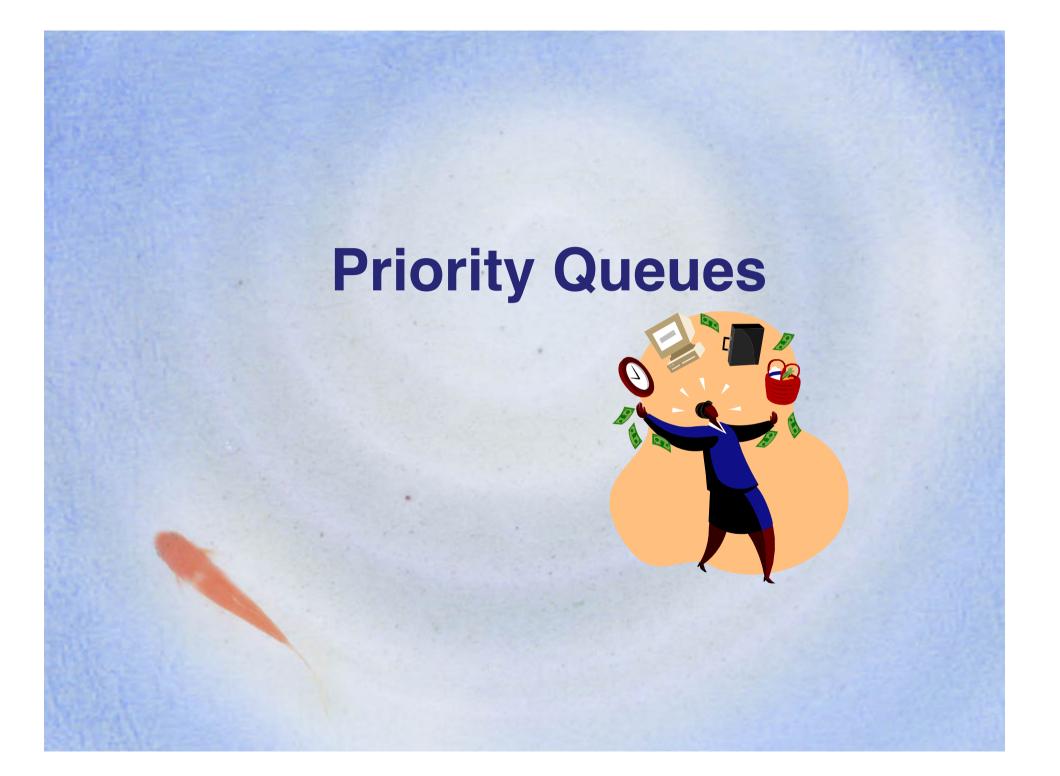
Data Structures and Algorithms

Priority Queues

Outline

- Priority Queues
- Heaps
- Adaptable Priority Queues



Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority
 Queue ADT
 - insert(k, x) inserts an entry with key k and value x
 - removeMin() removes and returns the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key

- Mathematical concept of total order relation ≤
 - Reflexive property: $x \le x$
 - Antisymmetric property: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive property: $x \le y \land y \le z \Rightarrow x \le z$

Entry ADT

- An entry in a priority queue is simply a keyvalue pair
- Priority queues store entries to allow for efficient insertion and removal based on keys
- Methods:
 - key(): returns the key for this entry
 - value(): returns the value associated with this entry

As a Java interface:
 /**

* Interface for a key-value
* pair entry
**/

public interface Entry {
 public Object key();
 public Object value();

Comparator ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator

- The primary method of the Comparator ADT:
 - compare(x, y): Returns an integer *i* such that *i* < 0 if *a* < *b*, *i* = 0 if *a* = *b*, and *i* > 0 if *a* > *b*; an error occurs if *a* and *b* cannot be compared.

Example Comparator

- points:
- /** Comparator for 2D points under the standard lexicographic order. */ public class Lexicographic implements Comparator { int xa, ya, xb, yb; public int compare(Object a, Object b)
 throws ClassCastException { xa = ((Point2D) a).getX();ya = ((Point2D) a).getY();xb = ((Point2D) b).getX();yb = ((Point2D) b).getY();**if** (xa != xb) return (xb - xa); else return (yb - ya);

Pham Bảo Sơn - DSA

Point objects:

/** Class representing a point in the plane with integer coordinates */ public class Point2D protected int xc, yc; // coordinates public Point2D(int x, int y) { $\mathbf{XC} = \mathbf{X};$ VC = V;public int getX() { return xc; public int getY() { return yc;

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

Algorithm *PQ-Sort*(S, C) Input sequence S, comparator C for the elements of *S* Output sequence S sorted in increasing order according to C $P \leftarrow$ priority queue with comparator C while ¬*S.isEmpty* () e ← S.removeFirst () **P***insert* (e, 0)while ¬*P.isEmpty(*) e ← P.removeMin().key() S.insertLast(e)

Sequence-based Priority Queue

 Implementation with an unsorted list

4 - 5 - 2 - 3 - 1

Performance:

- insert takes O(1) time since we can insert the item at the beginning or end of the sequence
- removeMin and min take
 O(n) time since we have
 to traverse the entire
 sequence to find the
 smallest key

Implementation with a sorted list

Performance:

- insert takes O(n) time since we have to find the place where to insert the item
- removeMin and min take
 O(1) time, since the
 smallest key is at the
 beginning

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

1 + 2 + ...+ *n*

• Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

	Sequence S	Priority Queue P
Input:	(7,4,8,2,5,3,9)	()
Dhasad		
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(7,4)
(g)	()	(7,4,8,2,5,3,9)
Phase 2		
(a)	(2)	(7,4,8,5,3,9)
(b)	(2,3)	(7,4,8,5,9)
(C)	(2,3,4)	(7,8,5,9)
(d)	(2,3,4,5)	(7,8,9)
(e)	(2,3,4,5,7)	(8,9)
(f)	(2,3,4,5,7,8)	(9)
(g)	(2,3,4,5,7,8,9)	()
Phạm Bảo	o Sơn - DSA	/

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes time proportional to

1 + 2 + ...+ *n*

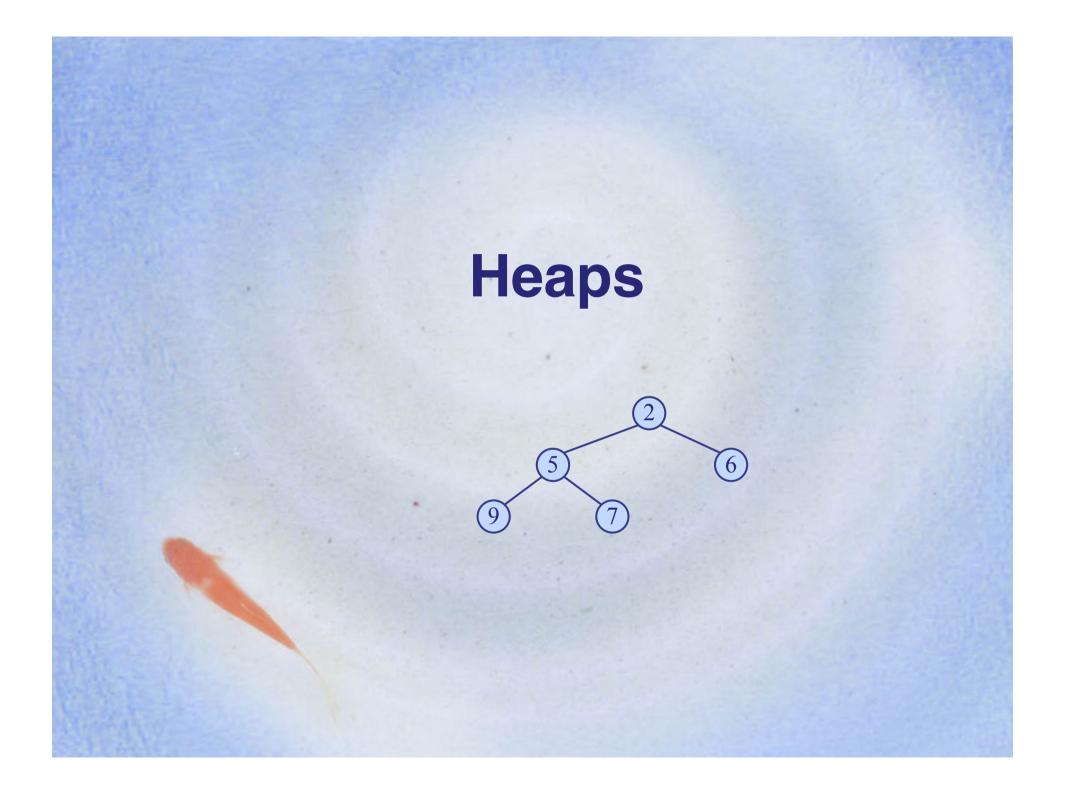
- 2. Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

	Sequence S	Priority queue P
Input:	(7,4,8,2,5,3,9)	()
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(4,7)
(C)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	0	(2,3,4,5,7,8,9)
Phase 2		
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)
(g) Bham Bảo S	(2,3,4,5,7,8,9) Sơn - DSA	0
Fildiii Dau 3	5011 - DSA	

In-place Insertion-sort

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swaps instead of modifying the sequence



Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority
 Queue ADT
 - insert(k, x) inserts an entry with key k and value x
 - removeMin() removes and returns the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time
- Can we do better?

Phạm Bảo Sơn - DSA

Algorithm *PQ-Sort*(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C $P \leftarrow$ priority queue with comparator Cwhile ¬*S.isEmpty* () $e \leftarrow S.remove(S. first())$ P.insertItem(e, e) while ¬P.isEmpty() $e \leftarrow P.removeMin()$ S.insertLast(e)

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root,

 $key(v) \ge key(parent(v))$

- Complete Binary Tree: let *h* be the height of the heap
 - for *i* = 0, ..., *h* 1, there are 2^{*i*} nodes of depth *i*
 - at depth *h*, the internal nodes are to the left of the external nodes

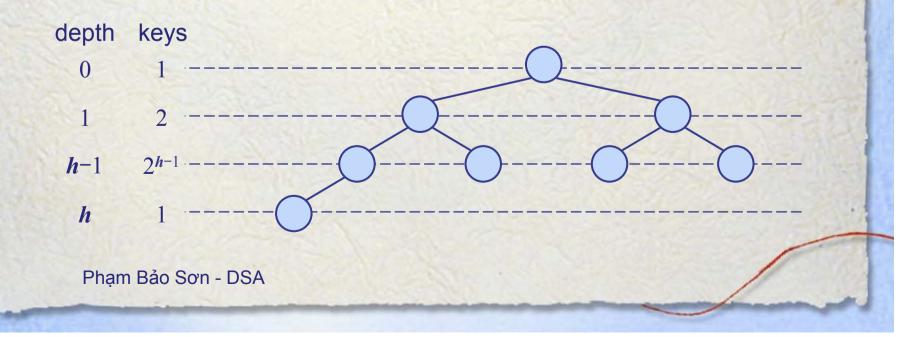
Phạm Bảo Sơn - DSA

The last node of a heap is the rightmost node of depth *h*

last node

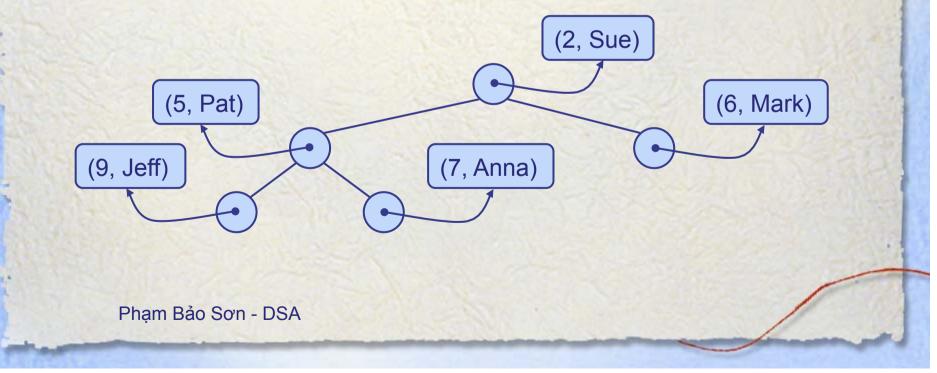
Height of a Heap

- Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let *h* be the height of a heap storing *n* keys
 - Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$



Heaps and Priority Queues

- · We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- · We keep track of the position of the last node
- For simplicity, we show only the keys in the pictures



Insertion into a Heap

5

5

6

insertion node

6

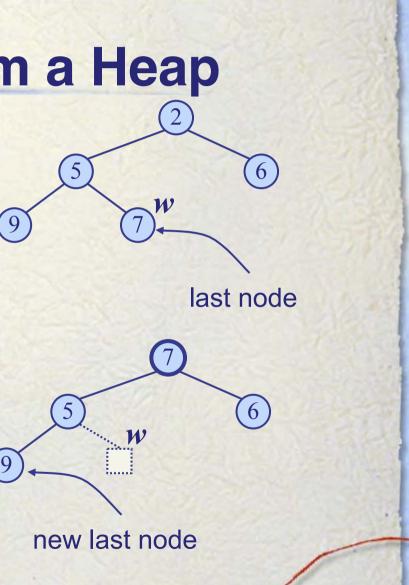
- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

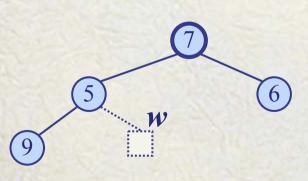
Removal from a Heap

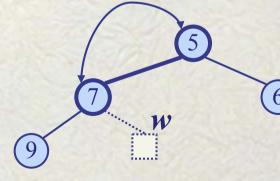
- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)



Downheap

- After replacing the root key with the key *k* of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key *k* along a downward path from the root
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time





Updating the Last Node The insertion node can be found by traversing a path of $O(\log n)$

- The insertion node can be found by traversing a path of O(log n) nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Heap-Sort

- Consider a priority queue with *n* items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, isEmpty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of nelements in $O(n \log n)$ time
- The resulting algorithm
 is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Vector-based Heap Implementation

5

2

0

5

2

9

4

5

6

3

- We can represent a heap with nkeys by means of a vector of length n + 1
- For the node at rank *i*
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank *n* + 1
- Operation removeMin corresponds to removing at rank 1
- Yields in-place heap-sort

Merging Two Heaps

8

8`

6

6

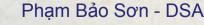
- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

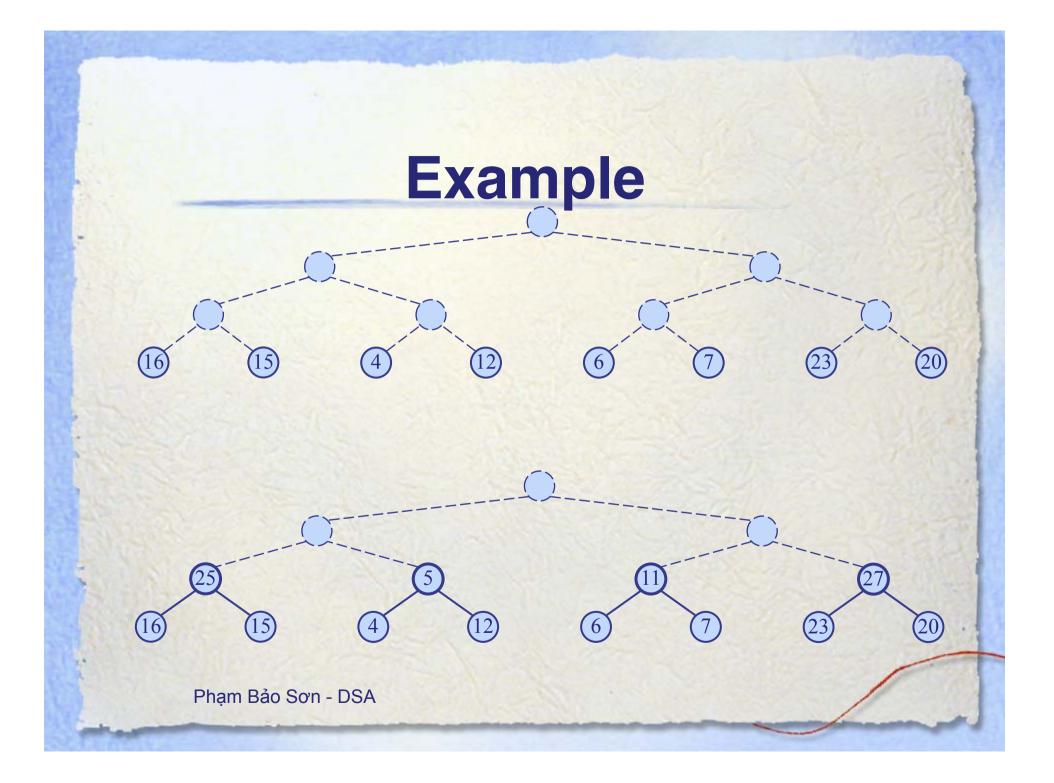
Bottom-up Heap Construction

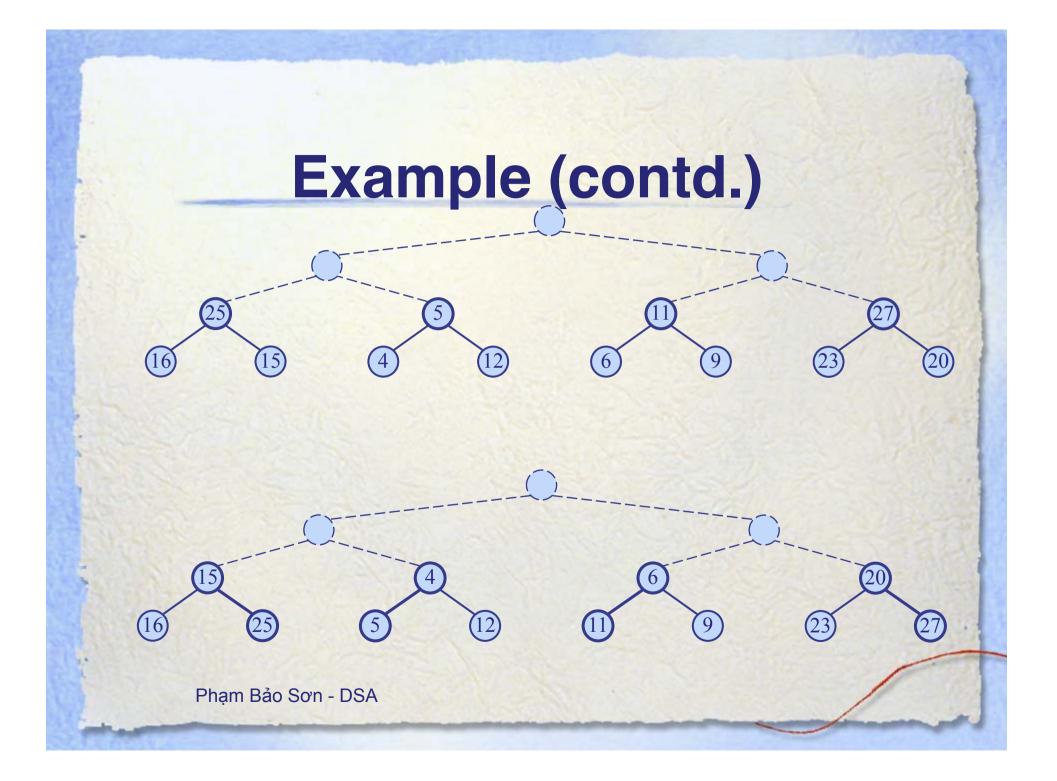
- We can construct a heap storing *n* given keys in using a bottomup construction with log *n* phases
- In phase *i*, pairs of heaps with 2ⁱ-1 keys are merged into heaps with 2ⁱ⁺¹-1 keys

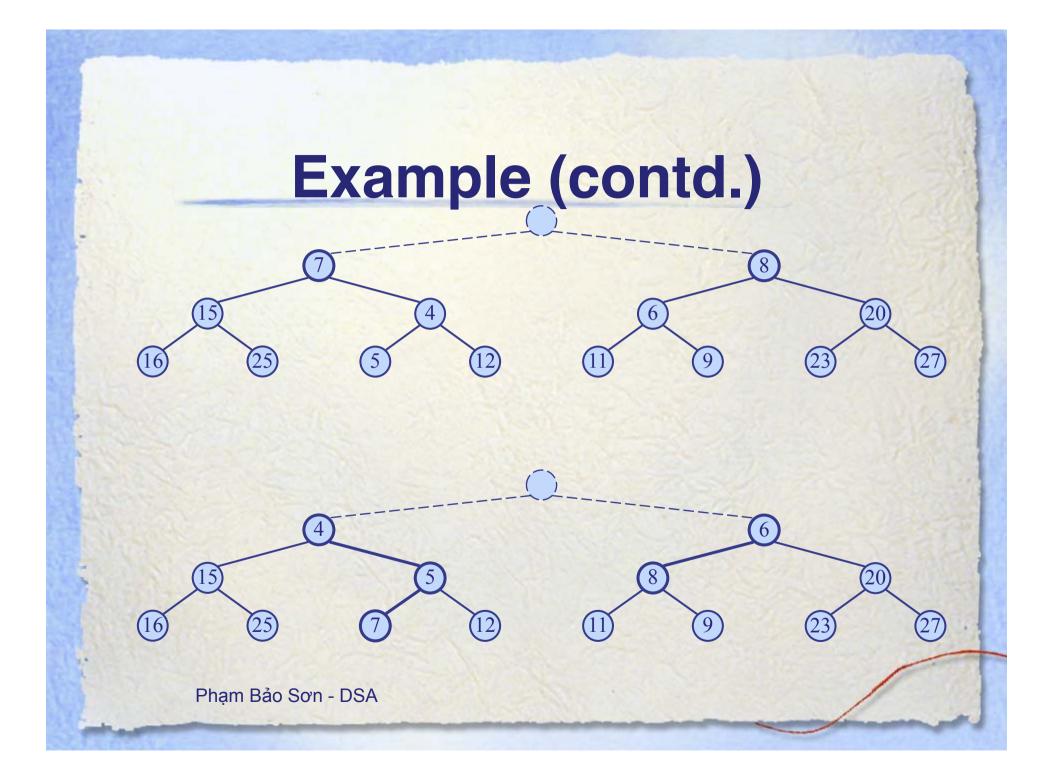
 2^{i-1}

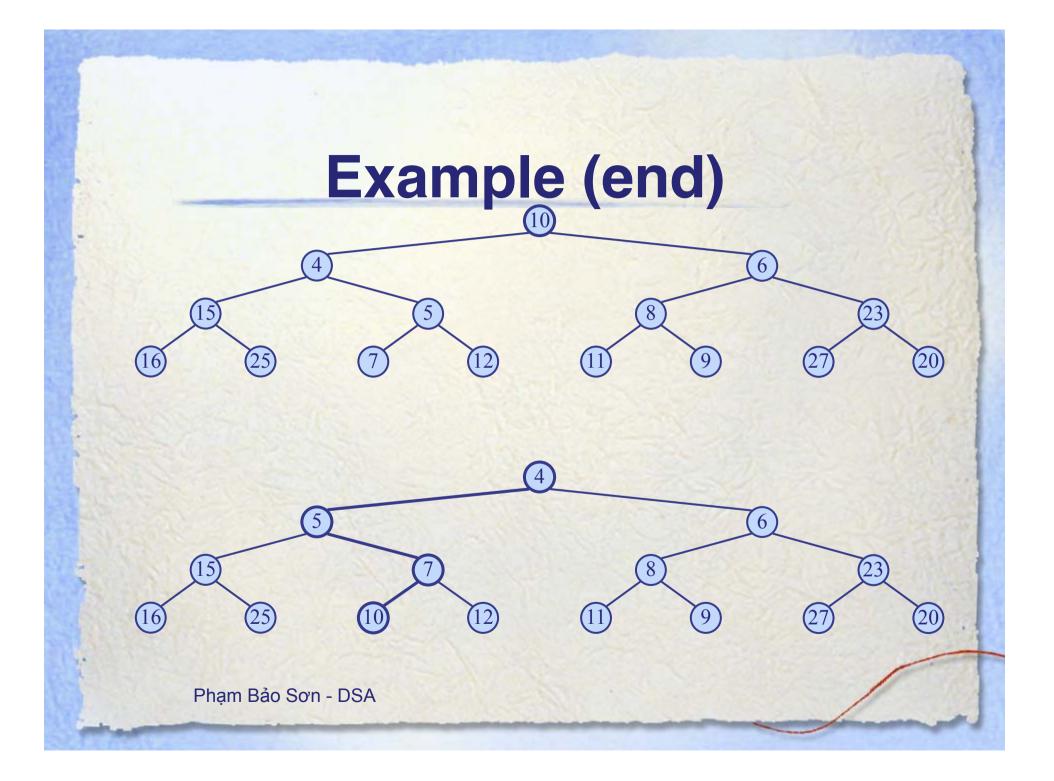
2^{*i*+1}_





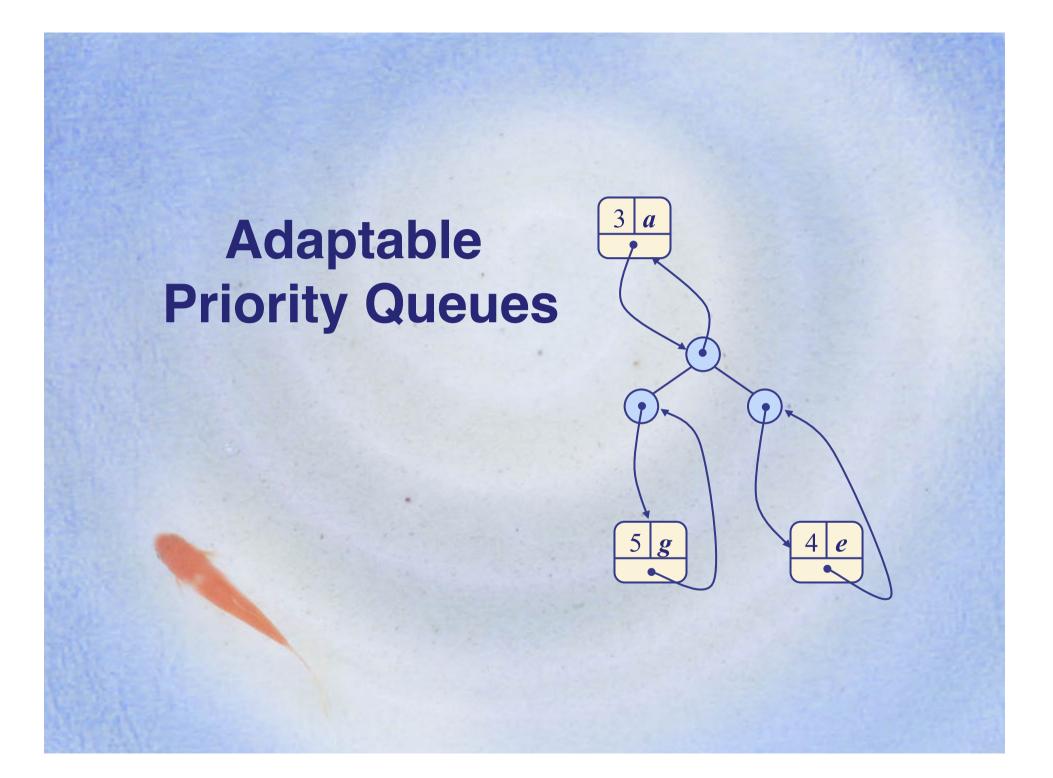






Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than *n* successive insertions and speeds up the first phase of heap-sort



Recall the Entry and Priority Queue ADTs

- An entry stores a (key, value) pair within a data structure
- Methods of the entry ADT:
 - key(): returns the key associated with this entry
 - value(): returns the value paired with the key associated with this entry

Priority Queue ADT:

- insert(k, x)
 inserts an entry with
 key k and value x
- removeMin()
 removes and returns
 the entry with
 smallest key
- min()
 returns, but does not
 remove, an entry
 with smallest key
- size(), isEmpty()

Motivating Example

- Suppose we have an online trading system where orders to purchase and sell a given stock are stored in two priority queues (one for sell orders and one for buy orders) as (p,s) entries:
 - The key, p, of an order is the price
 - The value, s, for an entry is the number of shares
 - A buy order (p,s) is executed when a sell order (p',s') with price p' ≤p is added (the execution is complete if s' ≥s)
 - A sell order (p,s) is executed when a buy order (p',s') with price p' ≥p is added (the execution is complete if s' ≥s)
- What if someone wishes to cancel their order before it executes?
- What if someone wishes to update the price or number of shares for their order?

Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the key of entry e of P; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(*e,x*): Replace with *x* and return the value of entry *e* of *P*.

Operation Example Output P						
Operation	Output	P				
insert(5,A)	<i>e</i> ₁	(5,A)				
insert(3,B)	e_2	(3,B),(5,A)				
insert(7,C)	e ₃	(3,B),(5,A),(7,C)				
min()	e_2	(3,B),(5,A),(7,C)				
$key(e_2)$	3	(3,B),(5,A),(7,C)				
$remove(e_1)$	e_1	(3,B),(7,C)				
replaceKey $(e_2,9)$	3	(7, C), (9, B)				
replaceValue(e_3, D)	С	(7,D),(9,B)				
remove (e_2)	e_2	(7,D)				

Locating Entries

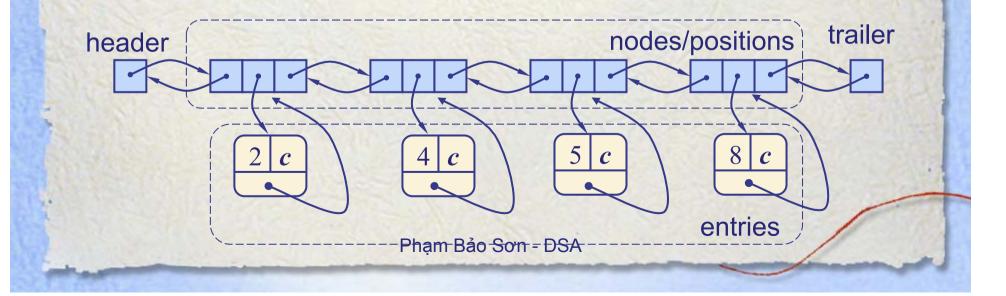
- In order to implement the operations remove(k), replaceKey(e), and replaceValue(k), we need fast ways of locating an entry e in a priority queue.
- We can always just search the entire data structure to find an entry e, but there are better ways for locating entries.

Location-Aware Entries

- A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure
- Intuitive notion:
 - Coat claim check
 - Valet claim ticket
 - Reservation number
- Main idea:
 - Since entries are created and returned from the data structure itself, it can return location-aware entries, thereby making future updates easier

List Implementation

- A location-aware list entry is an object storing
 - key
 - value
 - position (or rank) of the item in the list
- In turn, the position (or array cell) stores the entry
- Back pointers (or ranks) are updated during swaps



Heap Implementation

a

8

g

d

5

e

b

Q

- A location-aware heap entry is an object storing
 - key
 - value
 - position of the entry in the underlying heap
- In turn, each heap position stores an entry
- Back pointers are updated during entry swaps

Performance

 Using location-aware entries we can achieve the following running times (times better than those achievable without location-aware entries are highlighted in red):

Method	Unsorted Lis	Неар	
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)	$O(\log n)$
min	O(n)	<i>O</i> (1)	<i>O</i> (1)
removeMin	O(n)	<i>O</i> (1)	$O(\log n)$
remove	<i>O</i> (1)	<i>O</i> (1)	$O(\log n)$
replaceKey	<i>O</i> (1)	O(n)	$O(\log n)$
replaceValue	<i>O</i> (1)	<i>O</i> (1)	0(1)