Constraint Satisfaction

Problems
Cac bai toan thoa man rang budc

Outline

« Constraint Satisfaction Problems (CSP)
» Backtracking search for CSPs
 Local search for CSPs

Pham Bao Son /-f\

*W‘-_’— e e T s e T e AR et

. R e S

— P—— — . =1 .

&

e e ot e

Constraint satisfaction problems
(CSPs)

Standard search problem: |

is a "black box” — any data structure that supports
successor function, heuristic function, and goal test

CSP:

P SIS

is defined by variables X; with values from domain D,

IS a set of constraints specifying allowable
combinations of values for subsets of variables.

— Aim is to find an assignment of X, from domain D, in such a
way that none of the constraints are violated.

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more
power than standard search algorithms 5

Pham Bao Son /T

l VoS o~ - == e e A, g A e N et Mﬂ‘w

—— - .
— e

;e

Example: Map-Coloring

s — N

P ————

Northern
Territory

Western Queensland
Australia
\ ﬁls'::lalia [J
New South Wales {
1
}ora\
Tasmania
WA, NT, Q, NSW, V, SA, T
D. = {red,green,blue}
: adjacent regions must have different colors }
e.g., WA = NT, or (WA,NT) in {(red,green),(red,blue),(green,red), '
(green,blue),(blue,red),(blue,green)}

Pham Bao Son /-j-\
*‘W-——obw— e ————

e T e AL - e, A o ‘W

Example: Map-Coloring |

=
-y

P——— {

s\hs

Tasm'ia

are complete and consistent
assignments, e.g., WA =red, NT = green,Q =
red,NSW = green,V = red,SA = blue,T =

- green .
Pham Bao Son 5
l " ~ - - e e o i - e —

¢

Example: n-queens puzzle

- Assume one queen in each

column.
- Variables Q4, ..Q,,.
- Domains D={1,..,n}
« Constraints

* Q= Q (cannot be in the same

row)

- 1Q-Qjl # li-jl (or same diagonal) !

Pham Bao So

e

ot mmm——

e Y
-

———

N
(&)
w
N
- o o w

Pham Bao Son

Real-world CSPs

S — "R S

 Assignment problems (e.g. who teaches what

class)

- Timetabling problems (e.g. which class is

offered when and where?)
- Hardware configuration
 Transport scheduling
» Factory scheduling

Pham Bao Son

Constraint graph

- Binary CSP: each constraint relates two variables

- Constraint graph: nodes are variables, arcs are
constraints

Pham Bao Son

T o ——— A ————— T — — gl W

P ——— S

-

Varieties of constraints

constraints involve a single variable,
— e.g., SA # green

constraints involve pairs of variables,
— e.g.,, SA WA

constraints involve 3 or more

e A — & v

variables,
— e.g., cryptarithmetic column constraints
« Soft constraints (preferences) f

— 11am lecture is better than 8am lecture

Pham Bao Son ﬁ

Example: Cryptarithmetic

|+
ol -
Ccls =
DO O

%5 % X,

FTUWROX, X, X,
:{0,1,2,3,4,5,6,7,8,9}
. Alldiff (F, T,U,W,R,0)
- O0+0=R+10"X,
- X+ W+W=U+10-X,
— X,+T+T=0+10" X,
= X;3=F T#0, F£0

Pham Bao Son

11

et AT e R e

B e el

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far
: the empty assignment { }

. assign a value to an unassigned variable 4
that does not conflict with current assignment

- fail if no legal assignments i
: the current assignment is complete |
This is the same for all CSPs 1

Every solution appears at depth n with n variables
—> use depth-first search

Path is irrelevant, so can also use complete-state formulation {

b =(n-()d at depth £, hence n! - d" leaves (d: number of
variable values)

ey L AR E

8

Pham Bao Son m

S S -t S BT TS st LR (OO R __,._,_-W

Backtracking search

- Variable assignments are ,l.e.,

[WA =red then NT = green | same as [NT = green
then WA =red]

- Only need to consider assignments to a single
variable at each node

- b =d and there are d" leaves {
Depth-first search for CSPs with single-variable 1

assignments is called search
- Backtracking search is the basic uninformed

algorithm for CSPs f
« Can solve n-queens for n = 25

Pham Bao Son ﬁ

Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure

if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to Constraints|[csp| then
add { var = value } to assignment

result <+ RECURSIVE-BACKTRACKING(assignment, csp)
: if result # failue then return result

remove { var = value } from assignment
return failure

Pham Bao Son 14
= A A *,_.__,‘:’4: :.. ™

e re—— N~

B, o

Backtrackina example
=8

e ——

L

¢

Pham Bao Son 15
- 2 P> e *,.,____54: : : f

Pham Bao Son : 16 s
W—:: pr—

Backtracking example |
=% |
:

\\

A

el SSR S

Pham Bao Son : 17 s
W—:: pr—

Backtrackina example |
i |
1

\\

—]
el SR S

|
‘/\

. &

Pham Bao Son : 18 s
W—:: pr—

1
Backtrackina example |
Y |

1

\\

—]
¢ ¢ & |
—
. &
—

s 9

Improving backtracking
efficiency

» General-purpose methods can give
huge gains in speed:
— Which variable should be assigned next?
— In what order should its values be tried? |
— Can we detect inevitable failure early?

Pham Bao Son f

- - S PSR pu— T D A e TR e e e S R -—’-‘—’—‘WJ

Most constrained variable
Bién bi rang budc nhiéu nhat

N

e

 Most constrained variable: choose the
variable with the fewest legal values

e o S

* a.k.a.
heuristic

Pham Bao Son f

—r - . o B —_— R e il -—’-‘—’—‘WJ

Most constraining variable
Bién rang budc nhiéu nhat

e e S

 Tie-breaker among most constrained
variables

- Most constraining variable (degree heuristic): |

— choose the variable with the most constraints on
remaining variables

| =
Pham Bao Son 21
.’-—..90_’— e T e e e DA

e e e et i eyt

S

-

Least constraining value
Gia tri rang budc it nhat

e e S

« Given a variable, choose the least
constraining value:

— the one that rules out the fewest values in the j
remaining variables ‘

‘_J% Allows 1 value for SA
Lt:—,‘_L _.‘\—LET<“_% Allows 0 values for SA

» Combining these heuristics makes 1000 *
gueens feasible

' =
Pham Bao Son 22
d.»-—-—ﬁb—'—— e T e I A S

e e e et i eyt

Forward checking
Kiém tra trwéc

o i

— Keep track of remaining legal values for unassigned
variables
— Terminate search when any variable has no legal values

==

WA NT Q NSW V' SA T

Pham Bao Son ﬁ

AN e ———p— Tt N e ey - R

Forward checking

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal values

—ads . A

WA

NT

SSEA &S

Q

NSW

SA

d._’-’*

e

Pham Bao Son

——

—

24

— Keep track of remaining legal values for unassigned

Forward checking

variables

— Terminate search when any variable has no legal values

b

WA

NT

Q

NSW

Vv

SA

d._’-’*

Pham Bao Son

—

25

—ads . A

— Keep track of remaining legal values for unassigned

Forward checking

variables

— Terminate search when any variable has no legal values

L

NT

N
_\

Q

NSW

V'

SA

e

d._’-’*

Pham Bao Son

—

26

P ——— S

Constraint propagation

Forward checking propagates information from
assigned to unassigned variables, but doesn't provide
early detection for all failures:

oD

WA Q NSW \' SA T
CE I I I i irerir e
[—| EEr e[E[E] 1]
[— e m[ErE]]

« NT and SA cannot both be blue!

repeatedly enforces

constraints locally /’T‘
Pham Bao Son 2/

A S o = Fleiite 148 IR -—'"“"“"-WJ-"

« X =2>Yis consistent iff

Arc consistency

R S — S

- Simplest form of propagation makes each arc

for every value x of X there is some allowed y :

SSEA SSEa S~

WA NT Q NSW \'J SA T
L
[— B[m m[EEE E(EDE i

Pham Bao Son : 28 t
w o p et ~— —— - e

Arc consistency

- Simplest form of propagation makes each arc

« X =2 Yis consistent iff
for every value x of Xthere is some allowed y

L

b
_\

WA NT

—4-—4pn

NSW Vv SA T

[E[e Xer s E[EEE

d._’-’*

e —

\}/

Pham Bao Son

29

P ——— S

s — N

Arc consistency

RS-

- Simplest form of propagation makes each arc

- X 2 Yis consistent iff
for every value x of Xthere is some allowed y i

e R

[E[E e D . E[EEE
& }
If X loses a value, neighbors of X need to be '

rechecked
Pham Bao Son 30 J

dwbw— R e = P A ‘W

s — N

Arc consistency

- Simplest form of propagation makes each arc
« X —=2>Yis consistent iff
for every value x of X there is some allowed y

b i

WA NT Q NSW Vv SA T
L E[e D' m) (L1

— _(——
- If Xloses a value, neighbors of X need to be rechecked }
« Arc consistency detects failure earlier than forward checking

« Canberunasa preprocessor or after each assignment
Pham Bao Son 31 J

dwbw— R e = P A ‘W

RS-

Arc consistency algorithm
AC-3

function A C-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp
while gueue is not empty do
(X:, X;) 4 REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then

for each X in NEIGHBORS[X;| do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed < false

for each z in DoMmAIN[X;] do
if no value y in DOMAIN[X;] allows (z,y) to satisfy constraint(X;, X;)

then delete z from DOMAIN[X;]; removed « true
e return removed

+ Time complexity: O(n?ds)

Pham Bao Son 32

. s = Gt

Special constraints

. R e S

» Arc-consistency does miss some cases
- Example:

—{WA=red, NSW=red}

— AC-3: Domain for SA, NT, Q : {green, blue}

— Alldiff constraint is violated as number of
values is less than number of variables.

Pham Bao Son K-}-\

*W‘-_’— e e T s e T e AR et

—— .
——— e

N

Local search for CSPs

- Local search or iterative improvement.

- Hill-climbing, simulated annealing typically work with "complete"
states, i.e., all variables assigned

- To apply to CSPs:
— allow states with unsatisfied constraints
— operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts (mau thuan it nhat) heuristic:
— choose value that violates the fewest constraints
— i.e., hill-climb with h(n) = total number of violated constraints

—— -
— e

8

Pham Bao Son ﬁT

.h - P o B NP T L D A e TR g et T T et -—pﬁ——'—s&w

__Example: 4-Queens i

States: 4 queens in 4 columns (4% = 256 states) }

Actions: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

Pham Bao Son

Phase transition in CSP’ s

- Given random initial state, can solve n-queens in almost

constant time for arbitrary n with high probability (e.g., n =
10,000,000)

 In general, randomly-generated CSP tend to be easy if there are :
very few or very many constraints. They become extra hard in a ‘

narrow range of the ratio:

e S

number of constraints

k= number of variables

CPU
time ’
|

[{
J l‘__ B

- — R
critical
ratio

—~
Pham Bao Son 36

I B — i s Tt A e gy —WJ

Flat regions and local '
optima

Objecti\ e function -global maximum
| -

e —— A AN

shoulder

N\

local maximum {

L] 1] H 1
flatj local maximum

-

_-/

«state space
current

state

- Sometimes, have to go sideways or even backwards
iIn order to make progress towards the actual solution. -

Pham Bao Son : 37 t
w o p et ~— —— - e

Simulated Annealing

- Stochastic hill climbing based on difference between
evaluation of previous state (h,) and new state (h,).

If h, < h,, definitely make the change.
» Otherwise, make the change with probability:
e-(M-hO)T T is a “temperature” parameter |
Reduces to ordinary hill climbing when T=0.
Become totally random search as T->
» We gradually decrease the value of T during the

search.
Pham Bao Son ﬁT

-

Summary

CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per ;
node :

Variable ordering and value selection heuristics help i
significantly ‘

Forward checking prevents assignments that guarantee later !
failure

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

lterative min-conflicts is usually effective in practice é
Simulated Annealing can help to escape from local optima.

e

8

Pham Bao Son ﬂ

_a— S b = e e S et e i ARt P -—"—’-‘W

References

- Artificial Intelligence, A modern
approach. Chapter 5.

Pham Bao Son

o

BEVAL e ——t Tt S e et e m, R ———

b \W’_‘—_“FL e e o e

	http://tailieuvnu.com/

