
ELT3047 Computer Architecture

Hoang Gia Hung

Faculty of Electronics and Telecommunications

University of Engineering and Technology, VNU Hanoi

Lecture 13: Memory (cont.)

Last lecture review (1)

❑ The Memory Hierarchy

➢ Take advantage of the principle of locality to present the user with as
much memory as is available in the cheapest technology at the speed
offered by the fastest technology.

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

Inclusive–
what is in L1$
is a subset of
what is in L2$
is a subset of
what is in MM
that is a subset
of is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

(Relative) size of the memory at each level

Last lecture review (2)

❑ Temporal Locality

➢ Keep most recently accessed data
items closer to the processor.

❑ Spatial Locality

➢ Move blocks consisting of
contiguous words to the upper levels

❑ Hit Time << Miss Penalty

➢ Hit: data appears in some block in the upper level (Blk X)

▪ Hit rate: fraction of accesses found in the upper level

▪ Hit Time: RAM access time + time to determine hit/miss

➢ Miss: data needs to be retrieve from a lower level block (Blk Y)

▪ Miss rate:
#miss#accesses = 1 – (Hit rate)

▪ Miss penalty: Time to replace a block in the upper level with a block
from the lower level + Time to deliver this block’s word to the processor

▪ Miss types: Compulsory, Conflict, Capacity

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Measuring Cache Performance

❑ The processor stalls on a cache miss

➢ When fetching instructions from the Instruction Cache (I-cache)

➢ When loading or storing data into the Data Cache (D-cache)

➢ Miss penalty is assumed equal for I-cache & D-cache

➢ Miss penalty is assumed equal for Load and Store

❑ Components of CPU time:

➢ Program execution cycles (includes cache hit time)

➢ Memory stall cycles (mainly from cache misses)

➢ CPU time = IC × CPI × CC = IC × (CPIideal + Memory-stall cycles) × CC

▪ CPIideal = CPI for ideal cache (no cache misses)

▪ CPIstall = CPI in the presence of memory stalls

▪ Memory stall cycles increase the CPI!

CPIstall

Memory Stall Cycles

❑ Sum of read-stalls and write-stalls (due to cache misses)

➢ Read-stall cycles = reads/program × read miss rate × read miss penalty

➢ Write-stall cycles = (writes/program × write miss rate × write miss penalty)
+ write buffer stalls

❑ Memory stall cycles = (I-Cache Misses + D-Cache Misses) ×
Miss Penalty

➢ I-Cache Misses = I-Count × I-Cache Miss Rate

➢ D-Cache Misses = LS-Count × D-Cache Miss Rate

▪ LS-Count (Load & Store) = I-Count × LS Frequency

❑ With simplifying assumptions:

Memory stall cycles = I-Count x misses/instruction x miss penalty

➢ Memory stall cycles/instruction = I-Cache Miss Rate × Miss Penalty +
LS Frequency × D-Cache Miss Rate × Miss Penalty

➢ For write-through caches: Memory-stall cycles = miss rate × miss penalty

I-Cache Miss Rate + LS Frequency × D-Cache Miss Rate

Memory Stall Cycles: example

❑ Example: Compute misses/instruction and memory stall cycles
for a program with the given characteristics

▪ Instruction count (I-Count) = 106 instructions

▪ 30% of instructions are loads and stores

▪ D-cache miss rate is 5% and I-cache miss rate is 1%

▪ Miss penalty is 100 clock cycles for instruction and data caches

❑ Solution:

➢ misses/instruction=1%+30%x5%=0.025;

➢ memory stall cycles/instruction=0.025x100=2.5 cycles

➢ total memory stall cycles=2.5x106=2,500,000 cycles

Impacts of Cache Performance

❑ Relative cache penalty increases as processor performance
improves (faster clock rate and/or lower CPI)
➢ Memory speed is unlikely to improve as fast as processor cycle time → when

calculating CPIstall, the cache miss penalty is measured in processor clock
cycles needed to handle a miss.

➢ The lower the CPIideal, the more pronounced the impact of stalls

❑ Example: Given

▪ I-cache miss rate = 2%, D-cache miss rate = 4%

▪ Miss penalty = 100 cycles

▪ Base CPI (ideal cache) = 2

▪ Load & stores are 36% of instructions

Questions:

➢ What is CPIstall?

➢ What if the CPIideal is reduced to 1?

➢ What if the processor clock rate is doubled?

2+(2%+36%x4%)x100 = 5.44, % time on memory stall = 63%

% time on memory stall = 77%

Miss penalty = 200, CPIstall = 8.88

Average Memory Access Time (AMAT)

❑ Hit time is also important for performance

➢ A larger cache will have a longer access time → an increase in hit time will
likely add another stage to the pipeline.

➢ At some point, the increase in hit time for a larger cache will overcome the
improvement in hit rate leading to a decrease in performance.

❑ Average Memory Access Time (AMAT) is the average time to
access memory considering both hits and misses.

AMAT = Hit time + Miss rate × Miss penalty

❑ Example: Find the AMAT for a cache with

▪ Cache access time (Hit time) of 1 cycle = 2 ns

▪ Miss penalty of 20 clock cycles

▪ Miss rate of 0.05 per access

❑ Solution:

➢ AMAT = 1 + 0.05 × 20 = 2 cycles = 4 ns

➢ Without the cache, AMAT will be equal to miss penalty = 20 cycles = 40 ns

Reducing cache miss rates #1: cache
associativity

❑ Allow more flexible block placement

➢ In a direct mapped cache a memory block maps to exactly one cache block

➢ At the other extreme, could allow a memory block to be mapped to any cache
block → fully associative cache (no indexing)

❑ A compromise is to divide the cache into sets, each of which
consists of n “ways” (n-way set associative).

➢ A memory block maps to a unique set (specified by the index field) and can
be placed in any way of that set (so there are n choices).

Set index = (block address) modulo (# sets in the cache)

❑ Example: consider the main memory word reference for the
following string

➢ Start with an empty cache - all blocks initially marked as not valid

0 4 0 4 0 4 0 4

Set Associative Cache: Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set (i.e., modulo the
number of sets in the
cache)

Tag Data

Q1: Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address
bits to tell if the memory
block is in the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0

1

Way

0

1

One word blocks
Two low order bits
define the byte in the
word (32b words)

Set associative cache example:
reference string mapping

❑ 8 requests, 2 misses

❑ Solves the ping pong effect in a direct mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

0 4 0 4 0 4 0 4

0 4 0 4miss miss hit hit

000 Mem(0) 000 Mem(0)

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

Four-Way Set Associative Cache
Organization

28 = 256 sets
each with
four ways
(each with
one block)

Way 0 Way 1 Way 2 Way 3

Content Addressable Memory
(CAM): a circuit that combines
comparison and storage in a single
device - supply the data, it will look
for a copy & returns the index of
the matching row → CAM allows
much higher set associativity (8-
way and above) than the standard
HW of SRAMs + comparators.

Range of Set Associative Caches

❑ For a fixed size cache, each increase by a factor of two in
associativity doubles the number of blocks per set (= the number
of ways) and halves the number of sets – decreases the size of
the index by 1 bit and increases the size of the tag by 1 bit.

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

Replacement Policy

❑ A miss occurred, which way’s block do we pick for replacement?
➢ Direct mapped: no choice.

➢ Set associative: non-valid entry, then choose among entries in the set.

❑ First In First Out (FIFO): replace the oldest block in set

➢ Use one counter per set to specify the oldest block. On a cache miss replace
the block specified by counter & increment the counter.

❑ Least Recently Used (LRU): replace the one that has been
unused for the longest time

➢ Requires hardware to keep track of when each way’s block was used relative
to the other blocks in the set. For 2-way set associative, takes one bit per set
→ set the bit when a block is referenced (and reset the other way’s bit)

➢ Manageable for 4-way, too hard beyond that.

❑ Random

➢ Gives approximately the same performance as LRU for high associativity.

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

How Much Associativity?

❑ Increased associativity
decreases miss rate
➢ But with diminishing returns

❑ The choice of direct
mapped or set associative
depends on the cost of a
miss versus the cost of
implementation.

❑ N-way set associative
cache costs
➢ N comparators (delay and area)

➢ MUX delay (set selection) before data is available

➢ Data available after set selection and Hit/Miss decision (c.f. direct mapped
cache: the cache block is available before the Hit/Miss decision) → can be
an important consideration (why?).

Reducing Cache Miss Rates #2: multi-
level caches

❑ Use multiple levels of caches

➢ Primary (L1) cache attached to CPU

➢ Larger, slower, L2 cache services misses from primary cache. With
advancing technology → have more than enough room on the die for L2,
normally a unified cache (i.e., it holds both instructions and data) and in some
cases even a unified L3 cache.

❑ Example: Given
▪ CPU base CPI = 1, clock rate = 4GHz

▪ Miss rate/instruction = 2%

▪ Main memory access time = 100ns

Questions:

➢ Compute the actual CPI with just primary cache.

➢ Compute the performance gain if we add L2 cache with

▪ Access time = 5ns

▪ Global miss rate to main memory = 0.5%

Multi-level cache: example solution

❑ With just primary cache

➢ Miss penalty = 100ns/0.25ns = 400 cycles

➢ CPIstall = 1 + 0.02 × 400 = 9

❑ With added L2 cache

➢ Primary miss with L2 hit: penalty = 5ns/0.25ns = 20 cycles

➢ Primary miss with L2 miss: penalty = L2 access stall + Main memory stall =
20 + 400 = 420 cycles

➢ CPIstall = 1 + (0.02 - 0.005) × 20 + 0.005 x 420 = 3.4 cycles

➢ [Alternatively, CPIstall = 1 + L1 stalls/instruction + L2 stalls/instruction = 1 +
0.02 x 20 + 0.005 x 400 = 3.4 cycles]

➢ Performance gain = 9/3.4=2.6 times.

Multilevel Cache Design Considerations

❑ Design considerations for L1 and L2 caches are very different

➢ Primary cache should focus on minimizing hit time in support of a shorter
clock cycle → smaller with smaller block sizes.

➢ Secondary cache(s) should focus on reducing miss rate to reduce the
penalty of long main memory access times → larger with larger block sizes &
higher levels of associativity.

❑ The miss penalty of the L1 cache is significantly reduced by the
presence of an L2 cache – so it can be smaller (i.e., faster) but
have a higher miss rate

❑ For the L2 cache, hit time is less important than miss rate

➢ The L2$ hit time determines L1$’s miss penalty
➢ L2$ local miss rate >> the global miss rate

▪ Local miss rate = fraction of references to one level of a cache that miss

▪ Global miss rate = fraction of references that miss in all levels of a multi-
level cache → dictates how often we must access the main memory.

Multi-level cache parameters: two real-
life examples

Intel Nehalem AMD Barcelona

L1 cache organization & size
Split I$ and D$; 32KB for each
per core; 64B blocks

Split I$ and D$; 64KB for each
per core; 64B blocks

L1 associativity
4-way (I), 8-way (D) set assoc.;
~LRU replacement

2-way set assoc.; LRU
replacement

L1 write policy write-back, write-allocate write-back, write-allocate

L2 cache organization & size
Unified; 256MB (0.25MB) per
core; 64B blocks

Unified; 512KB (0.5MB) per
core; 64B blocks

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU

L2 write policy write-back, write-allocate write-back, write-allocate

L3 cache organization & size
Unified; 8192KB (8MB) shared
by cores; 64B blocks

Unified; 2048KB (2MB) shared
by cores; 64B blocks

L3 associativity 16-way set assoc.
32-way set assoc.; evict block
shared by fewest cores

L3 write policy write-back, write-allocate write-back; write-allocate

The Cache Design Space

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

❑ Several interacting dimensions

➢ cache size

➢ block size

➢ associativity

➢ replacement policy

➢ write-through vs write-back

➢ write allocation

❑ The optimal choice is a compromise

➢ depends on access characteristics

▪ workload

▪ use (I-cache, D-cache, TLB)

➢ depends on technology / cost

❑ Simplicity often wins

Memory: the next hierarchy

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

Inclusive–
what is in L1$
is a subset of
what is in L2$
is a subset of
what is in MM
that is a subset
of is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

(Relative) size of the memory at each level

Virtual Memory

❑ A technique that uses RAM as a “cache” for secondary storage
➢ Allows efficient and safe sharing of memory among multiple programs

➢ Provides the ability to run programs larger than the size of physical memory

➢ Simplifies loading a program for execution by enabling code relocation.

❑ What makes it work? – again the Principle of Locality

➢ A program is likely to access a relatively small portion of its address space
during any period of time

❑ Each program is compiled into its own address space – a
“virtual” address space
➢ The processor generates virtual addresses while the memory is accessed

using physical addresses (real locations in main memory) → each virtual
address must be translated to a physical address.

➢ Some chunks of virtual memory can be present on disk, not in main memory.

➢ Multiple programs can use (different chunks of physical) memory at same
time.

Virtual memory: two programs sharing
physical memory

❑ A program’s address space is divided into pages (all one fixed
size) or segments (variable sizes)

➢ The starting location of each page (either in main memory or in secondary
memory) is contained in the program’s page table

Program 1
virtual address space

main memory

Program 2
virtual address space

Virtual memory: address translation

❑ Assuming fixed-size pages, each memory request first requires
an address translation from virtual space to physical space
➢ Done by a combination of hardware and software

➢ page fault: virtual memory miss (i.e., the page is not in physical memory).
Page fault penalty is very costly, often takes millions of clock cycles

Address Translation Mechanisms (1)

Physical page
base addr

Main memory

Disk storage

Virtual page #

V

1
1

1
1
1
1
0

1
0
1
0

Page Table
(in main memory)

Offset

Physical page # Offset

P
a

g
e

 t
a

b
le

 r
e

g
is

te
r

index
into
page
table

Mapping

If valid bit is off,
then page is

not present in
memory.

32 bits wide = V + 18
bits PPN + extra bits

Replacement and Writes

❑ To reduce page fault rate, prefer least-recently used (LRU)
replacement

➢ Reference bit (aka use bit) in the page table entry set to 1 on access to
page

➢ Periodically cleared to 0 by OS

➢ A page with reference bit = 0 means it has not been used recently

❑ Disk writes take millions of cycles

➢ Block at once, not individual locations

➢ Write through is impractical

➢ Use write-back

➢ Dirty bit in the page table entry set when page is written

Handling page fault & space
optimization

❑ A page fault is like a cache miss

➢ Must find page in lower level of hierarchy

➢ If valid bit is zero, the Physical Page Number points to a page on disk

❑ When OS starts new process, it creates space on disk for all the
pages of the process (all valid bits in page table = zero)

➢ called Demand Paging - pages of the process are loaded from disk only as
needed

❑ Page Table too big!

➢ 4GB Virtual Address Space ÷ 4 KB page

➢ 1 million Page Table Entries ≈ 4 MB just for Page Table of a single process!

❑ Variety of solutions to tradeoff Page Table size for slower
performance

➢ E.g., Multi-level page table, Paging page tables, etc.

Address translation optimization

❑ Virtual Memory would appear to require extra memory
references

➢ one to translate Virtual Address into Physical Address (page table lookup) -
Page Table is in physical memory

➢ one to transfer the actual data (hopefully cache hit)

❑ But access to page tables has good locality

➢ So use a fast cache of page tables within the CPU

➢ Called a Translation Look-aside Buffer (TLB)

➢ Typical: 16–512 entries, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–
1% miss rate

➢ Misses could be handled by hardware or software

V Virtual Page # Physical Page # Dirty Ref Access

Making Address Translation Fast (2)

A TLB in the Memory Hierarchy

❑ A TLB miss – is it a page fault or merely a TLB miss?

➢ If the page is loaded into main memory → TLB miss can be handled by
loading the translation information from the page table into the TLB (takes
10’s of cycles to find and load the translation info into the TLB)

➢ If the page is not in main memory, then it’s a true page fault (takes millions of
cycles to service a page fault)

❑ TLB misses are much more frequent than true page faults

CPU
TLB

Lookup
Cache

Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

Summary: steps in memory access

