Artificial Intelligence

Inference in First-order Logic

Outline

» Reducing first-order inference to
propositional inference

 Unification }
- Generalized Modus Ponens ;
- Forward chaining |
- Backward chaining
» Resolution

Universal instantiation (Ul)

Every instantiation of a universally quantified sentence is
entailed by it:

Yva
Subst({v/g}, a)

for any variable v and ground term g
E.g., VX King(x) A Greedy(x) = EVvil(x) yields:
King(John) n Greedy(John) = Evil(John)

King(Richard) n Greedy(Richard) = EVvil(Richard)
King(Father(John)) n Greedy(Father(John)) = Evil(Father(John))

B e el

Existential instantiation (El)

- For any sentence q, variable v, and constant symbol

k that does not appear elsewhere in the knowledge
base:

dva

——Subst{v/ky,a)—
- E.g., dx Crown(x) A OnHead(x,John) yields:
Crown(C,) A OnHead(C,,John)

provided C, is a new constant symbol, called a

- P~ N g A

Reduction to propositional |
inference |

Suppose the KB contains just the following:
Vx King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)
Brother(Richard,John)

-

Instantiating the universal sentence in all possible ways, we have: ;:
King(John) A Greedy(John) = Evil(John) 1
King(Richard) a Greedy(Richard) = Evil(Richard) f

King(John) 1
Greedy(John)
Brother(Richard,John)

The new KB is . proposition symbols are {

King(John), Greedy(John), Evil(John), King(Richard), etc.

-

Reduction contd.

Every FOL KB can be propositionalized so as to
preserve entailment

» (A ground sentence is entailed by new KB iff entailed
by original KB)
ldea: propositionalize KB and query, apply resolution,
return result

Problem: with function symbols, there are infinitely
many ground terms,

— e.g., Father(Father(Father(John))) i

PR .

——— ——

-

Reduction contd.

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL
KB, it is entailed by a finite subset of the propositionalized KB

ldea: For n=0to « do
create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

RS

Problem: works if a is entailed, loops if a is not entailed i
Theorem: Turing (1936), Church (1936) Entailment for FOL is {

(algorithms exist that say yes to every entailed 1
sentence, but no algorithm exists that also says no to every
nonentailed sentence.)

Problems with :
propositionalization

Propositionalization seems to generate lots of irrelevant
sentences.
E.g., from:

Vx King(x) A Greedy(x) = Evil(x)

King(John)

Vy Greedy(y)

Brother(Richard,John) :

-

e

+ it seems obvious that Evil(John), but propositionalization 1
produces lots of facts such as Greedy(Richard) that are
irrelevant

With p k-ary predicates and n constants, there are p-n*
instantiations.

Unification

- We can get the inference immediately if we can find a

substitution 6 such that King(x) and Greedy(x) match King(John)
and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) = 0 if aB = 36
p O S
Knows(John,X) Knows(John,Jane)
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,0J) {

. e S

—— .
—— PR =1

eliminates overlap of variables, e.g.,

Knows(z,,,0J) /-j-x

. L e -Wﬂ-«—-—*-—a-"-w = \,'-’

Unification

- We can get the inference immediately if we can find a

substitution 6 such that King(x) and Greedy(x) match King(John)
and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) = 0 if aB = 36
p | S
Knows(John,X) Knows(John,Jane) {X7Jane}}
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,0J) {

. e S

—— .
— e

eliminates overlap of variables, e.g.,

Knows(z,-,0J) /-‘)\

B -W'PH—*-«-"-W ol

Unification |

- We can get the inference immediately if we can find a
substitution 6 such that King(x) and Greedy(x) match King(John)
and Greedy(y)

0 = {x/John,y/John} works :
Unify(a,B) = 6 if a8 = BO :

p g S

Knows(John,‘) Knows(John,Jane) {X/Jane};}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,0J) {

eliminates overlap of variables, e.g.,

Knows(z,,,0J) /’F‘

*w—-—»a—-’—— e S e T e e I A A Tt A —WJ

Unification |

- We can get the inference immediately if we can find a
substitution 6 such that King(x) and Greedy(x) match King(John)
and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) = 6 if ad = O ?

p q 0

Knows(John,‘) Knows(John,Jane) {X/Jane};}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,0J) {

eliminates overlap of variables, e.g.,

Knows(z,,,0J) /’F‘

*w—-—»a—-’—— e S e T e e I A A Tt A —WJ

Unification |

- We can get the inference immediately if we can find a
substitution 6 such that King(x) and Greedy(x) match King(John)
and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) = 6 if ad = O ?

p q 0

Knows(John,‘) Knows(John,Jane) {X/Jane};}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,0J) {fail} '

eliminates overlap of variables, e.g.,

Knows(z,,,0J) /’F‘

*w—-—»a—-’—— e S e T e e I A A Tt A —WJ

Unification

 To unify Knows(John,x) and Knows(y,z),
8 = {y/John, x/z } or 8 = {y/John, x/John, z/John}

« The first unifier is than the
second.
- There is a single (MGU)

that is unique up to renaming of variables.
MGU = { y/John, x/z }

. I ——— —— e

The unification algorithm

function UNIFY(z, y, #) returns a substitution to make z and y identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
f, the substitution built up so far

if 6 = failure then return failure
else if z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z,6)
else if ComrPouND?(z) and ComMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OP[z], OP[y],0))
else if L1sT7?(z) and LisT?(y) then
return UNIFY(REST[z], REST[y], UNIFY(FIRST[2], FIRST[Y],))
else return failure

The unification algorithm

function UNIFY-VAR(var, z,0) returns a substitution
inputs: var, a variable
I, any expression
6, the substitution built up so far

s — N

P ————

if {var/val} € 6 then return UNIFY(val, z,6)
else if {z/val} € 6 then return UNIFY(var, val, 6) {
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to 6

Generalized Modus Ponens
(GMP)

P1s Pos s Pns (P1 AP A . APL=0) where p'® = p; O for all i
(o[S)

P, is King(John) p, is King(x)

P, is Greedy(y) p,is Greedy(x)

0 is {x/John,y/John} q is Evil(x)
q 0 is Evil(John)

GMP used with KB of (exactly one positive literal)
All variables assumed universally quantified

!

e e

—— -
PR ——

3 I A7 e e s e A -Wﬂ--—-—a’\-.—av—ﬂ-w o "-"

Soundness of GMP

Need to show that

P1's s Pas (P4 A - APy =>q) FQO
provided that p,'0 = p.O for all j

Lemma: For any sentence p, we have p |= pB by Ul

4 (p] Arserepe=t]) |=(p1 A. AP,=0)0=(pOA...AP,O=q0O)
ST et B A = IS A S
3. From 1 and 2, q0 follows by ordinary Modus Ponens

. e S

—— .
— I > oa

-

Example knowledge base |

- The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its

missiles were sold to it by Colonel West, who is
American.

* Prove that Col. West is a criminal

Example knowledge base
contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) » Weapon(y) » Sells(x,y,z) » Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) » Missile(M,)
... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono) 4
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West) {
The country Nono, an enemy of America ...
Enemy(Nono,America)

e S

Forward chaining algorithm

function FOL-FC-ASk(KB, a) returns a substitution or false

repeat until new is empty
new <+ { }
for each sentence rin KB do
(pyA... A pp = @)+ STANDARDIZE- APART(r)
for each 6 such that (p; A ... A p,)8 = (p; A ... A p,)6
for some pi,...,p! in KB
q' + SuBsT(b, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢« UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

. A A A e

Forward chaining proof

American({ West)

Missile(M 1)

Owns(Nono, M1)

Enemw Nono.America)

e

ot mmm——

= SRR ::j

Forward chaining proof

American({ West)

Sellsi West,M I . Nono)

Missile(M 1)

Owns(Nono, M1)

Hostile{Nono)

Enemw Nono.America)

Forward chaining proof

American({ West)

Criminal{ West)

Sellsi West,M I . Nono)

Missile(M 1)

Owns(Nono, M1)

Hostile{Nono)

Enemw Nono.America)

Properties of forward
chaining

- Sound and complete for first-order definite clauses
= first-order definite clauses + no functions

- FC terminates for Datalog in finite number of
iterations

- May not terminate in general if a is not entailed

« This is unavoidable: entailment with definite clauses
IS semidecidable

-

PR .

——— ——

Efficiency of forward ,
chaining

Outer-loop —recheck every rule:

— Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1

— = match each rule whose premise contains a newly added
positive literal

Inner loop: Matching itself can be expensive: |
allows O(1) retrieval of known facts i
e.g., query Missile(x) retrieves Missile(M.,) |

— Order of matching is important like in CSP — should we |
match Missile or Owns first:

Missile(x) A Owns(Nono, x) -> Sell(West, x, Nono)
- Generate irrelevant facts:
— Backward chaining |
]

Forward chaining is widely used in /’r

-

[
- PR

~

b S PP — — D A e L e e A T e A -—'--"—=-"‘WJ-,'

!

Hard matching example |

:

Diff(wa,nt) n Diff(wa,sa) n Diff(nt,q) A
Diff(nt,sa) n Diff(q,nsw) A Diff(g,sa) A |
@ Diff(nsw,v) a Diff(nsw,sa) n Diff(v,sa) =

@ "@ Colorable()

Diff(Red,Blue) Diff (Red,Green)
0 Diff(Green,Red) Diff(Green,Blue) |
Diff(Blue,Red) Diff(Blue,Green) |

» Colorable() is inferred iff the CSP has a solution

-+ CSPs include 3SAT as a special case, hence ‘
matching is NP-hard

Backward chaining ,
algorithm

function FOL-BC-ASK(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

e S

if goals is empty then return {6}
q' < SuBsT(0, FIRST(g0als)) ‘
for each rin KB where STANDARDIZE-APART(7) = (p1 A ... A py = q)
and 0’ + UNIFY(q, ¢') succeeds
ans <+ FOL-BC-ASK(KB, [py, .. ., po|REST(goals)], COMPOSE(6,0')) U ans
return ans

SUBST(COMPOSE(8,, 6,), p) = SUBST(,, :

Backward chaining example

Criminalf West)

Backward chaining example |

4
Criminalf West) {x/West/
%\ i
!
American(x) Weapon(y) Sells(x,v,z) Hostile(z)

I g I —— - ‘ﬁ

Backward chaining example |

%\)

Criminalf West)

American West)

Weapon{ y)

Sells(x,v,z)

L]

{x/West/

Hostile(z)

Backward chaining example |

Criminalf West)

American West)

Weapon(y)

Sells(x,v,z)

poa

{x/West/

L]

Missile(y)

Hostile(z)

Backward chaining example |

poa

(x/West, /M1]

Criminalf West)
American{ West) Weapon(y) Sells(x,v,z)
L]
Missile(y)
| wM1)

Hostile(z)

Backward chaining example

(x/West, y/M1, z/Nono |

Hostile(z)

Criminalf West)
American(West) Weapon y) Sells(West,M1,z)
L]
Missile(y) Missile(tM 1) Owns(Nono,M1)
| wM1)

-

e ——

L

Backward chaining example

Criminalf West) {x/West, y/M1, z/Nono |
American West) Weaponi y) Sells(West, M1.,z) Hostile(Nono)
[
Missile(y) Missile(tM 1) Owns(Nono,M1) | | EnemyNono,America)
| wM1)

L} L}

L}

-

thm B

.

Backward chaining example

Criminalf West) {x/West, y/M1, z/Nono |
American West) Weaponi y) Sells(West, M1.,z) Hostile(Nono)
[
Missile(y) Missile(tM 1) Owns(Nono,M1) | | EnemyNono,America)
| wM1)

L} L}

L}

-

thm B

.

Properties of backward ,\
chaining

 Depth-first recursive proof search: space is
Inear in size of proof
» Incomplete due to infinite loops

— = fix by checking current goal against every goal
on stack |

Inefficient due to repeated subgoals (both |
success and failure)

— = fix using caching of previous results (extra f
space)

Widely used for /’T‘

— g~

Resolution: brief summary

Full first-order version: |
'l;.V'”V[!;‘, m1_V"'an .
(G vV by VEgY VRV my Ve Vom g Vo Vot Vom)0
where Unify(f, —m) = 6.

e A it N

The two clauses are assumed to be standardized apart so that they
share no variables.

For example,
- Rich(x) v Unhappy(x)
Rich(Ken)
Unhappy(Ken)

. F——— c— . a o _a

with 8 = {x/Ken}

« Apply resolution steps to CNF(KB A —a); complete for FOL

8

/’T‘

_a—b o 5" Mt e e s e et S A A et e A et sV M’WJ

Conversion to CNF

- Everyone who loves all animals is loved by

someone.

Vx [Vy Animal(y) = Loves(x,y)] = [dy Loves(y,x)]

- 1. Eliminate biconditionals and implications
Vx - [Vy =Animal(ly) v Loves(x,y)] v [y Loves(y,X)]

« 2. Move - inwards: =Vxp = dx =p, - Ixp

= VX =p
Vx [Ay =(=Animal(y) v Loves(x,Yy))

Vx [dy ==Animal(y) A —=Loves(x,y)]

Vx [dy Animal(y) A =Loves(x,y)] v

v [Ay Loves(y,X)]
v [dy Loves(y,x)]
dy Loves(y,x)]

3.

4.

9.

Conversion to CNF contd.

Standardize variables: each quantifier should use a different
one

Vx [dy Animal(y) A —=Loves(x,y)] v [3z Loves(z,X)]

Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a of the
enclosing universally quantified variables:

Vx [Animal(F(x)) n —=Loves(x,F(x))] v Loves(G(x),x)

Drop universal quantifiers:

[Animal(F(x)) A =Loves(x,F(x))] v Loves(G(x),x)

Distribute v over a :

[Animal(F(x)) v Loves(G(x),x)] A [-Loves(x,F(x)) v Loves(G(x),x)]

- B SR

4

Resolution proof: definite

clauses

= American(x) Vv — Weapon(y) v — Sells{x,y,z)

Vv = Hostile(z) v Criminal(x)

‘ = Criminal(West) ’

American West)

//

-1 American(West) v 1 Weapon(y) Vv Sells(Westy,z) Vv T Hostile(z)

\

-1 Missile(x) v Weapon(x)

MissilelM1)

-

\

- Weapon(y) v - Sells{West,y,z) v -1 Hostile(z)

= Missile(y) v - Sells{ West,y,z) v —1 Hostile(z)

- Missile(x) v — Owns(Nono,x)

v Sellsi West,x, Nono) - Sells(West, M 1,z) vV — Hostile(z)

MissileiM1)

Owns(1\'0/?0.1‘11}

/

- Missile(M1) v — OwnsiNonoMI) v = Hostile(Nono)

— emm ey

= OwnsiNono,M1) Vv — Hostile(Nono)

e

-1 Enemy(x,America) v Hostile(x)

=1 Hostile{ Nono) l

Enemw Nono,America)

el

Enemw Nono,America) |

= ==

	http://tailieuvnu.com/

