
Data Structures and
Algorithms  

"

Maps and Dictionaries!

Outline"

•  Maps!
•  Hash tables!
•  Dictionaries!
•  Skip Lists!

Phạm Bảo Sơn - DSA

Maps"

Phạm Bảo Sơn - DSA

Maps"
•  A map models a searchable collection

of key-value entries!
•  The main operations of a map are for

searching, inserting, and deleting items!
•  Multiple entries with the same key are

not allowed!
•  Applications:!

– address book!
– student-record database!

Phạm Bảo Sơn - DSA

The Map ADT"
•  Map ADT methods:!

–  get(k): if the map M has an entry with key k, return
its assoiciated value; else, return null !

–  put(k, v): insert entry (k, v) into the map M; if key k
is not already in M, then return null; else, return
old value associated with k!

–  remove(k): if the map M has an entry with key k,
remove it from M and return its associated value;
else, return null !

–  size(), isEmpty()!
–  keys(): return an iterator of the keys in M!
–  values(): return an iterator of the values in M!

Phạm Bảo Sơn - DSA

Example"
Operation !Output ! !Map!
!!

isEmpty() !true " !Ø!
put(5,A) ! !null " "(5,A) !!
put(7,B) ! !null " "(5,A),(7,B) !!
put(2,C) ! !null " "(5,A),(7,B),(2,C) !!
put(8,D) ! !null " "(5,A),(7,B),(2,C),(8,D) !!
put(2,E) ! !C ! !(5,A),(7,B),(2,E),(8,D) !!
get(7) ! !B ! !(5,A),(7,B),(2,E),(8,D) !!
get(4) ! !null " "(5,A),(7,B),(2,E),(8,D) !!
get(2) ! !E ! !(5,A),(7,B),(2,E),(8,D) !!
size() ! !4 ! !(5,A),(7,B),(2,E),(8,D) !!
remove(5) !A ! !(7,B),(2,E),(8,D) !!
remove(2) !E ! !(7,B),(8,D) !!
get(2) ! !null " "(7,B),(8,D) !!
isEmpty() !false " "(7,B),(8,D)!

Phạm Bảo Sơn - DSA

A Simple List-Based Map"
•  We can efficiently implement a map using an

unsorted list !
–  We store the items of the map in a list S (based

on a doubly-linked list), in arbitrary order!

trailer header nodes/positions

entries

9 c 6 c 5 c 8 c

Phạm Bảo Sơn - DSA

The get(k) Algorithm"

Algorithm get(k):!
!B = S.positions() {B is an iterator of the positions in S}"
"while B.hasNext() do"
! !p = B.next() !{the next position in B}!
" "if p.element().key() = k !then"
" " "return p.element().value()!
"return null {there is no entry with key equal to k}!

!
!
!

Phạm Bảo Sơn - DSA

The put(k,v) Algorithm"
Algorithm put(k,v): ! ! ! !!
B != S.positions() ! !!
while B.hasNext() do ""
!p = B.next() ! !!
!if p.element().key() = k then" !!
! !t = p.element().value() !!
! !B.replace(p,(k,v)) !!
! !return t!{return the old value} !!

S.insertLast((k,v)) ! ! !!
n = n + 1 !{increment variable storing number of entries}!
return null "{there was no previous entry with key equal to k}!

Phạm Bảo Sơn - DSA

The remove(k) Algorithm"

Algorithm remove(k): ! !!
B =S.positions() ! !!
while B.hasNext() do ""
!p = B.next() ! !!
!if p.element().key() = k then " !!
! !t = p.element().value() ! !!
! !S.remove(p) ! !!
! !n = n – 1 !{decrement number of entries}!
! !return t !{return the removed value}!

return null " "{there is no entry with key equal to k}!

Phạm Bảo Sơn - DSA

Performance of a List-Based
Map"

•  Performance:!
–  put takes O(n) time since we have to search the sequence to

check if the given key exists (O(1) if keys are always unique) .!
–  get and remove take O(n) time since in the worst case (the

item is not found) we traverse the entire sequence to look for
an item with the given key!

•  The unsorted list implementation is effective only for
maps of small size or for maps in which puts are the
most common operations with unique keys (known
beforehand and simplified put method), while
searches and removals are rarely performed (e.g.,
historical record of logins to a workstation)!

Hash Tables"

∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

Phạm Bảo Sơn - DSA

Recall the Map ADT"
•  Map ADT methods:!

–  get(k): if the map M has an entry with key k, return
its associated value; else, return null !

–  put(k, v): insert entry (k, v) into the map M; if key k
is not already in M, then return null; else, return
old value associated with k!

–  remove(k): if the map M has an entry with key k,
remove it from M and return its associated value;
else, return null !

–  size(), isEmpty()!
–  keys(): return an iterator of the keys in M!
–  values(): return an iterator of the values in M!

Hash table"

•  Expected time: O(1)!
•  Bucket array!
•  Hash function!

Phạm Bảo Sơn - DSA

Phạm Bảo Sơn - DSA

Hash Functions and
Hash Tables "

•  A hash function h maps keys of a given type to integers in a fixed
interval [0, N - 1]

•  Example:
 h(x) = x mod N

is a hash function for integer keys
•  The integer h(x) is called the hash value of key x

•  A hash table for a given key type consists of
–  Hash function h!
–  Array (called table) of size N

•  When implementing a map with a hash table, the goal is to store
item (k, o) at index i = h(k)

Phạm Bảo Sơn - DSA

Example"
•  We design a hash table for

a map storing entries as
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer!

•  Our hash table uses an
array of size N = 10,000 and
the hash function  
h(x) = last four digits of x

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

Drawbacks"

•  Space is proportional to N:!
– Waste of space if N >> n!

•  Keys are required to be integers in the
range [0, N-1] -> need “good” hashing
function:!
– Minimize collision!
– Fast and easy to compute !

Phạm Bảo Sơn - DSA

Phạm Bảo Sơn - DSA

Hash Functions"

•  A hash function is
usually specified as the
composition of two
functions:!
!Hash code: 
 h1: keys → integers
!Compression function: 
 h2: integers → [0, N - 1]

•  The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,  

!h(x) = h2(h1(x))
•  The goal of the hash

function is to
“disperse” the keys
in an apparently
random way!

Phạm Bảo Sơn - DSA

Hash Codes"
•  Memory address:!

–  We reinterpret the memory
address of the key object as an
integer (default hash code of all
Java objects)!

–  Good in general, except for
numeric and string keys (same
key should have the same hash
code)!

•  Integer cast:!
–  We reinterpret the bits of the key

as an integer!
–  Suitable for keys of length less

than or equal to the number of
bits of the integer type (e.g.,
byte, short, int and float in Java)!

•  Component sum:!
–  We partition the bits of

the key into components
of fixed length (e.g., 16 or
32 bits) and we sum the
components (ignoring
overflows)!

–  Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double in Java)!

Phạm Bảo Sơn - DSA

Hash Codes (cont.)"
•  Polynomial accumulation:!

–  Order is important!
–  We partition the bits of the key

into a sequence of components
of fixed length (e.g., 8, 16 or 32
bits) 
 ! !a0 a1 … an-1!

–  We evaluate the polynomial!
 p(z) = an-1 + an-2z + an-3z2 + …

 … + a0zn-1

!at a fixed value z, ignoring
overflows!

–  Especially suitable for strings
(e.g., the choice z = 33 gives at
most 6 collisions on a set of
50,000 English words)!

•  Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:!
–  The following

polynomials are
successively computed,
each from the previous
one in O(1) time!
 p0(z) = an-1

 pi (z) = an-i-1 + zpi-1(z)
 (i = 1, 2, …, n -1)

•  We have p(z) = pn-1(z)

Phạm Bảo Sơn - DSA

Compression Functions"
•  Division:!

–  h2 (y) = y mod N!
–  The size N of the hash

table is usually chosen to
be a prime !

–  {200, 205, 210, 215,..,
600}: 6 collisions with
N=100, No collision with
N=101!

–  Not enough with
repeated patterns of
hash codes pN+q for
different values of p !

•  Multiply, Add and
Divide (MAD):!
–  h2 (y) = (ay + b) mod N
–  N is prime, a and b

are nonnegative
integers such that 
! a mod N ≠ 0

–  Otherwise, every
integer would map to
the same value b !

Phạm Bảo Sơn - DSA

Collision Handling"

•  Collisions occur when
different elements are
mapped to the same cell!

•  Separate Chaining: let
each cell in the table point
to a linked list of entries
that map there!

•  Load factor: n/N < 1!
•  Separate chaining is

simple, but requires
additional memory
outside the table!

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Phạm Bảo Sơn - DSA

Map Methods with Separate Chaining
used for Collisions"

•  Delegate operations to a list-based map at each cell:!
!

Algorithm get(k): ! !!
Output: The value associated with the key k in the map, or null if there is no !!

!entry with key equal to k in the map !!
return A[h(k)].get(k) !{delegate the get to the list-based map at A[h(k)]}!

!!

Algorithm put(k,v): ! !!
Output: If there is an existing entry in our map with key equal to k, then we !!

!return its value (replacing it with v); otherwise, we return null ""
t = A[h(k)].put(k,v) !{delegate the put to the list-based map at A[h(k)]}!
if t = null then " "{k is a new key}!

!n = n + 1 !!
return t!

!!

Algorithm remove(k): ! !!
Output: The (removed) value associated with key k in the map, or null if there!

!is no entry with key equal to k in the map !!
t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}!
if t ≠ null then " {k was found}!

!n = n - 1 !!
return t!

Phạm Bảo Sơn - DSA

Linear Probing"
•  Open addressing: the

colliding item is placed in a
different cell of the table"

•  Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table cell!

•  Each table cell inspected is
referred to as a “probe”!

•  Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes!

•  Example:!
–  h(x) = x mod 13
–  Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order!

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

Phạm Bảo Sơn - DSA

Search with Linear Probing"
•  Consider a hash table A that

uses linear probing!
•  get(k)

–  We start at cell h(k) !
–  We probe consecutive

locations until one of the
following occurs!

•  An item with key k is
found, or!

•  An empty cell is found, or!
•  N cells have been

unsuccessfully probed !

Algorithm get(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c = ∅	

	
 	
 	
return null
 else if c.key () = k
 return c.element()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N
	
return null

Phạm Bảo Sơn - DSA

Updates with Linear Probing"
•  To handle insertions and

deletions, we introduce
a special object, called
AVAILABLE, which
replaces deleted
elements!

•  remove(k)!
–  We search for an entry

with key k !
–  If such an entry (k, o) is

found, we replace it with
the special item
AVAILABLE and we
return element o!

–  Else, we return null

•  put(k, o)!
–  We throw an exception

if the table is full!
–  We start at cell h(k) !
–  We probe consecutive

cells until one of the
following occurs!

•  A cell i is found that is
either empty or stores
AVAILABLE, or!

•  N cells have been
unsuccessfully probed!

–  We store entry (k, o) in
cell i

Phạm Bảo Sơn - DSA

Double Hashing"
•  Double hashing uses a

secondary hash function d(k)
and handles collisions by
placing an item in the first
available cell of the series 

 (i + jd(k)) mod N
 for j = 0, 1, … , N - 1

•  The secondary hash function
d(k) cannot have zero values!

•  The table size N must be a
prime to allow probing of all
the cells!

•  Common choice of
compression function for the
secondary hash function: !!
d2(k) = q – (k mod q)

! !where!
–  q < N
–  q is a prime!

•  The possible values for d2(k)
are  

! 1, 2, … , q

Phạm Bảo Sơn - DSA

•  Consider a hash
table storing integer
keys that handles
collision with double
hashing!
–  N = 13 !
–  h(k) = k mod 13 !
–  d(k) = 7 - k mod 7

•  Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order!

Example of Double Hashing"

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Phạm Bảo Sơn - DSA

Performance of
Hashing"

•  In the worst case, searches,
insertions and removals on a
hash table take O(n) time!

•  The worst case occurs when
all the keys inserted into the
map collide!

•  The load factor α = n/N
affects the performance of a
hash table!

•  Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is 

!1 / (1 - α) 	

•  The expected running time
of all the dictionary ADT
operations in a hash table is
O(1) !

•  In practice, hashing is very
fast provided the load factor
is not close to 100%!

•  Applications of hash tables:!
–  small databases!
–  compilers!
–  browser caches!

•  Open addressing is not faster
than chaining method if space is
an issue.

Example"

•  Counting Word Frequencies.!

Phạm Bảo Sơn - DSA

Dictionaries"

6

9 2

4 1 8

<	

>	

=	

Phạm Bảo Sơn - DSA

Dictionary ADT "
•  The dictionary ADT models a

searchable collection of key-
element entries: ordered and
unordered.!

•  The main operations of a dictionary
are searching, inserting, and
deleting items!

•  Multiple items with the same key
are allowed!

•  Applications:!
–  word-definition pairs!
–  credit card authorizations!
–  DNS mapping of host names (e.g.,

datastructures.net) to internet IP
addresses (e.g., 128.148.34.101)!

•  Dictionary ADT methods:!
–  find(k): if the dictionary has

an entry with key k, returns
it, else, returns null !

–  findAll(k): returns an iterator
of all entries with key k!

–  insert(k, o): inserts and
returns the entry (k, o) !

–  remove(e): remove the entry
e from the dictionary!

–  entries(): returns an iterator
of the entries in the
dictionary!

–  size(), isEmpty()!

Phạm Bảo Sơn - DSA

Example"
Operation ! !Output! !Dictionary !!
insert(5,A) ! !(5,A) ! !(5,A) !!
insert(7,B) ! !(7,B) ! !(5,A),(7,B) !!
insert(2,C) ! !(2,C) ! !(5,A),(7,B),(2,C)!!
insert(8,D) ! !(8,D) ! !(5,A),(7,B),(2,C),(8,D)!
insert(2,E) ! !(2,E) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
find(7) ! ! !(7,B) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
find(4) ! ! !null " "(5,A),(7,B),(2,C),(8,D),(2,E)!
find(2) ! ! !(2,C) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
findAll(2) ! !(2,C),(2,E) !(5,A),(7,B),(2,C),(8,D),(2,E)!
size() ! ! !5 ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
remove(find(5)) ! !(5,A) ! !(7,B),(2,C),(8,D),(2,E)!
find(5) ! ! !null " "(7,B),(2,C),(8,D),(2,E)!
!

Phạm Bảo Sơn - DSA

A List-Based Dictionary"
•  A log file or audit trail is a dictionary implemented by means of

an unsorted sequence!
–  We store the items of the dictionary in a sequence (based on a

doubly-linked list or array), in arbitrary order!
•  Performance:!

–  insert takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence!

–  find and remove take O(n) time since in the worst case (the item is
not found) we traverse the entire sequence to look for an item with
the given key!

•  The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)!

Phạm Bảo Sơn - DSA

The findAll(k) Algorithm"
Algorithm findAll(k): ! !!
Input: A key k ! !!
Output: An iterator of entries with key equal to k !

!!
Create an initially-empty list L ! !!
B = D.entries() ! !!
while B.hasNext() do " !!
!e = B.next() ! !!
"if e.key() = k then " !!
! !L.insertLast(e) ! !!

return L.elements()!
!

Phạm Bảo Sơn - DSA

The insert and remove
Methods"

Algorithm insert(k,v): ! !!
Input: A key k and value v ! !!
Output: The entry (k,v) added to D ! !!
Create a new entry e = (k,v) !!
S.insertLast(e) !{S is unordered}!
return e!

!!
Algorithm remove(e): ! !!
Input: An entry e ! !!
Output: The removed entry e or null if e was not in D !!
{We don’t assume here that e stores its location in S}!
B = S.positions() ! !!
while B.hasNext() do " !!

!p = B.next() ! !!
"if p.element() = e then " !!
! !S.remove(p) ! !!
" "return e ! !!

return null "{there is no entry e in D}!
!

Phạm Bảo Sơn - DSA

Hash Table Implementation"

•  Unordered dictionaries.!
•  We can also create a hash-table

dictionary implementation.!
•  If we use separate chaining to handle

collisions, then each operation can be
delegated to a list-based dictionary
stored at each hash table cell.!

Phạm Bảo Sơn - DSA

Binary Search"
•  Ordered dictionaries.!
•  Binary search performs operation find(k) on a dictionary implemented by

means of an array-based sequence, sorted by key!
–  similar to the high-low game!
–  at each step, the number of candidate items is halved!
–  terminates after a logarithmic number of steps!

•  Example: find(7)!

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

Phạm Bảo Sơn - DSA

Search Table"
•  A search table is a dictionary implemented by means of a sorted

array!
–  We store the items of the dictionary in an array-based sequence,

sorted by key!
–  We use an external comparator for the keys!

•  Performance:!
–  find takes O(log n) time, using binary search!
–  insert takes O(n) time since in the worst case we have to shift n/2

items to make room for the new item!
–  remove takes O(n) time since in the worst case we have to shift n/2

items to compact the items after the removal!
•  A search table is effective only for dictionaries of small size or

for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)!

Skip Lists"

+∞ -∞

S0

S1

S2

S3

+∞ -∞ 10 36 23 15

+∞ -∞ 15

+∞ -∞ 23 15

Phạm Bảo Sơn - DSA

What is a Skip List"
•  A skip list for a set S of distinct (key, element) items is a series of

lists S0, S1 , … , Sh such that!
–  Each list Si contains the special keys +∞ and -∞ !
–  List S0 contains the keys of S in nondecreasing order
–  Each list is a subsequence of the previous one, i.e., 

! ! !S0 ⊆ S1 ⊆ … ⊆ Sh
–  List Sh contains only the two special keys!

•  We show how to use a skip list to implement the dictionary ADT!

56 64 78 +∞ 31 34 44 -∞ 12 23 26

+∞ -∞

+∞ 31 -∞
64 +∞ 31 34 -∞ 23

S0

S1

S2

S3

Phạm Bảo Sơn - DSA

Search"
•  We search for a key x in a a skip list as follows:!

–  We start at the first position of the top list !
–  At the current position p, we compare x with y ← key(next(p))

 x = y: we return element(next(p))
 x > y: we “scan forward” !
 x < y: we “drop down”!

–  If we try to drop down past the bottom list, we return null
•  Example: search for 78!

+∞ -∞

S0

S1

S2

S3

+∞ 31 -∞
64 +∞ 31 34 -∞ 23

56 64 78 +∞ 31 34 44 -∞ 12 23 26

Phạm Bảo Sơn - DSA

Randomized Algorithms"
•  A randomized algorithm

performs coin tosses (i.e.,
uses random bits) to control
its execution!

•  It contains statements of the
type!

 b ← random()
 if b = 0
 do A …
 else { b = 1}
 do B …

•  Its running time depends on
the outcomes of the coin
tosses!

•  We analyze the expected
running time of a randomized
algorithm under the following
assumptions!

–  the coins are unbiased, and !
–  the coin tosses are independent!

•  The worst-case running time of
a randomized algorithm is often
large but has very low
probability (e.g., it occurs when
all the coin tosses give
“heads”)!

•  We use a randomized algorithm
to insert items into a skip list!

Phạm Bảo Sơn - DSA

•  To insert an entry (x, o) into a skip list, we use a randomized
algorithm:!
–  We repeatedly toss a coin until we get tails, and we denote with i

the number of times the coin came up heads!
–  If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each

containing only the two special keys!
–  We search for x in the skip list and find the positions p0, p1 , …, pi of

the items with largest key less than x in each list S0, S1, … , Si!
–  For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

•  Example: insert key 15, with i = 2

Insertion"

+∞ -∞ 10 36

+∞ -∞

23

23 +∞ -∞
S0

S1

S2

+∞ -∞

S0

S1

S2

S3

+∞ -∞ 10 36 23 15

+∞ -∞ 15

+∞ -∞ 23 15
p0

p1

p2

Phạm Bảo Sơn - DSA

Deletion"
•  To remove an entry with key x from a skip list, we proceed as

follows:!
–  We search for x in the skip list and find the positions p0, p1 , …, pi of

the items with key x, where position pj is in list Sj

–  We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si!
–  We remove all but one list containing only the two special keys!

•  Example: remove key 34!

-∞ +∞ 45 12

-∞ +∞

23

23 -∞ +∞

S0

S1

S2

-∞ +∞

S0

S1

S2

S3

-∞ +∞ 45 12 23 34

-∞ +∞ 34

-∞ +∞ 23 34
p0

p1

p2

Phạm Bảo Sơn - DSA

Implementation"
•  We can implement a skip list

with quad-nodes!
•  A quad-node stores:!

–  entry!
–  link to the node prev!
–  link to the node next!
–  link to the node below!
–  link to the node above!

•  Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key
comparator to handle them !

x

quad-node

Phạm Bảo Sơn - DSA

Space Usage"
•  The space used by a skip list

depends on the random bits
used by each invocation of the
insertion algorithm!

•  We use the following two basic
probabilistic facts:!
Fact 1: The probability of getting i

consecutive heads when
flipping a coin is 1/2i

Fact 2: If each of n entries is
present in a set with probability
p, the expected size of the set
is np

•  Consider a skip list with n
entries!
–  By Fact 1, we insert an entry

in list Si with probability 1/2i!

–  By Fact 2, the expected size
of list Si is n/2i !

•  The expected number of
nodes used by the skip list is!

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

! Thus, the expected space
usage of a skip list with n
items is O(n)

Phạm Bảo Sơn - DSA

Height"
•  The running time of the

search an insertion
algorithms is affected by the
height h of the skip list!

•  We show that with high
probability, a skip list with n
items has height O(log n)

•  We use the following
additional probabilistic fact:!
Fact 3: If each of n events has

probability p, the probability
that at least one event
occurs is at most np

•  Consider a skip list with n
entires!
–  By Fact 1, we insert an entry

in list Si with probability 1/2i!

–  By Fact 3, the probability that
list Si has at least one item is
at most n/2i!

•  By picking i = 3log n, we have
that the probability that S3log n
has at least one entry is 
at most 

! n/23log n = n/n3 = 1/n2

•  Thus a skip list with n entries
has height at most 3log n with
probability at least 1 - 1/n2

Phạm Bảo Sơn - DSA

Search and Update Time"
•  The search time in a skip list

is proportional to!
–  the number of drop-down

steps, plus!
–  the number of scan-forward

steps!
•  The drop-down steps are

bounded by the height of the
skip list and thus are O(log n)
with high probability!

•  To analyze the scan-forward
steps, we use yet another
probabilistic fact:!
Fact 4: The expected number of

coin tosses required in order
to get tails is 2!

•  When we scan forward in a list,
the destination key does not
belong to a higher list!
–  A scan-forward step is

associated with a former coin
toss that gave tails

•  By Fact 4, in each list the
expected number of scan-
forward steps is 2!

•  Thus, the expected number of
scan-forward steps is O(log n)!

•  We conclude that a search in a
skip list takes O(log n)
expected time!

•  The analysis of insertion and
deletion gives similar results!

Phạm Bảo Sơn - DSA

Summary"

•  A skip list is a data
structure for dictionaries
that uses a randomized
insertion algorithm!

•  In a skip list with n
entries !
–  The expected space

used is O(n)
–  The expected search,

insertion and deletion
time is O(log n)

•  Using a more complex
probabilistic analysis,
one can show that
these performance
bounds also hold with
high probability!

•  Skip lists are fast and
simple to implement in
practice!

