
Constraint Satisfaction 
Problems!

Các bài toán thỏa mãn ràng buộc #
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Outline!
•  Constraint Satisfaction Problems (CSP)#
•  Backtracking search for CSPs#
•  Local search for CSPs#
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Constraint satisfaction problems 
(CSPs)!

•  Standard search problem:#
–  state is a "black box“ – any data structure that supports 

successor function, heuristic function, and goal test#
•  CSP:#

–  state is defined by variables Xi with values from domain Di#
–  goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables.#
–  Aim is to find an assignment of Xi from domain Di in such a 

way that none  of the constraints are violated.#
•  Simple example of a formal representation language#
•  Allows useful general-purpose algorithms with more 

power than standard search algorithms#
#
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Example: Map-Coloring!

•  Variables WA, NT, Q, NSW, V, SA, T #
•  Domains Di = {red,green,blue}#
•  Constraints: adjacent regions must have different colors#
#
•  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 

(green,blue),(blue,red),(blue,green)}#
#
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Example: Map-Coloring!

•  Solutions are complete and consistent 
assignments, e.g., WA = red, NT = green,Q = 
red,NSW = green,V = red,SA = blue,T = 
green#

#



Example: n-queens puzzle!
•  Assume one queen in each 

column.#
•  Variables Q1, ..Qn.#
•  Domains Di={1,..,n}#
•  Constraints#
•  Qi ≠ Qj (cannot be in the same 

row)#
•  |Qi-Qj| ≠ |i-j| ( or same diagonal)#
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Example Sudoku!
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Real-world CSPs!
•  Assignment problems (e.g. who teaches what 

class)#
•  Timetabling problems (e.g. which class is 

offered when and where?)#
•  Hardware configuration#
•  Transport scheduling#
•  Factory scheduling#
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Constraint graph!
•  Binary CSP: each constraint relates two variables#
•  Constraint graph: nodes are variables, arcs are 

constraints#
#
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Varieties of constraints!
•  Unary constraints involve a single variable, #

–  e.g., SA ≠ green#
•  Binary constraints involve pairs of variables,#

–  e.g., SA ≠ WA#
•  Higher-order constraints involve 3 or more 

variables,#
–  e.g., cryptarithmetic column constraints#

•  Soft constraints (preferences)#
–  11am lecture is better than 8am lecture#

#
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Example: Cryptarithmetic!

•  Variables: F T U W R O X1 X2 X3!
•  Domains: {0,1,2,3,4,5,6,7,8,9}#
•  Constraints: Alldiff (F,T,U,W,R,O)#

–  O + O = R + 10 · X1!
–  X1 + W + W = U + 10 · X2!
–  X2 + T + T = O + 10 · X3!
–  X3 = F, T ≠ 0, F ≠ 0#

#
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Standard search formulation (incremental)!
Let's start with the straightforward approach, then fix it#
States are defined by the values assigned so far#
•  Initial state: the empty assignment { }#
•  Successor function: assign a value to an unassigned variable 

that does not conflict with current assignment#
à fail if no legal assignments#

•  Goal test: the current assignment is complete#
1.  This is the same for all CSPs#
2.  Every solution appears at depth n with n variables 

à use depth-first search#
3.  Path is irrelevant, so can also use complete-state formulation#
4.  b = (n - l )d at depth l, hence n! · dn leaves (d: number of 

variable values)#
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Backtracking search!
•  Variable assignments are commutative, i.e.,#
[ WA = red then NT = green ] same as [ NT = green 

then WA = red ]#
•  Only need to consider assignments to a single 

variable at each node#
à b = d and there are dn leaves#

•  Depth-first search for CSPs with single-variable 
assignments is called backtracking search#

•  Backtracking search is the basic uninformed 
algorithm for CSPs#

•  Can solve n-queens for n ≈ 25#
#
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Backtracking search!
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Backtracking example!
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Backtracking example!
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Backtracking example!
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Backtracking example!
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Improving backtracking 
efficiency!

•  General-purpose methods can give 
huge gains in speed:#
– Which variable should be assigned next?#
–  In what order should its values be tried?#
– Can we detect inevitable failure early?#

#
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Most constrained variable  
Biến bị ràng buộc nhiều nhất!

•  Most constrained variable: choose the 
variable with the fewest legal values#

#
#
•  a.k.a. minimum remaining values (MRV) 

heuristic#
#
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Most constraining variable  
Biến ràng buộc nhiều nhất!

•  Tie-breaker among most constrained 
variables#

•  Most constraining variable (degree heuristic):#
–  choose the variable with the most constraints on 

remaining variables#
#
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Least constraining value  
Giá trị ràng buộc ít nhất!

•  Given a variable, choose the least 
constraining value:#
–  the one that rules out the fewest values in the 

remaining variables#
#

#
•  Combining these heuristics makes 1000 

queens feasible#
#
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Forward checking 
Kiểm tra trước!

•  Idea: #
–  Keep track of remaining legal values for unassigned 

variables#
–  Terminate search when any variable has no legal values#

#
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Forward checking!
•  Idea: #
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–  Terminate search when any variable has no legal values#
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Constraint propagation!
•  Forward checking propagates information from 

assigned to unassigned variables, but doesn't provide 
early detection for all failures:#

#

#

•  NT and SA cannot both be blue!#
•  Constraint propagation repeatedly enforces 

constraints locally#
#
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Arc consistency  
!

•  Simplest form of propagation makes each arc 
consistent#

•  X àY is consistent iff#
for every value x of X there is some allowed y#

#
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Arc consistency!
•  Simplest form of propagation makes each arc 

consistent#
•  X àY is consistent iff#

for every value x of X there is some allowed y#
#

#
#
#
#

•  If X loses a value, neighbors of X need to be 
rechecked#

#
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Arc consistency!
•  Simplest form of propagation makes each arc consistent#
•  X àY is consistent iff#

for every value x of X there is some allowed y#
#

#
#
#
#

•  If X loses a value, neighbors of X need to be rechecked#
•  Arc consistency detects failure earlier than forward checking#
•  Can be run as a preprocessor or after each assignment#
#
#
#
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Arc consistency algorithm 
AC-3!

•  Time complexity: O(n2d3)#
#



Special constraints!
•  Arc-consistency does miss some cases#
•  Example: #

–  {WA=red, NSW=red}#
– AC-3: Domain for SA, NT, Q : {green, blue}#
– Alldiff constraint is violated as number of 

values is less than number of variables.#
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Local search for CSPs!
•  Local search or iterative improvement.#
•  Hill-climbing, simulated annealing typically work with "complete" 

states, i.e., all variables assigned#
•  To apply to CSPs:#

–  allow states with unsatisfied constraints#
–  operators reassign variable values#

•  Variable selection: randomly select any conflicted variable#
•  Value selection by min-conflicts (mâu thuẫn ít nhất) heuristic:#

–  choose value that violates the fewest constraints#
–  i.e., hill-climb with h(n) = total number of violated constraints#

#
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Example: 4-Queens!
•  States: 4 queens in 4 columns (44 = 256 states)#
•  Actions: move queen in column#
•  Goal test: no attacks#
•  Evaluation: h(n) = number of attacks#
#

#



Phase transition in CSP’s!
•  Given random initial state, can solve n-queens in almost 

constant time for arbitrary n with high probability (e.g., n = 
10,000,000)#

•  In general, randomly-generated CSP tend to be easy if there are 
very few or very many constraints. They become extra hard in a 
narrow range of the ratio:#

#
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Flat regions and local 
optima!

•  Sometimes, have to go sideways or even backwards 
in order to make progress towards the actual solution.#
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Simulated Annealing!
•  Stochastic hill climbing based on difference between 

evaluation of previous state (h0) and new state (h1).#
•  If h1 < h0, definitely make the change.#
•  Otherwise, make the change with probability:#
# #e-(h1-h0)/T ,T is a “temperature” parameter#

•  Reduces to ordinary hill climbing when T=0.#
•  Become totally random search as T-> ∞#
•  We gradually decrease the value of T during the 

search.    #
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Summary!
•  CSPs are a special kind of problem:#

–  states defined by values of a fixed set of variables#
–  goal test defined by constraints on variable values#

•  Backtracking = depth-first search with one variable assigned per 
node#

•  Variable ordering and value selection heuristics help 
significantly#

•  Forward checking prevents assignments that guarantee later 
failure#

•  Constraint propagation (e.g., arc consistency) does additional 
work to constrain values and detect inconsistencies#

•  Iterative min-conflicts is usually effective in practice#
•  Simulated Annealing can help to escape from local optima.#
#



References!
•  Artificial Intelligence, A modern 

approach. Chapter 5.#
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