
Data Structures and 
Algorithms  

"

Sorting!



Outline"

•  Merge Sort!
•  Quick Sort!
•  Sorting Lower Bound!
•  Bucket-Sort!
•  Radix Sort!
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Merge Sort"

7  2 ⏐ 9  4  →  2  4  7  9 

7 ⏐ 2  →  2  7 9 ⏐ 4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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Divide-and-Conquer "
•  Divide-and conquer is a 

general algorithm design 
paradigm:!
–  Divide: divide the input data 

S in two disjoint subsets S1 
and S2!

–  Recur: solve the 
subproblems associated 
with S1 and S2!

–  Conquer: combine the 
solutions for S1 and S2 into a 
solution for S 

•  The base case for the 
recursion are subproblems 
of size 0 or 1!

•  Merge-sort is a sorting 
algorithm based on the 
divide-and-conquer 
paradigm !

•  Like heap-sort!
–  It uses a comparator!
–  It has O(n log n) running 

time!
•  Unlike heap-sort!

–  It does not use an auxiliary 
priority queue!

–  It accesses data in a 
sequential manner 
(suitable to sort data on a 
disk)!
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Merge-Sort"
•  Merge-sort on an input 

sequence S with n 
elements consists of 
three steps:!
–  Divide: partition S into 

two sequences S1 and S2 
of about n/2 elements 
each!

–  Recur: recursively sort S1 
and S2 

–  Conquer: merge S1 and 
S2 into a unique sorted 
sequence!

Algorithm mergeSort(S, C) 
 Input sequence S with n 
     elements, 

comparator C  
 Output sequence S sorted 

 according to C 
if S.size() > 1 

 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1, C) 
 mergeSort(S2, C) 
 S ← merge(S1, S2) 



Phạm Bảo Sơn DSA  6 

Merging Two Sorted 
Sequences"

•  The conquer step of 
merge-sort consists 
of merging two 
sorted sequences A 
and B into a sorted 
sequence S 
containing the union 
of the elements of A 
and B!

•  Merging two sorted 
sequences, each 
with n/2 elements 
and implemented by 
means of a doubly 
linked list, takes O(n) 
time!

Algorithm merge(A, B) 
 Input sequences A and B with 
   n/2 elements each  
 Output sorted sequence of A ∪ B 

 

S ← empty sequence 
while ¬A.isEmpty()  ∧ ¬B.isEmpty() 

 if A.first().element() < B.first().element() 
  S.insertLast(A.remove(A.first())) 
 else 
  S.insertLast(B.remove(B.first())) 

while ¬A.isEmpty() 
 S.insertLast(A.remove(A.first())) 

while ¬B.isEmpty() 
 S.insertLast(B.remove(B.first())) 

return S 
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Merge-Sort Tree"
•  An execution of merge-sort is depicted by a binary tree!

–  each node represents a recursive call of merge-sort and stores!
•  unsorted sequence before the execution and its partition!
•  sorted sequence at the end of the execution!

–  the root is the initial call !
–  the leaves are calls on subsequences of size 0 or 1!

7  2 ⏐ 9  4  →  2  4  7  9 

7 ⏐ 2  →  2  7 9 ⏐ 4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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Execution Example"
•  Partition!

7  2  9  4  →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Recursive call, partition!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Recursive call, partition!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Recursive call, base case!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Recursive call, base case!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Merge!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 



Phạm Bảo Sơn DSA  14 

Execution Example (cont.)"
•  Recursive call, …, base case, merge!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 

9 → 9 4 → 4 
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Execution Example (cont.)"
•  Merge!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Recursive call, …, merge, merge!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Execution Example (cont.)"
•  Merge!

 7  2 ⏐ 9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7 ⏐ 2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4 ⏐ 3  8  6  1  →  1  2  3  4  6  7  8  9 
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Analysis of Merge-Sort"
•  The height h of the merge-sort tree is O(log n) !

–  at each recursive call we divide in half the sequence,  
•  The overall amount or work done at the nodes of depth i is O(n) !

–  we partition and merge 2i sequences of size n/2i !
–  we make 2i+1 recursive calls!

•  Thus, the total running time of merge-sort is O(n log n) 

depth #seqs size 

0 1 n 

1 2 n/2 

i 2i n/2i 

… … … 
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Summary of Sorting Algorithms"
Algorithm Time Notes 

selection-sort O(n2) 
!  slow 
!  in-place 
!  for small data sets (< 1K) 

insertion-sort O(n2) 
!  slow 
!  in-place 
!  for small data sets (< 1K) 

heap-sort O(n log n) 
!  fast 
!  in-place 
!  for large data sets (1K — 1M) 

merge-sort O(n log n) 
!  fast 
!  sequential data access 
!  for huge data sets (> 1M) 
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Nonrecursive Merge-Sort"
public static void mergeSort(Object[] orig, Comparator c) { // 

nonrecursive!
    Object[] in = new Object[orig.length]; // make a new temporary array!
    System.arraycopy(orig,0,in,0,in.length); // copy the input!
    Object[] out = new Object[in.length]; // output array!
    Object[] temp; // temp array reference used for swapping!
    int n = in.length;!
    for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs !
      for (int j=0; j < n; j+=2*i)  // each iteration merges two length-i pairs!
        merge(in,out,c,j,i); // merge from in to out two length-i runs at j!
      temp = in; in = out; out = temp; // swap arrays for next iteration!
    }!
    // the "in" array contains the sorted array, so re-copy it!
    System.arraycopy(in,0,orig,0,in.length);!
  }!
  !



Phạm Bảo Sơn DSA  21 

Nonrecursive Merge-Sort"
public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive!
    Object[] in = new Object[orig.length]; // make a new temporary array!
    System.arraycopy(orig,0,in,0,in.length); // copy the input!
    Object[] out = new Object[in.length]; // output array!
    Object[] temp; // temp array reference used for swapping!
    int n = in.length;!
    for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs !
      for (int j=0; j < n; j+=2*i)  // each iteration merges two length-i pairs!
        merge(in,out,c,j,i); // merge from in to out two length-i runs at j!
      temp = in; in = out; out = temp; // swap arrays for next iteration!
    }!
    // the "in" array contains the sorted array, so re-copy it!
    System.arraycopy(in,0,orig,0,in.length);!
  }!
  protected static void merge(Object[] in, Object[] out, Comparator c, int start, !
      int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]!
    int x = start; // index into run #1!
    int end1 = Math.min(start+inc, in.length); // boundary for run #1!
    int end2 = Math.min(start+2*inc, in.length); // boundary for run #2!
    int y = start+inc; // index into run #2 (could be beyond array boundary)!
    int z = start; // index into the out array!
    while ((x < end1) && (y < end2)) !
      if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];!
      else out[z++] = in[y++];!
    if (x < end1) // first run didn't finish!
      System.arraycopy(in, x, out, z, end1 - x);!
    else if (y < end2) // second run didn't finish!
      System.arraycopy(in, y, out, z, end2 - y);!
  }!

merge two runs 
in the in array 
to the out array 

merge runs of 
length 2, then 
4, then 8, and 
so on 



Quick-Sort"

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Quick-Sort"
•  Quick-sort is a 

randomized sorting 
algorithm based on the 
divide-and-conquer 
paradigm:!
–  Divide: pick a random 

element x (called pivot) and 
partition S into !

•  L elements less than x 
•  E elements equal x!
•  G elements greater than x!

–  Recur: sort L and G!
–  Conquer: join L, E and G 

x 

x 

L G E 

x 
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Partition"
•  We partition an input 

sequence as follows:!
–  We remove, in turn, each 

element y from S and !
–  We insert y into L, E or G, 

depending on the result of 
the comparison with the 
pivot x 

•  Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time!

•  Thus, the partition step of 
quick-sort takes O(n) time!

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 
x ← S.remove(p)  
while ¬S.isEmpty() 

 y ← S.remove(S.first()) 
 if y < x 
  L.insertLast(y) 
 else if y = x 
   E.insertLast(y) 
 else { y > x } 
  G.insertLast(y) 

return L, E, G 
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Quick-Sort Tree"
•  An execution of quick-sort is depicted by a binary tree!

–  Each node represents a recursive call of quick-sort and stores!
•  Unsorted sequence before the execution and its pivot!
•  Sorted sequence at the end of the execution!

–  The root is the initial call !
–  The leaves are calls on subsequences of size 0 or 1!

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Execution Example"
•  Pivot selection!

7  2  9  4  →  2  4  7  9 

2 → 2 

7  2  9  4 3  7  6  1  →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 9  4  →  4  9 

9 → 9 4 → 4 
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Execution Example (cont.)"
•  Partition, recursive call, pivot selection!

 2  4  3  1 →  2  4  7  9 

9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4  3  7  6  1 →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 2 → 2 
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Execution Example (cont.)"
•  Partition, recursive call, base case!

  2  4  3  1 →→  2  4  7   

1 → 1 9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4 3  7  6  1 → →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 
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Execution Example (cont.)"
•  Recursive call, …, base case, join!

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 
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Execution Example (cont.)"
•  Recursive call, pivot selection!

7  9  7  1  →  1  3  8  6 

8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Execution Example (cont.)"
•  Partition, …, recursive call, base case!

7  9  7  1  →  1  3  8  6 

8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Execution Example (cont.)"
•  Join, join!

7  9  7   →  17  7  9 

8 → 8 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Worst-case Running Time"
•  The worst case for quick-sort occurs when the pivot is the unique 

minimum or maximum element!
•  One of L and G has size n - 1 and the other has size 0 
•  The running time is proportional to the sum!

n + (n - 1) + … + 2 + 1!
•  Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n - 1 

… … 

n - 1 1 
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Expected Running Time"
•  Consider a recursive call of quick-sort on a sequence of size s 

–  Good call: the sizes of L and G are each less than 3s/4 
–  Bad call: one of L and G has size greater than 3s/4 

•  A call is good with probability 1/2 
–  1/2 of the possible pivots cause good calls:!

7  9  7  1  →  1 

7  2  9  4 3  7  6  1 9 

2  4  3  1  7 2 9 4 3 7 6 1 

7  2  9  4 3  7  6  1 

Good call Bad call 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 
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Expected Running Time, Part 2"
•  Probabilistic Fact: The expected number of coin tosses required in 

order to get k heads is 2k 
•  For a node of with input size s, the input sizes of its children are 

each at most s3/4 or s/(4/3). 

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

! Therefore, we have 
n  For a node of depth 2log4/3n, the 

expected input size is one 
n  The expected height of the 

quick-sort tree is O(log n) 
! The amount or work done at the 

nodes of the same depth is O(n) 
! Thus, the expected running time 

of quick-sort is O(n log n) 
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In-Place Quick-Sort"
•  Quick-sort can be implemented 

to run in-place!
•  In the partition step, we use 

replace operations to rearrange 
the elements of the input 
sequence such that!
–  the elements less than the 

pivot have rank less than h 
–  the elements equal to the pivot 

have rank between h and k!
–  the elements greater than the 

pivot have rank greater than k!
•  The recursive calls consider!

–  elements with rank less than h 
–  elements with rank greater 

than k 

Algorithm inPlaceQuickSort(S, l, r) 
 Input sequence S, ranks l and r 
 Output sequence S with the 
  elements of rank between l and r 
  rearranged in increasing order 
  if l ≥ r 

  return 
i ← a random integer between l and r  
x ← S.elemAtRank(i)  
(h, k) ← inPlacePartition(x) 
inPlaceQuickSort(S, l, h - 1) 
inPlaceQuickSort(S, k + 1, r) 
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In-Place Partitioning"
•  Perform the partition using two indices to split S into L and 

E U G (a similar method can split E U G into E and G).!

•  Repeat until j and k cross:!
–  Scan j to the right until finding an element > x.!
–  Scan k to the left until finding an element < x.!
–  Swap elements at indices j and k!

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
(pivot = 6) 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
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Summary of Sorting 
Algorithms"

Algorithm Time Notes 

selection-sort O(n2) !  in-place 
!  slow (good for small inputs) 

insertion-sort O(n2) !  in-place 
!  slow (good for small inputs) 

quick-sort O(n log n) 
expected 

!  in-place, randomized 
!  fastest (good for large inputs) 

heap-sort O(n log n) !  in-place 
!  fast (good for large inputs) 

merge-sort O(n log n) !  sequential data access 
!  fast  (good for huge inputs) 
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Java Implementation"
public static void quickSort (Object[] S, Comparator c) {!
    if (S.length < 2) return; // the array is already sorted in this case!
    quickSortStep(S, c, 0, S.length-1); // recursive sort method!
  }!
 private static void quickSortStep (Object[] S, Comparator c,!
                              int leftBound, int rightBound ) {!
    if (leftBound >= rightBound) return; // the indices have crossed!
    Object temp;  // temp object used for swapping!
    Object pivot = S[rightBound];!
    int leftIndex = leftBound;     // will scan rightward!
    int rightIndex = rightBound-1; // will scan leftward!
    while (leftIndex <= rightIndex) { // scan right until larger than the pivot!
      while ( (leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0) )!
        leftIndex++; !
      // scan leftward to find an element smaller than the pivot!
      while ( (rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))!
        rightIndex--;!
      if (leftIndex < rightIndex) { // both elements were found!
        temp = S[rightIndex]; !

!S[rightIndex] = S[leftIndex]; // swap these elements!
!S[leftIndex] = temp;!

      }!
    } // the loop continues until the indices cross!
    temp = S[rightBound]; // swap pivot with the element at leftIndex!
    S[rightBound] = S[leftIndex]; !
    S[leftIndex] = temp; // the pivot is now at leftIndex, so recurse!
    quickSortStep(S, c, leftBound, leftIndex-1);!
    quickSortStep(S, c, leftIndex+1, rightBound);!
  }!

only works 
for distinct 
elements 



Sorting Lower Bound"
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Comparison-Based 
Sorting"

•  Many sorting algorithms are comparison based.!
–  They sort by making comparisons between pairs of objects!
–  Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, 

merge-sort, quick-sort, ...!
•  Let us therefore derive a lower bound on the running 

time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn.!

Is xi < xj? 

yes 

no 
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Counting Comparisons"
•  Let us just count comparisons then.!
•  Each possible run of the algorithm 

corresponds to a root-to-leaf path in a 
decision tree! xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?
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Decision Tree Height"
•  The height of this decision tree is a lower bound on the running time!
•  Every possible input permutation must lead to a separate leaf output.  !

–  If not, some input …4…5… would have same output ordering as …
5…4…, which would be wrong.!

•  Since there are n!=1*2*…*n leaves, the height is at least log (n!)!
minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!
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The Lower Bound"
•  Any comparison-based sorting algorithms takes at 

least log (n!) time!
•  Therefore, any such algorithm takes time at least!

•  That is, any comparison-based sorting algorithm must 
run in Ω(n log n) time.!
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Bucket-Sort and Radix-Sort"

0 1 2 3 4 5 6 7 8 9 
B 

1, c 7, d 7, g 3, b 3, a 7, e 
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Bucket-Sort"
•  Let be S be a sequence of n 

(key, element) entries with keys 
in the range [0, N - 1] 

•  Bucket-sort uses the keys as 
indices into an auxiliary array B 
of sequences (buckets)!
Phase 1: Empty sequence S by 

moving each entry (k, o) into its 
bucket B[k] 

Phase 2: For i = 0, …, N - 1, move 
the entries of bucket B[i] to the 
end of  sequence S!

•  Analysis:!
–  Phase 1 takes O(n) time!
–  Phase 2 takes O(n + N) time!

!Bucket-sort takes O(n + N) time !

Algorithm bucketSort(S, N) 
 Input sequence S of (key, element) 
  items with keys in the range 
  [0, N - 1] 
 Output sequence S sorted by 
  increasing keys 
 B ← array of N empty sequences 
while ¬S.isEmpty() 

 f ← S.first() 
 (k, o) ← S.remove(f) 
 B[k].insertLast((k, o)) 

for i ← 0 to N - 1 
 while ¬B[i].isEmpty() 
   f ← B[i].first() 
  (k, o) ← B[i].remove(f) 
  S.insertLast((k, o)) 
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Example"
•  Key range [0, 9]	



7, d 1, c 3, a 7, g 3, b 7, e 

1, c 3, a 3, b 7, d 7, g 7, e 

Phase 1 

Phase 2 
0 1 2 3 4 5 6 7 8 9 

B 

1, c 7, d 7, g 3, b 3, a 7, e 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 



Phạm Bảo Sơn DSA  48 

Properties and Extensions"
•  Key-type Property!

–  The keys are used as 
indices into an array 
and cannot be arbitrary 
objects!

–  No external comparator!
•  Stable Sort Property!

–  The relative order of 
any two items with the 
same key is preserved 
after the execution of 
the algorithm!

Extensions!
–  Integer keys in the range [a, b]!

•  Put entry (k, o) into bucket 
B[k - a] !

–  String keys from a set D of 
possible strings, where D has 
constant size (e.g., names of 
the 50 U.S. states)!

•  Sort D and compute the rank 
r(k) of each string k of D in the 
sorted sequence !

•  Put entry (k, o) into bucket  
B[r(k)]!
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Lexicographic Order"
•  A d-tuple is a sequence of d keys (k1, k2, …, kd), where 

key ki is said to be the i-th dimension of the tuple 
•  Example:!

–  The Cartesian coordinates of a point in space are a 3-tuple!
•  The lexicographic order of two d-tuples is recursively 

defined as follows!
(x1, x2, …, xd) < (y1, y2, …, yd) 

⇔ 
x1 < y1  ∨  x1 = y1 ∧ (x2, …, xd) < (y2, …, yd) 

 I.e., the tuples are compared by the first dimension, 
then by the second dimension, etc.!
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Lexicographic-Sort"
•  Let Ci be the comparator 

that compares two tuples by 
their i-th dimension!

•  Let stableSort(S, C) be a 
stable sorting algorithm that 
uses comparator C!

•  Lexicographic-sort sorts a 
sequence of d-tuples in 
lexicographic order by 
executing d times algorithm 
stableSort, one per 
dimension!

•  Lexicographic-sort runs in 
O(dT(n)) time, where T(n) is 
the running time of 
stableSort  

Algorithm lexicographicSort(S) 
 Input sequence S of  d-tuples 
 Output sequence S sorted in 
  lexicographic order 

 
 for i ← d downto 1 

 stableSort(S, Ci) 

Example: 
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4) 

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6) 

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6) 

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6) 
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Radix-Sort"
•  Radix-sort is a 

specialization of 
lexicographic-sort that 
uses bucket-sort as the 
stable sorting algorithm 
in each dimension!

•  Radix-sort is applicable 
to tuples where the keys 
in each dimension i are 
integers in the range [0, 
N - 1] 

•  Radix-sort runs in time 
O(d( n + N)) 

Algorithm radixSort(S, N) 
 Input sequence S of  d-tuples such 
  that (0, …, 0) ≤ (x1, …, xd) and 
  (x1, …, xd) ≤ (N - 1, …, N - 1) 
  for each tuple (x1, …, xd) in S  
 Output sequence S sorted in 
  lexicographic order 
 for i ← d downto 1 

 bucketSort(S, N) 
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Radix-Sort for 
Binary Numbers"
•  Consider a sequence of n 

b-bit integers  
!x = xb - 1 … x1x0!

•  We represent each element 
as a b-tuple of integers in 
the range [0, 1] and apply 
radix-sort with N = 2 

•  This application of the 
radix-sort algorithm runs in 
O(bn) time !

•  For example, we can sort a 
sequence of 32-bit integers 
in linear time!

Algorithm binaryRadixSort(S) 
 Input sequence S of b-bit 
  integers  
 Output sequence S sorted 
 replace each element x 
  of S with the item (0, x) 
 for i ← 0 to b - 1 
  replace the key k of  
   each item (k, x) of S
   with bit xi of x 
 bucketSort(S, 2) 
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Example"
•  Sorting a sequence of 4-bit integers!
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