Data Structures and
Algorithms

Sorting



Outline

- Merge Sort

* Quick Sort

- Sorting Lower Bound
 Bucket-Sort

- Radix Sort
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Divide-and-Conquer

- Divide-and conquer is a « Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

— Divide: divide the input data paradigm
S in two disjoint subsets S, « Like heap-sort
and S,

— It uses a comparator

— It has O(n log n) running
time

— Recur: solve the
subproblems associated

————

with §, and S, : 1
— Conquer: combine the *Unlike heap-sort %
solutions for S, and S, into a — It does not use an auxiliary
solution for § priority queue
«  The base case for the — It accesses data in a ?
recursion are subproblems sequential manner
of size 0 or 1 (suitable to sort data on a

disk) ’
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Merge-Sort

* Merge-sort on an input
sequence S with n
elements consists of
three steps:

— Divide: partition S into
two sequences §, and §,

of about n/2 elements
each

— Recur: recursively sort S,
and S,

— Conquer: merge §, and
S, into a unique sorted
sequence
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Algorithm mergeSort(S, C)

Input

Output

if
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Merging Two Sorted
Sequences

The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
seguence §
containing the union
of the elements of 4
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time
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Algorithm merge(A, B)
Input

Output U

<

while - A -
if <

else

while -

while -

return /
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Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
— each node represents a recursive call of merge-sort and stores
* unsorted sequence before the execution and its partition
- sorted sequence at the end of the execution |
— the root is the initial call ;
— the leaves are calls on subsequences of size 0 or 1
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Execution Example

* Partition

R —— e

7294|3861 ]
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Execution Example (cont.)

* Recursive call, partition

e e S

(7294(386 1 ]

I \ | 1 | AN \ 1 I
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Execution Example (cont.)

* Recursive call, partition

e e S

(7294(386 1 ]

(72]94
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Execution Example (cont.)

|

- Recursive call, base case |

[7 294|386 1 ] :;

/\ ;
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Execution Example (cont.) f

« Recursive call, base case |

(7294(386 1 ]

| ' 1 !
| - | : = | 66 :____'
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Execution Example (cont.)
- Merge

a3 i S A AN I e

(7294(386 1 ]

1 1 | AN \ 1 1 |
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Execution Example (cont.) f

» Recursive call, ..., base case, merge |

(7294(386 1 ]

(72]94 ]

/\
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Execution Example (cont.) f
- Merge r_

[7294|3861 ]

I

[72]94>2479

m\
(7]2-27 94 =409 138 3¢ *
- 7_’ 2—>2 9—>£§ 4_”] B R Sl | SEEams
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Execution Example (cont.)

» Recursive call, ..., merge, merge ’
(7294(386 1 ]
i
(72]|94—>2479 [3861>1368] |
1
/\ //\\
(7]2-27 (94 =40 (38 >3 g (61 >16]

!
AN = T S W
EE E 5 & &S

Pham Bao Son DSA }
IR L e T —— -W*m*-w’w ol




'
Execution Example (cont.)
- Merge |

7294|3861 512346789 |

M

72|94—>2479 3861—>1368
7|2—>27 94 =49 8—>38 1—>16]

AN /\ A
|7=17 [2-2] [9-9 [4-4 [3-3 |e—4 6/i)1a%h
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Analysis of Merge-Sort

- The height h of the merge-sort tree is O(log n)
— at each recursive call we divide in half the sequence,
The overall amount or work done at the nodes of depth i is O(n)

— we partition and merge 2¢ sequences of size n/2!
— we make 2! recursive calls

Thus, the total running time of merge-sort is O(n log n)
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Summary of Sorting Algorithms

-~ A . A

Algorithm

Time

Notes

selection-sort

O(n?)

@ slow
@ in-place
# for small data sets (< 1K)

Insertion-sort

O(n?)

@ slow
@ in-place
# for small data sets (< 1K)

heap-sort

O(n log n)

@ fast
@ in-place
# for large data sets (1K — 1M)

e ——

merge-sort

O(n log n)

@ fast
@ sequential data access
@ for huge data sets (> 1M)
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Nonrecursive Merge-Sort

public static void mergeSort(Object[] orig, Comparator c) { /
nonrecursive

Object[] in = new Object[orig.length]; // make a new temporary array
System.arraycopy(orig,0,in,0,in.length); // copy the input
Object[] out = new Obiject[in.length]; // output array
Object[] temp; // temp array reference used for swapping
int n = in.length;
for (inti=1; i < n; i*=2) { // each iteration sorts all length-2*i runs
for (int j=0; j < n; j+=2%i) // each iteration merges two length-i pairs
merge(in,out,c,j,i); / merge from in to out two length-i runs at |
temp = in; in = out; out = temp; // swap arrays for next iteration
Y
// the "in" array contains the sorted array, so re-copy it i
System.arraycopy(in,0,orig,0,in.length);
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Nonrecursive Merge-Sort

public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive

Object[] in = new Object[orig.length]; // make a new temporary array
System.arraycopy(orig,0,in,0,in.length); // copy the input
Object[] out = new Object[in.length]; // output array ‘
Object[] temp; // temp array reference used for swapping |
int n = in.length;

merge runs Of for (inti=1; i < n; i*=2) { // each iteration sorts all length-2*i runs

for (int j=0; j < n; j+=2%i) // each iteration merges two length-i pairs
Iength 2, then merge(in,out,c,j,i); // merge from in to out two length-i runs at |

s

temp = in; in = out; out = temp; // swap arrays for next iteration j
4, then 8, and :
/l the "in" array contains the sorted array, so re-copy it
SO ONn System.arraycopy(in,0,0rig,0,in.length);
}

protected static void merge(Obiject|] in, Object[] out, Comparator c, int start,
int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]
int x = start; // index into run #1
int end1 = Math.min(start+inc, in.length); // boundary for run #1
int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
int y = start+inc; // index into run #2 (could be beyond array boundary)

int z = start; // index into the out array
merge tWO runs while ((x < end1) && (y < end2)) é

in the in array if (c.compare(in[x],in[y]) <= 0) out[z++] = iIN[X++];

else out[z++] = in[y++];

to the Out array if (x <end1) // first run didn't finish : 1

System.arraycopy(in, x, out, z, end1 - x);
else if (y <end2) // second run didn't finish

Pham Bao Son DSA } System.arraycopy(in, y, out, z, end2 - y); o1 J
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Quick-Sort

» Quick-sort is a
randomized sorting
algorithm based on the
divide-and-conquer
paradigm:

— Divide: pick a random

element x (called pivot) and
partition § into

» L elements less than x

« E elements equal x

» G elements greater than x
— Recur: sort L and G

— Conquer:join L, E and G
Pham Bao Son DSA
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Partition :

We partition an input
sequence as follows:

— We remove, in turn, each
element y from § and

— Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal
Is at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Pham Bao Son DSA
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Algorithm partition(S, p)
Input
Output

while -
ify<

else if v =

else { y>x}

return /
24
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Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree

— Each node represents a recursive call of quick-sort and stores
« Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution

— The root is the initial call
— The leaves are calls on subsequences of size 0 or 1 ;
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Execution Example

* Pivot selection

729437561 ]
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Execution Example (cont.)
» Partition, recursive call, pivot selection |
[7 294376 1 ]

|

|

I

#

o
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Execution Example (cont.)
 Partition, recursive call, base case |
(72943761 ]

|

|

I

:

ok |
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Execution Example (cont.)

» Recursive call, ..., base case, join

. e S

{729437@1

~ ~
e
N
L a4
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Execution Example (cont.) ’
» Recursive call, pivot selection f
(72943761 ]
/\ ;
(24311234 | 7 97 ] é

r—--

] (=4 ﬁ
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Execution Example (cont.)

« Partition, ..., recursive call, base case

. e S

(72943761 ]

|

(24311234 | (797 ] E
NG

-
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Execution Example (cont.)

- Join, join

e e S

729043761 512346770

]

M j

2431—>1234

= = .

) (4=
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Worst-case Running Time

« The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

* One of L and G has size n — 1 and the other has size 0

« The running time is proportional to the sum
n+(n-1)+...+2+1

- Thus, the worst-case running time of quick-sort is O(n?)

e

—— - .
— e

depth time
0 n [ )
IRTTE e [ ) :
L
]
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Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
— Good call: the sizes of L and G are each less than 3s/4
— Bad call: one of L and G has size greater than 3s/4

)

(72943756 1 172943761 ]
(2431 ) (797 ) 1] (7294376
Good call Bad call

« A call is good with probability 1/2
— 1/2 of the possible pivots cause good calls:

——\ ~ S
Bad pivots Good pivots Bad pivots
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Expected Running Time, Part 2 ')

- Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

- For a node of with input size s, the input sizes of its children are
each at most s3/4 or s/(4/3).

@ TherefO re, we have expected height time per level

= For a node of depth 2log, ;n, the ( J
expected input size is one

m [he expected height of the
quick-sort tree is O(log n)
# The amount or work done at the
nodes of the same depth is O(n)

@ Thus, the expected running time
of quick-sort is O(n log n)

total expected timle: O(n log n)
Pham Bao Son DSA 35 J
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In-Place Quick-Sorﬂ

« Quick-sort can be implemented
to run in-place

* In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

— the elements less than the
pivot have rank less than A

— the elements equal to the pivot
have rank between h and &

— the elements greater than the
pivot have rank greater than &

« The recursive calls consider
— elements with rank less than A

— elements with rank greater
than &

Pham Bao Son DSA
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Algorithm inPlaceQuickSort(S, I, r)
Input
Output

if
return
e
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In-Place Partitioning

- Perform the partition using two indices to split S into L and
E U G (a similar method can split E U G into E and G).

j K
(32510735927989769 | (pivot=6)

« Repeat until j and k cross: |
— Scan j to the right until finding an element > x. 1
— Scan k to the left until finding an element < x.
— Swap elements at indices j and k

L
[32510!1!359!2_!79897§9 ]

v
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Summary of Sorting ¢

Algorithms

Algorithm Time Notes
: @ in-place
- 2
selection-sort O(n) @ slow (good for small inputs)
: : # in-place
- 2
Insertion-sort O(n) @ slow (good for small inputs) |
ck-sort O(n log n) |4 in-place, randomized '
elelelssiolr expected @ fastest (good for large inputs) |
. |
@ in-place
heap-sort O(n log n) @ fast (good for large inputs) ‘J
# sequential data access :
merge-sort O(n log n) - ‘

# fast (good for huge inputs) [T

Pham Bao Son DSA
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Java Implementation ’

public static void quickSort (Object[] S, Comparator c) {
if (S.length < 2) return; // the array is already sorted in this case
quickSortStep(S, c, 0, S.length-1); // recursive sort method

}

private static void quickSortStep (Object[] S, Comparator c, :

int leftBound, int rightBound ) { ‘

if (leftBound >= rightBound) return; // the indices have crossed
Object temp; // temp object used for swapping
Obiject pivot = S[rightBound];
int leftindex = leftBound; // will scan rightward
int rightIndex = rightBound-1; // will scan leftward

P SIS

elements rightindex--;
if (leftindex < rightindex) { // both elements were found
temp = S[rightIndex];
S[rightindex] = S[leftindex]; // swap these elements
S[leftindex] = temp;

while (leftindex <= rightindex) { // scan right until larger than the pivot )

on|y works while ( (leftindex <= rightindex) && (c.compare(S[leftindex], pivot)<=0) ) !
el leftindex++; !

for d |St| nCt /I scan leftward to find an element smaller than the pivot ‘
while ( (rightindex >= leftindex) && (c.compare(S[rightindex], pivot)>=0)) 1

} ‘
} // the loop continues until the indices cross i

temp = S[rightBound]; // swap pivot with the element at leftindex
S[rightBound] = SJ[leftindex];

S[leftindex] = temp; // the pivot is now at leftindex, so recurse
quickSortStep(S, c, leftBound, leftindex-1);
quickSortStep(S, c, leftindex+1, rightBound);

Pham Bao Son DSA 39 J
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Sorting Lower Bound




Comparison-Based
Sorting

- Many sorting algorithms are comparison based.
— They sort by making comparisons between pairs of objects
— Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
» Let us therefore derive a lower bound on the running

time of any algorithm that uses comparisons to sort n
elements, X,; X5, ..., X

nl
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Counting Comparisons

 Let us just count comparisons then.

- Each possible run of the algorithm
corresponds to a root-to-leaf path in a
decision tree

® : .
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Decision Tree Height

The height of this decision tree is a lower bound on the running time

Every possible input permutation must lead to a separate leaf output.
— If not, some input ...4...5... would have same output ordering as ...

5...4..., which would be wrong.
Since there are n!=1*2*...*n leaves, the height is at least log (n!)

minimum height (time)
}

log (n!)

T 7 VARNRYAR

i
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The Lower Bound

- Any comparison-based sorting algorithms takes at
least log (n!) time

» Therefore, any such algorithm takes time at least

log (n!)=log (g)z =(n/2)log(n/2).

- That is, any comparison-based sorting algorithm must
run in Q(n log n) time.

|
i
2
i
z
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Bucket-Sort and Radix-Sort

| ('[3,a Hs,b]/v[7,d]—[7,g Hr, e |
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Bucket-Sort

- Let be S be a sequence of n
(key, element) entries with keys
in the range [0, NV — 1]

- Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)

Phase 1: Empty sequence S by

moving each entry (k, o) into its
bucket B[k]

Phase 2: Fori=0, ..., N—- 1, move
the entries of bucket BJ[i] to the
end of sequence §

« Analysis:
— Phase 1 takes O(n) time
— Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time
Pham Bao Son DSA
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Algorithm bucketSort(S, N)

Input

Output

<

while -

for < U to
while -
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Example f &%
- Key range [0, 9]

BQ\Q\‘@QQJQQ
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Properties and Extensio

- Key-type Property Extensions

I

— The keys are used as — Integer keys in the range [a, b]
indices into an array - Put entry (k, o) into bucket
and cannot be arbitrary _B Lz |
objects — String keys from a set D of {

possible strings, where D has |

— No external comparator constant size (e.g., names of

- Stable Sort Property the 50 U.S. states)
: - Sort D and compute the rank

— The rela’Flve ordgr of r(k) of each string k of D in the
any two |te-mS with the sorted sequence
same key is preserved - Put entry (%, o) into bucket {
after the execution of B[r(k)]

the algorithm

Pham Bao Son DSA 48
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Lexicographic Orde

- A d-tuple is a sequence of d keys (k,, k,, ..., k;), where
key k; is said to be the i-th dimension of the tuple

- Example:

e S

— The Cartesian coordinates of a point in space are a 3-tuple

4
» The lexicographic order of two d-tuples is recursively .
defined as follows {

(X1, X5, eees X)) < (V15 Va5 0005 V)
Ao

X <y V X1=P A (X 000, X)) < (P35 0000 V) '

l.e., the tuples are compared by the first dimension,
then by the second dimension, etc. &

Pham Bao Son DSA f
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Lexicographic-Sort |

Let C; be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of

stableSort
Pham Bao Son DSA
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Algorithm lexicographicSort(S)

Input
Output

for i < 4 downto

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1,4) (3, 2, 4)
2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)
2,1,4) (51,5 (3,2, 4) (7,4,6) (2,4,6) - !

et Pt S . o
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- Radix-sortis a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension

- Radix-sort is applicable
to tuples where the keys
in each dimension i are
integers in the range [0,
N-1]

- Radix-sort runs in time

O(d( n + N))

Pham Bao Son DSA
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Algorithm radixSort(S, N)
Input

Output

for : < 4 downto
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Radix-Sort for

Binary Numbers

- Consider a sequence of n

b-bit integers
X = xb_l coe xlxo

» We represent each element

as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N =2

- This application of the

radix-sort algorithm runs in
O(bn) time

» For example, we can sort a

-

sequence of 32-bit integers

In linear time
Pham Bao Son DSA
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Algorithm binaryRadixSort(S)
Input

Output

for: < (0 to

bucketSort(S, 2) s
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-+ Sorting a sequence of 4-bit integers

0010

1001

0010

—

MY

0001

Pham Bao Son DSA

Example
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1101
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0010
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