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Maps"
•  A map models a searchable collection 

of key-value entries!
•  The main operations of a map are for 

searching, inserting, and deleting items!
•  Multiple entries with the same key are 

not allowed!
•  Applications:!

– address book!
– student-record database!
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The Map ADT"
•  Map ADT methods:!

–  get(k): if the map M has an entry with key k, return 
its assoiciated value; else, return null !

–  put(k, v): insert entry (k, v) into the map M; if key k 
is not already in M, then return null; else, return 
old value associated with k!

–  remove(k): if the map M has an entry with key k, 
remove it from M and return its associated value; 
else, return null !

–  size(), isEmpty()!
–  keys(): return an iterator of the keys in M!
–  values(): return an iterator of the values in M!
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Example"
Operation !Output ! !Map!
!!

isEmpty() !true " !Ø!
put(5,A) ! !null " "(5,A) !!
put(7,B) ! !null " "(5,A),(7,B) !!
put(2,C) ! !null " "(5,A),(7,B),(2,C) !!
put(8,D) ! !null " "(5,A),(7,B),(2,C),(8,D) !!
put(2,E) ! !C ! !(5,A),(7,B),(2,E),(8,D) !!
get(7) ! !B ! !(5,A),(7,B),(2,E),(8,D) !!
get(4) ! !null " "(5,A),(7,B),(2,E),(8,D) !!
get(2) ! !E ! !(5,A),(7,B),(2,E),(8,D) !!
size() ! !4 ! !(5,A),(7,B),(2,E),(8,D) !!
remove(5) !A ! !(7,B),(2,E),(8,D) !!
remove(2) !E ! !(7,B),(8,D) !!
get(2) ! !null " "(7,B),(8,D) !!
isEmpty() !false " "(7,B),(8,D)!
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A Simple List-Based Map"
•  We can efficiently implement a map using an 

unsorted list !
–  We store the items of the map in a list S (based 

on a doubly-linked list), in arbitrary order!

trailer header nodes/positions 

entries 

9 c 6 c 5 c 8 c 
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The get(k) Algorithm"

Algorithm get(k):!
!B = S.positions() {B is an iterator of the positions in S}"
"while B.hasNext() do"
! !p = B.next() !{the next position in B}!
" "if p.element().key() = k !then"
" " "return p.element().value()!
"return null {there is no entry with key equal to k}!

!
!
!
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The put(k,v) Algorithm"
Algorithm put(k,v): ! ! ! !!
B != S.positions() ! !!
while B.hasNext() do ""
!p = B.next() ! !!
!if p.element().key() = k  then" !!
! !t = p.element().value() !!
! !B.replace(p,(k,v)) !!
! !return t!{return the old value} !!

S.insertLast((k,v)) ! ! !!
n = n + 1 !{increment variable storing number of entries}!
return null "{there was no previous entry with key equal to k}!
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The remove(k) Algorithm"

Algorithm remove(k): ! !!
B =S.positions() ! !!
while B.hasNext() do ""
!p = B.next() ! !!
!if p.element().key() = k  then " !!
! !t = p.element().value() ! !!
! !S.remove(p) ! !!
! !n = n – 1 !{decrement number of entries}!
! !return t !{return the removed value}!

return null " "{there is no entry with key equal to k}!
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Performance of a List-Based 
Map"

•  Performance:!
–  put takes O(n) time since we have to search the sequence to 

check if the given key exists (O(1) if keys are always unique) .!
–  get and remove take O(n) time since in the worst case (the 

item is not found) we traverse the entire sequence to look for 
an item with the given key!

•  The unsorted list implementation is effective only for 
maps of small size or for maps in which puts are the 
most common operations with unique keys (known 
beforehand and simplified put method), while 
searches and removals are rarely performed (e.g., 
historical record of logins to a workstation)!



Hash Tables"

∅ 

∅ 

0 
1 
2 
3 
4 451-229-0004 

981-101-0002 
025-612-0001 
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Recall the Map ADT"
•  Map ADT methods:!

–  get(k): if the map M has an entry with key k, return 
its associated value; else, return null !

–  put(k, v): insert entry (k, v) into the map M; if key k 
is not already in M, then return null; else, return 
old value associated with k!

–  remove(k): if the map M has an entry with key k, 
remove it from M and return its associated value; 
else, return null !

–  size(), isEmpty()!
–  keys(): return an iterator of the keys in M!
–  values(): return an iterator of the values in M!



Hash table"

•  Expected time: O(1)!
•  Bucket array!
•  Hash function!

Phạm Bảo Sơn - DSA 
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Hash Functions and 
Hash Tables "

•  A hash function h maps keys of a given type to integers in a fixed 
interval [0, N - 1] 

•  Example: 
 h(x) = x mod N 

is a hash function for integer keys 
•  The integer h(x) is called the hash value of key x 

•  A hash table for a given key type consists of 
–  Hash function h!
–  Array (called table) of size N 

•  When implementing a map with a hash table, the goal is to store 
item (k, o) at index i = h(k) 
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Example"
•  We design a hash table for 

a map storing entries as 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer!

•  Our hash table uses an 
array of size N = 10,000 and 
the hash function  
h(x) = last four digits of x 

∅ 

∅ 

∅ 

∅ 

0 
1 
2 
3 
4 

9997 
9998 
9999 

…
 

451-229-0004 

981-101-0002 

200-751-9998 

025-612-0001 



Drawbacks"

•  Space is proportional to N:!
– Waste of space if N >> n!

•  Keys are required to be integers in the 
range [0, N-1] -> need “good” hashing 
function:!
– Minimize collision!
– Fast and easy to compute !

Phạm Bảo Sơn - DSA 
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Hash Functions"

•  A hash function is 
usually specified as the 
composition of two 
functions:!
!Hash code: 
  h1: keys → integers 
!Compression function: 
  h2: integers → [0, N - 1] 

•  The hash code is 
applied first, and the 
compression function 
is applied next on the 
result, i.e.,  

!h(x) = h2(h1(x)) 
•  The goal of the hash 

function is to  
“disperse” the keys 
in an apparently 
random way!
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Hash Codes"
•  Memory address:!

–  We reinterpret the memory 
address of the key object as an 
integer (default hash code of all 
Java objects)!

–  Good in general, except for 
numeric and string keys (same 
key should have the same hash 
code)!

•  Integer cast:!
–  We reinterpret the bits of the key 

as an integer!
–  Suitable for keys of length less 

than or equal to the number of 
bits of the integer type (e.g., 
byte, short, int and float in Java)!

•  Component sum:!
–  We partition the bits of 

the key into components 
of fixed length (e.g., 16 or 
32 bits) and we sum the 
components (ignoring 
overflows)!

–  Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double in Java)!
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Hash Codes (cont.)"
•  Polynomial accumulation:!

–  Order is important!
–  We partition the bits of the key 

into a sequence of components 
of fixed length (e.g., 8, 16 or 32 
bits) 
 ! !a0 a1 … an-1!

–  We evaluate the polynomial!
 p(z) = an-1 + an-2z  + an-3z2 + …  

    … + a0zn-1 

!at a fixed value z, ignoring 
overflows!

–  Especially suitable for strings 
(e.g., the choice z = 33 gives at 
most 6 collisions on a set of 
50,000 English words)!

•  Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule:!
–  The following 

polynomials are 
successively computed, 
each from the previous 
one in O(1) time!
  p0(z) = an-1 

  pi (z) = an-i-1 + zpi-1(z) 
  (i = 1, 2, …, n -1) 

•  We have p(z) = pn-1(z)  
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Compression Functions"
•  Division:!

–  h2 (y) = y mod N!
–  The size N of the hash 

table is usually chosen to 
be a prime !

–  {200, 205, 210, 215,.., 
600}: 6 collisions with 
N=100, No collision with 
N=101!

–  Not enough with 
repeated patterns of 
hash codes pN+q for 
different values of p !

•  Multiply, Add and 
Divide (MAD):!
–  h2 (y) = (ay + b) mod N 
–  N is prime, a and b 

are nonnegative 
integers such that 
! a mod N ≠ 0 

–  Otherwise, every 
integer would map to 
the same value b !
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Collision Handling"

•  Collisions occur when 
different elements are 
mapped to the same cell!

•  Separate Chaining: let 
each cell in the table point 
to a linked list of entries 
that map there!

•  Load factor: n/N < 1!
•  Separate chaining is 

simple, but requires 
additional memory 
outside the table!

∅ 

∅ 
∅ 

0 
1 
2 
3 
4 451-229-0004 981-101-0004 

025-612-0001 
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Map Methods with Separate Chaining 
used for Collisions"

•  Delegate operations to a list-based map at each cell:!
!

Algorithm get(k): ! !!
Output: The value associated with the key k in the map, or null if there is no !!

!entry with key equal to k in the map !!
return A[h(k)].get(k) !{delegate the get to the list-based map at A[h(k)]}!

!!

Algorithm put(k,v): ! !!
Output: If there is an existing entry in our map with key equal to k, then we !!

!return its value (replacing it with v); otherwise, we return null ""
t = A[h(k)].put(k,v) !{delegate the put to the list-based map at A[h(k)]}!
if t = null then " "{k is a new key}!

!n = n + 1 !!
return t!

!!

Algorithm remove(k): ! !!
Output: The (removed) value associated with key k in the map, or null if there!

!is no entry with key equal to k in the map !!
t = A[h(k)].remove(k)       {delegate the remove to the list-based map at A[h(k)]}!
if t ≠ null then "          {k was found}!

!n = n - 1 !!
return t!
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Linear Probing"
•  Open addressing: the 

colliding item is placed in a 
different cell of the table"

•  Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available table cell!

•  Each table cell inspected is 
referred to as a “probe”!

•  Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes!

•  Example:!
–  h(x) = x mod 13 
–  Insert keys 18, 41, 

22, 44, 59, 32, 31, 
73, in this order!

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 
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Search with Linear Probing"
•  Consider a hash table A that 

uses linear probing!
•  get(k) 

–  We start at cell h(k) !
–  We probe consecutive 

locations until one of the 
following occurs!

•  An item with key k is 
found, or!

•  An empty cell is found, or!
•  N cells have been 

unsuccessfully probed !

Algorithm get(k)   
 i ← h(k) 
 p ← 0 
 repeat 
  c ← A[i] 
  if c = ∅	

	
 	
 	
return null 
   else if c.key () = k 
   return c.element() 
  else 
   i ← (i + 1) mod N 

  p ← p + 1 
until   p = N 
	
return null 
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Updates with Linear Probing"
•  To handle insertions and 

deletions, we introduce 
a special object, called 
AVAILABLE, which 
replaces deleted 
elements!

•  remove(k)!
–  We search for an entry 

with key k !
–  If such an entry (k, o) is 

found, we replace it with 
the special item 
AVAILABLE and we 
return element o!

–  Else, we return null 

•  put(k, o)!
–  We throw an exception 

if the table is full!
–  We start at cell h(k) !
–  We probe consecutive 

cells until one of the 
following occurs!

•  A cell i is found that is 
either empty or stores 
AVAILABLE, or!

•  N cells have been 
unsuccessfully probed!

–  We store entry (k, o) in 
cell i 
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Double Hashing"
•  Double hashing uses a 

secondary hash function d(k) 
and handles collisions by 
placing an item in the first 
available cell of the series 

 (i + jd(k)) mod N 
 for j = 0,  1, … , N - 1 

•  The secondary hash function 
d(k) cannot have zero values!

•  The table size N must be a 
prime to allow probing of all 
the cells!

•  Common choice of 
compression function for the 
secondary hash function: !!
d2(k) = q – (k mod q) 

! !where!
–  q < N 
–  q is a prime!

•  The possible values for d2(k) 
are  

! 1, 2, … , q 
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•  Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing!
–  N = 13 !
–  h(k) = k mod 13 !
–  d(k) = 7 - k mod 7  

•  Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order!

Example of Double Hashing"

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

31   41     18 32 59 73 22 44   
0 1 2 3 4 5 6 7 8 9 10 11 12 

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of 
Hashing"

•  In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time!

•  The worst case occurs when 
all the keys inserted into the 
map collide!

•  The load factor α = n/N 
affects the performance of a 
hash table!

•  Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is 

!1 / (1 - α) 	


•  The expected running time 
of all the dictionary ADT 
operations in a hash table is 
O(1) !

•  In practice, hashing is very 
fast provided the load factor 
is not close to 100%!

•  Applications of hash tables:!
–  small databases!
–  compilers!
–  browser caches!

•  Open addressing is not faster 
than chaining method if space is 
an issue. 



Example"

•  Counting Word Frequencies.!

Phạm Bảo Sơn - DSA 
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Dictionary ADT "
•  The dictionary ADT models a 

searchable collection of key-
element entries: ordered and 
unordered.!

•  The main operations of a dictionary 
are searching, inserting, and 
deleting items!

•  Multiple items with the same key 
are allowed!

•  Applications:!
–  word-definition pairs!
–  credit card authorizations!
–  DNS mapping of host names (e.g., 

datastructures.net) to internet IP 
addresses (e.g., 128.148.34.101)!

•  Dictionary ADT methods:!
–  find(k): if the dictionary has 

an entry with key k, returns 
it, else, returns null !

–  findAll(k): returns an iterator 
of all entries with key k!

–  insert(k, o): inserts and 
returns the entry (k, o) !

–  remove(e): remove the entry 
e from the dictionary!

–  entries(): returns an iterator 
of the entries in the 
dictionary!

–  size(), isEmpty()!
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Example"
Operation ! !Output! !Dictionary !!
insert(5,A) ! !(5,A) ! !(5,A) !!
insert(7,B) ! !(7,B) ! !(5,A),(7,B) !!
insert(2,C) ! !(2,C) ! !(5,A),(7,B),(2,C)!!
insert(8,D) ! !(8,D) ! !(5,A),(7,B),(2,C),(8,D)!
insert(2,E) ! !(2,E) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
find(7) ! ! !(7,B) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
find(4) ! ! !null " "(5,A),(7,B),(2,C),(8,D),(2,E)!
find(2) ! ! !(2,C) ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
findAll(2) ! !(2,C),(2,E) !(5,A),(7,B),(2,C),(8,D),(2,E)!
size() ! ! !5 ! !(5,A),(7,B),(2,C),(8,D),(2,E)!
remove(find(5)) ! !(5,A) ! !(7,B),(2,C),(8,D),(2,E)!
find(5) ! ! !null " "(7,B),(2,C),(8,D),(2,E)!
!
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A List-Based Dictionary"
•  A log file or audit trail is a dictionary implemented by means of 

an unsorted sequence!
–  We store the items of the dictionary in a sequence (based on a 

doubly-linked list or array), in arbitrary order!
•  Performance:!

–  insert takes O(1) time since we can insert the new item at the 
beginning or at the end of the sequence!

–  find and remove take O(n) time since in the worst case (the item is 
not found) we traverse the entire sequence to look for an item with 
the given key!

•  The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)!
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The findAll(k) Algorithm"
Algorithm findAll(k): ! !!
Input: A key k ! !!
Output: An iterator of entries with key equal to k !

!!
Create an initially-empty list L ! !!
B = D.entries() ! !!
while B.hasNext() do " !!
!e = B.next() ! !!
"if e.key() = k  then " !!
! !L.insertLast(e) ! !!

return L.elements()!
!
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The insert and remove 
Methods"

Algorithm insert(k,v): ! !!
Input: A key k and value v ! !!
Output: The entry (k,v) added to D ! !!
Create a new entry e = (k,v) !!
S.insertLast(e) !{S is unordered}!
return e!

!!
Algorithm remove(e): ! !!
Input: An entry e ! !!
Output: The removed entry e or null if e was not in D !!
{We don’t assume here that e stores its location in S}!
B = S.positions() ! !!
while B.hasNext() do " !!

!p = B.next() ! !!
"if p.element() = e then " !!
! !S.remove(p) ! !!
" "return e ! !!

return null "{there is no entry e in D}!
!
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Hash Table Implementation"

•  Unordered dictionaries.!
•  We can also create a hash-table 

dictionary implementation.!
•  If we use separate chaining to handle 

collisions, then each operation can be 
delegated to a list-based dictionary 
stored at each hash table cell.!
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Binary Search"
•  Ordered dictionaries.!
•  Binary search performs operation find(k) on a dictionary implemented by 

means of an array-based sequence, sorted by key!
–  similar to the high-low game!
–  at each step, the number of candidate items is halved!
–  terminates after a logarithmic number of steps!

•  Example: find(7)!

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

0 

0 

0 

0 

m l h 

m l h 

m l h 

l=m =h 
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Search Table"
•  A search table is a dictionary implemented by means of a sorted 

array!
–  We store the items of the dictionary in an array-based sequence, 

sorted by key!
–  We use an external comparator for the keys!

•  Performance:!
–  find takes O(log n) time, using binary search!
–  insert takes O(n) time since in the worst case we have to shift n/2 

items to make room for the new item!
–  remove takes O(n) time since in the worst case we have to shift n/2 

items to compact the items after the removal!
•  A search table is effective only for dictionaries of small size or 

for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)!



Skip Lists"

+∞ -∞ 

S0 

S1 

S2 

S3 

+∞ -∞ 10 36 23 15 

+∞ -∞ 15 

+∞ -∞ 23 15 
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What is a Skip List"
•  A skip list for a set S of distinct (key, element) items is a series of 

lists S0, S1 , … , Sh such that!
–  Each list Si contains the special keys +∞ and -∞ !
–  List S0 contains the keys of S in nondecreasing order  
–  Each list is a subsequence of the previous one, i.e., 

! ! !S0 ⊆ S1 ⊆  … ⊆ Sh 
–  List Sh contains only the two special keys!

•  We show how to use a skip list to implement the dictionary ADT!

56 64 78 +∞ 31 34 44 -∞ 12 23 26 

+∞ -∞ 

+∞ 31 -∞ 
64 +∞ 31 34 -∞ 23 

S0 

S1 

S2 

S3 
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Search"
•  We search for a key x in a a skip list as follows:!

–  We start at the first position of the top list !
–  At the current position p, we compare x with y ← key(next(p)) 

  x = y: we return element(next(p)) 
  x > y: we “scan forward” !
  x < y: we “drop down”!

–  If we try to drop down past the bottom list, we return null 
•  Example: search for 78!

+∞ -∞ 

S0 

S1 

S2 

S3 

+∞ 31 -∞ 
64 +∞ 31 34 -∞ 23 

56 64 78 +∞ 31 34 44 -∞ 12 23 26 
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Randomized Algorithms"
•  A randomized algorithm 

performs coin tosses (i.e., 
uses random bits) to control 
its execution!

•  It contains statements of the 
type!

 b ← random() 
 if  b = 0 
  do A … 
 else { b = 1} 
  do  B …  

•  Its running time depends on 
the outcomes of the coin 
tosses!

•  We analyze the expected 
running time of a randomized 
algorithm under the following 
assumptions!

–  the coins are unbiased, and !
–  the coin tosses are independent!

•  The worst-case running time of 
a randomized algorithm is often 
large but has very low 
probability (e.g., it occurs when 
all the coin tosses give 
“heads”)!

•  We use a randomized algorithm 
to insert items into a skip list!
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•  To insert an entry (x, o) into a skip list, we use a randomized 
algorithm:!
–  We repeatedly toss a coin until we get tails, and we denote with i 

the number of times the coin came up heads!
–  If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each 

containing only the two special keys!
–  We search for x in the skip list and find the positions p0,  p1 , …, pi of 

the items with largest key less than x in each list S0, S1, … , Si!
–  For j ← 0, …, i, we insert item (x, o) into list Sj after position pj 

•  Example: insert key 15, with i = 2 

Insertion"

+∞ -∞ 10 36 

+∞ -∞ 

23 

23 +∞ -∞ 
S0 

S1 

S2 

+∞ -∞ 

S0 

S1 

S2 

S3 

+∞ -∞ 10 36 23 15 

+∞ -∞ 15 

+∞ -∞ 23 15 
p0 

p1 

p2 
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Deletion"
•  To remove an entry with key x from a skip list, we proceed as 

follows:!
–  We search for x in the skip list and find the positions p0,  p1 , …, pi of 

the items with key x, where position pj is in list Sj 

–  We remove positions p0,  p1 , …, pi from the lists S0, S1, … , Si!
–  We remove all but one list containing only the two special keys!

•  Example: remove key 34!

-∞ +∞ 45 12 

-∞ +∞ 

23 

23 -∞ +∞ 

S0 

S1 

S2 

-∞ +∞ 

S0 

S1 

S2 

S3 

-∞ +∞ 45 12 23 34 

-∞ +∞ 34 

-∞ +∞ 23 34 
p0 

p1 

p2 



Phạm Bảo Sơn - DSA 

Implementation"
•  We can implement a skip list 

with  quad-nodes!
•  A quad-node stores:!

–  entry!
–  link to the node prev!
–  link to the node next!
–  link to the node below!
–  link to the node above!

•  Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them  !

x 

quad-node 
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Space Usage"
•  The space used by a skip list 

depends on the random bits 
used by each invocation of the 
insertion algorithm!

•  We use the following two basic 
probabilistic facts:!
Fact 1: The probability of getting i 

consecutive heads when 
flipping a coin is 1/2i 

Fact 2: If each of n entries is 
present in a set with probability 
p, the expected size of the set 
is np 

•  Consider a skip list with n 
entries!
–  By Fact 1, we insert an entry 

in list Si with probability 1/2i!

–  By Fact 2, the expected size 
of list Si is n/2i !

•  The expected number of 
nodes used by the skip list is!

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

! Thus, the expected space 
usage of a skip list with n 
items is O(n) 
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Height"
•  The running time of the 

search an insertion 
algorithms is affected by the 
height h of the skip list!

•  We show that with high 
probability, a skip list with n 
items has height O(log n) 

•  We use the following 
additional probabilistic fact:!
Fact 3: If each of n events has 

probability p, the probability 
that at least one event 
occurs is at most np 

•  Consider a skip list with n 
entires!
–  By Fact 1, we insert an entry 

in list Si with probability 1/2i!

–  By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i!

•  By picking i = 3log n, we have 
that the probability that S3log n 
has at least one entry is 
at most 

! n/23log n = n/n3 = 1/n2 

•  Thus a skip list with n entries 
has height at most 3log n with 
probability at least 1 -  1/n2 
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Search and Update Time"
•  The search time in a skip list 

is proportional to!
–  the number of drop-down 

steps, plus!
–  the number of scan-forward 

steps!
•  The drop-down steps are 

bounded by the height of the 
skip list and thus are O(log n) 
with high probability!

•  To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:!
Fact 4: The expected number of 

coin tosses required in order 
to get tails is 2!

•  When we scan forward in a list, 
the destination key does not 
belong to a higher list!
–  A scan-forward step is 

associated with a former coin 
toss that gave tails 

•  By Fact 4, in each list the 
expected number of scan-
forward steps is 2!

•  Thus, the expected number of 
scan-forward steps is  O(log n)!

•  We conclude that a search in a 
skip list takes O(log n) 
expected time!

•  The analysis of insertion and 
deletion gives similar results!
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Summary"

•  A skip list is a data 
structure for dictionaries 
that uses a randomized 
insertion algorithm!

•  In a skip list with n 
entries !
–  The expected space 

used is O(n) 
–  The expected search, 

insertion and deletion 
time is O(log n) 

•  Using a more complex 
probabilistic analysis, 
one can show that 
these performance 
bounds also hold with 
high probability!

•  Skip lists are fast and 
simple to implement in 
practice!


