
Artificial Intelligence!

Informed Search!
Chiến lược tìm kiếm kinh nghiệm!



Informed (Heuristic) Search!
•  We have seen that uninformed methods of 

search are capable of systematically 
exploring the state space in finding a goal 
state. !

•  However, uninformed search methods are 
very inefficient in most cases.!

•  With the aid of problem-specific knowledge, 
informed methods of search are more 
efficient. !
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Outline!
•  Heuristics!
•  Informed Search methods:!

– Greedy Best-first search!
– Beam Search!
– Uniform-cost search!
– A* search!
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Heuristics!
•  “Heuristics are criteria, methods or principles for deciding which 

among several alternative courses of action promises to be the 
most effective in order to achieve some goal.”!

•  Can make use of heuristics in deciding which is the most 
“promising” path to take during search.!

•  Evaluation function h(u): a measure to evaluate the distance of 
state u from the goal. e.g: h(u) = 0 if u is the goal state.!

•  Evaluation functions (or heuristic functions) are problem specific 
functions that provide an estimate of solution cost.   !
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Evaluation Function 
Hàm đánh giá!

•  Travelling problem: The evaluation 
function take the value of the straight-
line from one city to the destination city. !
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E (0) 



Phạm Bảo Sơn 6 

Evaluation Function!
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Evaluation Function!
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Eight-puzzle problem:  

•  The number of misplaced tiles, or 

•  Total sum of distances of a tile and its desired location.  
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Evaluation Function!
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- The number of misplaced tiles: 9 

- Total sum of distances of a tile and its desired location: 3 + 
1 + 2 + 1 + 1 + 1 + 1 + 2 + 2 = 14  
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Evaluation Function!
•  There are many ways to estimate the 

solution cost for an evaluation function. !
•  Evaluation functions might not be 

optimal. !
•  The quality of an evaluation function 

plays an important role in the 
effectiveness of the informed search. !



Phạm Bảo Sơn 10 

Informed Search!
1.  Task specification by identifying state space 

and actions. !
2.  Identify an evaluation function. !
3.  Design a strategy to choose which node to 

expand next. !
 !



Greedy Best-First Search!
•  Tìm kiếm tốt nhất đầu tiên !
•  Best first Search that selects the next 

node for expansion using the evaluation 
function h(u).!

•  Greedy search minimises the estimated 
cost to the goal; it expands whichever 
node u that is estimated to be closest to 
the goal.!
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Greedy best-first search 
example!
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Greedy best-first search 
example!
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Greedy best-first search 
example!
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Greedy best-first search 
example!
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Greedy Best First Search!
1.  Initialize queue L containing only the initial 

state. !
2.  Loop do!

2.1 !If (L is empty) then!
!{search failed; exit}!

2.2!Take the first node u from beginning of L;!
2.3!If (u is a goal) then!

!{goal found; exit}!
2.4!For (each node v adjacent to u) do!

!{Put v to L so that L is sorted in increasing order 
of the evaluation function}!
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Greedy Best first search!

C (5) 

B (30) 

A (20) 
D (10) 

E (0) 

Find a path from A to E •  Find E!

•  L: A             - A!
•  L: C, D        - C !
•  L: D, B        - D!
•  L: E, B   !    - E!
•  Found E!



Properties of greedy best-
first search!

•  Complete? No – can get stuck in loops, e.g., Iasi à 
Neamt à Iasi à Neamt à!
!Complete in finite space with repeated-state checking !

•  Time? O(bm), m is the maximum depth in search 
space !

•  Space? O(bm) -- keeps all nodes in memory!
•  Optimal? No!
A good heuristic function can reduce time 

and memory cost substantially. !
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Beam Search  
!

•  Similar to greed best first search but 
only consider expanding k nodes at the 
next step i.e. the queue has a maximal 
size of k. !

•  Pros: better time complexity!
•  Cons: do not consider all paths, so 

might fail to find a solution i.e. not 
complete.!



Uniform-Cost Search!
•  Expand root first, then expand least-cost 

unexpanded node.!
•  Implementation: insert nodes in order of 

increasing path cost.!
•  Reduces to breadth-first search when all 

actions have same cost.!
•  Find the cheapest goal provided path cost is 

monotonically increasing along each path (i.e. 
no negative-cost steps)!
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Uniform Cost Search!
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Uniform Cost Search!
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Uniform Cost Search!
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Uniform Cost Search!
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Properties of 
Uniform Cost Search!

•  Complete? Yes, if step cost >0 or b is finite!
•  Time? O(bm), m is the maximum depth in search 

space !
•  Space? O(bm) -- keeps all nodes in memory!
•  Optimal? Yes!
!
Can we still guarantee optimality but search more 

efficiently, by giving priority to more promising nodes?!
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A* Search!
•  A* Search uses evaluation function f(n) = g(n) + h(n)!

–   g(n): cost from initial node to node n!
–   h(n): estimated cost of cheapest path from n to goal.!
–   f(n): estimated total cost of cheapest solution through n.!

•  Greedy best first search minimises h(n)!
–  Efficient but not optimal or complete!

•  Uniform-cost search minimizes g(n)!
–  Optimal and complete but not efficient!
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A* Search!
•  A* search minimizes f(n) = g(n) + h(n)!

–  Idea: preserve efficiency of Greedy Search but 
avoid expanding path that are already expensive!

•  Question: Is A* search optimal and complete?!
•  Yes! Provided h(n) is admissible- it never 

overestimates the cost to reach the goal.!
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A* Search Example!
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A* Search Example!
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A* Search Example!
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A* Search Example!
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A* Search Example!
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A* Search Example!
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A* Search!
1.  Initialize queue L containing only the initial state.!
2.  Loop do!

2.1 !If (L is empty) then!
!{search failed; exit}!

2.2 !Take the first node u from beginning of L;!
2.3 !If (u is a goal) then!

!{goal found; exit}!
2.4 !For (each node v adjacent to u) do!

!{g(v) := g(u) + k(u,v);!
!f(v) := g(v) + h(v);!
!Put v to L so that L is sorted in increasing order of the 
evaluation function f;}!
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Admisible Heuristics!
•  Hàm đánh giá chấp nhận được!
•  An evaluation function h(n) is 

admissible if h(n) is always optimistic 
(“lạc quan”): it never overestimates the 
optimal cost. !

•  If h(n) is admissible then A* is optimal.!
!



Phạm Bảo Sơn 36 

Optimality of A* (proof)!
•  Suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n is on a 
shortest path to an optimal goal G.!

!

•  f(G2) ! !> f(G) ! !from above !
•  h(n) ! !≤ h*(n) ! !since h is admissible!
•  g(n) + h(n) !≤ g(n) + h*(n) !
•  f(n) ! !≤ f(G)!
!
Hence f(G2) > f(n), and A* will never select G2 for expansion!
!



Optimality of A* Search!
•  Since f(G2) > f(n), A* will never select G2 for 

expansion.!
•  The suboptimal goal node G2 may be generated, but 

it will never be expanded. !
•  In other words, even after a goal node has been 

generated, A* will keep searching so long as there is 
a possibility of finding a shorter solution.!

•  Once a goal node is selected for expansion, we know 
it must be optimal, so we can terminate the search.  !
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Properties of A* search!
•  Complete? Yes (unless there are 

infinitely many nodes with f ≤ f(G) )!
•  Time? Exponential!
•  Space? Keeps all nodes in memory!
•  Optimal? Yes!
!
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Admissible heuristics!
E.g., for the 8-puzzle:!
!
•  h1(n) = number of misplaced tiles!
•  h2(n) = total Manhattan distance!
(i.e., no. of squares from desired location of each tile)!
!
!

!
!
!
•  h1(S) = ? !
•  h2(S) = ? !
!
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Admissible heuristics!
E.g., for the 8-puzzle:!
!
•  h1(n) = number of misplaced tiles!
•  h2(n) = total Manhattan distance!
(i.e., no. of squares from desired location of each tile)!
!
!

!
!
!
•  h1(S) = ? 8!
•  h2(S) = ? 3+1+2+2+2+3+3+2 = 18 !
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Dominance  
Tính áp đảo !

•  If h2(n) ≥ h1(n) for all n (both admissible)!
•  then h2 dominates h1 #
•  h2 is better for search!
!
•  Typical search costs (average number of nodes expanded):!

•  d=12 ##
! !IDS = 3,644,035 nodes 

!A*(h1) = 227 nodes  
!A*(h2) = 73 nodes !

•  d=24 ##
# #IDS = too many nodes ~ 54 * 109 nodes 

!A*(h1) = 39,135 nodes  
!A*(h2) = 1,641 nodes !

!
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Cách tìm admissible 
heuristics!

•  Giảm bớt ràng buộc. !
•  A problem with fewer restrictions on the actions is 

called a relaxed problem!
•  The cost of an optimal solution to a relaxed problem 

is an admissible heuristic for the original problem!
!
•  If the rules of the 8-puzzle are relaxed so that a tile 

can move anywhere, then h1(n) gives the shortest 
solution!

•  If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest 
solution!

!



Composite Heuristic 
Functions!

•  Let h1, h2,.., hm be admissible heuristics 
for a given task.!

•  Define the composite heuristic:!
–    h(n) = max (h1(n), h2(n), …, hm(n)).!

•   h is admissible!
•   h dominates h1, h2, …, hm !
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Bidirectional Search!
•  Symmetrical problems. !
•  We can have inverse operators.!
•  Explicate goal states!
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Properties of Bidirectional search!

•  Complete? Yes (if b is finite)!
!
•  Time? O(bd/2)!
!
•  Space? O(bd/2) !
•  Optimal? Yes (if uniform cost per step)!
!
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