
ELT3047 Computer Architecture

Hoang Gia Hung

Faculty of Electronics and Telecommunications 

University of Engineering and Technology, VNU Hanoi

Lecture 10: Pipelined Processor Design 
(cont.)



Last lecture review

❑ Multi-cycle processor

➢ Use one clock cycle per step → shorter clock cycle time
➢ Higher performance over single-cycle processor due to less waste

❑ Pipeline processor design
➢ Employs instruction parallelism: process the next instruction on the 

resources available when current instructions move to subsequent phases.

➢ Speedup is due to increased throughput: once the pipeline is full, CPI=1.

➢ Datapath is derived from single-cycle case with additional buffer registers

➢ Some control signals are moved along the pipeline via inter-stage buffers.

❑ As the instruction pipeline is not ideal, various issues may occur 
including structural, data, and  control hazards.

❑ Today’s lecture: handling of pipeline hazards



Pipeline hazards

❑ Issues in pipeline design

➢ structural hazards: attempt to use the same resource by two different 
instructions at the same time

➢ data hazards: attempt to use data before it is ready, e.g. an instruction’s 
source operand(s) are produced by a prior instruction still in the pipeline

➢ control hazards: attempt to make a decision about program control flow 
before the condition has been evaluated and the new PC target address 
calculated (e.g. branch and jump instructions, exceptions)

❑ Serious problems, cannot be ignored

❑ Design objectives: keeping the pipeline correct, moving, and 
full in the presence of events that disrupt pipeline flow.



Structural hazard: example

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

add $1,$2,$3

Inst 1

Inst 2

add $2,$1,$3

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

❑ Two instructions are attempting to use the same register ($1) 
during the same cycle (CC5).



Data hazard: example

❑ Dependencies backward in time: read before write is ready  



Hazard handling methods

❑ General ways of handling structural hazard

1. Stall: delay access to resource

▪ e.g., detect and wait until value is available in register file

2. Add more hardware resources: increase the throughput

▪ more costly, e.g. use separate memories for instructions & data

❑ Five fundamental ways of handling true data hazard

1. Stall: detect and wait

2. Forward: detect and forward/bypass data to dependent instruction

3. Eliminate: detect and eliminate the dependence at the software level

▪ No need for the hardware to detect dependence

4. Predict: predict the needed value(s), execute “speculatively”, and verify

5. Do something else (fine-grained multi-threading)

▪ No need to detect

❖ Stall can resolve any type of hazards (data/control/structural)



Structural hazard handling example

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

add $1,$2,$3

Inst 1

Inst 2

add $2,$1,$3

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

Fix register file access 
hazard by doing reads in 

the second half of the 
cycle and writes in the 

first half

clock edges that 
control register writing

clock edge that controls loading
of pipeline state registers



Data hazard handling: pipeline stall

I

n

s

t

r.

O

r

d

e

r

Stall (bubble/nop)

Stall (bubble/nop)

sub $2,$1,$3

A
L

UIM Reg DM Reg

and $12,$2,$5

or $13,$6,$2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Pipeline stall  

▪ waiting = no op.

▪ impacts CPI



Data Forwarding/Bypassing: overview 

Forwarding results as soon as they are 
available to where they are needed.

▪ Forwarding paths are valid only if the 
destination stage is later in time 
than the source stage.

▪ Take the result from the 
earliest point that exists in 
any of the  pipeline state 

registers and forward it to 
the functional unit (ALU).



Forwarding: implementation

❑ Data from EX/MEM, MEM/WB stage pipeline registers & is fed 
back to two multiplexers at the inputs of the ID/EX stage.

➢ Add a Forwarding unit to calculate 2 control signals ForwardA&B.



Forwarding: design of control signals

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an earlier ALU result.



Forwarding conditions

❑ Pipelined datapath convention:

➢ Register numbers are passed along the pipeline, e.g. EX/MEM.RegisterRd = 
register number for Rd sitting in EX/MEM pipeline register.

➢ ALU operands in EX stage: ID/EX.RegisterRs, ID/EX.RegisterRt.

❑ Data hazards when

1. EX/MEM.RegisterRd = ID/EX.RegisterRs

2. EX/MEM.RegisterRd = ID/EX.RegisterRt

3. MEM/WB.RegisterRd = ID/EX.RegisterRs

4. MEM/WB.RegisterRd = ID/EX.RegisterRt

❑ But only if forwarding instruction will write to a register!

➢ Avoid forwarding when it shouldn’t: check if EX/MEM.RegWrite=1 (e.g. add), 
MEM/WB.RegWrite=1 (e.g. lw)

❑ And only if $Rd for that instruction is not $zero

➢ EX/MEM.RegisterRd ≠ 0, MEM/WB.RegisterRd ≠ 0

Fwd from EX/MEM
pipeline register

Fwd from MEM/WB
pipeline register



Forwarding: control algorithm

❑ EX hazard:

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

❑ MEM hazard:

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01



Forwarding: yet another complication

❑ Double data hazard

➢ There is  a conflict between the result of the EX stage instruction and the 
MEM stage instruction → which  should be forwarded?
▪ The more recent result (EX stage) should be forwarded.

➢ Revise forward conditions for MEM hazard

▪ Only forward if EX hazard condition isn’t true

A
L
UIM Reg DM Reg

I

n

s

t

r.

O

r

d

e

r

add $1,$1,$2

add $1,$1,$3

add $1,$1,$4

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg



Forwarding: revised control algorithm

❑ Revised control for MEM hazard (with the additions highlighted)

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01



Datapath with forwarding

❑ Does forwarding solve all our problems?



Load-Use Data Hazard

❑ Unfortunately, not all data hazards can be forwarded

➢ Load has a delay that cannot be eliminated by forwarding

Need to stall even
with forwarding



Load-Use Hazard Detection

❑ Read-after-Write (RAW) hazard after a load

➢ The load instruction will be in the EX stage while the using instruction (that 
depends on the load data, e.g., and) is in the ID stage

❑ Condition for stalling the pipeline

➢ ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt))

❑ If detected (when lw is in EX stage), insert a bubble in between 
lw and the dependent instruction the execution stream.

➢ A bubble = a nop that wastes one clock cycle → all instructions beginning 
with the using instruction (and) are delayed one cycle.

▪ lw & the instructions after it in the pipeline (before it in the code) proceed 
normally down the pipeline.

▪ After this stall, using instruction (and) is decoded again while the 
following instruction (or) is fetched again.

➢ Stall allows MEM to read data for lw → can now forward to EX stage.



Load-Use Hazard: stalling & forwarding

Stall inserted 
here

Proceed normally 
down the pipeline



Stall Hardware

❑ Prevent instructions in the IF and ID stages from progressing 
down the pipeline 

➢ Done by preventing the PC & the IF/ID pipeline registers from changing and 
deasserting EX, MEM, and WB control fields of the ID/EX pipeline register.

➢ These control values are percolated forward at each clock cycle with the 
proper effect: no registers or memories are written if they are all 0.

❑ Need a hazard detection unit

➢ to detect the case & implement the stall by:

➢ controlling the writing of PC and IF/ID registers

▪ control signals: PCWrite, IF/IDWrite

➢ controlling a multiplexor that chooses between the real control values and all 
0s. 



Datapath with Hazard Detection



Hazard elimination: compiler scheduling

❑ Compiler rearranges instructions to eliminate load-use hazard!

➢ Also called static scheduling <> dynamic scheduling (hardware can 
execute instructions out of the compiler-specified order)

➢ Requires knowledge of the pipeline structure

❑ Proebsting & Fischer (1991) show how to optimally schedule a 
straight line sequence of instructions, given sufficient registers 
and a delay of one pipeline stage.

➢ Build a dependence graph that describes the partial order of instruction 
definitions and uses

➢ Schedule R independent loads (load; load; load; ..) 

▪ Each load requires a register → R is the minimum number of live 
registers.

▪ Schedule operation independent of the previous load and another load in 
a pair (operation; load)



Hazard elimination: compiler scheduling 
example

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

I

n

s

t

r.

O

r

d

e

r

lw  $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $2,$7,$9

or  $8,$1,$9



Control Hazards

❑ When the flow of instruction addresses is not sequential (i.e., PC 
= PC + 4); incurred by change of flow instructions

➢ Unconditional branches (j, jal, jr)

➢ Conditional branches (beq, bne)

➢ Exceptions

❑ Possible resolution approaches
➢ Stall (impacts CPI)

➢ Move decision point as early in the pipeline as possible, thereby reducing the 
number of stall cycles

➢ Delay decision (requires compiler support)

➢ Predict and hope for the best!

❑ Control hazards occur less frequently than data hazards, but there 
is nothing as effective against control hazards as forwarding is 
for data hazards.



Branch hazards: overview

❑ Dependencies backward in time cause hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg



Fix a Branch Control Hazard by stalling

flush

flush

flush

I

n

s

t

r.

O

r

d

e

r

beq

A
L
UIM Reg DM Reg

beq target

A
L
UIM Reg DM Reg

A
L
UInst 3

IM Reg DM

Fix branch 

hazard by 

waiting – flush
– but affects 

CPI

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg



Two “Types” of Stalls
❑ nop instruction (or bubble) is inserted between two instructions 

in the pipeline (c.f., load-use hazards)

➢ Keep the instructions earlier in the pipeline (later in the code) from 
progressing down the pipeline for a cycle (“bounce” them in place with 
write control signals)

➢ Insert nop instruction by zeroing control bits in the pipeline register at the 
appropriate stage

➢ Let the instructions later in the pipeline (earlier in the code) progress normally 
down the pipeline

❑ Flushes (or instruction squashing) where an instruction in the 
pipeline is replaced with a nop instruction

➢ Used for instructions located sequentially after j and beq

➢ Zero the control bits for the instruction to be flushed



Example: pipline before flushing



Example: pipeline after flushing



Another way to fix branch hazards

❑ Branch instruction needs two things:

➢ Branch Result: taken or not taken

➢ Branch Target Address: PC+4 (not taken) or PC+4+4×immediate (taken)

❑ Predict branches are always not taken – and take corrective 
action when wrong (i.e., taken)

➢ Control logic detects a branch instruction in the 2nd stage 

➢ ALU computes the branch outcome in the 3rd stage

➢ The Next1 and Next2 instructions will be fetched anyway. 

➢ If the branch is taken → Next1 and Next2 must be discarded (flushed) by 
converting them to bubbles → wasted 2 cycles. 

➢ If branches are untaken, proceed as normal → save the cost of control 
hazard.



2-Cycle Branch Delay Illustration

❑ Branch is not taken

➢ The Next1 and Next2 instructions have been fetched → already in the 
pipeline → flushed (affects CPI).

➢ To flush instructions in the IF stage, we add a control line, called IF.Flush, 
that zeros the instruction field of the IF/ID pipeline register. 



Implementing branch prediction



Reducing the Delay of Branches

❑ Move branch decision back to as early in the pipeline as 
possible – i.e., during the decode cycle

➢ Need extra hardware to test registers, calculate the branch address, and 
update the PC during the second stage of the pipeline → one cycle delay.

flush

I

n

s

t

r.

O

r

d

e

r

beq

beq target

A
L
UIM Reg DM Reg

Inst 3

A
L
UIM Reg DM

A
L

UIM Reg DM Reg

A
L
UIM Reg DM Reg

Branch decision 

hardware moved to 

the decode cycle



Improved branch prediction 
implementation



Further improvement: introducing delay 
slots

❑ Since we need to have a dead cycle anyway, let’s put a useful 
instruction there → potentially get rid of all branch stalls.
➢ For a 1-cycle branch delay, we have one delay slot.

➢ MIPS compiler fills the delay slot by moving an instruction that is not affected 
by the branch to immediately after the branch thereby hiding the delay.

➢ If no independent instruction is found, compiler fills delay slot with a nop.

❑ As processors go to both longer pipelines and issuing multiple 
instructions per clock cycle → the branch delay becomes longer
➢ A single delay slot is insufficient → delayed branching has lost popularity 

compared to more expensive but more flexible dynamic approaches.



Dynamic Branch Prediction

❑ In deeper and superscalar pipelines, branch penalty is more 
significant.

❑ Use dynamic prediction

➢ Branch target table (BTB, aka BHT-branch history table)

▪ Indexed by the lower portion of recent branch instruction addresses

▪ Stores outcomes (taken/not taken)

➢ To execute a branch

▪ Check table, expect the same outcome as a previous branch branch 
that has the same low-order address bits.

▪ Start fetching from fall-through or target, if true → no wasted cycles = 
zero-delayed branching!

▪ If wrong, flush the incorrect instruction(s) in pipeline, restart the pipeline 
with the right instruction, and flip prediction.

❑ A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) 
to 18% (eqntott)

➢ 4096 bit BHT requires a lot of hardware.



Branch Target Buffer

❑ A small cache that stores the target addresses of recent 
branches and jumps.

❑ Also have prediction bits to predict whether branches are taken 
or not taken

➢ The prediction bits are dynamically determined by the hardware.



Dynamic Branch Prediction Flowchart



1-bit Prediction Scheme

❑ Prediction is just a hint that is assumed to be correct.

❑ If incorrect then fetched instructions are flushed

❑ 1-bit prediction scheme is simplest to implement

➢ 1 bit per branch instruction (associated with BTB entry)

➢ Record last outcome of a branch instruction (Taken/Not taken)

➢ Use last outcome to predict future behavior of a branch



❑ A 1-bit predictor will be incorrect twice when not taken

❑ For 10 times through the loop we have a 80% prediction accuracy 
for a branch that is taken 90% of the time

➢ Assume predict_bit = 0 to start (indicating 
branch not taken) and loop control is at 
the bottom of the loop code

1. First time through the loop, the predictor 
mispredicts the branch since the branch 
is taken back to the top of the loop; invert 
prediction bit (predict_bit = 1)

2. As long as branch is taken (looping), 
prediction is correct

3. Exiting the loop, the predictor again 
mispredicts the branch since this time the 
branch is not taken falling out of the loop; 
invert prediction bit (predict_bit = 0)

1-Bit Predictor: Shortcoming

$1=10; $2=0

Loop: 1st loop instr

addi $2,$2,1

.

.

.

last loop instr

bne $1,$2,Loop

fall out instr

Predict

Not Taken

Not taken

0

Predict

Taken

Taken

1

Right 9 times

Wrong on 

loop fallout

Wrong on 1st

iteration

1st iter: $1=10; 

$2=1 → Loop 

taken

10th iter: 

$1=10; $2=10  

Loop not taken



2-bit Prediction Scheme

❑ 1-bit prediction scheme has a performance shortcoming.

❑ 2-bit prediction scheme works better and is often used

➢ 4 states: strong and weak predict taken/predict not taken

❑ Implemented as a saturating counter

➢ Counter is incremented to max=3 when branch outcome is taken

➢ Counter is decremented to min=0 when branch is not taken



2-bit saturating counter predictor for the 
previous example

❑ A 2-bit scheme can give 90% accuracy since a prediction must be 
wrong twice before the prediction bit is changed

Predict

Taken

Predict

Not Taken

Predict

Taken

Predict

Not Taken

Taken
Not taken

Not taken

Not taken

Taken

Taken

Taken

Loop: 1st loop instr

2nd loop instr

.

.

.

last loop instr

bne $1,$2,Loop

fall out instr

wrong on loop 

fall out

0

1
1

right 9 times

right on 1st

iteration

0

1011

00
01


