
Data Structures and
Algorithms  

"

Priority Queues!

Outline"
•  Priority Queues!
•  Heaps!
•  Adaptable Priority Queues!

Phạm Bảo Sơn - DSA

Priority Queues"

Phạm Bảo Sơn - DSA

Priority Queue ADT"
•  A priority queue stores a

collection of entries!
•  Each entry is a pair 

(key, value)!
•  Main methods of the Priority

Queue ADT!
–  insert(k, x) 

inserts an entry with key k
and value x!

–  removeMin() 
removes and returns the
entry with smallest key!

•  Additional methods!
–  min() 

returns, but does not
remove, an entry with
smallest key!

–  size(), isEmpty()!

•  Applications:!
–  Standby flyers!
–  Auctions!
–  Stock market!

Phạm Bảo Sơn - DSA

Total Order Relations"
•  Keys in a priority

queue can be
arbitrary objects
on which an order
is defined!

•  Two distinct
entries in a priority
queue can have
the same key

•  Mathematical concept
of total order relation ≤!
–  Reflexive property: 

x ≤ x
–  Antisymmetric property: 

x ≤ y ∧ y ≤ x ⇒ x = y!
–  Transitive property: 

 x ≤ y ∧ y ≤ z ⇒ x ≤ z

Phạm Bảo Sơn - DSA

Entry ADT"
•  An entry in a priority

queue is simply a key-
value pair!

•  Priority queues store
entries to allow for
efficient insertion and
removal based on keys!

•  Methods:!
–  key(): returns the key for

this entry!
–  value(): returns the value

associated with this
entry!

•  As a Java interface:!
/** !
 * Interface for a key-value!
 * pair entry !
 **/!
public interface Entry {!
 public Object key();!
 public Object value();!
}!

Phạm Bảo Sơn - DSA

Comparator ADT"
•  A comparator encapsulates

the action of comparing two
objects according to a given
total order relation!

•  A generic priority queue
uses an auxiliary
comparator!

•  The comparator is external
to the keys being compared!

•  When the priority queue
needs to compare two keys,
it uses its comparator!

•  The primary method of the
Comparator ADT:!
–  compare(x, y): Returns an

integer i such that i < 0 if a <
b, i = 0 if a = b, and i > 0 if a
> b; an error occurs if a and b
cannot be compared.!

Phạm Bảo Sơn - DSA

Example Comparator"
•  Lexicographic comparison of 2-D

points:!
!
/** Comparator for 2D points under the

standard lexicographic order. */!
public class Lexicographic implements

Comparator {!
 int xa, ya, xb, yb;!
 public int compare(Object a, Object b)

throws ClassCastException {!
 xa = ((Point2D) a).getX();!
 ya = ((Point2D) a).getY();!
 xb = ((Point2D) b).getX();!
 yb = ((Point2D) b).getY();!
 if (xa != xb)!
" "return (xb - xa);!

 else"
" "return (yb - ya);!

 }!
}!

•  Point objects:!
!
/** Class representing a point in the

plane with integer coordinates */!
public class Point2D !{!
 protected int xc, yc; // coordinates!
 public Point2D(int x, int y) {!
 xc = x;!
 yc = y;!
 }!
 public int getX() { !

! !return xc; !!
 }!
 public int getY() { !

! !return yc; !!
 }!
}!

Phạm Bảo Sơn - DSA

Priority Queue Sorting"
•  We can use a priority

queue to sort a set of
comparable elements!
1.  Insert the elements one

by one with a series of
insert operations!

2.  Remove the elements in
sorted order with a series
of removeMin operations!

•  The running time of this
sorting method depends on
the priority queue
implementation!

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

 comparator C
while ¬S.isEmpty ()

 e ← S.removeFirst ()
P.insert (e, 0)

while ¬P.isEmpty()
 e ← P.removeMin().key()
S.insertLast(e)

Phạm Bảo Sơn - DSA

Sequence-based Priority
Queue"

•  Implementation with an
unsorted list!

•  Performance:!
–  insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence!

–  removeMin and min take
O(n) time since we have
to traverse the entire
sequence to find the
smallest key !

•  Implementation with a
sorted list!

•  Performance:!
–  insert takes O(n) time

since we have to find the
place where to insert the
item!

–  removeMin and min take
O(1) time, since the
smallest key is at the
beginning!

4 5 2 3 1 1 2 3 4 5

Phạm Bảo Sơn - DSA

Selection-Sort"
•  Selection-sort is the variation of PQ-sort where the

priority queue is implemented with an unsorted
sequence!

•  Running time of Selection-sort:!
1.  Inserting the elements into the priority queue with n insert

operations takes O(n) time!
2.  Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to  
! ! !1 + 2 + …+ n!

•  Selection-sort runs in O(n2) time !

Phạm Bảo Sơn - DSA

Selection-Sort Example"
 !Sequence S ! !Priority Queue P!!
Input: ! !(7,4,8,2,5,3,9) ! !() !!
!
Phase 1!!
!(a) ! !(4,8,2,5,3,9) ! !(7) !!
!(b) ! !(8,2,5,3,9) ! !(7,4) !!
!.. ! !.. !.. !!
!. ! !. !. !!
!(g) ! !() ! ! !(7,4,8,2,5,3,9) !!

Phase 2!!
!(a) ! !(2) ! ! !(7,4,8,5,3,9) !!
!(b) ! !(2,3) ! ! !(7,4,8,5,9) !!
!(c) ! !(2,3,4) ! ! !(7,8,5,9)!!
!(d) ! !(2,3,4,5)! ! !(7,8,9) !!
!(e) ! !(2,3,4,5,7) ! !(8,9) !!
!(f) ! !(2,3,4,5,7,8) ! !(9) !!
!(g) ! !(2,3,4,5,7,8,9) ! !()!

Phạm Bảo Sơn - DSA

Insertion-Sort"
•  Insertion-sort is the variation of PQ-sort where the

priority queue is implemented with a sorted
sequence!

•  Running time of Insertion-sort:!
1.  Inserting the elements into the priority queue with n insert

operations takes time proportional to  
! ! !1 + 2 + …+ n!

2.  Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time!

•  Insertion-sort runs in O(n2) time !

Phạm Bảo Sơn - DSA

Insertion-Sort Example"
! ! !Sequence S !Priority queue P!!

Input: ! !(7,4,8,2,5,3,9) ! !() !!
!
Phase 1!!
 (a) ! !(4,8,2,5,3,9) ! !(7) !!
!(b) ! !(8,2,5,3,9) ! !(4,7) !!
!(c) ! !(2,5,3,9)! ! !(4,7,8) !!
!(d) ! !(5,3,9) ! ! !(2,4,7,8)!!
!(e) ! !(3,9) ! ! !(2,4,5,7,8) !!
!(f) ! !(9) ! ! !(2,3,4,5,7,8) !!
!(g) ! !() ! ! !(2,3,4,5,7,8,9) !!

!
Phase 2!!
!(a) ! !(2) ! ! !(3,4,5,7,8,9) !!
!(b) ! !(2,3) ! ! !(4,5,7,8,9) !!
!.. ! !.. ! ! !.. !!
!. ! !. ! ! !. !!
!(g) ! !(2,3,4,5,7,8,9) ! !()!

Phạm Bảo Sơn - DSA

In-place Insertion-sort"
•  Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place!

•  A portion of the input
sequence itself serves as
the priority queue!

•  For in-place insertion-sort!
–  We keep sorted the initial

portion of the sequence!
–  We can use swaps

instead of modifying the
sequence!

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

Heaps"

2

6 5

7 9

Phạm Bảo Sơn - DSA

Recall Priority Queue ADT "
•  A priority queue stores a

collection of entries!
•  Each entry is a pair 

(key, value)!
•  Main methods of the Priority

Queue ADT!
–  insert(k, x) 

inserts an entry with key k
and value x!

–  removeMin() 
removes and returns the
entry with smallest key!

•  Additional methods!
–  min() 

returns, but does not
remove, an entry with
smallest key!

–  size(), isEmpty()!

•  Applications:!
–  Standby flyers!
–  Auctions!
–  Stock market!

Phạm Bảo Sơn - DSA

Recall Priority Queue
Sorting"

•  We can use a priority
queue to sort a set of
comparable elements!
–  Insert the elements with a

series of insert operations!
–  Remove the elements in

sorted order with a series
of removeMin operations!

•  The running time depends
on the priority queue
implementation:!
–  Unsorted sequence gives

selection-sort: O(n2) time!
–  Sorted sequence gives

insertion-sort: O(n2) time!
•  Can we do better?!

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

 comparator C
while ¬S.isEmpty ()

 e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
 e ← P.removeMin()
S.insertLast(e)

Phạm Bảo Sơn - DSA

Heaps"
•  A heap is a binary tree

storing keys at its nodes
and satisfying the following
properties:!
–  Heap-Order: for every

internal node v other than the
root, 
key(v) ≥ key(parent(v))

–  Complete Binary Tree: let h
be the height of the heap!

•  for i = 0, … , h - 1, there are
2i nodes of depth i!

•  at depth h, the internal
nodes are to the left of the
external nodes!

2

6 5

7 9

•  The last node of a heap
is the rightmost node of
depth h

last node

Phạm Bảo Sơn - DSA

Height of a Heap"
•  Theorem: A heap storing n keys has height O(log n)
!Proof: (we apply the complete binary tree property)!

–  Let h be the height of a heap storing n keys!
–  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1 + 1

–  Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h-1

1

keys
0

1

h-1

h

depth

Phạm Bảo Sơn - DSA

Heaps and Priority Queues"
•  We can use a heap to implement a priority queue!
•  We store a (key, element) item at each internal node!
•  We keep track of the position of the last node!
•  For simplicity, we show only the keys in the pictures!

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

Phạm Bảo Sơn - DSA

Insertion into a Heap"
•  Method insertItem of the

priority queue ADT
corresponds to the
insertion of a key k to
the heap!

•  The insertion algorithm
consists of three steps!
–  Find the insertion node z

(the new last node)!
–  Store k at z!
–  Restore the heap-order

property (discussed next)!

2

6 5

7 9

insertion node

2

6 5

7 9 1

z

z

Phạm Bảo Sơn - DSA

Upheap"
•  After the insertion of a new key k, the heap-order property may be

violated!
•  Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node!
•  Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k !
•  Since a heap has height O(log n), upheap runs in O(log n) time!

2

1 5

7 9 6 z

1

2 5

7 9 6 z

Phạm Bảo Sơn - DSA

Removal from a Heap"
•  Method removeMin of

the priority queue ADT
corresponds to the
removal of the root key
from the heap!

•  The removal algorithm
consists of three steps!
–  Replace the root key with

the key of the last node w!
–  Remove w !
–  Restore the heap-order

property (discussed next)!

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

Phạm Bảo Sơn - DSA

Downheap"
•  After replacing the root key with the key k of the last node, the

heap-order property may be violated!
•  Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root!
•  Downheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k !
•  Since a heap has height O(log n), downheap runs in O(log n) time!

7

6 5

9
w

5

6 7

9
w

Phạm Bảo Sơn - DSA

Updating the Last Node"
•  The insertion node can be found by traversing a path of O(log n)

nodes!
–  Go up until a left child or the root is reached!
–  If a left child is reached, go to the right child!
–  Go down left until a leaf is reached!

•  Similar algorithm for updating the last node after a removal!

Phạm Bảo Sơn - DSA

Heap-Sort"
•  Consider a priority

queue with n items
implemented by means
of a heap!
–  the space used is O(n)!
–  methods insert and

removeMin take O(log n)
time!

–  methods size, isEmpty,
and min take time O(1)
time!

•  Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

•  The resulting algorithm
is called heap-sort!

•  Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort!

Phạm Bảo Sơn - DSA

Vector-based Heap
Implementation"

•  We can represent a heap with n
keys by means of a vector of
length n + 1!

•  For the node at rank i!
–  the left child is at rank 2i
–  the right child is at rank 2i + 1

•  Links between nodes are not
explicitly stored!

•  The cell of at rank 0 is not used!
•  Operation insert corresponds to

inserting at rank n + 1
•  Operation removeMin

corresponds to removing at rank 1
•  Yields in-place heap-sort!

2

6 5

7 9

2 5 6 9 7
1 2 3 4 5 0

Phạm Bảo Sơn - DSA

Merging Two Heaps"
•  We are given two

heaps and a key k
•  We create a new heap

with the root node
storing k and with the
two heaps as subtrees!

•  We perform downheap
to restore the heap-
order property !

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

Phạm Bảo Sơn - DSA

•  We can construct a
heap storing n given
keys in using a bottom-
up construction with log
n phases!

•  In phase i, pairs of
heaps with 2i -1 keys are
merged into heaps with
2i+1-1 keys!

Bottom-up Heap
Construction"

2i -1 2i -1

2i+1-1

Phạm Bảo Sơn - DSA

Example"

15 16 12 4 7 6 20 23

25

15 16

5

12 4

11

7 6

27

20 23

Phạm Bảo Sơn - DSA

Example (contd.)"

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

20

27 23

Phạm Bảo Sơn - DSA

Example (contd.)"
7

15

25 16

4

12 5

8

6

9 11

20

27 23

4

15

25 16

5

12 7

6

8

9 11

20

27 23

Phạm Bảo Sơn - DSA

Example (end)"
4

15

25 16

5

12 7

10

6

8

9 11

23

20 27

5

15

25 16

7

12 10

4

6

8

9 11

23

20 27

Phạm Bảo Sơn - DSA

Analysis"
•  We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)!

•  Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n) !

•  Thus, bottom-up heap construction runs in O(n) time !
•  Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort!

Adaptable
Priority Queues"

3 a

5 g 4 e

Phạm Bảo Sơn - DSA

Recall the Entry and Priority
Queue ADTs"

•  An entry stores a (key,
value) pair within a data
structure!

•  Methods of the entry
ADT:!
–  key(): returns the key

associated with this
entry!

–  value(): returns the value
paired with the key
associated with this
entry!

•  Priority Queue ADT:!
–  insert(k, x) 

inserts an entry with
key k and value x!

–  removeMin() 
removes and returns
the entry with
smallest key!

–  min() 
returns, but does not
remove, an entry
with smallest key!

–  size(), isEmpty()!

Phạm Bảo Sơn - DSA

Motivating Example"
•  Suppose we have an online trading system where orders to

purchase and sell a given stock are stored in two priority queues
(one for sell orders and one for buy orders) as (p,s) entries:!
–  The key, p, of an order is the price!
–  The value, s, for an entry is the number of shares!
–  A buy order (p,s) is executed when a sell order (p’,s’) with price

p’<p is added (the execution is complete if s’>s)!
–  A sell order (p,s) is executed when a buy order (p’,s’) with price

p’>p is added (the execution is complete if s’>s)!
•  What if someone wishes to cancel their order before it

executes?!
•  What if someone wishes to update the price or number of

shares for their order?!

Phạm Bảo Sơn - DSA

Methods of the Adaptable
Priority Queue ADT"

•  remove(e): Remove from P and return
entry e.!!

•  replaceKey(e,k): Replace with k and
return the key of entry e of P; an !error
condition occurs if k is invalid (that is, k
cannot be compared with other keys). !!

•  replaceValue(e,x): Replace with x and
return the value of entry e of P. !!

Phạm Bảo Sơn - DSA

Example"
Operation 	
 	
 	
Output 	
 	
P 	
	

insert(5,A) e1 	
 	
(5,A)
insert(3,B) e2 	
 	
(3,B),(5,A)
insert(7,C) e3 	
 	
(3,B),(5,A),(7,C)
min() e2 	
 	
(3,B),(5,A),(7,C)
key(e2) 3 	
 	
(3,B),(5,A),(7,C)
remove(e1) e1 	
 	
(3,B),(7,C)
replaceKey(e2,9) 3 	
 	
(7,C),(9,B)
replaceValue(e3,D) C 	
 	
(7,D),(9,B)
remove(e2) e2 	
 	
(7,D) !

Phạm Bảo Sơn - DSA

Locating Entries"
•  In order to implement the operations

remove(k), replaceKey(e), and
replaceValue(k), we need fast ways of
locating an entry e in a priority queue.!

•  We can always just search the entire
data structure to find an entry e, but
there are better ways for locating
entries.!

Phạm Bảo Sơn - DSA

Location-Aware Entries"

•  A locator-aware entry identifies and tracks the
location of its (key, value) object within a data
structure!

•  Intuitive notion:!
–  Coat claim check!
–  Valet claim ticket!
–  Reservation number!

•  Main idea:!
–  Since entries are created and returned from the

data structure itself, it can return location-aware
entries, thereby making future updates easier!

Phạm Bảo Sơn - DSA

List Implementation"
•  A location-aware list entry is an object storing!

–  key!
–  value!
–  position (or rank) of the item in the list!

•  In turn, the position (or array cell) stores the entry!
•  Back pointers (or ranks) are updated during swaps!

trailer header nodes/positions

entries

2 c 4 c 5 c 8 c

Phạm Bảo Sơn - DSA

Heap Implementation"
•  A location-aware

heap entry is an
object storing!
–  key!
–  value!
–  position of the entry

in the underlying
heap!

•  In turn, each heap
position stores an
entry!

•  Back pointers are
updated during
entry swaps!

4 a

2 d

6 b

8 g 5 e 9 c

Phạm Bảo Sơn - DSA

Performance"
•  Using location-aware entries we can achieve

the following running times (times better than
those achievable without location-aware
entries are highlighted in red):!

Method Unsorted List Sorted List Heap
size, isEmpty O(1) O(1) O(1)
insert O(1) O(n) O(log n)
min O(n) O(1) O(1)
removeMin O(n) O(1) O(log n)
remove O(1) O(1) O(log n)
replaceKey O(1) O(n) O(log n)
replaceValue O(1) O(1) O(1)"

