
ELT3047 Computer Architecture

Hoang Gia Hung

Faculty of Electronics and Telecommunications

University of Engineering and Technology, VNU Hanoi

Lesson 2: Performance measurement

❑ Fundamental concepts in computer

architechure

➢ Computer definition

➢ Computer evolution

➢ Technology and cost trends

➢ Classes of modern computers

❑ Computer architecture

➢ Abstract layers

➢ ISA and computer organization

➢ Stored program concept

❑ Binary representations of numbers

❑ Today’s lecture: performance

measurement and reporting

Last lesson review

❑ Which is the best computer?

➢ Perceived differently from different perspective.

Why do we need measuring computer

performance?

➢ Aviation analogy: cruising speed?

passenger throughput?

❑ Understanding performance

➢ Key to underlying organizational

motivation

➢ Knowing which hardware/software

factors affect the performance

❑ Response time

➢ Time between start and completion of a task (on a machine X), as observed

by end user: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑋 = 1𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑋
❑ Throughput

➢ Total work done per unit time e.g., tasks/transactions/… per hour

❑ Response time vs. Throughput

➢ Decreasing execution time improves throughput: less time to run a task ⇒
more tasks can be executed

➢ Increasing throughput can also improve response time: even execution time

of individual sequential tasks is not changed, more tasks can be executed in

parallel ⇒ less waiting time in scheduling queue.

❑ In this course, we will primarily focus on response time

➢ Performance are relative: engineers want future generation of computers

(X) they are designing to be 𝑛 times faster than the current generation (Y)𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑋𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑌 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑌𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑋 = 𝑛

Defining computer performance

❑ Elapsed time = Total response time, including all aspects

➢ Processing, I/O, OS overhead, idle time

➢ Useful, but often not very good for designers (clock wall measurement?)

❑ Our focus: CPU time = time spent processing a given job

➢ Doesn’t count I/O time, other jobs’ shares
➢ Comprises user CPU time and system CPU time

➢ Can be measured in seconds or number of CPU clock cycles

❑ Example: A processor has clock frequency (clock rate) of

4GHz. What’s its clock period (i.e. duration of a clock cycle)?
➢ Answer: 1/(4×109) = 250×10–12 s (i.e. 250 ps).

Measuring Execution Time

Clock period

❑ Performance improved by

➢ Reducing number of clock cycles required by a program

➢ Increasing clock rate (i.e. reduce clock cycle time)

➢ Hardware designer must often trade off clock rate against cycle count

because many techniques that decrease the number of clock cycles may

also increase the clock cycle time, as we will see in later chapters.

CPU Performance and Its Factors

Clock (cycles)

Data transfer

and computation

Update state

Clock period

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

❑ Given Computer A: 2GHz clock, 10s CPU time. Task: design

Computer B with following specs:

➢ Aim for 6s CPU time

➢ Can do faster clock, but causes 1.2 × clock cycles

❑ How fast must Computer B clock be?

❑ Solution:

CPU Time Example

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=


=


=

==

=


==

❑ Program = series of instructions stored

in memory, sequentially fetched &

executed at a constant clock rate.

➢ #clock cycles depends on #instructions

in a program (instruction count) &

#cycles required by each instruction

❑ Instructions take different number of

cycles to execute.

➢ E.g. multiplication > addition, floating

point operations > integer operations.

➢ #clock cycles = IC x CPI (average

#cycles per instruction).𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼 × 𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑= 𝐼𝐶×𝐶𝑃𝐼𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒
➢ CPI provides one way of comparing

different implementations of the same

ISA (since IC would be the same).

Instruction Count and CPI

Relative frequency

CPI in More Detail

❑ The average number of cycles per instruction

➢ It’s unrealistic to count #clock cycles for every instruction in a program.

❑ In practice, CPI depends on a wide variety of design details

➢ HW factors: the memory system and the processor structure;

➢ SW factors: the mix of instruction types executed in an application

❑ Each instruction classes (e.g. ALU, MEM, …) has different CPI

➢ If a program has 𝑛 different classes of instructions with corresponding 𝐶𝑃𝐼𝑖
and instruction count 𝐼𝐶𝑖, then 𝐶𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = σ𝑖=0𝑛 𝐶𝑃𝐼𝑖 × 𝐼𝐶𝑖.

➢ The (weighted average) CPI of the program is𝐶𝑃𝐼 = 𝐶𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠𝐼𝐶 =෍𝑖=1𝑛 𝐶𝑃𝐼𝑖 × 𝐼𝐶𝑖𝐼𝐶

CPI Example

❑ Alternative compiled code sequences using instructions in classes A, B,

C. Which code sequence executes the most instructions? Which will be

faster? What is the CPI for each sequence?

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

❑ Sequence 1: IC = 5

❑ Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

❑ Avg. CPI = 10/5 = 2.0

❑ Sequence 2: IC = 6

❑ Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

❑ Avg. CPI = 9/6 = 1.5

➢ Sequence 2 is faster, even though it executes one extra instruction.

Performance summary

❑ To execute, a given program will require

➢ Some number of machine instructions = instruction count

➢ An average number of clock cycles to run each instruction = CPI

❑ Therefore: (The Classic CPU Performance Equation)𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼 × 𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑= 𝐼𝐶 × 𝐶𝑃𝐼𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒
➢ Cycle time: reciprocal of the CPU frequency, provided by manufacturer

➢ Instruction count: measured by software tools (profiler) or hardware counters

➢ CPI: obtain by simulation or hardware counters

❑ Performance depends on

➢ Algorithm: affects IC, possibly CPI

➢ Programming language: affects IC, CPI

➢ Compiler: affects IC, CPI

➢ Instruction set architecture: affects IC, CPI, Clock cycle time

Performance Example 1

❑ Suppose we have two implementations of the same ISA for a

given program. Which one is faster and by how much?

❑ Solution:

Machine Clock cycle CPI

A 250 (ps) 2.0

B 500 (ps) 1.2

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=



=

==

=

==

=

…by this much

A is faster…

Performance Example 2

❑ Given: instruction mix of a program on a computer

➢ What is average CPI? What is the % of time used by each instruction class?

➢ How faster would the machine be if load time is 2 cycles? What if two ALU

instructions could be executed at once?

❑ Solution:

➢ Average CPI = 0.5x1+0.2x5+0.1x3+0.2x2 = 2.2. Time percentages: 23%, 45%,

14%, 18%.

➢ If load time is 2 cycles:
𝑜𝑙𝑑 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑛𝑒𝑤 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = 𝑜𝑙𝑑 𝐶𝑃𝐼𝑛𝑒𝑤 𝐶𝑃𝐼 = 2.21.6 = 1.38

➢ If two ALU instructions could be executed at once:
𝑜𝑙𝑑 𝐶𝑃𝐼𝑛𝑒𝑤 𝐶𝑃𝐼 = 2.21.95 = 1.13

Classi Freqi CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

Performance - clock rate relation

❑ In CMOS IC technology:

➢ Power = Pstatic (~40%, due to leakage) + Pdynamic (~60%, due to capacitance

charging when signals change between 0 and 1).

➢ 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 12𝐶𝑉𝐷𝐷2 𝑓 → raising clock rate increases power consumption.

❑ Problem: Get power in, get power out

➢ Intel 80386 consumed ~ 2 W, 3.3 GHz Intel Core i7 consumes 130 W

➢ Heat must be dissipated from 1.5 x 1.5 cm chip → limit of what can be cooled by air

The power wall

❑ Techniques to ↓ power
➢ Reduce voltage, but

there’s a limit (↑ leakage
power → transistors don’t
fully turn off).

➢ Frequency scaling

➢ Power gating

❑ Still, in recent years

➢ Size of transistors (=

capacitance) not shrinking

as much.

❑ Power becomes a growing concern – the “power wall”

❑ How else can we improve performance? switch to multiprocessors

➢ More than one processor per chip

➢ Hard to do: programming, load balancing, optimizing communication &

synchronization.

MIPS as a Performance Metric

❑ MIPS: Millions of Instructions Per Second

➢ Faster machine ⇒ larger MIPS

➢ Relations to previous performance measures

➢ Similar concept: MFLOPS = millions of floating point operations per second

❑ Advantage: easy to understand/marketing.

❑ Drawbacks:

➢ Cannot compare computers with different instruction sets because the

instruction count will differ

➢ Varies between programs on the same computer

➢ Higher MIPS rating does not always mean better performance

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS


=




=


=

MIPS example

❑ Two different compilers are being tested on the same program

for a 4 GHz machine with three different classes of instructions:

Class A, Class B, and Class C, which require 1, 2, and 3 cycles,

respectively.

❑ The instruction count produced by the first compiler is 5 billion

Class A instructions, 1 billion Class B instructions, and 1 billion

Class C instructions.

❑ The second compiler produces 10 billion Class A instructions, 1

billion Class B instructions, and 1 billion Class C instructions.

❑ Questions:

➢ Which compiler produces a higher MIPS?

➢ Which compiler produces a better execution time?

MIPS example solution

❖ First, we find the CPU cycles for both compilers.

➢ CPU cycles (compiler 1) = (5×1 + 1×2 + 1×3)×109 = 10×109

➢ CPU cycles (compiler 2) = (10×1 + 1×2 + 1×3)×109 = 15×109

❖ Next, we find the execution time for both compilers.

➢ Execution time (compiler 1) = 10×109 cycles / 4×109 Hz = 2.5 sec

➢ Execution time (compiler 2) = 15×109 cycles / 4×109 Hz = 3.75 sec

❑ Compiler1 generates faster program (less execution time).

❖ Now, we compute MIPS rate for both compilers.

➢ MIPS (compiler 1) = (5+1+1) × 109 / (2.5 × 106) = 2800

➢ MIPS (compiler 2) = (10+1+1) × 109 / (3.75 × 106) = 3200

❑ So, code from compiler 2 has a higher MIPS rating even though

it is slower in execution time.

Amdahl’s Law
❑ Performance improvements might not

always be as good as they sound.

➢ Improvement of one aspect does NOT

necessarily lead to proportional improvement

in overall performance.

➢ How much?

❑ Speedup(E) due to an enhancement E is𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 = 𝑃𝑒𝑟𝑓.𝑤𝑖𝑡ℎ 𝐸𝑃𝑒𝑟𝑓. 𝑏𝑒𝑓𝑜𝑟𝑒 = 𝐸𝑥. 𝑇𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒𝐸𝑥. 𝑇𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝐸
➢ If E improves a fraction 𝑓 of execution time by a factor 𝑠, and the remaining

time is unaffected: 𝐸𝑥. 𝑇𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝐸 = 𝐸𝑥. 𝑇𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 × 𝑓𝑠 + 1 − 𝑓
➢ Amdahl’s Law: Speedup(E) is measured by𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 = 1𝑓𝑠 + 1−𝑓
➢ Design principle: Make common case fast!

Amdahl’s Law example
❑ Suppose a program runs in 100 seconds on a machine, with

multiply responsible for 80 seconds of this time. How much do

we have to improve the speed of multiplication if we want the

program to run 4 times faster? 5 times faster?

❑ Solution:

➢ Suppose we improve multiplication by a factor 𝑠
➢ The 4 times faster overall execution time satisfies: 25 sec (4 times faster) =

80 sec / 𝑠 + 20 sec

➢ 𝑠 = 80 / (25 – 20) = 80 / 5 = 16 → Improve the speed of multiplication by 𝑠 =

16 times.

➢ The 5 times faster overall execution time satisfies: 20 sec (5 times faster) =

80 sec / 𝑠 + 20 sec

➢ 𝑠 = 80 / (20 – 20) = ∞ → Impossible to make 5 times faster!

Diminishing returns with improved

performance
❑ Previous example shows that, according to Amdahl’s law, we will

approach a speedup of 5 asymptotically, regardless of how

much the multiplication performance is improved.

➢ Diminishing returns: if 𝑓 is fixed, the total speedup rate diminishes with

increased 𝑠.
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 = 1𝑓𝑠 + 1 − 𝑓

Benchmarks

❑ As CPUs became more sophisticated → determine execution

time becomes harder.

❑ Benchmarking: using real applications to measure performance

➢ Supposedly typical of actual workload

➢ Representatives of expected classes of applications (compilers, editors,

scientific applications, graphics, ...) ← make common case fast.

➢ Focus on reproducibility: must provide every detail so that another

experimenter would need to duplicate the results

❑ SPEC (System Performance Evaluation Corporation)

➢ Funded and supported by a number of computer vendors

➢ Companies have agreed on a set of real program and inputs

➢ Various benchmarks for CPU performance, graphics, high-performance

computing, client- server models, file systems, Web servers, etc.

➢ Valuable indicator of performance (and compiler technology)

SPEC CPU Benchmark

❑ Measure elapsed time to execute a selection of programs (with

neglectable I/O), and normalized relative to reference machine

➢ Summarize as geometric mean of performance ratios:
𝑛 ς𝑖=1𝑛 𝑃𝑒𝑟𝑓. 𝑟𝑎𝑡𝑖𝑜𝑖

SPECpower_ssj2008 for Xeon E5-

2650L

❑ Power consumption of server

at different workload levels

➢ Performance: ssj_ops/sec, Power:

Watts (Joules/sec)

















= 

==

10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

Summary

❑ Various measures for computer performance

➢ Execution time: the best performance measure for designers

➢ MIPS/MFLOPS: easy to understand but contains many drawbacks

➢ Benchmarks: use real applications – the best performance measure for users

❑ Factors affecting execution time

➢ Instruction counts

➢ CPI

➢ Clock cycle time (rate)

❑ Power is a limiting factor (the power wall)

➢ Use parallelism to improve performance

➢ Improvement of one aspect does not necessarily lead to proportional

improvement in overall performance (Amdahl’s law)

❑ Next week: ISA design.

