottom-up Heap
Construction

« We can construct a

heap storing » given

keys in using a bottom- . .

. : 2i-1 2i -1
up construction with log

n phases

In phase i, pairs of
heaps with 2/-1 keys are
merged into heaps with
2+1-1 keys

Pham Bao Son - DSA

—

- P

—_
p—
—_—
—_—
—
—_—
—_—
—_—
—_—

—_—

—_—
——
— =
—_—
=
—_—
—
—_—

~ \
) ())
PN - O

@ ® @ ®» & ®» &

Pham Bao Son - DSA

P g I ———

i s ——

— 3 — > —
e —— _——
i —_——
— —_—
—_— —_—
— —_—
—_— [~
—

el - TP
o _——
— —_——
—_— —_—
e —_—
—_— —_—
—_— =
T —_—

P
— i ==

© 29 © (12 () ©) 23 '
Pham Bao Son - DSA i t
TN g I —— i —— — - R

Example (contd.)

e —— AN P

Exampl (end)

(19 25 (9

Pham Bao Son - DSA
W—;_ o

Analysis

- We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

- Since each node is traversed by at most two proxy paths, the total |
number of nodes of the proxy paths is O(n) 4

* Thus, bottom-up heap construction runs in O(n) time |

- Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort 1

‘ e ST

7/
/ / 4
. / /8 / /A / /(] ()i
»’ J =

QQ..QQQQQQQQQQQ.Q

3 i e w@»‘f\—*‘“pw

Adaptable
Priority Queues

Recall the Entry and Priority
Queue ADTs %

* An entry stores a (key, °* Priority Queue ADT:

value) pair within a data
structure

» Methods of the entry
ADT:

— key(): returns the key
associated with this
entry

— value(): returns the value
paired with the key
associated with this
entry

Pham Bao Son - DSA

— s -

—

— insert(k, x)
Inserts an entry with
key k and value x

— removeMin()
removes and returns
the entry with
smallest key

— min()
returns, but does not i
remove, an entry
with smallest key 1

e A — & .

— size(), isEmptyV’j\

~

e e e el g et

Motivating Example

- Suppose we have an online trading system where orders to
purchase and sell a given stock are stored in two priority queues
(one for sell orders and one for buy orders) as (p,s) entries:

— The key, p, of an order is the price
— The value, s, for an entry is the number of shares

— A buy order (p,s) is executed when a sell order (p’,s") with price |
p’ <p is added (the execution is complete if s’ >8) |

— A sell order (p,s) is executed when a buy order (p’,s’) with price [
p’ >p is added (the execution is complete if s* >s) :

« What if someone wishes to cancel their order before it
executes?

- What if someone wishes to update the price or number of i
shares for their order?

Pham Bao Son - DSA /’T\

b - o o — - T o e A e e S S et —"""'“”"'WJ

Methods of the Adaptable

Priority Queue ADT

- remove(e): Remove from P and return

entry e.

» replaceKey(g,k): Replace with k and

return the key of entry e of P; an error
condition occurs if kis invalid (that is, k
cannot be compared with other keys).

- replaceValue(e,x): Replace with x and

return the value of entry e of P.

*."—-

o —— et e e e et e e 0 ‘W,—f

- . — T —

I TRETNE—N, -

A
Pham Bao Son - DSA /T

Operation P
insert(5,A) e (5,A)
insert(3,B) e, (3,B),(5,A)
insert(7,C) e, (3,B),(5,A),(7,C)
min() e, (3,B),(5,A),(7,C)
key(e,) 3 (3,B),(5,A),(7,C)
remove(e,) e (3,B),(7,C)
replaceKey(e,,9) 3 (7,C),(9,B)
replaceValue(e;, D) C (7,D),(9,B)
remove(e,) e, (7,D) |
Pham Bao Son - DSA / |

s et

Locating Entries

* |n order to implement the operations
remove(k), replaceKey(e), and
replaceValue(k), we need fast ways of
locating an entry e in a priority queue.

» We can always just search the entire
data structure to find an entry e, but
there are better ways for locating

entries.
Pham Béao Son - DSA /’-j\

- e~ - : St 1A% OO - ___-W_’-,'

e A — & v

—

O

'Y
wg

Location-Aware Entries<c

A locator-aware entry identifies and tracks the

location of its (key, value) object within a data
structure

* Intuitive notion: |
— Coat claim check |

— Valet claim ticket |

— Reservation number

- Main idea: #
— Since entries are created and returned from the
data structure itself, it can return location-aware B

entries, thereby making future updates easiey’f\
Pham Bao Son - DSA J
T o p—— N — : P MR O SRS TR : _

List Implementation

* A location-aware list entry is an object storing
— key
— value
— position (or rank) of the item in the list

- In turn, the position (or array cell) stores the entry
- Back pointers (or ranks) are updated during swaps

e S e

e e -

Pl
/_/

s — — e — e e W Ny . SC s

e i i W

Heap Implementatlon

A location-aware
heap entry is an

e S e

object storing 4]a 6|5 [N
— key |
— value J
— position of the entry ‘ O :
In the underlying 0
heap

 In turn, each heap
position stores an
entry

- Back pointers are
updated during
entry swaps

Pham Bao Son - DSA J
B et e e A et e e > e e B~ e .W

Performance

» Using location-aware entries we can achieve
the following running times (times better than
those achievable without location-aware
entries are highlighted in red):

Method Unsorted ListSorted List Heap j
size, isEmpty o(1) o(1) o(1) |
iInsert O(1) O(n) O(logn) |
min O(n) O(1) O(1) |
removeMin O(n) O(1) O(log n) !
remove o) o) O(ogn) |
replaceKey o) O(n) O(log n) {
replaceValue o) o) |

Pham Bao Son - DSA
PRI o T ————

0(1)/"7\

/ I
g ——— K’h““’/j’“w"‘—. r"F)

