ELT3047 Computer Architecture

Lesson 2: Performance measurement

Hoang Gia Hung
Faculty of Electronics and Telecommunications
University of Engineering and Technology, VNU Hanoi

Last lesson review

Application

>"hello

Software world!”
Operating
Systems

I
Architecture = ——

I
Micro-
architecture

O O
Logic
Q

Digital
Circuits Z.—o
Analog
Circuits
Devices —@
Physics C%)

Programs

Device
Drivers

Instructions
Registers

Datapaths
Controllers

Adders
Memories

AND Gates
NOT Gates

Amplifiers
Filters

Transistors
Diodes

Electrons

- Fundamental concepts in computer

architechure

» Computer definition

» Computer evolution

» Technology and cost trends

» Classes of modern computers

Computer architecture

» Abstract layers

» ISA and computer organization
» Stored program concept

Binary representations of numbers

Today’s lecture: performance
measurement and reporting

Why do we need measuring computer
performance?

- Which is the best computer?

» Perceived differently from different perspective.

» Aviation analogy: cruising speed?

Passenger capacity
passenger throughput?

. pirbus 380200
Understanding performance

. . . Boeing 777-200.R |
» Key to underlying organizational
mOtlvatlon BAC/Sud Concorde -

» Knowing which hardware/software

Boeing 737 |GG
factors affect the performance
0 200 400 600 800 1000
Cruising speed (m.p.h.) Passenger throughput

(passengers x m.p.h.)
airbus A380-200 |NNNENEGEGEE

Airbus A380-800 I

Boeing 777-200R | NRNR€IE ,
Boeing 777-200LR

BAC/sud Concorde BAC/sud Concorde I
Boeing 737
Boeing 737 | ;
0 20 40 60
0 500 1000 1500

x 10000

Defining computer performance

Response time

» Time between start and completion of a task (on a machine X), as observed
by end user: Performancey =

Execution timey

Throughput

» Total work done per unit time e.g., tasks/transactions/... per hour

Response time vs. Throughput

» Decreasing execution time improves throughput: less time to run a task =
more tasks can be executed

» Increasing throughput can also improve response time: even execution time
of individual sequential tasks is not changed, more tasks can be executed in
parallel = less waiting time in scheduling queue.

In this course, we will primarily focus on response time

» Performance are relative: engineers want future generation of computers
(X) they are designing to be n times faster than the current generation (Y)
Performancey _ Execution timey

Performancey Execution timey

Measuring Execution Time

1 Elapsed time = Total response time, including all aspects
» Processing, 1/0, OS overhead, idle time
» Useful, but often not very good for designers (clock wall measurement?)

1 Our focus: CPU time = time spent processing a given job
» Doesn’t count I/O time, other jobs’ shares
» Comprises user CPU time and system CPU time
» Can be measured in seconds or number of CPU clock cycles

<— Clock period —»!

1 : L

i& Cycle 1 + Cycle2 —«— Cycle3 —>i

1 Example: A processor has clock frequency (clock rate) of
4GHz. What's its clock period (i.e. duration of a clock cycle)?

» Answer: 1/(4x109) = 250x10-'2 s (i.e. 250 ps).

CPU Performance and Its Factors

<«—Clock period—

Clock (cycles)

Data transfer < >< >< >
and computation|
Update state <:> <:> <:>

| J
!

CPU Time = CPU Clock Cycles x Clock Cycle Time

_ CPU Clock Cycles
Clock Rate

[
»

1 Performance improved by
» Reducing number of clock cycles required by a program
» Increasing clock rate (i.e. reduce clock cycle time)

» Hardware designer must often trade off clock rate against cycle count
because many techniques that decrease the number of clock cycles may
also increase the clock cycle time, as we will see in later chapters.

CPU Time Example

Given Computer A: 2GHz clock, 10s CPU time. Task: design
Computer B with following specs:

» Aim for 6s CPU time
» Can do faster clock, but causes 1.2 x clock cycles

How fast must Computer B clock be?

Solution:

Clock Rate, = Clock Cycles, _ 1.2xClock Cycles ,

CPU Timeg 6s
Clock Cycles, = CPU Time , xClock Rate ,

=108 x 2GHz =20 x10°

1.2x20x10° 3 24 x10°
6s 6s

Clock Rate; = =4GHz

Instruction Count and CPI

Memory Program = series of instructions stored
' Accounting program | in memory, sequentially fetched &
| (machine code) | executed at a constant clock rate.
 Editor oroaram. | » #clock cycles depends on #instructions
itor program

|
(machine code) i in a program (instruction count) &

R #cycles required by each instruction
| C compiler :
Processor ()| (machinecode) 1 [] Instructions take different number of

T cycles to execute.
| Payroll data : o . _
L » E.g. multiplication > addition, floating
T point operations > integer operations.
: Book text '
| : » #clock cycles = IC x CPI (average
oo T T T T T T T T I r in r | n).
| Source codeinC | #C)./C es per instruction) :
| for editor program | CPU time = 1IC X CPI X Clock period
““““““““ ICXCPI

+—Clock period— . : = T E—

' i ' ' Clock rate

Clock (cycles)

» CPI provides one way of comparing
different implementations of the same

Data transfer
and computation

Update state

ISA (since IC would be the same).

CPI in More Detall

1 The average number of cycles per instruction
I1 I2 I3 |I4|I5| I6 I7 |CPI=14/7=2

" :2:3 :4:5:6:7:8 :9 :10:11:12:13:14:c:;ycles
» It's unrealistic to count #clock cycles for every instruction in a program.
- In practice, CPl depends on a wide variety of design details

» HW factors: the memory system and the processor structure;
» SW factors: the mix of instruction types executed in an application

1 Each instruction classes (e.g. ALU, MEM, ...) has different CPI

» If a program has n different classes of instructions with corresponding CPI,
and instruction count IC;, then Clock cycles = Y., CPI; X IC;.

» The (weighted average) CPI of the program is

pJ — Clock cycles i CPI. x IC;
a IC a ‘UIC

i=1

Relative frequency

CPIl Example

Alternative compiled code sequences using instructions in classes A, B,
C. Which code sequence executes the most instructions? Which will be
faster? What is the CPI for each sequence?

Class A B C

CPI for class 1 2 3

|IC in sequence 1 2 1 2

|IC in sequence 2 4 1 1
Sequence 1:IC =5 J Sequence 2:IC =6
Clock Cycles d Clock Cycles
= 2x1 + 1x2 + 2x3 =4x1 + 1x2 + 1x3
=10 =9
Avg. CPI=10/5=2.0 d Avg.CPI=9/6=1.5

Sequence 2 is faster, even though it executes one extra instruction.

Performance summary

1 To execute, a given program will require

d

» Some number of machine instructions = instruction count
» An average number of clock cycles to run each instruction = CPI

Therefore: (The Classic CPU Performance Equation)

CPU time = IC X CPI X Clock period
IC X CPI
Clock rate
» Cycle time: reciprocal of the CPU frequency, provided by manufacturer
» Instruction count: measured by software tools (profiler) or hardware counters
» CPI: obtain by simulation or hardware counters

Performance depends on

» Algorithm: affects IC, possibly CPI

» Programming language: affects IC, CPI

» Compiler: affects IC, CPI

» Instruction set architecture: affects IC, CPI, Clock cycle time

Performance Example 1

Suppose we have two implementations of the same ISA for a
given program. Which one is faster and by how much?

Machine Clock cycle CPI
A 250 (ps) 2.0
B 500 (ps) 1.2
d Solution:

CPU TimeA =Instruction Count><CPIA x Cycle TimeA

=[x2.0x250ps =1x500ps
CPU TimeB = Instruction Count x CPIB X C‘W

CPU Timeg _ 1x600ps _

‘// A is faster...
=[x1.2x500ps =1x600ps

CPUTime

< ...by this much

" ~ 1x500ps

Performance Example 2

1 Given: instruction mix of a program on a computer

d

Class; Freq; CPI,
ALU 50% 1
Load 20% 5
Store 10% 3

Branch 20% 2

» What is average CPI? What is the % of time used by each instruction class?

» How faster would the machine be if load time is 2 cycles? What if two ALU
instructions could be executed at once?

Solution:

» Average CPI = 0.5x1+0.2x5+0.1x3+0.2x2 = 2.2. Time percentages: 23%, 45%,
14%, 18%.
old CPU time old CPI

. . 2.2
» If load time is 2 cycles: — = =—=1.38
new CPU time new CPI 1.6

old CPI _ 22
new CPI 1.95

» |If two ALU instructions could be executed at once: =1.13

Performance - clock rate relation

10.000 ¢ 3600 g7 3300 3500 3500 3600 7120
2000 300 3500 3500
_ = o 1 100
£ 10004 _
= lao 2
e S
& 1004 leo 2
o o
E 140 3
s 10+ c
© 120
1 ' —1o
88 82 83 55 5§ T & 5§ &€ & g© @
82 82 32 3 22 v§ E8 .8 w8 28 28 8
T OFT TT 8% §g Es 2z Bz ss B3 fg 9
o Ed 52 8¢ S ©F ©ofL 38
o e @ =z O
- o a = é} -
S ¢ © :
© = Charging
d In CMOS IC technology: » capacitors

» Power = Py (~40%, due to leakage) + Py ,omic (~60%, due to capacitance
charging when signals change between 0 and 1).

1
> Paynamic = 5 CVipf — raising clock rate increases power consumption.

1 Problem: Get power in, get power out
» Intel 80386 consumed ~ 2 W, 3.3 GHz Intel Core i7 consumes 130 W
» Heat must be dissipated from 1.5 x 1.5 cm chip — limit of what can be cooled by air

The power wall

. 10,000 ikl Boritiand X Intel Skylake Core i7
Techniques to | power oy ey 4200 Wz 2017
~ Reduce voliage, but B

power — transistors don't S00 Mz in 1996
fuIIy turn Off). g D;%igamr;fzi 51024 40%/year
» Frequency scaling g 100 prm s S
5 MIPS M2000/ .-
> Power gating 5 25 Mz n 108
. . = Sun-4 SPARC
Still, in recent years 10 A e g i n g T
[
> Size of transistors (= "L MHzin 1978
capacitance) not shrinking 1 1% fyear
as much. & \q‘é & \Q‘b;' ’993&3 RO (LQQQ %061' q{@“’ {9@@ (@le '19\6 (19\"’ q/@l"‘ (]9\&3 KLQ\%

Power becomes a growing concern — the “power wall”

How else can we improve performance? switch to multiprocessors

» More than one processor per chip

» Hard to do: programming, load balancing, optimizing communication &
synchronization.

MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
» Faster machine = larger MIPS
» Relations to previous performance measures
Instructio n count
MIPS = —— -
Execution time x10

B Instructio n count _ Clock rate
~ Instruction count x CPI 10° "~ CPIx10°¢
Clock rate

» Similar concept: MFLOPS = millions of floating point operations per second
 Advantage: easy to understand/marketing.

J Drawbacks:

» Cannot compare computers with different instruction sets because the
instruction count will differ

» Varies between programs on the same computer
» Higher MIPS rating does not always mean better performance

MIPS example

Two different compilers are being tested on the same program
for a 4 GHz machine with three different classes of instructions:
Class A, Class B, and Class C, which require 1, 2, and 3 cycles,
respectively.

The instruction count produced by the first compiler is 5 billion
Class A instructions, 1 billion Class B instructions, and 1 billion
Class C instructions.

The second compiler produces 10 billion Class A instructions, 1
billion Class B instructions, and 1 billion Class C instructions.

Questions:
» Which compiler produces a higher MIPS?

» Which compiler produces a better execution time?

MIPS example solution

o0

L)

First, we find the CPU cycles for both compilers.

» CPU cycles (compiler 1) = (5x1 + 1x2 + 1x3)x109 = 10x10°

» CPU cycles (compiler 2) = (10x1 + 1x2 + 1x3)x109 = 15x10°
Next, we find the execution time for both compilers.

» Execution time (compiler 1) = 10x10° cycles / 4x10%9 Hz = 2.5 sec
» Execution time (compiler 2) = 15x10° cycles / 4x10% Hz = 3.75 sec

Compiler1 generates faster program (less execution time).

Now, we compute MIPS rate for both compilers.

> MIPS (compiler 1) = (5+1+1) x 10°/ (2.5 x 10%) = 2800

> MIPS (compiler 2) = (10+1+1) x 10°/ (3.75 x 106) = 3200

So, code from compiler 2 has a higher MIPS rating even though
it is slower in execution time.

Amdahl’s Law

1 Performance improvements might not
always be as good as they sound.

» Improvement of one aspect does NOT
necessarily lead to proportional improvement
in overall performance.

» How much?

1 Speedup(E) due to an enhancement E is
Perf.with E Ex.Time before

Perf.before Ex.Time with E
» If E improves a fraction f of execution time by a factor s, and the remaining

time is unaffected: Ex.Time with E = Ex.Time before X (f + (1 — f))

Speedup(E) =

» Amdahl’s Law: Speedup(E) is measured by

1
+(1-1)

Speedup(E) = 7

S

» Design principle: Make common case fast!

Amdahl’'s Law example

1 Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time. How much do
we have to improve the speed of multiplication if we want the
program to run 4 times faster? 5 times faster?

Jd Solution:

» Suppose we improve multiplication by a factor s

» The 4 times faster overall execution time satisfies: 25 sec (4 times faster) =
80 sec/s + 20 sec

» s=80/(25-20)=80/5=16 — Improve the speed of multiplication by s =
16 times.

» The 5 times faster overall execution time satisfies: 20 sec (5 times faster) =
80 sec/s + 20 sec

» s=80/(20 — 20) = » — Impossible to make 5 times faster!

Diminishing returns with improved
performance

1 Previous example shows that, according to Amdahl’s law, we will
approach a speedup of 5 asymptotically, regardless of how
much the multiplication performance is improved.

» Diminishing returns: if f is fixed, the total speedup rate diminishes with
increased s.

Speedup(E) =

Lya-p

O | | | |
0 10 20 30 40 50
Improvement factor

Benchmarks

As CPUs became more sophisticated — determine execution
time becomes harder.

J Benchmarking: using real applications to measure performance
» Supposedly typical of actual workload

» Representatives of expected classes of applications (compilers, editors,
scientific applications, graphics, ...) «<— make common case fast.

» Focus on reproducibility: must provide every detail so that another
experimenter would need to duplicate the results

0 SPEC (System Performance Evaluation Corporation)
» Funded and supported by a number of computer vendors
» Companies have agreed on a set of real program and inputs

» Various benchmarks for CPU performance, graphics, high-performance
computing, client- server models, file systems, Web servers, etc.

» Valuable indicator of performance (and compiler technology)

SPEC CPU Benchmark

(1 Measure elapsed time to execute a selection of programs (with
neglectable I/O), and normalized relative to reference machine

» Summarize as geometric mean of performance ratios: /[, Perf.ratio;

Execution Reference

Instruction Clock cycle time Time Time
Description Name Count x 10"9 CPI (seconds x 10"-9) (seconds) (seconds) SPECratio
Perl interpreter perlbench 2684 0.42 0.556 627 1774 2.83
GNU C compiler gce 2322 0.67 0.556 863 3976 4.61
Route planning mcf 1786 1.22 0.556 1215 4721 3.89
Discrete Event
simulation - omnetpp 1107 0.82 0.556 507 1630 3.21
computer network
XML to HTM.L xalancbmk 1314 0.75 0.556 549 1417 2.58
conversion via XSLT
Video compression x264 4488 0.32 0.556 813 1763 217
Artificial Intelligence:
alpha-beta tree deepsjeng 2216 0.57 0.556 698 1432 2.05

search (Chess)

Artificial Intelligence:
Monte Carlo tree leela 2236 0.79 0.556 987 1703 1.73
search (Go)

Artificial Intelligence:

recursive solution exchange?2 6683 0.46 0.556 1718 2939 1.71
generator (Sudoku)

General data xz 8533 1.32 0.556 6290 6182 0.98
compression

Geometric mean 2.36

SPECpower ssj2008 for Xeon E5-
2650L

Average
Target Performance Power
Load % (ssj_ops) (watts)
100% 4,864,136 347
90% 4,389,196 312
80% 3,905,724 278
70% 3,418,737 241
60% 2,925,811 212
50% 2,439,017 183
40% 1,951,394 160
30% 1,461,411 141
20% 974,045 128
10% 485,973 115
0% 0 48
Overall Sum 26,815,444 2,165
Y'ssj_ops / Y power = 12,385

- Power consumption of server
at different workload levels

» Performance: ssj_ops/sec, Power:
Watts (Joules/sec)

10 10
Overall ssj_ops per Watt = (Z ssj_opsij / (Z powerij

i=0 i=0

Summary

Various measures for computer performance

» Execution time: the best performance measure for designers

» MIPS/MFLOPS: easy to understand but contains many drawbacks

» Benchmarks: use real applications — the best performance measure for users

Factors affecting execution time

» Instruction counts
» CPI
» Clock cycle time (rate)

Power is a limiting factor (the power wall)
» Use parallelism to improve performance

» Improvement of one aspect does not necessarily lead to proportional
improvement in overall performance (Amdahl’s law)

Next week: ISA design.

