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Last lecture review

❑ Typical design steps for control units:
➢ Fill in truth table

▪ Input: opcode; Output: various control signals as discussed

➢ Derive simplified expression for each signal



Drawbacks of Single Cycle Processor

❑ Long cycle time

➢ All instructions take as much time as the slowest instruction



Worst Case Timing

❑ Slowest instruction: load

➢ Cycle time is longer than needed for other instructions 



Multicycle Implementation

❑ Break instruction execution into five steps

➢ Instruction fetch

➢ Instruction decode, register read, target address for jump/branch

➢ Execution, memory address calculation, or branch outcome

➢ Memory access or ALU instruction completion

➢ Load instruction completion

❑ One clock cycle per step (clock cycle is reduced)

➢ First 2 steps are the same for all instructions



Single cycle vs. multicycle example 

LW SW

Cycle 1 Cycle 2

waste

LW SW Instr

❑ Single cycle

❑ Multicycle

➢ Shorter clock cycle time: constrained by longest step, not longest instruction

➢ Higher overall performance: simpler instructions take fewer cycles, less waste

IF ID Exec Mem Wr IF ID Exec Mem IF

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10



❑ Assume the following operation times for components:

➢ Instruction and data memories: 200 ps

➢ LU and adders: 180 ps

➢ Decode and Register file access (read or write): 150 ps

➢ Ignore the delays in PC, mux, extender, and wires

❑ Assume the following instruction mix:

➢ 40% ALU, 20% Loads, 10% stores, 20% branches, & 10% jumps

❑ Which of the following would be faster and by how much?

➢ Single-cycle implementation for all instructions

➢ Multicycle implementation optimized for every class of instructions

Single cycle vs. Multicycle 



❑ For fixed single-cycle implementation:

➢ Clock cycle = 880 ps determined by longest delay (load instruction)

❑ For multi-cycle implementation:

➢ Clock cycle = max (200, 150, 180) = 200 ps (maximum delay at any step)

➢ Average CPI = 0.4×4 + 0.2×5 + 0.1×4+ 0.2×3 + 0.1×2 = 3.8

❑ Speedup = 880 ps / (3.8 × 200 ps) = 880 / 760 = 1.16

Example solution



The idea of pipelining

❑ Multicycle improves performance over single cycle, but can you 
see limitations of the multi-cycle design?

➢ Some HW resources are idle during different phases of the instruction cycle, 
e.g. “Fetch” logic is idle when an instruction is being “decoded” or “executed”

➢ Most of the datapath is idle when a memory access is happening

❑ Can we do better?

➢ Yes: More concurrency → Higher instruction throughput (i.e., more “work” 
completed in one cycle)

❑ Idea: when an instruction is using some resources in its 
processing phase, process other instructions on idle resources 

➢ E.g., when an instruction is being decoded, fetch the next instruction

➢ E.g., when an instruction is being executed, decode another instruction

➢ E.g., when an instruction is accessing data memory (lw/sw), execute the 
next instruction

➢ E.g., when an instruction is writing its result into the register file, access data 
memory for the next instruction



A laundry analogy

❑ Sequential laundry: wash-dry-fold-put away cycle

❑ Pipelined laundry: start the next load at each step completion

➢ Parallelism improves performance. How much?

❖ Four loads

➢ Speedup = 8/3.5 =2.3
❖ Non-stop (𝑛 → ∞ loads)

➢ Speedup = 2𝑛0.5𝑛+1.5≈ 4
= number of stages



Single-cycle vs multi-cycle vs pipeline

❑ Five stages, one step per stage

➢ Each step requires 1 clock cycle → steps enter/leave pipeline at the rate of 
one step per clock cycle

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

Multiple Cycle Implementation:

Clk

Cycle 1

IF ID EX MEM WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IF ID EX MEM

lw sw

IF
R-type

lw IF ID EX MEM WB

Pipeline Implementation:

IF ID EX MEM WBsw

IF ID EX MEM WBR-type

pipeline clock same 

as multi-cycle clock



Pipeline performance

❑ Ideal pipeline assumptions

➢ Identical operations, e.g. four laundry steps are repeated for all loads

➢ Independent operations, e.g. no dependency between laundry steps

➢ Uniformly partitionable suboperations (that do not share resources), e.g. 
laundry steps have uniform latency.

❑ Ideal pipeline speedup

➢ Time between instructions𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑 = Time between instructions𝑛𝑜𝑛𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑
Number of stages

➢ Speedup is due to increased throughput (*), latency (*) does not decrease

❑ Speedup for non-ideal pipelines is less 

➢ External/internal fragmentation, pipeline stalls.

✓ Latency = execution time (delay or response time) = the total time from start to finish 
of ONE instruction

✓ Throughput (or execution bandwidth) = the total amount of work done in a given 
amount of time



Example: An MIPS pipelined processor 
performance

❑ Assume time for stages is

✓ 100ps for register read or write

✓ 200ps for other stages

❑ Compare pipelined datapath with single-cycle datapath

Instr Instr fetch
Register 
read

ALU op
Memory 
access

Register 
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps



Pipelined performance example solution

Single cycle 1 (Tc=800ps)

waste

Single cycle 2

lw sw

lw

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Cycle 6 Cycle 7 Cycle 8 Cycle 9

sw

R-type

Pipeline’s fill time

Pipelined (Tc=200ps)

❑ Time btw 1st and 5th instructions: single cycle = 3200ps (4 x 800ps) vs pipelined 

= 800ps (4 x 200ps) → speedup = 4.
➢ Execution time for 5 instructions: 4000ps vs 1800ps ≈ 2.22 times speedup 

→ Why shouldn't the speedup be 5 (#stages)? What’s wrong?

➢ Think of real programs which execute billions of instructions.



MIPS ISA supports for pipelining

❑ What makes it easy

➢ All instructions are 32-bits

• Easier to fetch and decode in one cycle: fetch in the 1st stage and 
decode in the 2nd stage

• c.f. x86: 1- to 17-byte instructions

➢ Few and regular instruction formats

• Can decode and read registers in one step

➢ Memory operations occur only in loads and stores

• Can calculate address in 3rd stage, access memory in 4th stage

➢ Operands must be aligned in memory

• Memory access takes only one cycle

➢ Each  instruction writes at most one result (i.e., changes the machine state) 
and does it in the last few pipeline stages (MEM or WB)

❑ What’s makes it hard? (later)



Ideas from the Single-Cycle Datapath

❑ How to pipeline a single-cycle datapath? Think of the simple 
datapath as a linear sequence of stages.

▪ How can we operate the 
stages independently, i.e. 
begin the next instruction 
before the previous 
instruction has completed?

▪ 5 stages → on any 
given cycle up to 5 
instructions will be 
in various points of 
execution.



Pipelined Datapath

❑ Add state registers between each pipeline stage

➢ To isolate information between cycles



Pipeline operation

❑ Cycle-by-cycle flow of instructions through the pipelined 
datapath

➢ Same clock edge updates all pipeline registers, register file, and data 
memory (for store instruction)

➢ “Single-clock-cycle” pipeline diagram
✓ Shows pipeline usage in a single cycle

✓ Highlight resources used

➢ c.f. “multi-clock-cycle” diagram (later)
✓ Graph of operation over time

❑ We’ll look at “single-clock-cycle” diagrams for load to verify the 
proposed datapath



IF for Load, Store, …

PC+4 is computed, stored 
back into the PC, stored in 
the IF/ID buffer although it 
will not be needed in a 
later stage for LW

Instruction word is fetched from memory, and stored in the IF/ID buffer because it will be needed in the next stage.



ID for Load, Store, …

Bits of load instruction are 
taken from IF/ID buffer, while 
new instruction is being fetched

PC+4 is passed 
forward to 
ID/EX buffer

RR #1 & #2 contents 
are fetched & stored 
in ID/EX buffer

16-bit field is fetched from IF/ID buffer, then 
sign-extended, then stored in the ID/EX buffer 
for use in a later stage.



EX for Load

16-bit literal is 
provided to ALU as 
second operand

ALU result and Zero line are 
stored in EX/MEM buffer for use 
as memory address in next stage

PC+4 is taken from ID/EX buffer and added to branch 
offset, then the computed branch target address is 
stored in EX/MEM buffer (won't be needed, though)

RR#1 contents 
are taken from 
ID/EX buffer & 
passed to ALU

Read register #2 is passed 
forward to EX/MEM buffer (but 
won't be needed, though)



MEM for Load

Zero line taken from 
EX/MEM (not needed)

Value on Read data port of data 
memory is stored in MEM/WB buffer

ALU result is taken 
from EX/MEM buffer 
& passed to Address 
port of data memory

ALU result also stored in 
MEM/WB buffer (not needed)

RR#2 contents 
passed from EX/MEM 
buffer to Write data 
port of data memory.



WB for Load

But the Write register port is 
now seeing the register 
number from a different, 
later instruction → wrong

register number!
Value from data memory is 
selected and passed back to 
register file.



Corrected Datapath for Load

So we fix the problem by passing the Write register number from the load 
instruction through the various inter-stage buffers, and then feed it back, just in 
time → adding five more bits to the last three pipeline registers. 



Multi-Cycle Pipeline Diagram (1)

❑ Shows the complete execution of instructions in a single figure

➢ Instructions are listed in instruction execution order from top to bottom

➢ Clock cycles move from left to right

➢ Figure shows the use of resources at each stage and each cycle



Multi-Cycle Pipeline Diagram (2)

❑ Can help with answering questions like:

➢ How many cycles does it take to execute this code?

➢ What is the ALU doing during cycle 4?

➢ Is there a hazard, why does it occur, and how can it be fixed? (later)



Pipelined control: control points

❑ Same control points as in the single-cycle datapath



Pipelined control: settings (1)

❑ Control signals derived from instruction & determined during ID

➢ As the instruction moves → pipeline the control signals → extend the pipeline 
registers to include the control signals

➢ Each stage uses some of the control signals

9 control bits 5 control bits 2 control bits



Pipelined control: settings (2)

❑ Control signals needed in each stage

❑ Control signal values based on instruction type

Pipeline Stage Control signals 

IF None

ID None

EX RegDst, ALUOp1, ALUOp0, ALUSrc

MEM Branch, MemRead, MemWrite

WB MemtoReg, RegWrite

EX Stage MEM Stage WB Stage

Reg 
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem 
toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X



Pipelined control: complete



Can Pipelining Get Us Into Trouble?

❑ Yes - instruction pipeline is not an ideal pipeline

➢ different instructions → not all need the same stages: some pipe stages idle 
for some instructions → external fragmentation

➢ different pipeline stages → not the same latency: some pipe stages are too 
fast but all take the same clock cycle time → internal fragmentation

➢ instructions are not independent of each other → pipeline stalls: pipeline is 
not always moving

❑ Issues in pipeline design: pipeline hazards

➢ structural hazards: attempt to use the same resource by two different 
instructions at the same time

➢ data hazards: attempt to use data before it is ready, e.g. an instruction’s 
source operand(s) are produced by a prior instruction still in the pipeline

➢ control hazards: attempt to make a decision about program control flow 
before the condition has been evaluated and the new PC target address 
calculated (e.g. branch and jump instructions, exceptions)



Example: structural hazards
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Time (clock cycles)

add $1,$2,$3

Inst 1

Inst 2

add $2,$1,$3

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

A
L
UIM Reg DM Reg

❑ Two instructions are attempting to use the same register ($1) 
during the same cycle (CC5).



Summary

❑ Multi-cycle processor

➢ Use one clock cycle per step → shorter clock cycle time = longest step, not 
longest instruction.

➢ Higher performance over single-cycle processor: simpler instructions take 
fewer cycles → less waste

❑ Pipeline processor design

➢ Employs instruction parallelism: process the next instruction on the 
resources available when current instructions move to subsequent phases.

➢ Speedup is due to increased throughput: once the pipeline is full, CPI=1.

➢ Datapath can be derived from that of single-cycle processor, with additional 
buffer registers

➢ Control signals remain the same as in the single-cycle case but some of 
them are moved along the pipeline via inter-stage buffers.

❑ As the instruction pipeline is not ideal, various issues may occur 
including structural, data, and  control hazards.


