
Data Structures and
Algorithms  

"

Sorting!

Outline"

•  Merge Sort!
•  Quick Sort!
•  Sorting Lower Bound!
•  Bucket-Sort!
•  Radix Sort!

Phạm Bảo Sơn DSA 2

Merge Sort"

7 2 ⏐ 9 4 → 2 4 7 9

7 ⏐ 2 → 2 7 9 ⏐ 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Phạm Bảo Sơn DSA 4

Divide-and-Conquer "
•  Divide-and conquer is a

general algorithm design
paradigm:!
–  Divide: divide the input data

S in two disjoint subsets S1
and S2!

–  Recur: solve the
subproblems associated
with S1 and S2!

–  Conquer: combine the
solutions for S1 and S2 into a
solution for S

•  The base case for the
recursion are subproblems
of size 0 or 1!

•  Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm !

•  Like heap-sort!
–  It uses a comparator!
–  It has O(n log n) running

time!
•  Unlike heap-sort!

–  It does not use an auxiliary
priority queue!

–  It accesses data in a
sequential manner
(suitable to sort data on a
disk)!

Phạm Bảo Sơn DSA 5

Merge-Sort"
•  Merge-sort on an input

sequence S with n
elements consists of
three steps:!
–  Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each!

–  Recur: recursively sort S1
and S2

–  Conquer: merge S1 and
S2 into a unique sorted
sequence!

Algorithm mergeSort(S, C)
 Input sequence S with n
 elements,

comparator C
 Output sequence S sorted

 according to C
if S.size() > 1

 (S1, S2) ← partition(S, n/2)
 mergeSort(S1, C)
 mergeSort(S2, C)
 S ← merge(S1, S2)

Phạm Bảo Sơn DSA 6

Merging Two Sorted
Sequences"

•  The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B!

•  Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time!

Algorithm merge(A, B)
 Input sequences A and B with
 n/2 elements each
 Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()

 if A.first().element() < B.first().element()
 S.insertLast(A.remove(A.first()))
 else
 S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
 S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
 S.insertLast(B.remove(B.first()))

return S

Phạm Bảo Sơn DSA 7

Merge-Sort Tree"
•  An execution of merge-sort is depicted by a binary tree!

–  each node represents a recursive call of merge-sort and stores!
•  unsorted sequence before the execution and its partition!
•  sorted sequence at the end of the execution!

–  the root is the initial call !
–  the leaves are calls on subsequences of size 0 or 1!

7 2 ⏐ 9 4 → 2 4 7 9

7 ⏐ 2 → 2 7 9 ⏐ 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Phạm Bảo Sơn DSA 8

Execution Example"
•  Partition!

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 9

Execution Example (cont.)"
•  Recursive call, partition!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 10

Execution Example (cont.)"
•  Recursive call, partition!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 11

Execution Example (cont.)"
•  Recursive call, base case!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 12

Execution Example (cont.)"
•  Recursive call, base case!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 13

Execution Example (cont.)"
•  Merge!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 14

Execution Example (cont.)"
•  Recursive call, …, base case, merge!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

Phạm Bảo Sơn DSA 15

Execution Example (cont.)"
•  Merge!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 16

Execution Example (cont.)"
•  Recursive call, …, merge, merge!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 17

Execution Example (cont.)"
•  Merge!

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA 18

Analysis of Merge-Sort"
•  The height h of the merge-sort tree is O(log n) !

–  at each recursive call we divide in half the sequence,
•  The overall amount or work done at the nodes of depth i is O(n) !

–  we partition and merge 2i sequences of size n/2i !
–  we make 2i+1 recursive calls!

•  Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

Phạm Bảo Sơn DSA 19

Summary of Sorting Algorithms"
Algorithm Time Notes

selection-sort O(n2)
! slow
! in-place
! for small data sets (< 1K)

insertion-sort O(n2)
! slow
! in-place
! for small data sets (< 1K)

heap-sort O(n log n)
! fast
! in-place
! for large data sets (1K — 1M)

merge-sort O(n log n)
! fast
! sequential data access
! for huge data sets (> 1M)

Phạm Bảo Sơn DSA 20

Nonrecursive Merge-Sort"
public static void mergeSort(Object[] orig, Comparator c) { //

nonrecursive!
 Object[] in = new Object[orig.length]; // make a new temporary array!
 System.arraycopy(orig,0,in,0,in.length); // copy the input!
 Object[] out = new Object[in.length]; // output array!
 Object[] temp; // temp array reference used for swapping!
 int n = in.length;!
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs !
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs!
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j!
 temp = in; in = out; out = temp; // swap arrays for next iteration!
 }!
 // the "in" array contains the sorted array, so re-copy it!
 System.arraycopy(in,0,orig,0,in.length);!
 }!
 !

Phạm Bảo Sơn DSA 21

Nonrecursive Merge-Sort"
public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive!
 Object[] in = new Object[orig.length]; // make a new temporary array!
 System.arraycopy(orig,0,in,0,in.length); // copy the input!
 Object[] out = new Object[in.length]; // output array!
 Object[] temp; // temp array reference used for swapping!
 int n = in.length;!
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs !
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs!
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j!
 temp = in; in = out; out = temp; // swap arrays for next iteration!
 }!
 // the "in" array contains the sorted array, so re-copy it!
 System.arraycopy(in,0,orig,0,in.length);!
 }!
 protected static void merge(Object[] in, Object[] out, Comparator c, int start, !
 int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]!
 int x = start; // index into run #1!
 int end1 = Math.min(start+inc, in.length); // boundary for run #1!
 int end2 = Math.min(start+2*inc, in.length); // boundary for run #2!
 int y = start+inc; // index into run #2 (could be beyond array boundary)!
 int z = start; // index into the out array!
 while ((x < end1) && (y < end2)) !
 if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];!
 else out[z++] = in[y++];!
 if (x < end1) // first run didn't finish!
 System.arraycopy(in, x, out, z, end1 - x);!
 else if (y < end2) // second run didn't finish!
 System.arraycopy(in, y, out, z, end2 - y);!
 }!

merge two runs
in the in array
to the out array

merge runs of
length 2, then
4, then 8, and
so on

Quick-Sort"

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Phạm Bảo Sơn DSA 23

Quick-Sort"
•  Quick-sort is a

randomized sorting
algorithm based on the
divide-and-conquer
paradigm:!
–  Divide: pick a random

element x (called pivot) and
partition S into !

•  L elements less than x
•  E elements equal x!
•  G elements greater than x!

–  Recur: sort L and G!
–  Conquer: join L, E and G

x

x

L G E

x

Phạm Bảo Sơn DSA 24

Partition"
•  We partition an input

sequence as follows:!
–  We remove, in turn, each

element y from S and !
–  We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

•  Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time!

•  Thus, the partition step of
quick-sort takes O(n) time!

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

 y ← S.remove(S.first())
 if y < x
 L.insertLast(y)
 else if y = x
 E.insertLast(y)
 else { y > x }
 G.insertLast(y)

return L, E, G

Phạm Bảo Sơn DSA 25

Quick-Sort Tree"
•  An execution of quick-sort is depicted by a binary tree!

–  Each node represents a recursive call of quick-sort and stores!
•  Unsorted sequence before the execution and its pivot!
•  Sorted sequence at the end of the execution!

–  The root is the initial call !
–  The leaves are calls on subsequences of size 0 or 1!

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Phạm Bảo Sơn DSA 26

Execution Example"
•  Pivot selection!

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 9 4 → 4 9

9 → 9 4 → 4

Phạm Bảo Sơn DSA 27

Execution Example (cont.)"
•  Partition, recursive call, pivot selection!

 2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 2 → 2

Phạm Bảo Sơn DSA 28

Execution Example (cont.)"
•  Partition, recursive call, base case!

 2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

Phạm Bảo Sơn DSA 29

Execution Example (cont.)"
•  Recursive call, …, base case, join!

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

Phạm Bảo Sơn DSA 30

Execution Example (cont.)"
•  Recursive call, pivot selection!

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Phạm Bảo Sơn DSA 31

Execution Example (cont.)"
•  Partition, …, recursive call, base case!

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Phạm Bảo Sơn DSA 32

Execution Example (cont.)"
•  Join, join!

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Phạm Bảo Sơn DSA 33

Worst-case Running Time"
•  The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element!
•  One of L and G has size n - 1 and the other has size 0
•  The running time is proportional to the sum!

n + (n - 1) + … + 2 + 1!
•  Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

Phạm Bảo Sơn DSA 34

Expected Running Time"
•  Consider a recursive call of quick-sort on a sequence of size s

–  Good call: the sizes of L and G are each less than 3s/4
–  Bad call: one of L and G has size greater than 3s/4

•  A call is good with probability 1/2
–  1/2 of the possible pivots cause good calls:!

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6 1

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

Phạm Bảo Sơn DSA 35

Expected Running Time, Part 2"
•  Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
•  For a node of with input size s, the input sizes of its children are

each at most s3/4 or s/(4/3).

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

! Therefore, we have
n  For a node of depth 2log4/3n, the

expected input size is one
n  The expected height of the

quick-sort tree is O(log n)
! The amount or work done at the

nodes of the same depth is O(n)
! Thus, the expected running time

of quick-sort is O(n log n)

Phạm Bảo Sơn DSA 36

In-Place Quick-Sort"
•  Quick-sort can be implemented

to run in-place!
•  In the partition step, we use

replace operations to rearrange
the elements of the input
sequence such that!
–  the elements less than the

pivot have rank less than h
–  the elements equal to the pivot

have rank between h and k!
–  the elements greater than the

pivot have rank greater than k!
•  The recursive calls consider!

–  elements with rank less than h
–  elements with rank greater

than k

Algorithm inPlaceQuickSort(S, l, r)
 Input sequence S, ranks l and r
 Output sequence S with the
 elements of rank between l and r
 rearranged in increasing order
 if l ≥ r

 return
i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h - 1)
inPlaceQuickSort(S, k + 1, r)

Phạm Bảo Sơn DSA 37

In-Place Partitioning"
•  Perform the partition using two indices to split S into L and

E U G (a similar method can split E U G into E and G).!

•  Repeat until j and k cross:!
–  Scan j to the right until finding an element > x.!
–  Scan k to the left until finding an element < x.!
–  Swap elements at indices j and k!

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k
(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

Phạm Bảo Sơn DSA 38

Summary of Sorting
Algorithms"

Algorithm Time Notes

selection-sort O(n2) ! in-place
! slow (good for small inputs)

insertion-sort O(n2) ! in-place
! slow (good for small inputs)

quick-sort O(n log n)
expected

! in-place, randomized
! fastest (good for large inputs)

heap-sort O(n log n) ! in-place
! fast (good for large inputs)

merge-sort O(n log n) ! sequential data access
! fast (good for huge inputs)

Phạm Bảo Sơn DSA 39

Java Implementation"
public static void quickSort (Object[] S, Comparator c) {!
 if (S.length < 2) return; // the array is already sorted in this case!
 quickSortStep(S, c, 0, S.length-1); // recursive sort method!
 }!
 private static void quickSortStep (Object[] S, Comparator c,!
 int leftBound, int rightBound) {!
 if (leftBound >= rightBound) return; // the indices have crossed!
 Object temp; // temp object used for swapping!
 Object pivot = S[rightBound];!
 int leftIndex = leftBound; // will scan rightward!
 int rightIndex = rightBound-1; // will scan leftward!
 while (leftIndex <= rightIndex) { // scan right until larger than the pivot!
 while ((leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0))!
 leftIndex++; !
 // scan leftward to find an element smaller than the pivot!
 while ((rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))!
 rightIndex--;!
 if (leftIndex < rightIndex) { // both elements were found!
 temp = S[rightIndex]; !

!S[rightIndex] = S[leftIndex]; // swap these elements!
!S[leftIndex] = temp;!

 }!
 } // the loop continues until the indices cross!
 temp = S[rightBound]; // swap pivot with the element at leftIndex!
 S[rightBound] = S[leftIndex]; !
 S[leftIndex] = temp; // the pivot is now at leftIndex, so recurse!
 quickSortStep(S, c, leftBound, leftIndex-1);!
 quickSortStep(S, c, leftIndex+1, rightBound);!
 }!

only works
for distinct
elements

Sorting Lower Bound"

Phạm Bảo Sơn DSA 41

Comparison-Based
Sorting"

•  Many sorting algorithms are comparison based.!
–  They sort by making comparisons between pairs of objects!
–  Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,

merge-sort, quick-sort, ...!
•  Let us therefore derive a lower bound on the running

time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.!

Is xi < xj?

yes

no

Phạm Bảo Sơn DSA 42

Counting Comparisons"
•  Let us just count comparisons then.!
•  Each possible run of the algorithm

corresponds to a root-to-leaf path in a
decision tree! xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

Phạm Bảo Sơn DSA 43

Decision Tree Height"
•  The height of this decision tree is a lower bound on the running time!
•  Every possible input permutation must lead to a separate leaf output. !

–  If not, some input …4…5… would have same output ordering as …
5…4…, which would be wrong.!

•  Since there are n!=1*2*…*n leaves, the height is at least log (n!)!
minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!

Phạm Bảo Sơn DSA 44

The Lower Bound"
•  Any comparison-based sorting algorithms takes at

least log (n!) time!
•  Therefore, any such algorithm takes time at least!

•  That is, any comparison-based sorting algorithm must
run in Ω(n log n) time.!

).2/(log)2/(
2

log)!(log
2

nnnn
n

=⎟
⎠

⎞
⎜
⎝

⎛≥

Bucket-Sort and Radix-Sort"

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

Phạm Bảo Sơn DSA 46

Bucket-Sort"
•  Let be S be a sequence of n

(key, element) entries with keys
in the range [0, N - 1]

•  Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)!
Phase 1: Empty sequence S by

moving each entry (k, o) into its
bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S!

•  Analysis:!
–  Phase 1 takes O(n) time!
–  Phase 2 takes O(n + N) time!

!Bucket-sort takes O(n + N) time !

Algorithm bucketSort(S, N)
 Input sequence S of (key, element)
 items with keys in the range
 [0, N - 1]
 Output sequence S sorted by
 increasing keys
 B ← array of N empty sequences
while ¬S.isEmpty()

 f ← S.first()
 (k, o) ← S.remove(f)
 B[k].insertLast((k, o))

for i ← 0 to N - 1
 while ¬B[i].isEmpty()
 f ← B[i].first()
 (k, o) ← B[i].remove(f)
 S.insertLast((k, o))

Phạm Bảo Sơn DSA 47

Example"
•  Key range [0, 9]	

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

Phạm Bảo Sơn DSA 48

Properties and Extensions"
•  Key-type Property!

–  The keys are used as
indices into an array
and cannot be arbitrary
objects!

–  No external comparator!
•  Stable Sort Property!

–  The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm!

Extensions!
–  Integer keys in the range [a, b]!

•  Put entry (k, o) into bucket 
B[k - a] !

–  String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)!

•  Sort D and compute the rank
r(k) of each string k of D in the
sorted sequence !

•  Put entry (k, o) into bucket  
B[r(k)]!

Phạm Bảo Sơn DSA 49

Lexicographic Order"
•  A d-tuple is a sequence of d keys (k1, k2, …, kd), where

key ki is said to be the i-th dimension of the tuple
•  Example:!

–  The Cartesian coordinates of a point in space are a 3-tuple!
•  The lexicographic order of two d-tuples is recursively

defined as follows!
(x1, x2, …, xd) < (y1, y2, …, yd)

⇔
x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

 I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.!

Phạm Bảo Sơn DSA 50

Lexicographic-Sort"
•  Let Ci be the comparator

that compares two tuples by
their i-th dimension!

•  Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C!

•  Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension!

•  Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
 Input sequence S of d-tuples
 Output sequence S sorted in
 lexicographic order

 for i ← d downto 1

 stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Phạm Bảo Sơn DSA 51

Radix-Sort"
•  Radix-sort is a

specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension!

•  Radix-sort is applicable
to tuples where the keys
in each dimension i are
integers in the range [0,
N - 1]

•  Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)
 Input sequence S of d-tuples such
 that (0, …, 0) ≤ (x1, …, xd) and
 (x1, …, xd) ≤ (N - 1, …, N - 1)
 for each tuple (x1, …, xd) in S
 Output sequence S sorted in
 lexicographic order
 for i ← d downto 1

 bucketSort(S, N)

Phạm Bảo Sơn DSA 52

Radix-Sort for
Binary Numbers"
•  Consider a sequence of n

b-bit integers  
!x = xb - 1 … x1x0!

•  We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

•  This application of the
radix-sort algorithm runs in
O(bn) time !

•  For example, we can sort a
sequence of 32-bit integers
in linear time!

Algorithm binaryRadixSort(S)
 Input sequence S of b-bit
 integers
 Output sequence S sorted
 replace each element x
 of S with the item (0, x)
 for i ← 0 to b - 1
 replace the key k of
 each item (k, x) of S
 with bit xi of x
 bucketSort(S, 2)

Phạm Bảo Sơn DSA 53

Example"
•  Sorting a sequence of 4-bit integers!

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

