
ELT3047 Computer Architecture

Hoang Gia Hung

Faculty of Electronics and Telecommunications 

University of Engineering and Technology, VNU Hanoi

Lecture 12: Memory



Users’ need: large and fast memory

Reality: 

▪ Physical memory size is limited

▪ Processor vs memory speed 

disparity continues to grow⇒ Processor-Memory: an unbalanced

system

Introduction

❑ Life’s easier for programmers, harder for architects

Processor 
(CPU)
(active)

Computer

Control
(“brain”)

Datapath

Memory
(passive)

(where 
programs, 
& data 
live when
running)

Devices

Input

Output

Processor-Memory

Performance Gap:

(grows 50% / year)



The ideal memory

❑ The problem: ideal memory’s requirements oppose each other
➢ Bigger is slower

▪ Bigger → Takes longer to determine the location
➢ Faster is more expensive

▪ Technologies: SRAM vs. DRAM vs. Disk vs. Tape

➢ Higher bandwidth is more expensive

▪ Need more banks, more ports, higher frequency, or faster technology

Instruction
Supply

Pipeline
(Instruction
execution)

Data
Supply

▪Zero-cycle latency 
▪Infinite capacity
▪Perfect control flow
▪Zero cost

▪Zero-cycle latency 
▪Infinite capacity
▪Infinite bandwidth 
▪Zero cost



Memory Technology: DRAM

❑ Dynamic random access memory

❑ Capacitor charge state indicates stored value

➢ Whether the capacitor is charged or discharged indicates storage of 1 or 0

➢ 1 storage capacitor

➢ 1 access FET → select which bits will be affected by read/write operations

❑ Operations

➢ Write: turn on access FET with the wordline & charge/discharge storage 
capacitor through the bitline.

➢ Read: more complicated & destructive

→ data rewritten after read.

❑ Capacitor leaks

➢ DRAM cell loses charge over time

➢ DRAM cell needs to be refreshed



Memory Technology: SRAM

❑ Static random access memory

❑ 2 cross coupled inverters store a single bit

➢ 2 inverters wired in a positive feedback loop 
forming a bistable element (2 stable states)

➢ 4 transistors for storage

➢ 2 transistors for access

❑ Read sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines
(entire row is read together)

4. differential sensing and column select
(data is ready)

5. precharge all bitlines
(for next read or write)

row select

b
it
lin

e

bi
tli

ne

Vdd GND “1”

GND Vdd “0”

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux

2m diff pairs

2n
n

m

1

n+m

ro
w

 d
e

c
o

d
e

r



Memory Technology: DRAM vs. SRAM

❑ DRAM

➢ Slower access (capacitor)

➢ Higher density (1T 1C cell)

➢ Lower cost

➢ Requires refresh (power, performance, circuitry)

➢ Manufacturing requires putting capacitor and logic together

❑ SRAM

➢ Faster access (no capacitor)

➢ Lower density (6T cell)

➢ Higher cost

➢ No need for refresh

➢ Manufacturing compatible with logic process (no capacitor)



Memory Technology: Non-volatile 
storage (flash)

❑ Use floating gate transistors to store charge

➢ Very dense: multiple bits/transistor, read/written in blocks

➢ Slower than DRAM (especially on writes)

➢ Limited number of writes: charging/discharging the floating gate requires large 
voltages that damage transistor

➢ Long time technology of choice for non-volatile storage: higher-performance 
but higher-cost replacement for HDD.



Memory hierarchy: the idea

❑ The problem:

➢ Bigger is slower

➢ Faster is more expensive (dollars and chip area)

❑ We want both fast and large

➢ But we cannot achieve both with a single level of memory

❑ Idea: 

➢ Have multiple levels of storage (progressively bigger and slower as the 
levels are farther from the processor) and ensure most of the data the 

processor needs is kept in the fast(er) level(s)

❑ Why Does it Work?

➢ Locality of memory reference: if there’s an access to address 𝑋 at time 𝑡, it’s 
very probable that the program will access a nearby location in the near 
future.



A Typical Memory Hierarchy

❑ Presents the user with as much memory as is available in the 
cheapest technology at the speed offered by the fastest one.

➢ Store everything on disk

➢ Copy recently accessed items from disk to smaller DRAM memory

➢ Copy more recently accessed items from DRAM to smaller SRAM memory

Second
Level
Cache

(SRAM)

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
e

g
F

ile

Main
Memory
(DRAM)

D
a
ta

C
a
c
h

e
In

s
tr

C
a
c
h

e

IT
L

B
D

T
L

B

Cost:         highest lowest

Speed (%cycles):  ½’s 1’s                     10’s 100’s                 10,000’s

Size (bytes):    100’s 10K’s M’s G’s T’s



Memory in a Modern System

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY 

CONTROLLER



The memory locality principle

❑ One of the most important  principle in computer design.

➢ A “typical” program has a lot of locality in memory references
▪ typical programs are composed of “loops”

❑ Temporal Locality (locality in time)

➢ A program tends to reference the same memory location many times and all 
within a small window of time

➢ E.g., instructions in a loop, induction variables

 Keep most recently accessed data items closer to the processor

❑ Spatial Locality (locality in space)

➢ A program tends to reference a cluster of memory locations at a time

➢ E.g., sequential instruction access, array data

 Move blocks consisting of contiguous words closer to the processor 



Characteristics of the Memory 
Hierarchy

❑ The data is similarly hierarchical

➢ Inclusive: a level closer to the processor is 
generally a subset of any level further away

➢ Block (or line): the minimum unit of 
information in a cache (may be multiple words)

❑ If the data the processor wants is found

in the upper level → a hit

➢ Hit rate (aka hit ratio): 
#hits#accesses

➢ Hit Time: time to access the block + time to 
determine hit/miss

❑ If the required data is absent → a miss

➢ Miss rate: 
#miss#accesses = 1 – (Hit rate)

➢ Miss penalty: Time taken to block copy the 
missed data from lower level → >> hit time.



How is the hierarchy managed?

❑ registers ↔ memory
➢ by compiler/programmer

❑ cache ↔ main memory
➢ by the cache controller hardware

❑ main memory ↔ disks
➢ by the operating system (virtual memory)

➢ virtual to physical address mapping 
assisted by the hardware (TLB)

➢ by the programmer (files)



Cache Basics

❑ Two questions to answer (in hardware):

➢ Q1:  How do we know if a data item is in the 
cache?

➢ Q2:  If it is, how do we find it?

❑ Q2 simplest answer: direct mapped

➢ Location in the cache determined by address 

in memory

➢ Location mapping = (Block address) modulo 
(#Blocks in cache)

➢ #Blocks in cache is usually a power of 2

➢ Use low-order address bits

❑ Example: an 8-block cache

➢ 8 = 23 → uses the three lowest bits of the 
block address

➢ lots of lower level blocks must share blocks
in the cache



Tags and Valid Bits

❑ [Q1] How do we determine if a requested word is in the cache or 
not?

➢ Have a tag associated with each cache block that contains the address 
information (the upper portion of the address).

❑ What if there is no data in a location?

➢ Add a valid bit to indicate that the associated block in the hierarchy contains 
valid data

➢ If valid bit = 0 → there cannot be a match for this block.

❑ Example: Consider the main memory word reference string

0   1   2   3   4   3   4   15

➢ Data memory allocation is given below

➢ Start with an empty cache - all blocks initially marked as not valid

Address 00 00 00 01 00 10 00 11 01 00 11 11

Data 0 1 2 3 4 15



Tags and Valid Bits: example solution

0 1 2 3

4 3 4 15

00 1   00 Mem(0) 00 1  00 Mem(0)

01 1  00 Mem(1)

00 1  00 Mem(0) 00 1   00 Mem(0)

01 1   00 Mem(1)

10 1   00 Mem(2)

miss miss miss miss

miss misshit hit

00 1  00 Mem(0)

01 1  00 Mem(1)

10 1  00 Mem(2)

11 1  00 Mem(3)

01
4

11
15

01 1  00 Mem(1)

10 1  00 Mem(2)

11 1   00 Mem(3)

Address 00 00 00 01 00 10 00 11 01 00 11 11

Data 0 1 2 3 4 15

Main memory 

Reference String : 0   1   2   3   4   3   4   15

Idx. Val. Tag Data Idx. Val. Tag Data Idx. Val. Tag Data Idx. Val. Tag Data

Idx. Val. Tag Data

00 1  01 Mem(4)

01 1  00 Mem(1)

10 1  00 Mem(2)

11 1  00 Mem(3)

Idx. Val. Tag Data

00 1  01 Mem(4)

01 1  00 Mem(1)

10 1  00 Mem(2)

11 1  00 Mem(3)

Idx. Val. Tag Data

00 1  01 Mem(4)

01 1  00 Mem(1)

10 1  00 Mem(2)

11 1  00 Mem(3)

Idx. Val. Tag Data

8 requests, 6 misses



Direct Mapped: MIPS Address 
Subdivision

❑ A memory address contains

➢ Block address → block in memory
➢ Block offset → bytes within a block

❑ E.g. One word blocks, cache 
size = 1K words 

➢ 2 LSB’s of the address = byte offset

➢ Cache size = 1K word → the next 
10 bits of the address = cache index

➢ The remaining upper 20 bits of the 
address will be stored as cache tag.

➢ Index is used to access cache 
block, then address tag is compared 
against stored tag - if equal & cache 
block is valid → hit; otherwise, miss.

➢ What kind of locality are we taking 
advantage of in this example? 



Handling Cache Hits

❑ Read hits (I$ and D$)

➢ Trivial

❑ Write hits (D$ only)

➢ Write Through: always writing the data into both the cache block and the 
next level in the memory hierarchy.

▪ ensures the cache and memory are consistent

▪ slow (run at the speed of the next level in the hierarchy) → use write 

buffer & stall only if the write buffer is full → a write-through can be done 
in one cycle if there is room in the write buffer.

➢ Write Back: write the new data only into the cache block, then write-back 
the cache contents to the memory when that cache block is evicted.

▪ allows the cache and memory to be (temporarily) inconsistent

▪ need a dirty bit for each data cache block to tell if it needs to be written 
back to memory when it is evicted.

▪ more complex to implement than write-through.



Write Buffer for Write-Through Caching

❑ Write buffer is just a FIFO between the cache and main memory

➢ Typical number of entries:  4

➢ Once data has been written into the write buffer & assuming a cache hit, the 
processor is done, then the memory controller will move the write buffer’s 
contents to the real memory  behind the scene.

➢ Works fine if store frequency (w.r.t. time) << 1/DRAM write cycle

❑ Memory system designer’s nightmare
➢ When the store frequency ≈ 1/DRAM write cycle → write buffer saturation

➢ Solutions:  use a write-back cache; or use an L2 cache

Processor
Cache

write buffer

DRAM



Direct mapped: conflict miss

❑ Consider the main memory word reference string: 

0   4   0   4   0   4   0   4

➢ Start with an empty cache - all blocks initially marked as not valid.

❑ Ping pong effect due to conflict misses - two memory locations 
that map into the same cache block

miss miss miss miss0 4 0 4

0 4 0 4miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)

01 4
00    Mem(0)

01
4

01    Mem(4)
000

01    Mem(4)
000



Sources of Cache Misses

❑ Compulsory (cold start or process migration, first reference):

➢ First access to a block, “cold” fact of life, not a whole lot you can do about it
➢ If you are going to run “millions” of instruction, compulsory misses are 

insignificant

❑ Conflict (collision):

➢ Multiple memory locations mapped to the same cache location

➢ Solution 1: increase cache size

➢ Solution 2: increase associativity (next lecture)

❑ Capacity:

➢ Cache cannot contain all blocks accessed by the program

➢ Solution: increase cache size 



Handling Cache Misses (Single Word 
Blocks)

❑ Read misses (I$ and D$)

➢ Stall the pipeline, fetch the block from the next level in the memory 
hierarchy, install it in the cache and send the requested word to the 
processor, then let the pipeline resume.

❑ Write misses (D$ only)

1. Stall the pipeline, fetch the block from next level in the memory hierarchy, 
install it in the cache (which may involve having to evict a dirty block if using 
a write-back cache), write the word from the processor to the cache, then let 
the pipeline resume; 

or (normally used in write-back caches)

2. Write allocate: just write the word into the cache (updating both the tag 
too), no need to check for cache hit, no need to stall; or

3. No-write allocate: skip the cache write (but must invalidate that cache 
block since it will now hold stale data) and just write the word to the write 
buffer (and eventually to the next memory level), no need to stall if the write 
buffer isn’t full.



Design trade off: Miss Rate vs Cache 
Size

❑ Too large a cache:

➢ adversely affects hit and miss latency: bigger is slower → access time may 
degrade critical path

❑ Working set: the whole set of data the executing application 
references within a time interval

hit rate

cache size

“working set”
size

❑ Small cache

➢ doesn’t exploit temporal locality well  
→ increases miss rate

➢ useful data replaced often

❑ Large cache

➢ can exploit temporal locality better → 
improves miss rate

➢ not ALWAYS better



Direct Mapped: Multiword Block Cache

❑ FastMATH (embedded MIPS processor)

➢ 16KB cache = 256 blocks × 16 words/block

➢ What kind of locality are we taking advantage of?



Multiword Block Cache: Taking 
Advantage of Spatial Locality 

❑ Let retake the previous reference string example with the 
cache block now holds two words.

➢ 8 requests, 4 misses vs 6 misses in the one word blocks example.

0 1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)
01 5 4

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

miss

11 15 14

Reference String : 0   1   2   3   4   3   4   15



Design trade off: Miss Rate vs Block 
Size

❑ Larger blocks should reduce miss rate (due to spatial locality)

➢ But: larger blocks (block size ≈ a significant fraction of cache size) → fewer 
of them → more competition → increased miss rate.

❑ Larger block size means larger miss penalty

➢ Bigger is slower → takes longer to transfer the block into the cache

❑ Average Memory Access Time (AMAT) = Hit Time + Miss 
Penalty x Miss Rate

Miss
Rate Exploits Spatial Locality

Fewer blocks 
compromises
Temporal Locality

Block Size

Miss
Penalty

Block Size

Average
Access
Time

Increased Miss Penalty
& Miss Rate

Block Size



Today’s lecture summary

❑ The Principle of Locality:

➢ Program likely to access a relatively small portion of the address space at 
any instant of time.

▪ Temporal Locality: Locality in Time

▪ Spatial Locality: Locality in Space

❑ Three major categories of cache misses:

1. Compulsory misses: sad facts of life.  Example: cold start misses

2. Conflict misses: multiple memory location being mapped to the same 
cache location. Nightmare Scenario: ping pong effect.

3. Capacity misses: the cache is not big enough to contains all the cache 
blocks required by the program. Solution: increase cache size.

❑ Cache design space:

➢ total size, block size

➢ write-hit policy (write-through, write-back)

➢ write-miss policy (write allocate, write buffers)


