
Artificial Intelligence!

Informed Search!
Chiến lược tìm kiếm kinh nghiệm!

Informed (Heuristic) Search!
•  We have seen that uninformed methods of

search are capable of systematically
exploring the state space in finding a goal
state. !

•  However, uninformed search methods are
very inefficient in most cases.!

•  With the aid of problem-specific knowledge,
informed methods of search are more
efficient. !

Phạm Bảo Sơn 2

Outline!
•  Heuristics!
•  Informed Search methods:!

– Greedy Best-first search!
– Beam Search!
– Uniform-cost search!
– A* search!

Phạm Bảo Sơn 3

Heuristics!
•  “Heuristics are criteria, methods or principles for deciding which

among several alternative courses of action promises to be the
most effective in order to achieve some goal.”!

•  Can make use of heuristics in deciding which is the most
“promising” path to take during search.!

•  Evaluation function h(u): a measure to evaluate the distance of
state u from the goal. e.g: h(u) = 0 if u is the goal state.!

•  Evaluation functions (or heuristic functions) are problem specific
functions that provide an estimate of solution cost. !

Phạm Bảo Sơn 4

Phạm Bảo Sơn 5

Evaluation Function 
Hàm đánh giá!

•  Travelling problem: The evaluation
function take the value of the straight-
line from one city to the destination city. !

C (5)

B (30)

A (20)
D (10)

E (0)

Phạm Bảo Sơn 6

Evaluation Function!

Phạm Bảo Sơn 7

Evaluation Function!

6

4 3

5

8

1

2 7

8

1 2

4

7

3

6 5

Eight-puzzle problem:

•  The number of misplaced tiles, or

•  Total sum of distances of a tile and its desired location.

Phạm Bảo Sơn 8

Evaluation Function!

6

4 3

5

8

1

2 7

8

1 2

4

7

3

6 5

- The number of misplaced tiles: 9

- Total sum of distances of a tile and its desired location: 3 +
1 + 2 + 1 + 1 + 1 + 1 + 2 + 2 = 14

Phạm Bảo Sơn 9

Evaluation Function!
•  There are many ways to estimate the

solution cost for an evaluation function. !
•  Evaluation functions might not be

optimal. !
•  The quality of an evaluation function

plays an important role in the
effectiveness of the informed search. !

Phạm Bảo Sơn 10

Informed Search!
1.  Task specification by identifying state space

and actions. !
2.  Identify an evaluation function. !
3.  Design a strategy to choose which node to

expand next. !
 !

Greedy Best-First Search!
•  Tìm kiếm tốt nhất đầu tiên !
•  Best first Search that selects the next

node for expansion using the evaluation
function h(u).!

•  Greedy search minimises the estimated
cost to the goal; it expands whichever
node u that is estimated to be closest to
the goal.!

Phạm Bảo Sơn 11

Greedy best-first search
example!

12 Phạm Bảo Sơn

Greedy best-first search
example!

13 Phạm Bảo Sơn

Greedy best-first search
example!

14 Phạm Bảo Sơn

Greedy best-first search
example!

15 Phạm Bảo Sơn

Phạm Bảo Sơn 16

Greedy Best First Search!
1.  Initialize queue L containing only the initial

state. !
2.  Loop do!

2.1 !If (L is empty) then!
!{search failed; exit}!

2.2!Take the first node u from beginning of L;!
2.3!If (u is a goal) then!

!{goal found; exit}!
2.4!For (each node v adjacent to u) do!

!{Put v to L so that L is sorted in increasing order
of the evaluation function}!

Phạm Bảo Sơn 17

Greedy Best first search!

C (5)

B (30)

A (20)
D (10)

E (0)

Find a path from A to E •  Find E!

•  L: A - A!
•  L: C, D - C !
•  L: D, B - D!
•  L: E, B ! - E!
•  Found E!

Properties of greedy best-
first search!

•  Complete? No – can get stuck in loops, e.g., Iasi à
Neamt à Iasi à Neamt à!
!Complete in finite space with repeated-state checking !

•  Time? O(bm), m is the maximum depth in search
space !

•  Space? O(bm) -- keeps all nodes in memory!
•  Optimal? No!
A good heuristic function can reduce time

and memory cost substantially. !
18 Phạm Bảo Sơn

Phạm Bảo Sơn 19

Beam Search  
!

•  Similar to greed best first search but
only consider expanding k nodes at the
next step i.e. the queue has a maximal
size of k. !

•  Pros: better time complexity!
•  Cons: do not consider all paths, so

might fail to find a solution i.e. not
complete.!

Uniform-Cost Search!
•  Expand root first, then expand least-cost

unexpanded node.!
•  Implementation: insert nodes in order of

increasing path cost.!
•  Reduces to breadth-first search when all

actions have same cost.!
•  Find the cheapest goal provided path cost is

monotonically increasing along each path (i.e.
no negative-cost steps)!

Phạm Bảo Sơn 20

Uniform Cost Search!

Phạm Bảo Sơn 21

Uniform Cost Search!

Phạm Bảo Sơn 22

Uniform Cost Search!

Phạm Bảo Sơn 23

Uniform Cost Search!

Phạm Bảo Sơn 24

Properties of 
Uniform Cost Search!

•  Complete? Yes, if step cost >0 or b is finite!
•  Time? O(bm), m is the maximum depth in search

space !
•  Space? O(bm) -- keeps all nodes in memory!
•  Optimal? Yes!
!
Can we still guarantee optimality but search more

efficiently, by giving priority to more promising nodes?!

Phạm Bảo Sơn 25

A* Search!
•  A* Search uses evaluation function f(n) = g(n) + h(n)!

–  g(n): cost from initial node to node n!
–  h(n): estimated cost of cheapest path from n to goal.!
–  f(n): estimated total cost of cheapest solution through n.!

•  Greedy best first search minimises h(n)!
–  Efficient but not optimal or complete!

•  Uniform-cost search minimizes g(n)!
–  Optimal and complete but not efficient!

Phạm Bảo Sơn 26

A* Search!
•  A* search minimizes f(n) = g(n) + h(n)!

–  Idea: preserve efficiency of Greedy Search but
avoid expanding path that are already expensive!

•  Question: Is A* search optimal and complete?!
•  Yes! Provided h(n) is admissible- it never

overestimates the cost to reach the goal.!

Phạm Bảo Sơn 27

A* Search Example!

Phạm Bảo Sơn 28

A* Search Example!

Phạm Bảo Sơn 29

A* Search Example!

Phạm Bảo Sơn 30

A* Search Example!

Phạm Bảo Sơn 31

A* Search Example!

Phạm Bảo Sơn 32

A* Search Example!

Phạm Bảo Sơn 33

Phạm Bảo Sơn 34

A* Search!
1.  Initialize queue L containing only the initial state.!
2.  Loop do!

2.1 !If (L is empty) then!
!{search failed; exit}!

2.2 !Take the first node u from beginning of L;!
2.3 !If (u is a goal) then!

!{goal found; exit}!
2.4 !For (each node v adjacent to u) do!

!{g(v) := g(u) + k(u,v);!
!f(v) := g(v) + h(v);!
!Put v to L so that L is sorted in increasing order of the
evaluation function f;}!

Phạm Bảo Sơn 35

Admisible Heuristics!
•  Hàm đánh giá chấp nhận được!
•  An evaluation function h(n) is

admissible if h(n) is always optimistic
(“lạc quan”): it never overestimates the
optimal cost. !

•  If h(n) is admissible then A* is optimal.!
!

Phạm Bảo Sơn 36

Optimality of A* (proof)!
•  Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.!

!

•  f(G2) ! !> f(G) ! !from above !
•  h(n) ! !≤ h*(n) ! !since h is admissible!
•  g(n) + h(n) !≤ g(n) + h*(n) !
•  f(n) ! !≤ f(G)!
!
Hence f(G2) > f(n), and A* will never select G2 for expansion!
!

Optimality of A* Search!
•  Since f(G2) > f(n), A* will never select G2 for

expansion.!
•  The suboptimal goal node G2 may be generated, but

it will never be expanded. !
•  In other words, even after a goal node has been

generated, A* will keep searching so long as there is
a possibility of finding a shorter solution.!

•  Once a goal node is selected for expansion, we know
it must be optimal, so we can terminate the search. !

Phạm Bảo Sơn 37

Properties of A* search!
•  Complete? Yes (unless there are

infinitely many nodes with f ≤ f(G))!
•  Time? Exponential!
•  Space? Keeps all nodes in memory!
•  Optimal? Yes!
!

38 Phạm Bảo Sơn

Phạm Bảo Sơn 39

Admissible heuristics!
E.g., for the 8-puzzle:!
!
•  h1(n) = number of misplaced tiles!
•  h2(n) = total Manhattan distance!
(i.e., no. of squares from desired location of each tile)!
!
!

!
!
!
•  h1(S) = ? !
•  h2(S) = ? !
!

Phạm Bảo Sơn 40

Admissible heuristics!
E.g., for the 8-puzzle:!
!
•  h1(n) = number of misplaced tiles!
•  h2(n) = total Manhattan distance!
(i.e., no. of squares from desired location of each tile)!
!
!

!
!
!
•  h1(S) = ? 8!
•  h2(S) = ? 3+1+2+2+2+3+3+2 = 18 !

Phạm Bảo Sơn 41

Dominance  
Tính áp đảo !

•  If h2(n) ≥ h1(n) for all n (both admissible)!
•  then h2 dominates h1 #
•  h2 is better for search!
!
•  Typical search costs (average number of nodes expanded):!

•  d=12 ##
! !IDS = 3,644,035 nodes 

!A*(h1) = 227 nodes  
!A*(h2) = 73 nodes !

•  d=24 ##
#IDS = too many nodes ~ 54 * 109 nodes 

!A*(h1) = 39,135 nodes  
!A*(h2) = 1,641 nodes !

!

Phạm Bảo Sơn 42

Cách tìm admissible
heuristics!

•  Giảm bớt ràng buộc. !
•  A problem with fewer restrictions on the actions is

called a relaxed problem!
•  The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem!
!
•  If the rules of the 8-puzzle are relaxed so that a tile

can move anywhere, then h1(n) gives the shortest
solution!

•  If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest
solution!

!

Composite Heuristic
Functions!

•  Let h1, h2,.., hm be admissible heuristics
for a given task.!

•  Define the composite heuristic:!
–  h(n) = max (h1(n), h2(n), …, hm(n)).!

•  h is admissible!
•  h dominates h1, h2, …, hm !

Phạm Bảo Sơn 43

Phạm Bảo Sơn 44

Bidirectional Search!
•  Symmetrical problems. !
•  We can have inverse operators.!
•  Explicate goal states!

Phạm Bảo Sơn 45

Properties of Bidirectional search!

•  Complete? Yes (if b is finite)!
!
•  Time? O(bd/2)!
!
•  Space? O(bd/2) !
•  Optimal? Yes (if uniform cost per step)!
!

References!
•  Artificial Intelligence, A modern

Approach. Chapter 4.!
•  AI Illuminated. Chapter 4.!

Phạm Bảo Sơn 46

	http://tailieuvnu.com/

