
Constraint Satisfaction
Problems!

Các bài toán thỏa mãn ràng buộc #

Phạm Bảo Sơn 2

Outline!
•  Constraint Satisfaction Problems (CSP)#
•  Backtracking search for CSPs#
•  Local search for CSPs#

Phạm Bảo Sơn 3

Constraint satisfaction problems
(CSPs)!

•  Standard search problem:#
–  state is a "black box“ – any data structure that supports

successor function, heuristic function, and goal test#
•  CSP:#

–  state is defined by variables Xi with values from domain Di#
–  goal test is a set of constraints specifying allowable

combinations of values for subsets of variables.#
–  Aim is to find an assignment of Xi from domain Di in such a

way that none of the constraints are violated.#
•  Simple example of a formal representation language#
•  Allows useful general-purpose algorithms with more

power than standard search algorithms#
#

Phạm Bảo Sơn 4

Example: Map-Coloring!

•  Variables WA, NT, Q, NSW, V, SA, T #
•  Domains Di = {red,green,blue}#
•  Constraints: adjacent regions must have different colors#
#
•  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),

(green,blue),(blue,red),(blue,green)}#
#

Phạm Bảo Sơn 5

Example: Map-Coloring!

•  Solutions are complete and consistent
assignments, e.g., WA = red, NT = green,Q =
red,NSW = green,V = red,SA = blue,T =
green#

#

Example: n-queens puzzle!
•  Assume one queen in each

column.#
•  Variables Q1, ..Qn.#
•  Domains Di={1,..,n}#
•  Constraints#
•  Qi ≠ Qj (cannot be in the same

row)#
•  |Qi-Qj| ≠ |i-j| (or same diagonal)#

Phạm Bảo Sơn 6

Example Sudoku!

Phạm Bảo Sơn 7

Real-world CSPs!
•  Assignment problems (e.g. who teaches what

class)#
•  Timetabling problems (e.g. which class is

offered when and where?)#
•  Hardware configuration#
•  Transport scheduling#
•  Factory scheduling#

Phạm Bảo Sơn 8

Phạm Bảo Sơn 9

Constraint graph!
•  Binary CSP: each constraint relates two variables#
•  Constraint graph: nodes are variables, arcs are

constraints#
#

Phạm Bảo Sơn 10

Varieties of constraints!
•  Unary constraints involve a single variable, #

–  e.g., SA ≠ green#
•  Binary constraints involve pairs of variables,#

–  e.g., SA ≠ WA#
•  Higher-order constraints involve 3 or more

variables,#
–  e.g., cryptarithmetic column constraints#

•  Soft constraints (preferences)#
–  11am lecture is better than 8am lecture#

#

Phạm Bảo Sơn 11

Example: Cryptarithmetic!

•  Variables: F T U W R O X1 X2 X3!
•  Domains: {0,1,2,3,4,5,6,7,8,9}#
•  Constraints: Alldiff (F,T,U,W,R,O)#

–  O + O = R + 10 · X1!
–  X1 + W + W = U + 10 · X2!
–  X2 + T + T = O + 10 · X3!
–  X3 = F, T ≠ 0, F ≠ 0#

#

Phạm Bảo Sơn 12

Standard search formulation (incremental)!
Let's start with the straightforward approach, then fix it#
States are defined by the values assigned so far#
•  Initial state: the empty assignment { }#
•  Successor function: assign a value to an unassigned variable

that does not conflict with current assignment#
à fail if no legal assignments#

•  Goal test: the current assignment is complete#
1.  This is the same for all CSPs#
2.  Every solution appears at depth n with n variables 

à use depth-first search#
3.  Path is irrelevant, so can also use complete-state formulation#
4.  b = (n - l)d at depth l, hence n! · dn leaves (d: number of

variable values)#

Phạm Bảo Sơn 13

Backtracking search!
•  Variable assignments are commutative, i.e.,#
[WA = red then NT = green] same as [NT = green

then WA = red]#
•  Only need to consider assignments to a single

variable at each node#
à b = d and there are dn leaves#

•  Depth-first search for CSPs with single-variable
assignments is called backtracking search#

•  Backtracking search is the basic uninformed
algorithm for CSPs#

•  Can solve n-queens for n ≈ 25#
#

Phạm Bảo Sơn 14

Backtracking search!

Phạm Bảo Sơn 15

Backtracking example!

Phạm Bảo Sơn 16

Backtracking example!

Phạm Bảo Sơn 17

Backtracking example!

Phạm Bảo Sơn 18

Backtracking example!

Phạm Bảo Sơn 19

Improving backtracking
efficiency!

•  General-purpose methods can give
huge gains in speed:#
– Which variable should be assigned next?#
–  In what order should its values be tried?#
– Can we detect inevitable failure early?#

#

Phạm Bảo Sơn 20

Most constrained variable  
Biến bị ràng buộc nhiều nhất!

•  Most constrained variable: choose the
variable with the fewest legal values#

#
#
•  a.k.a. minimum remaining values (MRV)

heuristic#
#

Phạm Bảo Sơn 21

Most constraining variable  
Biến ràng buộc nhiều nhất!

•  Tie-breaker among most constrained
variables#

•  Most constraining variable (degree heuristic):#
–  choose the variable with the most constraints on

remaining variables#
#

Phạm Bảo Sơn 22

Least constraining value  
Giá trị ràng buộc ít nhất!

•  Given a variable, choose the least
constraining value:#
–  the one that rules out the fewest values in the

remaining variables#
#

#
•  Combining these heuristics makes 1000

queens feasible#
#

Phạm Bảo Sơn 23

Forward checking 
Kiểm tra trước!

•  Idea: #
–  Keep track of remaining legal values for unassigned

variables#
–  Terminate search when any variable has no legal values#

#

Phạm Bảo Sơn 24

Forward checking!
•  Idea: #

–  Keep track of remaining legal values for unassigned
variables#

–  Terminate search when any variable has no legal values#
#

Phạm Bảo Sơn 25

Forward checking!
•  Idea: #

–  Keep track of remaining legal values for unassigned
variables#

–  Terminate search when any variable has no legal values#
#

Phạm Bảo Sơn 26

Forward checking!
•  Idea: #

–  Keep track of remaining legal values for unassigned
variables#

–  Terminate search when any variable has no legal values#
#

Phạm Bảo Sơn 27

Constraint propagation!
•  Forward checking propagates information from

assigned to unassigned variables, but doesn't provide
early detection for all failures:#

#

#

•  NT and SA cannot both be blue!#
•  Constraint propagation repeatedly enforces

constraints locally#
#

Phạm Bảo Sơn 28

Arc consistency  
!

•  Simplest form of propagation makes each arc
consistent#

•  X àY is consistent iff#
for every value x of X there is some allowed y#

#

Phạm Bảo Sơn 29

Arc consistency!
•  Simplest form of propagation makes each arc

consistent#
•  X àY is consistent iff#

for every value x of X there is some allowed y#
#

Phạm Bảo Sơn 30

Arc consistency!
•  Simplest form of propagation makes each arc

consistent#
•  X àY is consistent iff#

for every value x of X there is some allowed y#
#

#
#
#
#

•  If X loses a value, neighbors of X need to be
rechecked#

#

Phạm Bảo Sơn 31

Arc consistency!
•  Simplest form of propagation makes each arc consistent#
•  X àY is consistent iff#

for every value x of X there is some allowed y#
#

#
#
#
#

•  If X loses a value, neighbors of X need to be rechecked#
•  Arc consistency detects failure earlier than forward checking#
•  Can be run as a preprocessor or after each assignment#
#
#
#

Phạm Bảo Sơn 32

Arc consistency algorithm
AC-3!

•  Time complexity: O(n2d3)#
#

Special constraints!
•  Arc-consistency does miss some cases#
•  Example: #

–  {WA=red, NSW=red}#
– AC-3: Domain for SA, NT, Q : {green, blue}#
– Alldiff constraint is violated as number of

values is less than number of variables.#

Phạm Bảo Sơn 33

Phạm Bảo Sơn 34

Local search for CSPs!
•  Local search or iterative improvement.#
•  Hill-climbing, simulated annealing typically work with "complete"

states, i.e., all variables assigned#
•  To apply to CSPs:#

–  allow states with unsatisfied constraints#
–  operators reassign variable values#

•  Variable selection: randomly select any conflicted variable#
•  Value selection by min-conflicts (mâu thuẫn ít nhất) heuristic:#

–  choose value that violates the fewest constraints#
–  i.e., hill-climb with h(n) = total number of violated constraints#

#

Phạm Bảo Sơn 35

Example: 4-Queens!
•  States: 4 queens in 4 columns (44 = 256 states)#
•  Actions: move queen in column#
•  Goal test: no attacks#
•  Evaluation: h(n) = number of attacks#
#

#

Phase transition in CSP’s!
•  Given random initial state, can solve n-queens in almost

constant time for arbitrary n with high probability (e.g., n =
10,000,000)#

•  In general, randomly-generated CSP tend to be easy if there are
very few or very many constraints. They become extra hard in a
narrow range of the ratio:#

#

Phạm Bảo Sơn 36

Flat regions and local
optima!

•  Sometimes, have to go sideways or even backwards
in order to make progress towards the actual solution.#

Phạm Bảo Sơn 37

Simulated Annealing!
•  Stochastic hill climbing based on difference between

evaluation of previous state (h0) and new state (h1).#
•  If h1 < h0, definitely make the change.#
•  Otherwise, make the change with probability:#
#e-(h1-h0)/T ,T is a “temperature” parameter#

•  Reduces to ordinary hill climbing when T=0.#
•  Become totally random search as T-> ∞#
•  We gradually decrease the value of T during the

search. #

Phạm Bảo Sơn 38

Phạm Bảo Sơn 39

Summary!
•  CSPs are a special kind of problem:#

–  states defined by values of a fixed set of variables#
–  goal test defined by constraints on variable values#

•  Backtracking = depth-first search with one variable assigned per
node#

•  Variable ordering and value selection heuristics help
significantly#

•  Forward checking prevents assignments that guarantee later
failure#

•  Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies#

•  Iterative min-conflicts is usually effective in practice#
•  Simulated Annealing can help to escape from local optima.#
#

References!
•  Artificial Intelligence, A modern

approach. Chapter 5.#

Phạm Bảo Sơn 40

	http://tailieuvnu.com/

